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Abstract—We consider hardware implementation aspects of ~ Most measures used to evaluate performance involve robust-
the digital watermarking problem through the implementation of  ness and imperceptibility. To characterize robustness, we often
a well-known video watermarking algorithm called Just Another ,qa the it error rate of the extracted watermark, similarity
Watermarking System (JAWS); we discuss the time and area bet th bedded d tracted ¢ K
constraints that must be satisfied by a successful hardware measures eween. € em. g €d and ex r_ace Wa'ermar
implementation. A hardware architecture that implements the Such as the correlation coefficient, the theoretically maximum
algorithm under the constraints is then proposed. The architecture  amount of information that can be reliably hidden (called the
is analyzed to gain an understanding of the relationships between watermark capacity), and the probabilities of false positive
algorithmic features and implementation cost. Some general find- 4,4 fa)se negative detection. To evaluate imperceptibility
ings of this work that can be applied toward making algorithmic f d MSE) bet th e |
developments more amenable to hardware implementation are measures o meah Squaread error ( ) eween - e ongina
finally presented. and watermarked image, or peak signal-to-noise ratio (PSNR),
as well as qualitative assessments are employed.

In this paper, we add a third dimensiomplementation
cost—to this measure of performance. In particular, we focus
on hardware complexity. Our overall objective is to identify

. INTRODUCTION those algorithmic performance improvement approaches that

IGITAL watermarking is the process of embedding a me§/e disproportionate to the design effort and cost of imple-
D sage within the content of another message. The initigentation f_;lnd, hen_ce, exhibit a poor performance compromise
focus of digital watermarking research was on the developmd&ien cost is taken into account.
of robust methodqlogles for copyright protectlo_n appllcatloni:. Hardware versus Software
several algorithmic and performance-enhancing approachés
were proposed. More recently, a theory of watermarking hasA watermarking system can be implemented with either
emerged in which analytic tool-sets are borrowed from ares@ftware or hardware In a software implementation, the
including data communications, statistical signal processir@gJgorithm’s operations are performed as code running on a
information theory, and cryptographic protocols. The multimicroprocessor. For example, high-level scripts written for a
disciplinary nature and underlying themes of the research af#4nbolic interpreter running on a workstation or machine code
have unfolded, as witnessed in many recent books addressifffware running on an embedded processor are both classified
the topic [1]-[4]. There is now a trend toward application of th@s software implementations. Software-based watermarking
technology to novel problems such as “self-healing” media f#s0 provides the following:
which data that has been tampered can later correct itself, signale Abstraction of the implementation from any hardware de-
tagging in which region-of-interest coordinates or value-added tails. Thus, instead of being concerned with elements such
information is embedded in hypermedia content, among others. as flip-flops, RAMS, and gates, the designer focuses on

The current focus in algorithm development has involved im-  implementation of the algorithm at a much “higher” level.
proving robustness primarily through the use of sophisticated ¢ Availability of software tools to aid in realizing various
perceptual models [5]-[7], interference and attack modeling for ~ data operationsFor instance, software designers have li-
advanced detector design [8]-[10], appropriate transform do- braries of common processing functions so that they may
mains for superior modulation [11]-[13], and powerful error- borrow, to a large extent, from past implementations.
correction codes [14].  Limited means of improving area and improving time com-
plexity (speed) of the implementatiofhe software de-
signer does not have direct control over the way RAM and

, _ _ processor interact, posing a limit on speed. To reduce area,
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Fig. 1. Overview of the JAWS embedder. The algorithm takes three inputs: the video streanffraneepayload, and the global embedding depth. The
video frame matrix is highpass filtered and then multiplied by the global embedding depth to create the embedding depth iaisipixel-wise multiplied
with R, which is the payload-specific watermark, to create the final wateriarkl” is pixel-wise added t&" to produce the watermarked frarfig, .

Although it might be faster to implement an algorithmin soft- 2) To present a state-of-the-art VLSI architecture for the
ware, there are a few compelling reasons for a move toward JAWS algorithm in order to illustrate the design issues
hardware implementation. In consumer electronics devices, a at the hardware levelTo the best knowledge of the au-
hardware watermarking solution is often more economical be-  thors, this is the first standalone video watermarking chip
cause adding the watermarking component takes up a small developed in a 0.184n CMOS technology.
dedicated area of silicon. In software, implementation requireslt should be mentioned that for simplicity, this paper fo-
the addition of a dedicated processor such as a DSP core thates on the nonideal effects on the performance of video
occupies considerably more area, consumes significantly meratermarking algorithms due to practical implementation
power, and may still not perform adequately fast. In this papeonstraints. We do not include, in this work, the additional
our hardware-level design offers many more options to reduefects of attacks on the watermarked video.

area and improve speed than software-level design. The remainder of this paper is structured as follows. Section I
provides a primer on JAWS and a description of basic hard-
B. Contributions of This Paper ware implementation constraints. Section Ill proposes a novel

In this paper, we mainly focus on hardware-design aSIoe@t@hitectur_e iIIustrqting hardware_ design issue; relateq to video
of Just Another Watermarking System (JAWS) [15]. Througwatermgrklng applications. Secpon I\/ deals with thg issues of
this case study, we illustrate implementation challenges, co&@MmPplexity and cost. The relationship between various algo-
and tradeoffs of different components of a video watermarkif§hmic parameters and features to the tradeoff between robust-
scheme. Due to similar structure, the design insights providBgSs and costis investigated. The paper concludes with final re-
in this paper are applicable to other watermarking algorithm®arks and ideas for future directions.

