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Wavelet Footprints: Theory, Algorithms,
and Applications
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Abstract—In recent years, wavelet-based algorithms have been functions that can well approximate any signal in a given
successful in different signal processing tasks. The wavelet trans- functional classF with the superposition of few of its elements.
form is "’(‘jpo"".erf”' toé" Eec_auseflt m.a”a?e$ rt]c} represerf‘t both "?f_”' The design of a dictionary with good approximation proper-
sient and stationary behaviors of a signal with few transform coeffi- . : : :
cients. Discontinuities often carry relevant signal information, and ties, however, is not the only |mportant.element. Togeth(_ar_wnh
therefore, they represent a critical part to analyze. In this paper, D> One also needs to develop fast algorithms that can efficiently
we study the dependency across scales of the wavelet coefficientéind the sparsest representation of any signa F in terms
generated by discontinuities. We start by showing that any piece- of the elements oD. WhenD = {f;}.cs is a basis, there is
wise smooth signal can be expressed as a sum of a piecewise polyg unique way to expresgas a linear combination of thgs,
nomial signal and a uniformly smooth residual (see Theorem 1in 54 this representation can be easily found computing the inner

Section Il). We then introduce the notion of footprints, which are ducts bet d the dual s 1 Despite this ni
scale space vectors that model discontinuities in piecewise polyno-pro ucts betweep an e duals off’s.* Despite this nice

mial signals exactly. We show that footprints form an overcomplete Property, overcomplete dictionaries are often preferred to basis
dictionary and develop efficient and robust algorithms to find the ~ expansions. Overcomplete dictionaries are more flexible; they

exact representation of a piecewise polynomial function in terms can better adapt to the characteristics of the signal under consid-
of footprints. This also leads to efficient approximation of piece- eration, and this allows for sparser signal representations. Exam-
wise smooth functions. Finally, we focus on applications and show o ot overcomplete dictionaries include best basis methods or

that algorithms based on footprints outperform standard wavelet .
methods in different applications such as denoising, compression, adaptive wavelet packets [6], [26]. In the case of overcomplete

and (nonblind) deconvolution. In the case of compression, we also bases, however, it is more difficult to develop fast algorithms
prove that at high rates, footprint-based algorithms attain optimal  that find the right sparse representation of a signal.iBecause

performance (see Theorem 3 in Section V). the elements oD are linearly dependent, there are infinitely
Index Terms—Compression, denoising, matching pursuit, non- Many ways to expresgas a linear combination of thg's. Ina
linear approximation, wavelets. few cases, it is possible to arrive at sparse signal representations

with linear complexity algorithms [12], [16], but in general, the
search for the sparsest signal representation is an NP-complete
problem [10]. Note that techniques based on singular value de-
HE design of a complete or overcomplete expansion theamposition (SVD) and pseudo-inverse do not yield compact
allows for compact representation of certain relevasignal representations [17]. Other methods like basis pursuit [3]
classes of signals is a central problem in signal processing atd usually computationally intensive; matching pursuit [21],
its applications. Parsimonious representation of data is impwrhich is a greedy iterative algorithm, is computationally effi-
tant for compression [14]. Furthermore, achieving a compagent but does not converge in a finite number of iterations in
representation of a signal also means intimate knowledge general.
the signal features and this can be useful for many other taskd$n this paper, we focus on the class of piecewise smooth sig-
including denoising, classification, and interpolation. Frornals. In particular, we will mostly consider piecewise polyno-
a computational analysis point of view, one can say that tigial signals. We propose a new representation of these func-
problem is to build a dictionar® = {f;};cr of elementary tions in terms of objects we cafbotprints and make up an
overcomplete dictionary of atoms. The footprints dictionary is
built from the wavelet transform. Given a signal of interest, we
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of a few footprints, we can get a sparser representation of thberety = 0, tx+1 = T, and f;(¢) is uniformly Lipschitz

signal under consideration. a over [t;,t;41]. Such signals are interesting because many
Even though the footprint expansion is overcomplete, it caignals encountered in practice can be modeled as piecewise

be made locally orthogonal, and this allows us to use fast amooth.

gorithms to find the right sparse decomposition of the signal Consider now an orthonormal wavelet series with scale and

in terms of footprints. Alternatively, it is also possible to usehift parametersn andn, respectively. We use the convention

matching pursuit. We show that there are situations in whighat small scales correspond to large, negativéhat is

matching pursuit with footprints can attain the sparsest signal

representation with a finite number of iterations. Finally, we will Yo (t) = Ll/, (g—mt _ n) m,n €7

see that the use of this dictionary leads to efficient algorithms for ’ 2m/2

compression, denoising, and nonblind deconvolution of pieagherey)(t) is the wavelet basis function. Moreover, assume that

wise smooth signals. the wavelet has vanishing moments, that is
The paper is organized as follows. Section Il is meant to build -

up intuition about footprints. We analyze the dependency across thp(t)dt =0, d=0,1,... .k — 1.