In JAWS, the embedding occurs on the raw data and not on

compressed data so that there is no sharing of components with ||. JAWS AND VIDEO WATERMARKING CONSTRAINTS

a codec that would complicate our cost analysis. Furthermore, ) ) . .

JAWS is an established algorithm that targets real-time appli—Th'S, section provides a primer on the JAWS embedding and
cations where frame-rate is an issue. A software-solution fggtectlon alg_orlthms [15]-[17] and specifies constraints on the
JAWS using a Trimedia DSP platform has been already implgIPlementation.

mented and tested [16]. In this work, we go beyond this imple-

mentation and propose a fully integrated hardware solution. A- Embedder: Definition and Constraints

The objectives of this paper are two-fold: The JAWS embedding algorithm, which is illustrated in

1) To identify hardware-friendly strategies that improve th&ig. 1, covertly embeds payload datanto individual frames
performance of video watermarking algorithni%erfor- of video F', wherei represents a bit string (word) of length
mance tradeoffs with complexity are investigated througN, and thef, by f, matrix F' represents a video frame. Each
simulations. Watermarking design is studied from the peelement of ' corresponds to the color value of a pixel in the
spective of hardware figures-of-merit and tool-sets.  frame, represented by/2-bit integer. The process of creating a
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TABLE |
LIST OF VARIABLES AND FUNCTION DEFINITIONS FOR THEJAWS EVBEDDING ALGORITHM
symbol meaning
B color depth of pixel
N payload bit string length
G detector folding depth
fz video frame x-dimension
Sy video frame y-dimension
N, number of primitive PN patterns
9z primitive pattern x-dimension, ¢, < fz
qy primitive pattern y-dimension, gy < fy
T number of pixels per modulation grid increment
ax grid x-dimension for modulation of watermark by payload, 1=
ay grid y-dimension for modulation of watermark by payload, <*
Jhps embedder high-pass filter
dim=3-3
F video stream frame

dim(F) = fz - fy, Flo ) € (0,27
payload bit string
a binary string (word) of length N

dg global embedding depth
Fw watermarked video stream frame (input to the encoder)
dim(Fw) = f= - fy, Fw[z,9] € [0,2°)
function meaning
fil(J, F) apply filter matrix J to signal matrix F'
a-b scalar multiply of a with b
modulate({Q,-}f’q ,%) | modulate {Q,-}f'" by % to create a primitive pattern
tile(P) replicate P to create a new matrix of size fs - fy
dim,(A) the number of rows in A
dim(A) the number of columns in A
dim(A) the number of elements in A, dim,(A) - dim.(A)
pwm(A, B) point-wise-multiply the elements of A with those of B
A and B have identical dimensions
pwa(A, B) point-wise-add the elements of A with those of B

A and B have identical dimensions

*In this work, letters without an overhead denote scalars, uppercase letters with denote general matrices, lowercase letters with specifically denote matrices with a single
row, an overhead denotes the transform-domain of the specified quantity.

payload- and frame- specific watermark is described in the fol- TABLE I
|0Wing. SUMMARY OF THE JAWS EMBEDDER ALGORITHM

The creation of the payload-specific base waterm&ris Step Equation
shown in Fig. 1 unde€Calculate Base Watermarleirst, a set Obtain Embedding Depth Dy = fil(Jnps, F)
of N, sequences of pseudo-random noise (the primitive pi D=d, D
terns{Q; }~*, ) are modulated by. This modulation is accom-  Obtain Base Watermark | P = modulate({Q1,. .., @n,},%)
plished by superimposing shifted versions of the primitive pa R = tile(P),dim(R) = fz - fy
terns, where the shifts are a function of the payléache result _ Obtain Final Watermark W = pum(D, R)
of modulation/” (called atile) is then replicatedtiled) over the Apply Watermark Fw = pwa(F, W)

same dimensions as the input frame to genekate

If the base watermark were directly superimposed on the _
video frame, the watermark may be perceptible. To correct thff€ Scaled by the global embedding depthto create the
local embedding depth®, are calculated for each pixel by€mbedding depth of the watermark The base watermark is
highpass filtering the video frame, as shown in Fig. 1 undef€n pixel-wise multiplied withD to create the final watermark
Calculate Embedding DepttTo control the overall strength W, which is pixel-wise added with the original video frame to

of the embedded watermark, the local embedding deptfi§ate the watermarked franfgy . .
The algorithm variables, functions, and basic steps are sum-
1The shifts are further constrained to be over a grid of dimensiona, marized in Tables | and II.

imposed over the span gf. - ¢,. The motivations for this are from practical ot ; i aati i i ; _
considerations at the watermarking system level and are explained in [15]. Constraints: Two emerging appllcatlons of d|g|tal video wa

2The highpass filter serves as a crude model of the human visual systeF_@gm_ark'ng are br_oadcaSt momtorlng and copy control; a prac-
masking characteristics. tical implementation of a watermarking system must conform
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Fig. 2. (a) Overview of the JAWS detector. The algorithm takes in the possibly tampered watermarked video stredrp BaimEEts an estimate of the payload
bit stringz and makes a decision on the status of whether or not the watermark was detected. (b) Outpiéft cbtbelation for watermark detection where the
payload was “1.”

to the constraints on time (performance) and space (area) tte high cost of broadcast equipment can absorb costs associ-

manded by these applications. ated with the embedder hardware, no strict area constraints are
In broadcast monitoring, the watermark can either be emesed by broadcast monitoring.