scales of the wavelet coefficients generated by discontinuities —o0

and demonstrate a decomposition of a piecewise smooth S'gﬁﬁén, it follows that the wavelet coefficients of a function

into a piecewise polynomial signal and a regular residual (Thﬁfat is uniformly Lipschitza < & on an interval §, ] decay
orem 1). This theorem will be invoked each time we will MOVE . iss scales ad™+1/2) [25] The (local) decéy property
from piecewise polynomial to piecewise smooth signals. In Sec: the wavelet coefficients is at the heart of the success of

tion Ill, we present the footprint expansion, and in Section I\? . o
he wavelet transform in several applications. Now, because

we develop algorithms to efficiently represent piecewise poly- ., . -
nomial signals in terms of footprints. In both sections, we stu this decay.property, larger wa\_/elet coefflqents tend to'be
round the singular parts of a signal, that is, around points

the case of piecewise constant signals in detail and then o Il Linschit fficients. Th let ficient
tend the analysis to the case of piecewise polynomial signavi\g small LIpSchitz COETICIENtS. -1hese wavelet coetlicients

Section V focuses on applications, namely, denoising, decon\%—ther most of the energ;(; (_)f the (;)rllgmalhsgnsl,hanq for this
lution, and compression. Traditional wavelet-based algorithfg@SOn. We are Interested in modeling their behavior across

are reviewed, new algorithms based on footprints are present¥f/€s: For instance, given a signal as in (2), we are interested
and their performance is analyzed. In Section VI, numerich) ;tudylng the wavelet coefficients related to the break points

simulations showing interesting improvements over tradition&l ? = 1,2+, K.

methods are presented, and conclusions are given in Section VIITO begin our analysis, we start by considering a particular
subclass of piecewise smooth signals, namely, piecewise poly-

nomial signals. A function(t) ¢t € [0, T[n is piecewise poly-
nomial with K + 1 pieces if

II. DEPENDENCY OF THEWAVELET
COEFFICIENTSACROSSSCALES

In wavelet-based signal processing, it is usually important to K
exploit the dependency across scales of the wavelet coefficients, p(t) = Zpi (DL, 1, 1(F) ®3)
and several efforts have been made in this direction recently; see, =0
for instance, [2], [9], [22], and [28]. The singular structures %hereto = 0,tg4 = T, andpi(t) = ZdD—o agd)td P =

a signal often carry critical information, and thus, their efficieng. 1,..., K are polynomials of maximum degrde Piecewise
characterization is crucial in many signal processing tasks. synomial signals have a finite number of degrees of freedom

In this section, we review some of the properties of the g are easier to analyze. However, despite their simplicity,
waveIeF transform, n.amely, its ability to characterize the Iocgﬂey can be used to efficiently approximate piecewise smooth
regularity of a function, and then, we focus on the analysignciions. In fact, if the piecewise polynomial approximation
of the dependency of the wavelet coefficients generated Rychosen properly, the approximation error shows interesting
discontinuities. . _ ~_ regularity properties.

Our interest is in piecewise smooth signals, that s, in signalsTheorem 1: Given a piecewise smooth sign(lt) defined as
that are made of regular pieces. The regularity of a functioni}§(2), that is, with pieces of Lipschitz regulafiw Then, there
usually measured with the Lipschitz exponent [28Ye say that qyists a piecewise polynomial signafl) with pieces of max-
the restriction off (¢) to [a, b] is uniformly Lipschitza > 0 over  jnum degreel = |« such that the difference signal (¢) =
[a, b] if there existsK > 0 such that for allv € [a,b], there £(t) — p(t) is uniformly Lipschitza over[o, TT.
exists a polynomiap, (t) of degreen = |«] such that Proof: See Appendix A. 0

Vit € (a,b), |f(t) —p,(t)] < K|t —v|*. 1) Theorem 1 indicates a practical way to deal with piecewise
smooth signals. It shows that any piecewise smooth sigal
can be expressed as the sum of a piecewise polynomial signal
and a residual that is uniformly Lipschitz. That is, f(¢) =
K p(t)+74(t). Now, since the residual is regular, it can be well rep-
HOEDPFAGI NG (2)  resented with wavelets (the wavelet decomposition.¢f) re-
=0 sults in small coefficients with fast decay across scales). There-
2The so-defined Lipschitz exponent is sometimes called Hélder exponentfore, the only elements we need to analyze are discontinuities

Therefore, we define a piecewise smooth functjqn), ¢ €
[0, T[ with K + 1 pieces, as follows:
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in the piecewise polynomial function and, in particular, the deoefficients in the cone of influence of have onlyD + 1 de-
pendency across scales of the wavelet coefficients generatedtses of freedom, and one can determine all these wavelet co-

these piecewise polynomial discontinuitfes. efficients by knowing onlyD + 1 nonzero coefficients in that
We start by considering the simple case of piecewise corpne of influence.
stant functions with only one discontinuity at locatiain(i.e., In summary, the above analysis indicates that piecewise poly-

p(t) = a((]o)l[O;tl () + a§°>1[thT[(t)) and a wavelet series with nomial signals are well represented by wavelets but that it is pos-
one vanishing moment and compact support. The decompaible to model piecewise polynomial discontinuities in a more
tion of this signal in the wavelet basis results in zero wavelet cefficient way. In the next section, we present a new way to ex-
efficients, except for the coefficients in the cone of influence gfress discontinuities in piecewise polynomial signals. Together,
t1. Recall that the cone of influencefafin the scale-space planewith Theorem 1, this will lead to efficient algorithms to repre-
is the set of pointsr, n) such that; is included in the support sent piecewise smooth signals. Although, we could perform this
of ¥m n(t). In this case, the wavelet coefficients in this cone afnalysis in continuous time, we concentrate on the discrete-time
influence are dependent: They have only one degree of freed@ase. This is because our final target is to develop efficient al-
This can be easily shown recalling that a wavelet viitlan- gorithms that act on discrete-time signals.