bedded into the media long before transmission or at the timeln copy control, embedding is usually done in the recording

of transmission (e.g., in a live video feed). It is in the latter cagkevice prior to storage onto the media [18] in a process called

that a strict real-time requirement must be met: The watermaemarking. There may also be applications where remarking oc-

embedder must function as fast as the video frame rate. Sicoes in the playback device. Since video data at these points will
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LIST OF VARIABLES AND FUNCTION Dl;rFAnal;ENgIFOR THEJAWS DETECTORALGORITHM
symbol meaning
Ims detector whitening filter
dim=3-3
{Fai, -+, Fsirk-1} | k consecutive suspect video frames (input to the decoder)

dim(F-'.) = fz : fy’ﬁ‘d[x,y] € [012B]

detected status on whether a watermark was detected

function meaning

fold({A:}Y ,bs,by) | Vie[1,N], )
over the complete span of A;,
accumulate (using the pwa() operator) sub-matrices (of dimension b - by)

of A,'
so that the result of the accumulation is a matrix (of dimension b, - b)
Fft(A) fast-Fourier transform of A
ifft(A) inverse fast-Fourier transform of A
conj(A) complex conjugate of each element of A
scan({A:}]) scan the set of matrices A; for spikes, from which to derive

what payload was modulated

TABLE IV
SUMMARY OF THE JAWS DETECTORALGORITHM
Step Equation
Calculate Filtered, {Ftit iy - ,Fﬁ[,i.;.c_l} = {fil(Jm!, F), -, fil(Jms, Fivc-1)}
Transform-Domain H = fold({Ffiri, -, Fra,i+c-1},9,qy)
Frame H = fft(H)
Obtain Filtered, {Qurity- -+ Qg it} = {Fil(Jmg, Q1)+, fil(Jmp, @Ng)}

Transform-domain {Qupits 2 @n, pu} = {FFt(Qura), -+, FFUQN, £i2) }

Primitive Patterns
Correlate | {C1,--+,Cn,} = {p"-"m(c‘mj(él,ﬁl)aﬁ{il)), oo »WM(fmj(QNq,m)»ffﬁl))}

and {C1,--,Cn,} = (if ft(C1), -+ ,if fH(Cn,)}
detect {detected,} = scan({C1,---,Cn,})

likely be streaming at the real-time frame rate, there is a per-For computational efficiency, the correlation used for payload
formance requirement that the embedder operate as fast asditection is computed as a convolution in the frequency domain.
frame rate. As copy control schemes will be used in consumiBs do this, the fast Fourier transformsidfand each of the prim-
electronics where low cost is essential, minimizing space coitive patterns (which have also been filtered wfmf) are calcu-
plexity is also very important. lated? The complex conjugate of each frequency-domain primi-
We constrain the embedder architecture to satisfy the diye pattern is then pixel-wise multiplied with the frequency-do-
gressive requirements that the embedder handle real-time videain folded image. Then, the inverse fast Fourier transform of
frame rates and minimize implementation area. the product is applied. The result will be a series of spikes in-
dicating the presence of primitive patterns from which the pay-
load can be derived; this is illustrated in Fig. 2(b) ¥y = 1,
B. Detector: Definition and Constraints Gr = qy = 32.

The algorithm variables, functions and basic steps are sum-
Fig. 2(a) illustrates the flow of data in the JAWS detectiomarized in Tables Ill and IV.
algorithm where the presence of an embedded watermark in &onstraints: As with the embedder, the applications of
suspect frame of video is detected and the payload extractethroadcast monitoring and copy control are used to obtain
The detection algorithm first filter§ consecutive frameB, constraints for architecting the detector.
by a whitening fiIterjmf to created filtered framesﬁs,fi,. In broadcast monitoring, several channels of video data are
These filtered frames are then folded to foff Next, the cor- monitored simultaneously and checked for the presence of wa-
relation betweerf] and theN, primitive patterns (used in the termarks. Due to the large amount of real-time video data that
embedding process) is computed. The result of this correlatiorust be processed (continuous streams over many channels),
indicates the presence of any primitive pattern or its shifted ver-,_. _ _ o
. Lo~ . . Since the computation of the fast Fourier transforms of the primitive patterns
sions inH. Finally, the payload is extracted from the distancgg

] . v independent of any input to the detector, they can be precomputed and con-
between adjacent instances of each primitive pattern. sidered constants to the process.
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Fig. 3. Proposed hardware architecture for the JAWS embedder.

detection at the frame-rate of video is required to ensure thamenable to an implementation known gipelining where
ough monitoring; at a slower rate, portions of the video streareach block §tagg completes one operation and submits its
would have to be dropped. For copy control, as with the eroutput to the next stage in the pipeline. Pipelines allow for high
bedder, detection can be done at the frame rate of the videalaga throughput as long as each stage only adds some delay
video data is being streamed. Hence, both applications pose(hagncy to the data stream but does not block it.
requirement for detection at the frame rate of video. Fig. 3 illustrates the embedder architecture. The hardware to
As with the embedder, the detector space complexity is pérform the two main operations of calculating the embedding
no consequence in broadcast monitoring; however, with coggpths and calculating the base watermark and the final gener-
control, due to the need to minimize economic cost, a smaliion of the watermarked frame are described in the following.
implementation must be targeted. Calculating the Embedding Depth&flhe main computation
Hence, the detector’s architecture will be under the com calculating the embedding depths is the highpass filtering
straints of maintaining real-time performance and minimizingf the input frame. Due to the :83 dimensions of the filter
area. (jhp £) and the row-by-row format of the input stream, filtering
requires at least three consecutive rows of frame data. There-
I1l. HARDWARE ARCHITECTURE fore, incoming pixels are stored into a pixel buffer until three
rows are available. At that point, one row of filter data will be

This section details architectures that implement the em-

bedder and detector algorithms under the constraints definec??nmpmed' For each element of the row, nine pixels are read

Section II. Unlike the previous implementation of JAWS [16] rom the buffer, multiplied with the appropriate filter matrix
. ; . element (from.J,,, r) and accumulated. It is apparent that this
this work implements JAWS in custom hardware. . . . s
part of the embedding algorithm impacts the pipeline in two
A. Watermark Embedder ways: First, it adds some delay to the data stream exiting the

) ) _ ) ) embedder, and second, it may block the pipeline for some du-
We assume in our implementation that the input video to thgtion. Latency does not disturb the overall throughput of the

embedder is provided as a stream of pixel data. That is, the glgseline; however, blockage may disrupt real-time operation. To
ments ofF" are provided one row at a time, beginning with thg event blockage, the rate of processing of the embedtteak
first row and ending with the last. The data rate is assumedgtgquency f.,...) must satisfy a constraint defined by the fol-
be consistent with the frame rate of real-time video. Referringying equation taking into account the frame size (f,),

to Fig. 1, there is a unidirectional flow of data from the inpulame rate Rirame), and the number of memory accesses per
to the output. Each block simply processes a few elementsgfe| (v, ......) for the filtering process:

data (pixels) and forward the results to the next block—there
are no iterative operations. This makes the algorithm very felock = fo - fy - Rirame - Naccess Q)
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whereN,...ss iS an implementation-specific constant. As an ey Step I Step 2 _
ample, if a single-port RAM is used to mplement the pixel ,,,,,,,,_! n ‘ e ’* [ Lw;i
buffer, then ten memory accesses (there is one clock cycle : |
access) are required per pixel computation: one to write the pi:; buffer | — t buffer J
to the buffer and nine to read pixel values from the buffer to ce ~E — -l
culate the filtered value. ’ ' ‘ i

Calculating the Base WatermarkTo calculate the base wa-
termark, a payload-specific tile is created and then tiled ov
the span of the image frame. Creating the primitive tile requir carommepnee e ey S

a means to generate the noise sequences that will serve as§ ﬂm{iscan pwm -
primitive patterns and a means to modulate the primitive pe: —
terns by payload data. — .

A variety of methods are available to generate the noi l é‘-
sequence, such as linear feedback shift registers (LFSRs)

in a buffer. The former method is considerably cheaper than _ _ _
the latter, as table Iookup requires Iarge silicon to implement. Fig. 4. Sequence of processes and flow of data involved in detection.
Lookup tables, on the other hand, provide a trivial solution
to modulation, where indexing into arbitrary points of the

noise sequence is needed; LFSRs do not offer such solutio_ plx}fllFO L g L fold | mnm‘ pwm scan J
Another advantage of table lookup is that each element of t e 'f T =
noise sequence can be directly set so that the statistics of L | L |
sequence can be contrived in any manner. For these reast %mauti§1exnf7 ‘ o

in our architecture, a lookup table is used to store the noi 1

sequences for the primitive pattern. Both modulation of th o 3 0

noise sequences by payload data and tiling are accomplist e |

at negligible cost (in area and time) by the use of a count

and adder to generate the addresses to the noise buffer.

counter, by nature, implements the tiling function as it counts

modulo g, and qy over the range off, and fy- At each step Fig. 5. Proposed hardware architecture for the JAWS detector.

in the count, two reads from the noise buffer occur: one at the
count and another offset (by a function:pfrom the count; the
offsetting of two identical primitive patterns liyaccomplishes (F

modulation. _ , level pipeline by buffering pixels at the input port while the de-
Generating the Final Watermarked Framéfaving the tWo o cion process is occurring. The whitening filter at the output

me}jor embeddgr functions.architected, the remainder (?f the Bfthe FIFO drains the pixels of the FIFO, filters them, and for-
chitecture consists of relatively small hardware to multiply thg, s the filtered result to the fold hardware. The fold hardware
watermark by the depths and add the result to the original pixelz..  yates the filtered results into a matrix (the fold buffer).
ReaI—Tlmg P_erforman_ceo_nly the_constralnt defined in (1) Then, thefft, pwm ifft, andscanblocks sequentially operate on
must be satisfied to maintain real-time performance as the filiq to)q puffer to detect and extract any payload. At any one step
tering hardware IS the only place in the embedder architectyfeye getection process, only one of the computational blocks
where data flow is blocked. (fft, pwm ifft, or scarj is actively operating on the contents of
the shared fold buffer; this is enforced by tinailtiplexorat the
B. Watermark Detector input of the fold buffer that selects the currently active path into
As with the embedder, the detector is architected to funthe buffer.
tion as a stage in a system-level pipeline designed to proceskilter and Fold Process:The topology of the detector’s
real-time video data, with the same input data stream characthitening filter is identical to the highpass filter of the em-
istics. However, in contrast to the embedder, the detection alg@dder (shown in théighpass filtersection of Fig. 3), the
rithm is considerably more complex. As Fig. 4 illustrates, deteonly difference being that the elements.bf ; are used in the
tion consists of a series of computations that operate on an datector instead off,;, ;. Fig. 6 illustrates the fold datapath;,
tire matrix, as opposed to elements of a data stream. Moreoveput operand lis obtained from the filterinput operand 2s
the computations themselves are iterative. Both of these asp@ittained from the previously folded value in the fold buffer (it is
will result in prolonged calculations and potential blockage; tH&for the initial iteration), an@p is addition. From the detailed
architecture must compensate to prevent the blockage from discussion on the filter (Section I1I-A) and the unidirectional
versely affecting the real-time performance.