ishing moments and fast decay can be written as;theorder Before concluding this section, we want to analyze the border
derivative of a function, which also has a fast decay [23]. Thuseffects. Since our signals are defined on a finite inter9al T,

the following conditions are truep(t) = (—1)*(d*4(t)/dt*) we need to extend them outside this interval in order to perform

and,,, ,(t) = (=1)k2km(d*0,, . (t)/dt*),, whered,, ,,(t) = a wavelet decomposition. Several extensions are possible [23].
(1/2/2)8(2=™t — n). Since thekth derivative of a function is In our formulation, we make a periodic extension, that is, we
well defined in the sense of distributions, it follows that assume that signals dfeperiodic and that, on the periodl,[T7],
they are given by (2) and (3). Now, this extension creates an
(1), b (1)) =2 /Oo dp—(t)em_n(t)dt artificial discontinuity att = m - 7', m € Z, and Theorem 1
’ oo dt ’ does not guarantee that the periodic extension, () is regular

m int = m - 1. However, using higher order polynomials (i.e.,
=2 /_ (“gm - ag(])) 6 (= t1) O, (t)dt polynomials of maximum degreé= |a| + 1), one can easily
= generalize the result of Theorem 1 and guarantee regularity of
where we used integration by parts to move the derivative from(t) over allR [15].
0(t) top(t). Thatis,(p(t), (d6(t)/dt)) = —((dp(t)/dt), 6(t)).
Thus, if the wavelet has compact suppdgi(t), ¢ . (t)) is lIl. FOOTPRINT DICTIONARIES

equalto zeroi t) does not overlap,, and(p(t), t . . . . .
a Wm.n(?) 0 P (p(t); ¥mn (1)) We move from continuous-time to discrete-time signals and

i 0)_(0) ; i
;jhe;etﬂgs O:Z% T tt:t];h(:;ﬁ?)rre;gr%\)ss Z%al(::?g;'g;rmfsn;iansointroduce the notion of footprints, which are scale-space vectors
wav v ! InIstic. antaining all the wavelet coefficients generated by particular

knows ']Ehlef}/alue of 2 single nonz(;—zro. Wa])’e'et F;O(alrflt(;:enttlrz] tlbeolynomial discontinuitie§.We show that any piecewise poly-
Svor\llelot n l;f?r;citoi;,tﬁnte cr?n fei:;e ;om It-all the other  omial discontinuity is specified by the linear combination of a
avelet coetlicients alcone o uence. ew footprints and that footprints can be interpreted as an over-

Th_|s d_|scu53|o_n generallz_es o the case of piecewise po ymplete expansion with good approximation properties.
nomial signals with polynomials of maximum degrBe Con-

sider the case of a piecewise polynomial function with one di
continuity at¢, and polynomialg;(t) = S5 alPtd, i = _ _ _ _ _
0_/ 1. Compute the wavelet decomposition with a wavelet ha\/ing For our dISCUSSIOn, we need to introduce two discrete-time
D + 1 vanishing moments and compact support. Again, tigavelet operators. The first one is an orthonormal discrete-time

nonzero wavelet coefficients are only in the cone of influenciavelet decomposition with/ levels® This decomposition
of ¢;, and we have can be efficiently implemented with a critically subsampled

octave-band filterbank [30]. Lety;;[n] denote the wavelet

X Preliminaries

mi [ dEp(t function at scalgi and shiftl and ¢ j;[n] the scaling function
{p(1), Ymn (1)) =2 k[m dtlE: )emm(t)dt Dt at shift /. This wavelet operator is[; }inear and periodically
o D b shift-variant with period 2. The other operator is the wavelet
:2m(D+1)/ Z g6 frame obtained by shifting out (with corresponding equivalent
—00 550 filters) the subsamplers in the filterbank [30]. In this case, we
(= t1) O (£)dE (4) denote the wavelet functions at scgland shiftl with v;[n]

and the scaling function at shiftwith ¢ ;[n]. This frame is

wheres() () is thedth derivative of the Dira¢-function, and Shift invariant. _ _ _ _
(d) (d) The discrete-time signals we consider avedimensional

the coefficientsc; depend on the differenceéa1 —ag : :
’ . vectors defined over the intervdl,[NV — 1]. Now, the wavelet
d=0,1,...,D.4 Thus, in the more general case, the wavelet | ]

5In continuous time, one can define footprints equivalently, but they are of
infinite dimension and are of little computational value.

SFor simplicity, we study only the orthogonal case. However, the notion of
footprints easily generalizes to the case of biorthogonal wavelets.

3For simplicity, we callpiecewise polynomial discontinuigysingularity be-
tween two polynomials.
4To be more precise, = >.7_, 1~ (a(lD’” - agD*”).
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operators defined above act i(Z); therefore, we need
to modify them to act on(, NV — 1]. As anticipated in the
previous section, we use a periodic extension [23]; therefore,
the wavelet basis becomed;"[n] = Y207 jln + kN]
and ¢ [n] = > ro__ énln + kN]. Recall that for any
J < log, N, this set of periodic wavelets forms an orthogonal
basis inl>([0, N — 1])[23]. The same extension applies to the
wavelet frame, and in this case, we get a framig ([0, N —1]).
Finally, our interest is in the class of piecewise smooth
and piecewise polynomial signals, and the previous defini-
tions of piecewise smooth and piecewise polynomial signals
can be naturally extended to the discrete-time case. In par-

ticular, a discrete-time piecewise polynomial signdh], _ _ _ _
N — 11is given b [ ] _ ZK [ ]1 [ ] Fig. 1. Twpe domain (top) and wavelet domain (bottom) representation of the
n € [0, Jisg YpInl = 2.i—o Pil™ ki kia] ™y footprint £(*) with N = 128, J = 5 andk = 41. Notice that, except for the
whereky = 0,kx4+1 = N andp;[n] ¢ = 0,1,...,K isa casel =log, N (IV being a power of 2), a footprint does not look like a pure
sampled polynomial of maximum degrék step edge function since the footprint definition does not include the scaling
] . coefficients.