Fig. 5 illustrates the detector architecture. A first-in first-out
IFO) buffer at the input port prevents blockage in the system-

5Due to the linearity of the filtering process, another possibility would be
4A single-port buffer only allow®ithera single writeor a single read to be to first fold the frames and then filter the result. This would save area, at the
performed on the RAM at a time. expense of increased detection time.
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bttty tapae Fig. 8. Basic topology of scan data path.

input | L 0
elements | L ]
complex| | TABLE V
[
add ! output TIME AND SPACE COMPLEXITY OF THE EMBEDDER
| 1

S i : =
complex | 1 feature | area complexity time complexity

multiply high-pass filter buffer (RAM) 03 fz)

filter O(3- f; - B-bits) pixel-time latency
payload pattern buffer (ROM) | negligable
modulation | O(N, - ¢ - We)

other negligable negligable
datapath
overall RAM: O(B - fz) O(3- fz)

ROM: O(N, - ¢*> - W.) | pixel-time latency

Fig. 7. Basic topology of fft data path.
Scan: Thescanoperation, shown in Fig. 8, scans the buffer
. L .and stores the magnitudes and positions of the two largest dis-
flow of folding, no blockage to the pipeline occurs due to th'ﬁnct values in the fold buffer. At the end, it computes the abso-
step. . . . lute distance between the two positions and returns this as the
Fast Fourier Transform HardwareFig. 7 illustrates the detected payload. The scan operation works in parallel with the

topqlogy of .the' rad|x-g butterfly th"f‘t implements the m-placFast iteration offft and does not contribute to the duration of de-
decimation-in-timeg-point fast Fourier transform for both thetection

fit andifft operation$ (¢ = ¢, = g, for the remainder of oo Time performanceReal-time performance is main-

this paper). The same butterfly is used for aII_iter_ation; of tl}Sined by ensuring that the detector does not block the stream
transform. The duration of the overall calculation is defined B pixels. Due to the shared fold buffer in the architecture

units of clock cycles by the following equation in terms;and
the number of cycles to compute one butteffly,¢h butterfy
(an implementation-specific constant):

pixels cannot be processedimd while the fold buffer is being
used by thdft, ifft, andpwmoperations; this blockage must be
compensated for by properly sizing the input FIFO. The total

q duration during which pixels cannot be processed is
Tae =2 - q- 10g2(q) . 5 . j—i)at}l,blltterﬂy

Tdctoct =2- Tfft + prm (4)
Point-Wise Multiplication: Fig. 6 illustrates the topology of

the pwmcomputation, wher@put operand Iis obtained from and the incoming pixel rate is

the fold bufferjnput operand 2s the corresponding value in the foo - Ry
frequency domain pattern buffer, angdis a complex multipli- Rpixel = == Ji’ = (5)
cation. The operation is iterated over the entire fold buffer. The clock

duration of the calculation is defined in units of clock cycles bp@ence, to ensure real-time performance, the input FIFO must
the following equation in terms @fand the number of cycles re-be large enough to bufféficiect - Rpixel PiXels. Alternatively,
quired to compute one point-wise multiplicati@a:n, pwm (@n  rather than buffering the pixels, they could simply be dropped.
implementation-specific constant):

IV. ARCHITECTURECOMPLEXITY

T wm — ¢ " (4 T ath,pwm - . . . . . . .
P 79" Tpathip ®) Our perspective in this paper, in part, highlights the practical

o i ) application-specific requirements of a video watermarking
80ptimizations that were possible with tffedue to the real-valued data on

which it operates were not considered since they only contributeaconstant$¥-5te_m' Many tradeoﬁs may b_"" needed to create a _W‘_iter'
duction in the latency and no reduction in the area cost. marking system that is constrained by the often conflicting



MATHAI et al. HARDWARE IMPLEMENTATION PERSPECTIVES OF DIGITAL VIDEO WATERMARKING ALGORITHMS 933

TABLE VI

TIME AND SPACE COMPLEXITY OF THE DETECTOR
feature area complexity l time complexity
whitening filter buffer (RAM) O3 fz)
filter O3 fz - Wa) pixel-time latency
fold fold buffer (RAM) OG- fz- fy)

O(q* - Wa) pixel-time latency
overall filter RAM: OB - fo+G-fz- fy)
and fold pipeline | O(Wy- 3. fi + q°) pixel-time latency
ot/ ift 1 to 4 multipliers O(q* - log, q)

2 to 4 adders clock-cycle latency

twiddle table (ROM) O(q/2)
pwm primitive pattern buffers (ROM) | latency O(N, - ¢%)

O(Ng - ¢* - Wa) cycles
scan negligable none; overlapped with

last pass of ifft
overall detection | ROM: latency O(q - log, q + ¢°)
process O(N, - g% - Wy)
overall RAM: O(W, -3 fz +q°) latency
ROM: O(N, - ¢ - Wa) OB - fot+ G fo- fyt
g -logyq+4¢%)

requirements of the application and economic cost. To credsggnal” to be the correlation peaks that the detector used to ex-

an optimal solution, analysis must be performed to balantact payload information and “noise” to be the remaining corre-

the benefits of algorithmic features with the implementatiolation values that the detector ignored. The following equation

costs involved. This section creates a basis for cost-benelfifines the calculation of the metric:

analysis of watermarking schemes implemented in hardware. It

presents the hardware costs associated with various algorithmic > signal® (i)

features, with some assessment of the “algorithmic benefit” SNR= 101log \”_72_ i @)

obtained from each feature. It concludes with a discussion of %;nmse (4)

strategies to improve general watermarking schemes and the

associated implementation perspectives. To arrive at some conclusions on the cost of the algorithmic

) o features of JAWS, we treat the hardware components of the em-

A. Complexity of Algorithmic Features bedder and detector separately. The following discussion reports
From a signal processing perspective, the objective of a whe results of our complexity analysis and is summarized in Ta-

termarking scheme is to achieve high data rate of the embeddiels V and VI as well.

payload such that perceptual distortion is minimized and the de-1) Achieving High Data Rate:JAWS achieves high data rate

tectability of the watermark (“robustness”) is maximized. Whehy modulating a set of primitive patterns by payload data [17].

implementation is considered, real-time performance and reddidée number of bits that can be embedded per primitive pattern

tion of area also become important. (IV1), the number of bits that can be embedded in a frame using
To measure the benefit of algorithmic features, a softwaré, primitive patterns V), and the time rate of data of the video

model (in C) of the watermarking system was created to alloi24.¢.) are defined in the following equations in terms of the de-

guick simulation of different cases; this model is completelgign parameterd,, ¢, andG and the application-derived frame

identical, bit-for-bit, to the hardware description code (RTLjate Reame (NOte that- is a constant defined in Table 1):

that implements the architecture. The simulations were run on

a 350-MHz Pentium Il system running Linux with 256 MB of 3—2 +2
RAM. The metric we use to measure perceptibility of the em- Ny =log, < ) (®)
bedded watermark is the root mean square error (RMSE) be- NN .N ©)
tween the watermarked frantg;- and the original unmarked ¢ 1
frame F', as defined by Raata =Rirame R N. (20)
1 Indn . ~ 2 (We will not consideG for now since from Tables V and VIl itis
RMSE= fe fy ;yz_l (FW [ 9] = F[x’y]) - (6 clear thati does not impact area.) Equations (8)—(10) show that

the data rate varies witN, -log, (¢). From Tables V and VI, we
The metric we have used to measure robustness of detectiosde that the implementation cost in terms of area variesqg#ith
the signal-to-noise ratio (SNR) of the correlated output of théor expensive RAM) andV, - ¢2 (for the relatively inexpensive
detector (i.e., the output of th#ft), where we considered theROM to store primitive patterns). The cost in terms of detection
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Fig. 9. Improvement in detection performance and its relative cost with . . . _
increasingg. Fig. 10. Influence of floating-point precision on the perceptibility of the

embedded watermark; the highpass filter of the embedder is disabled.

time varies withy?-log, (¢)+N,-¢?. Hence N, can be increased
at less cost and provide more benefit than
To gain some more perspective on the limits to whjcian be
varied, we measure the performance of the detector with varyi
q. Fig. 9 shows the results of this simulation along with the a .
sociated cost due t@; we see that reducing tends to impair s~
detector performance. In addition to this limit on the degree -
which ¢ can be reduced, [17] reports that the degreeAhatan ]~
be increased is limited due to increased perceptual distortiorg
2) Minimizing Perceptual Distortion:The JAWS embedder '”15
employs a highpass filter to allow the imperceptible addition ¢
relatively strong watermarks; however, the filter is quite expel
sive. To gain a quantitative measure of the importance of tl
highpass filter, we simulate the watermarking system with ar
without the filter with varying global embedding depth. Withou
the filter, only very weak watermarks can be added; howevt
the detection of these watermarks is quite robust as they w,
present with constant strength throughout the entire image. With
the filter, very strong watermarks can be imperceptibly addedf@. 11. Influence of floating-point precision on the detectability of the
portions of the image selected by the filter; the high strength apbedded watermark; the highpass filter of the embedder is disabled.
the watermark allows very robust detection as well. Considering
the results of this simulation, the use of perceptual models dage plots of the perceptibility of the embedded watermark with
not seem to offer a significant benefit in the cost-benefit conhe corresponding detector performance, with the highpass
promise; however, this simulation only illustrates the case filter enabled. Considering the size of the “flat” region of the
passive watermarking applications where a degradation attgt that includes the high-precision floating-point result (the
is not a serious threat. high-precision result represents ideal performance), we can
We can view practical floating-point precision effects again an appreciation of how resilient the system is against the
an “attack” on the watermarked signal. We simulate this kttack. It is clear that with the filter enabled, the embedder is
varying the floating-point paramete#d’.” of the embedder able to generate imperceptible and detectable watermarks over
(Section 1V-A4 will discuss this in detail) and measurings much wider range of the “attack” than with the filter disabled.
the perceptibility of the embedded watermark and detector3) Maximizing Robustness of Detectiom terms of imple-
performance. Figs. 10 and 11 are plots of the perceptibilifientation, the JAWS detector uses a fairly complex process
of the embedded watermark with the corresponding detecterdetect watermarks. Although the area complexity (due to
performance, with the high-pass filter disabled. Figs. 12 and bgffers) is directly proportional t&v, -¢> as discussed above, the
very requirement for the costly buffers is posed by the iterative
/In this paper, W mantissa denotes the precision of the mantissagngd plock-based computations in detection. Iterative computa-
and W cxponent denotes the precision of the exponent, such thaf, oo iive storage of intermediate values, and block-based
W, = Wi mantissa + Wa axponent- The x subscript specifies whether ’
the parameter applies to tembedder odetector. computations require large amounts of storage to represent the
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rms error

Fig. 14. Influence of floating-point precision on detection.