Depending on the use of a wavelet basis or a wavelet framie,
we have two different footprint dictionaries as analyzed in the = . (0) 7
next sections. footprint can be written ag, "~ [n] = > 7 _; djx; ¥k, [n], where

J
_ _ _ djk; = Yik; /) 2 jmr Yk, -
B. Footprints Built From a Wavelet Basis Now, any piecewise constant signgh] with a step discon-

In this section, we construct the footprint dictionary from &nuity at% can be represented in terms of the scaling functions
wavelet basis. First, we study the simple case of piecewise cdgry;[n] and off,go). For instance, the signaln] in (5) becomes
stant signals and Haar wavelets. In this particular setting, the
footprint dictionaryD is a biorthogonal basis. Then, we con-
sider the more general case of piecewise polynomial signals and
higher order wavelets. We show that in this cdsés always
overcomplete. wherea = (z, ,§°>> = Z’j:l yjk,djx;. The above discussion

1) Piecewise Constant Signal€onsider a piecewise con-can be repeated for any other step discontinuity at different loca-
stant signatz[n], n € [0, N — 1] with only one discontinuity tions, and for each locatidnwe have a different footprint® .

Footprint

N/27 -1

ol = D" agnln] + af”n) (6)

=0

at positionk, and consider d-level wavelet decomposition of cg|| D — {f£0)7 k=0,1,...,N — 1} the complete dictionary
this signal with a Haar wavelet: of footprints. Some of the properties of this dictionary depend
N7 oy on the number of wavelet decomposition levels. For instance,
! LN just like the wavelet basis, footprints are shift variant unless the
rln] = s Jus '
oln] = IZ; adnln] + Jz_; IZ; vibalnl - G) ghiteis equal tom - 27, m € Z. That is
Or,1 — £0) CNifl—k=m-927

wherey;; = (x,%;), ande; = (z,45).7 Since the Haar il = fi7ln+k=lif l—k=m-2"meZ. ()

wavelet has one vanishing moment and finite support, the addition, footprints are orthogonal to the scaling functions,
nonzero wavelet coefficients of this decomposition are only iut the orthogonality condition between footprints depends on

the cone of influence of. Thus, (5) becomes the numberJ of wavelet decomposition levels. Assurhe=
N/2 1 , K +m-27,1=1+n-27, andl > k. We have
x[n] = Z Cld)Jl[ln’] + Zyjkj,¢jkj [TL] <f]§.0), 1(0)> == 0, |f m # n
=0 i=1 (8)
) 0) ((O)\ _ [K(@27=V) ;
wherek; = |k/27|. Moreover, as in the continuous-time case, <fk 1 > Ve, otherwise.

all these coefficients depend only on the amplitude of the disherefore, footprints related to neighboring discontinuities are
continuity atk. Thus, if one defines a vector that contains all ohjorthogonal. Finally, consider again (7). Sinf;]@) [n] = 0, it
them, one can specify any other step discontinuity By mul-  5110ws that £ | [n] = 0. Thus,D contains onlyN — N/27

. . . . . . . m-2 . ’

tiplying this vector by the right factor. This consideration leadgjements. Moreover, we have the following proposition.

to the following definition (see also Fig. 1). _ . Proposition 1: The elements oD together with thelV/2”
Definition 1: Given a piecewise constant signal with scaling functionsg[n], I = 0,1,...,N/27 — 1 form a

only one discontinuity at positio, we call footprintf,go) biorthogonal basis’fob([(]?N — 1]>_/

the scale-space vector obtained by gathering together all the proof: See Appendix B 0

wavelet coe(fgi)cients in the cone of influence bfand then  Therefore, any signat[n], n € [0, N — 1] can be expressed

imposing||f, || = 1. Expressed in the wavelet basis, thig terms of footprints and scaling functions. In particulary if

"Note that we are assuminy to be a power of 2, and this way, a wavelet'S p'?cew'se _ConStant W't_K d'scont'n_u_'t'es' together W'_th th?
decomposition with a Haar wavelet does not suffer from border effects.  scaling functionsK footprints are sufficientto representit. This
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can be shown by noticing that a piecewise constant signal with«. k¥ < N and2” < N so that there are no wavelet coef-

only one discontinuity can be expressed in terms of one fodicients in common between these two cones of influence. We

print [see (6)], and piecewise constant signals withdiscon- can write

tinuities are given by the superposition &f piecewise con- N/27 -1

stant signals with only one discontinuity. Therefore, the foof:; 1 _ per . per per

print representation of a signalwith X discontinuities at po- bol = ; ady’ ] +j§0 YtV [n]+j;k vt In]

sitionsky, ko, . .., kg is given by i i (12)

where I is the set of indicesj([), which are in the cone of
o influence ofk, and I, is the set of indicesj({), which are in

an] = Z capln] + Z aify, [n]. (9)  the cone of influence of zero. It is easy to verify that there are

1=0 =1 J x (L — 1) wavelet coefficients in each cone of influence.