Fig. 12. Influence of floating-point precision on the perceptibility of the
embedded watermark; the highpass filter of the embedder is enabled.
time complexity penalties; in light of the enormous sizes of the

buffers (which are required), any additional data path and con-
trol hardware would certainly be minimal. In Section IV-B, pos-
sible improvements to exploit slack are discussed.

4) Floating-Point RepresentationAn important parameter
that impacts the efficacy of the aforementioned algorithmic fea-
tures and the area complexity is the floating-point representa-
tion, as represented By, andWj.

In the embedden¥, impacts the area of the pattern buffer,
as well as the sizes of datapath elements such as multipliers and
adders. To evaluate the influenceldf, on the embedder, we
independently varyV. mantissa @Nd We exponent @Nnd measure
the perceptibility of the watermark (see Fig. 12) and the de-
tectability of the embedded watermark (see Fig. 13). For these
measurements, we keep all other parameters in the embedder
and detector constant and set the detector to use high-precision
floating-point parameters. These plots show three regions
with common characteristics. First, there is a region where
the watermark is most imperceptible—and undetectable. This
Fig. 13. Influence of floating point precision on the detectability of th&€orresponds to whend’. does not have enough dynamic range
embedded watermark; the highpass filter of the embedder is enabled. to represent a Strong enough watermark. Second, there is a

region where detection is much better, but the watermark is very

values (which are matrices, rather than elements). In additiorgfCeptible. This corresponds to where floating-point numbers
requiring blocks of storage for the computations, detection al@§have like fixed-point numbers; the very poor granularity in
incurs long latencies; as discussed in Section I11-B, the additid#€ represented embedding depths causes stronger watermarks
of a buffer is required to maintain real-time performance in tH@ P& embedded. Finally, there is a third region where percepti-
presence of long latencies. Given that such large time and spaiY IS minimized, and robustness of detection is maximized.
complexity is inevitable with a JAWS-like detection sequefice,Moreover, these performance metrics are roughly constant
we can attempt to ensure that hardware utilization is maximizéfroughout the region; the border of this region and the second
From Table VI, the fold process latency@® G- f,- f,,); the con- defm(_a the_ point beyond which increasilig. ceases to increase
stant of proportionality is a multiple of the frame rag.... algorithmic performance. _ _

If the detection processes were to occur in parallel with the fold I the detectori¥, also plays an important role since the

process, the detection process would complete faster than fafpice of Wy will restrict the dynamic range available to the
as it runs at the rate of the system clofk,.., which is many detection computations, where, due to the iterative nature, there

times faster thamRg.... Hence, thisslackin time can be uti- is a possibility that the numbers will grow in size. To understand

lized to increase the complexity of detection with no additiond€ influence ofi¥; on the detector, we var s, mantissa and
W exponent @Nd measure the performance of the detector on a

8]t is out of the scope of this work to modify the core algorithmic nature of game where the watermark is imperceptible. In_ Fig. 14, two
JAWS-like scheme. regions can be seen: one where the detector fails bed&iise
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TABLE VII
SUMMARY OF COST-BENEFIT RELATIONSHIPS
feature | influence on influence on
implementation cost algorithmic performance
JIhps (embedder) cost: one large buffer allows the use of stronger
with dim,(Jhps) rows of length f embedding depths while
maintaining imperceptability;
(embedder) cost: increases latency however, weak global embedding
depths with no filtering may
be acceptable
Imf (detector) cost: one large buffer strongly improves detection
with dim,(Jinz) rows of length f performance
N, cost: increases number of large pattern | increases the number of bits
buffers that can be embedded in a
(detector) cost: latency oc Ny frame (N o Ny); however, if N,
is too high, the watermark
may be perceptible
q cost: pattern buffer size o ¢° increases the number of bits
(detector) cost: fold buffer size o ¢* that can be embedded in a
(detector) cost: latency o g2 - loga(q) frame (N o log2(q?));
larger values of q
improve detection perfomance
G larger G improves
detection performance
but reduces data-rate
We cost: increases buffer dataword sizes proper selection will result
cost: increases size of data computation | in improved imperceptability
elements and detectability of watermarks
Wy cost: increases buffer dataword sizes proper selection will result
cost: increases size of data computation | in better dynamic range
elements for computations so that
more robust detection can be
achieved

had insufficient dynamic range and another where the detectessing performance-enhancing strategies in terms of hardware
succeeds and performs the same with further increaddgin implementation constraints.

Although two separate binary representations were used forl) Perceptual Models:Masking characteristics of human
the detector and embedder of this work, all hardware interradrception are often employed during the watermark embed-
to the detector used a uniform representation, as did all hadirg phase to increase the energy of the mark and, hence,
ware internal to the embedder. However, to aggressively mamyprove robustness during detection. Although sophisticated
imize the dynamic range in each computation, a wide varigpgrceptual model are available in the human factors literature,
of number representations such as various forms of fixed-poiitthas been demonstrated that in practice, neatbocmeasures
floating-point, and block floating-point or number systems suahay outperform in terms of watermarking reliability [6]. For
as logarithmic, residue, and anti-tetrational, might be used to ofjdeo watermarking, it follows that perceptual models used
timize the dynamic range afachcomputational element with for image watermarking could be combined with temporal
implementation cost. Future work can undertake a more comasking measures to make more efficient use of the perceptual
prehensive analysis of a watermarking system with locally opgom available for data hiding.
timized binary number representations. In addition, investiga-From an implementation perspective, the ideal perceptual
tions into more suitable number systems for watermarking altodel involves the computation and buffering of few elements
gorithms can be done. to obtain a metric used to adapt the watermark for impercep-
tible embedding. Employing sophisticated models, in which
spatially global or temporal masking measures are employed,
could often require buffering the video frames, which is