Note how this representation is sparser than the correspondif§™m (4), we know that the wavelet coefficients in each of these
representation in a wavelet basis that requifesmes more cones of influence have only + 1 degrees of freedom. Thus,
wavelets than footprints if the cones of influence do not overlayy® want to find a set ob + 1 footprints that can characterize
The problem of finding the discontinuity locations and the cothese coefficients. To build this set of footprints, we resort to
rect valuesy; in (9) will be treated in detail in Section IV. time-domain analysis.

Finally, one may wonder if any object generated with the su- The class of piecewise polynomial signals with one discon-
perposition of footprints is piecewise constant with a numbetinuity at a fixed positiont € [0, N — 1] forms a linear space
of discontinuities equal to the number of footprints. That is, aff dimension2(D + 1), and a possible basis for that space is
D and the scaling functions an unconditional basis for the cldgPresented by the following vectors:
of ;_)ie_cewise constant signals? It turns gut that this property iﬁ(d) [n] =nt,d=0,1,...,D;n € [0,N — 1]
satisfied only wher/ = log, N (whereN is a power of 2). ) 4

Proposition 2: For N = 27, the scaling functio jo[n] and ~ Tr ' [7] =1k nay(n—k+1)%,d=0,1,..., D,ne0, N -1].

; (0) . . .
the N — 1 footprints f, ', k = 1,2,..., N — 1 represent a e can express these signals in a wavelet basis, and we have
biorthogonal basis that is unconditional for the class of piece-

N/27 -1

wise constant signals defined ojéer N — 1]. . N/27 -1 (@) cper @), per
Proof: The biorthogonality comes from Proposition1.We ~ P@nl= Y 5;Y¢5 nl+ > pi ¢ [n]
only need to show that this basis is unconditional. That is, as- 1=0 jlely
sume thatr is a piecewise constant signal with discontinuities N/27 1
at kl,(fz, ..., kg, and considerli;[s rep(r(?)sentation in terms of T,&d) [n] = Z c,(c‘f)ﬁjr [n] + Z tg-(f)l/szr [n]
footprints:z[n] = codyoln] + > i, aify,” . We need to show 1=0 €T
that for any set of coefficientg; satol)sfylng|a7;| < Jai|, the n Z tg_(ll) e ] (12)

signalz[n] = copjo[n] + Efil aLf,S is still piecewise con- jiel,
stant with discontinuity locations,, ks, .. ., kg . This can be

) )

seen by noticing that fof = log, N, ¢.o[n] is & constant func- where we have used the fact that the nonzero wavelet coeffi-

. - . . : L (d) '
tion, andf,go)[n] is piecewise constant with one dlSCOﬂtIhUIt}PIent_S _Ofp [n]((gre or_lly info, wherea}s the nonzero wavelet
atk (k = 1,2,..., N — 1). Therefore, any linear combinationCoefficients ofZ} ™ are in the cones of influence éfand zero.

of fi, ki € {k1,ko,...,kx} gives a piecewise constant signaNOW’ any signalz[n] in this class can be written as
with discontinuity locationg, ko, ..., kx. O D D

1) Piecewise Polynomial Signaldie now generalize the zn] = Zaé‘”P(‘” [n] + Za,ﬁd)Téd) [n]. (13)
above discussion to the case of discrete-time piecewise polyno- d=0 d=0

mial signals with polynomials of maximum degre We Show  Therefore, combining (11)~(13) and considering only the ele-
that in this context, each discontinuity is representedby 1 ,ants inl,, we have

footprints rather than one footprint. 5

Consider orthogonal wavelets with at ledst+ 1 vanishing per (d) (d) ,per
moments and compact suppdit and consider a piecewise Z Yit¥j [n] = Zo‘k Z L Vi [n]. (14)
polynomial signalxz[n] with only one discontinuity ak. Its =0
J-level wavelet decomposition with periodic wavelets is call flgd) =%

JIET, F €D,

Jler, tj(,’ll) %" [n] the scale-space vector gath-

s s ering theJ x (L — 1) wavelet coefficients generated by the
x[n] = N/i:—l per| H_XJ:N%_I AP ] (10) discontinuity inT,Sd). Equation (14) shows that the wavelet co-
o pard “a®q 1 —~ Yt - efficients generated by any polynomial discontinuitykahre

! characterized by alinear combinationfé@. This indicates that

First, notice that the periodic extension of the wavelet badise wavelet coefficients in the cone of influence of a polynomial
creates a second discontinuity at location zero and that thigliscontinuity have onlyD + 1 degrees of freedom and proves
a polynomial discontinuity. Thus, the nonzero wavelet coeffthat these coefficients lie on a subspace of dimensiarl. The
cients of this expansion are only in the cone of influence wbctorsf,gd), d=0,1,...,D span that subspace and can repre-
k and in the cone of influence of zero. Assume, for now, thaent the set of footprints for which we are looking. However, itis
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always better to have orthogonal bases; therefore, the footpnm§§ depend on the normalization in Definition 2 (without nor-

we will consider are obtamed by applying a Gram—-Schmidt omalization, it would beuk = 1). In general, we have that

thogonalization process gq Thus, from the above discus- X D

sion, we have the following proposition. Z Z wh ol 17)
Proposition 3: Given a piecewise polynomial signal with = ki ki

polynomials of maximum degrel® and with one discontinuity

at positionk, the J x (L — 1) nonzero wavelet coefficients in where the weights); depend on the orthogonalization process

the cone of influence of that discontinuity lie on a sub-spade Definition 22 For this reason, to extend Proposition 2 to the

of dimensionD + 1. piecewise polynomial case, we need to consider the constraint
Definition 2: We call footprintsf{”’d = 0,1,..., D the el- in (17). Thus, we have the following proposition.

ements of an orthogonal vector basis that spans the subspace Bfoposition 4: For.J = log, N, any I|near combination of

dimensionD + 1 generated by a polynomial discontinuity at)’;; [»] and ofthe(D+1)Nfootpnntsf , Which verifies (17),

k. Footprints are obtained by gathering together all the nonzegives a piecewise polynomial signal.

wavelet coefficients generated by the discontinuitgﬂiﬁ)d = Proof: We want to show that given a piecewise polyno-
0,1,..., D and then imposing the following two conditions: mial signal z[n] represented as in (15), for any set of coef-
ficients d(‘” satlsfylng|a d>| < ey (d) | and (17), the signal
f9l =1d=0,1,...,D X per 4@ §@
k IRIRRRE zn] = cod’fy [n] + ZL Ozd 0 Qi fr, [n] is still piecewise
polynomial W|th discontinuity Iocatlom%hkz? .., kx. This

(%) (J')>_ . -
< R i) =0t =01, Dij = 0,1, D. can be proved using arguments similar to that of Proposition

With this set of footprints, we can characterize any polynd 1he scalln%jofunoc;tmn)m[ ! is constegt. Moreover, any pair
mial discontinuity at positio#. In particular, (10) can be written Of footprintsc )15 m] + £ [n], with 6§ satisfying (17), rep-

as resent a piecewise polynom|al signal with one discontinuity at
k; € {ki,ko,...,kx}. Therefore, any linear combination of
N2 -1 per per| D (d) ¢(d) these pairs of footpnnts and gfyo[n] gives a piecewise poly-
a[n] = Z [n] + Z Yy [n] + Z @170 homial signal with discontinuities &, ks, . . ., kx . O
=0 glelo Strictly speaking, Proposition 4 shows conditions under
wherea® = (, f,gd)), d=0,1,...,D.8 With a similar anal- which any linear combination of footprints leads to piecewise

polynomial signals, but it does not prove that footprints are an
acterize a polynomial discontinuity at a different location. TYnconditional expansion for the class of piecewise polynomial

characterize any polynomial discontinuity (including the d|s<"'9|1|naIS rljov(\;ever in the ;?St of the paper, forhsmr:pllcnr)]/, we
continuity in zero), we need a dictiona® = {£.d will say that dictionaries of footprints satisfying the hypotheses

0.1 Dik=0.1 1 }of(D+1)Nfootpnnts7 Wl;h of Proposition 4 are unconditional for the class of piecewise
N g b polynomial signals.

this dictionary of footprints and with the scaling functions, w
can represent any piecewise polynomial signal. In particular

ysis, we can create a different setof+ 1 footprints to char-

o Footprints Built From a Wavelet Frame

signal z with K discontinuities at locationsy, ko, ..., kg is
given by We have constructed a dictionary(d@+ 1) N footprints that
can efficiently represent piecewise polynomial signals. How-
N/27 -1 KD o ever, this representation, like the wavelet transform, is not shift-
zll = > adhnl+ > ot £10[n) (15) invariant. In some settings, it is useful to have a shift-invariant
=0 i=0d=0 dictionary. Such a dictionary can be constructed by simply re-

wherek, = 0 is the discontinuity due to the periodic extenplacing the wavelet basis with the wavelet frame. In particular,
sion. Note again how this representation is sparser than the det-z[n] be a piecewise constant signal with only one disconti-

responding representation in a wavelet basis. nuity atk. We have
As for the case of piecewise constant signals, footprints are N/27 1
orthogonal to the scaling functions, but footprints related tg , pe'r pe7‘
close discontinuities are biorthogonal. In particular, we have the Pl = IZ; b 12; vitdji
(FD, £y = 0for |l — k| > (L. — 1) - 27 Moreover, footprints Hieto .
are periodically shift-invariant of period’2and hence + Z yjﬂ/fﬁ-)z’ [n]

glely

KM ="+ k-1 . -
. g 2.d=0.1, D 16 where we have again used the fact that the nonzero coefficients
if l—k=m-2",mé€ THhees (16)  are only in the cones of influence @f and 0. In this case,

Itis also of mterest to note that due to the periodic extension, ¢ cone of influence of contains. x (L; — 1) coefficients,

coefficientsa” in (15) are not independent. For instance, fophereL; is the length of the eggﬁwalent filter at levglMore-
D =0, itfollowsthatal = — X w? of , where the weights OVe"¥st S given byy; = (z,J5"), where{g, ¢} is the dual

9The easiest way to verify this property is by noticing that if we take the
(D + 1)th-order derivative of a periodic discrete-time piecewise polynomial
signal, the sum of the resulting nonzero coefficients is always zero.