Throughout this paper, we have employed JAWS as impractical. This occurs if the energy of the watermark in a
case-study to gain insight into “hardware-friendly” approachgsxel of a frame at timé is dependent on the characteristics of
for watermark performance improvement. Table VIl summahe video at other time instants, say x to i + z for z > 0.
rizes the cost-benefit relationship among various features Afbuffer is required to store all intermediate elements from
the system. In this section, we attempt to generalize this cést z to ¢« + = so that these elements are available together
analysis to assess the potential of various popular signal pfor watermark adaptation for time Furthermore, there is an

B. More General Implications



MATHAI et al. HARDWARE IMPLEMENTATION PERSPECTIVES OF DIGITAL VIDEO WATERMARKING ALGORITHMS 937

increase in the latency of the calculation since the result for theocessing stages such as lossy compression [21] to keep costs
element of time is only available after the last element at timelown. Recent work [22] has demonstrated that use of the
1 + x has been processed. same domain for both watermarking and lossy compression
Buffering is also required to employ spatial masking if theesults in good performance. Thus, this solution of “borrowing”
entire frame must be first processed before the watermark camponents of the codec for data hiding has potential in terms

be adapted for embedding into that frame. A way in whicbf both cost and performance.

buffering requirements can be reduced for this case is to assume
atemporal perceptual invariancd hat is, the perceptual char-
acteristics of a past frame can be used to adapt the watermar
for embedding in the next one. In such a scenario, the previo
frame can be processed in real time to generate a perceptug
adapted watermark that is embedded into the subsequent

If the perceptual characteristics do not significantly chan 3
from frame to frame, the watermark should remain invisible.
This procedure is only efficient in terms of implementation 8
the perceptual characteristics in a frame can be represe
concisely. The perceptual parameters dictate the size of
buffer required to carry forward the values required to adagiJ
the watermark for embedding in the next one.

2) Attack Modeling: Two main approaches have been pro-
posed in the watermarking literature to address the issue of fae
bustness to specific attacks. In the first case, the watermark is*®
embedded in an attack-invariant domain so that the mark can
still be reliably extracted in the face of the specified degrada-
tion [19]. In the second, a reference or template watermark is
embedded along with the payload watermark to help charac-
terize and undo the attack at the detector [9], [20].

In the former approach, transforms such as the
Fourier—Mellin have been proposed [19] to make the wa-
termark invariant to a certain class of geometric attacks. Such
transforms and watermarking domains have been found to be
numerically sensitive. A hardware solution to this approach
could be more fruitful than software because it is possible in
hardware to increase the precision of the computations at an
incremental cost.

The latter technique involving the embedding of a secondary
watermark for attack characterization involves using the addi-
tional mark to estimate the attack during the detection phase.
The estimated parameters of the attack can be used to partially
undo the degradation for more reliable payload detection. Al-
ternatively, the parameters could provide insight into ways to
process the watermarked signal for more optimal detection. The
advantage of using such an approach in terms of hardware im-
plementation is that many of the components used for the pay-
load watermark could be borrowed for this stage of the attack

V. CONCLUSION

n this work, we consider hardware implementation aspects
| he digital watermarking problem; at this moment, this is

il largely undiscovered territory. Our aim is to bridge the gap
tween watermarking algorithm design and hardware imple-
entation. For watermarking technology to gain popularity in
.commercial applications, it is necessary to characterize the fea-
g)dlity and cost of implementation. The degree of success of
ital watermarking in emerging applications is somewhat in
estion so it is of value to provide a realistic assessment of the
ractical potential of the area.

Three general directions for “hardware-friendly” develop-
nt are seen, which are the following:

Eliminating costly hardware elements by investigating
alternatives to current method&or example, methods
of payload modulation that do not involve arbitrarily
indexing into a pseudo-random sequence would greatly
reduce the need for expensive hardware in the JAWS
embedder.

« Reducing the amount of expensive hardware resources by

balancing the algorithmic performance obtained from a
watermarking design parameter with the associated im-
plementation costdzor example, varying the number of
primitive patterns and the primitive pattern dimensions in
accordance with their cost and benefit functions can max-
imize overall performance and minimize cost.

Shifting the algorithmic “burden” to minimize cost.
For example, with JAWS, there is a very robust but
expensive detection process. However, the incremental
cost of adding more processing to the detector to further
increase robustness is low since the overhead costs have
been absorbed by the existing detection hardware. If the
embedder is made less robust to reduce cost, additional
robustness can be added to the detector to compensate—at
low cost. Hence, in this case, shifting the burden from
the embedder to the detector can minimize overall cost
without degrading performance.

characterization. As long as the attack characterization is p¥ve hope that through effective communication between the
formed on spatially local parts of the video frame, excessiggnal processing and hardware implementation communities,
buffering is not required. more effective and practical video watermarking algorithms
3) Transforms: Some early work in the field of water- can be developed.

marking involved selection of appropriate domains to embed
the watermark. For implementation in a video watermarking

application, care must be taken to ggarantee the real-time PET31e authors wish to thank Guest Editor Dr. T. Kalker, as well
formance of the system. Some techniques such as JAWS embe . .

. . : ; as the anonymous reviewers for their very helpful comments.
the watermark in the spatial domain to avoid the transform

processing. Others borrow the transforms used for different
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