_8In the case of biorthogonal wavelets, it would b&" = {(z, £y with
i = Yiien, ;0% " [n], whered?; ™ is the dual of?; "
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TABLE |
FOOTPRINT DICTIONARIES

piecewise constant signals

and Haar wavelet

piecewise polynomial signals

and wavelet basis

piecewise polynomial signals

and wavelet frame

dictionary

properties

complete,
shift variant,

unconditional if J = log, V.

overcomplete,
shift variant,
unconditional if J = log, N

and Eq. (17) is verified.

overcomplete,
shift invariant,
unconditional if J = log, N

and Eq. (17) is verified.

frame of {$,4}. Now, the shift-invariant footprint related to Now, we need to develop a fast and robust algorithm that can
location k£ is given byf,go) [n] = 3;.ci, djlzﬁffr [n],, where find the right representation of piecewise polynomial signals in
o L a2 ; : erms of footprints. The algorithms that we present are valid for
div = Yit/\/ Ljper, i The other~footpr|nt? can be de&gne%ny of the families of footprints in Table 1. However, for sim-
in the same way, and it follows thdf”' [n] = f{* [n — k]. That plicity, we study only the case of footprints built from a wavelet
is, all footprints are shifted versions of one footprint.Jifis  basis, the extension to the wavelet frame being straightforward.
chosen such thaff"’, /') = 0, z[n] can be expressed as Consider a piecewise polynomial signavith polynomials
of degreeD and with K discontinuities akq, ko, ..., kx. We
have seen that this signal can be written as in (15). Thus, our
target is to develop an algorithm that can find this representation
1=0 of x. In our analysis, we do not consider the scaling functions
since coefficients; in (15) are always given by, = (z, ¢';").

whereay, = (z, .A',go)>, andf,go)[n] = > ek dﬂ@.’f”[n]. In . i ; .
the same way, we can design the footprint aictionary related toWe present Fv_vo different gpproaches. Th? firstone is a varia-
of the traditional matching pursuit algorithm. We show that

higher order polynomials. In this case, one has to consider ltllw%n . . . .
. (d) . . in particular situations, this method can arrive at the correct rep-
signalsT; ™’ and their transforms with a wavelet frame. The foot-

s 7@ at | ionk btained following th resentation of:[n] in a finite number of iterations. The second
prints f * at locationk are obtained following the same proce'approach is in spirit similar to matching pursuit, but it uses the

dure as~|(l(5l)15trated in Definition 2. Finally, given the OIICt'on"’mf)roperty that the orthogonality condition between footprints de-
D igk d ~:(d)0,1 s Dik = 0,1, N — 1}, we have  pangs on the numbet of decomposition levels. We show that
that f,'[n] = fo'[n + k],d = 0,1,..., D. Asin the previous wjith a slight increase in complexity, this second algorithm al-
case, any piecewise polynomial signal can be expressed in te{@gs attains the correct signal representation \ulth2] itera-

of this dictionary, and we have tions, whereK is the number of discontinuities in the signal.

N/27 -1
gl = Y adh ]+ aofs” + arfl”

N/27 -1 K D ) _ ) _

Z abrn] + Zzagd)fgl) [n].  (18) A. Matching Pursuit With Footprints

1=0 i=0 d=0 Matching pursuit [21] is a greedy iterative algorithm that de-

rives sparse approximated representations of a sigimterms

of a given dictionaryD of unit norm vectors.

_ . . __ Assume thaD is the footprint dictionary and that[n] is a
Inthe previous sections, we have constructed different dictigracewise polynomial signal. Matching pursuit can be used to

naries of footprints according to the kind of wavelets involvegpyroximater with D. We know that the wavelet coefficients

(i.e., wavelet bases or wavelet frames) and to the class of Sigmerated by a single polynomial discontinuity:4ie on a sub-

nals considered (i.e., piecewise constant or piecewise polyR@nce of sizeD + 1 and that this subspace is spanned by the

mial signals). The main characteristics of these dictionaries ¥tprints flgd) d=0,1,...,D (Proposition 3). Hence, instead

summarized in Table I. Before focusing on the representatigsing the usual matching pursuit that projects the signal on

algorithms, we want to mention that the space required t0 stQfiggle vectors, we employ a subspace pursuit, where the signal

these footprints dictionaries is not high since it grows only ling projected on different subspaces.

early with the sizeV of the signal. In particular, in the case of |, e first iteration, for each possible discontinuity location

shift-variant footprints, the required storage space is of the or 2 [0, N — 1], the algorithm computes the + 1 inner prod-

of (L—1)-J-(D+1)-2” coefficients, whereL —1) - J are the ucts(a:/, f,ﬁ‘”), d=0,1,...,D and chooses the locatidg such

wavelet coefficients contained in each footprint, & 1)-27 D ()2 ; : .
are the number of footprints one has to store since the otherstrgl%t 2a=o (@, fr, )| is maximum. Theny can be written as

shifted version of those [see (16)]. Therefore, whes log, N ItS projection ontof{"), d = 0,1,...,D and a residuak.:
(worst case), we have that the required memory space graws= ZdD:(](:v, ,E,;l))f,g? + RL. Since footprints related to the
like N log, N. Similar results apply to the case of shift invariansame discontinuity location are orthogonal (Definition 2), we
footprints. can write||z||> = ||RL]> + 25, |(x7f,£;l))|2. Therefore, by

IV. REPRESENTATIONALGORITHMS
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choosingk, such thatde=0 |{x, ,§?>|2 is maximum, we min- TABLE I
imize the norm of the erroR.. The algorithm is then iterated DENOISING OFP'ECE%";iit'gf;‘foﬁ'ﬁmivsv”” NO MORE THAN
on the residual.

Note that forD = 0 (piecewise constant signals), the 64 128 256 512
subspace pursuit reduces to the traditional matching purst
The subspace pursuit with the footprint dictionary has tr_Footprints 17.4dB | 19.9dB | 21.9dB | 24.5dB
same drawback as a typical matching pursuit algorithm, tF Hard thresholding 15.1dB | 17.1dB | 18.7dB | 21.4dB
is, it is not guaranteed to converge in a finite number of ster
However, there exist situations in which it obtains the exa,
representation of in a finite number of iterations. In fact, one Cycle-spin footprints | 18.4dB | 20.4dB | 22.5dB | 24.9dB
can easily verify the following theorem [15].

Theorem 2: Given a piecewise polynomial signal withl | di o h | . he f
discontinuities atcy, ko, . . ., kx . If the distance between the WO closest discontinuities are orthogonal, we estimate the foot-

two closest discontinuities is larger thah — 1) - 27, subspace prints coefficients of these two discontinuities, and iterate the
pursuit with footprints obtains the exact footprint representatidtioceSs On the residual. At each iteration, we do not project the
of z in K iterations. signal directly on the two closest footprints; instead, we com-

pute the two dual footprints and project the signals on these two
B. Adaptive Depth Footprint Pursuit dual elements. The complete algorithm operates as follows.

Cycle spinning 17.9dB | 20dB 22dB | 24.5dB

The basic intuition behind Theorem 2 is that the number %I orithm IV.2: (coefficient Estimaton)
decomposition leveld should be chosen according to the disi gC I IC. B P b th ¢ of esti-
tance between discontinuities.fis chosen properly, one can ) Ca . — .{ L2y s k) the set of est
get the correct representationuoin a few iterations with a very mated discontinuity locations.
simple method like matching pursuit. The problem is that we Assume ‘h?‘ ..km‘.l and kn are the two
not knowa priori the discontinuity locations. Therefore, we prop osest discontinuities in K. Choose
pose a new algorithm, where we first find the discontinuity loca-" — UOg?(]f(’g)_ k-1 ) |- . .
tions and then estimate the footprint coefficients related to thosk C&ll /i, the sub-footprint obtained by

discontinuities. For simplicity, we concentrate on the case B?Or;&derlng only the first Ji elements of

. 0 J .
piecewise constant signals and Haar wavelets. Assume, for_fnm' Thatis  f = = 2L, dJ_'kma"‘/’J'kmj' Ds(f:)ne,
stance, that hasK discontinuities at positions,, ks, ..., kx: in the same way, the sub-footprint In, -

N2 1 . 4) The sub—:‘)ootprint £ is orthog-
sl = S sl + Y eV @9) omalto fY k€ K = {ku_} and veri
- ra i - O S BTN ) NP
1=0 i=1 fies  (fy . fe. ) Ilfs._ |I*. Likewise, the
and that the footprint dictionary is chosen wifh= log, N: sub-footprint ~ f{* is orthogonal to 7,
D= {f” =57 dig, i,k =0,1,...,N=1}0Thedis- k € K — {kn} and (£, £{”) = | f/i”|>. Thus, the
continuity locationsky, ks, . . ., ki are found in the following contributions am—1 and «, are given by
way. £(0)
— 1 Fm—1
, . , I Yk —1 =750 SO
Algorithm [V.1: (Location Estimation) Il fe, I I fe, I
1) Compute the dual basis of D and Call 2(0)
f,io) E = 1,2,...,n — 1 the elements of this . = Al 7, —m (20)
dual basis. = o AT
2) Compute the inner products (o, fi. ), 5) Remove k,,_1,k, from K and subtract the

k = 1,2,...,N — 1. The discontinuity loca-
tions correspond to the indexes of the
basis’ elements which have nonzero inner
products with T.

two estimated contributions from the orig-
inal signal: Rl=u—ap, [ —a 1.

6) If K is not empty, iterate the process
on the residual; otherwise, stop.

Now thatky, ks, . . ., kx are known, we need to evaluate the

coefficientsa;. The footprint coefficients are evaluated with an. Jofficients. the algorithm ends aftek /2] iterations. There-
iteratiye m_ethod thatis, in spirit, similar to ma_\tching pursuit. Altore, we aré guaranteed that the algorithm converges after a fi-
each iteration, we choosksuch that the footprints related to thenite number of steps. The interesting point of this algorithm is

10t js worth pointing out that in this cas& is a biorthogonal basis, and that, at each iteration, it is very easy to find the pair of dual foot-
therefore, the exact representatioreafan be found using the dual basisif  prints related to the footprints under consideration. There are
However, this solution is not robust to noise and does not generalize to piecew;j : : : :
polynomial signals. Therefore, it will not be considered here. % ot_her_advantages_ of thl_s algorlthm compared with mat_chlng

111t is of interest to note that this dual basis pursuit. First, at each iteration, we choose the largest posaible
turns out to be a first-order derivative. such that the footprints related to the two closest discontinuities

Notice that since, at each iteration, we estimate two footprint
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Fig. 2. SNR results for denoising. (a) Original signal. (b) Noisy signal (22.5 dB). (c) Hard thresholding (25.3 dB). (d) Hard thresholding wittsf¢p&%5
dB). (e) Cycle spinning with wavelet transform (29.8 dB). (f) Cycle spinning with footprints (30.8 dB).

are orthogonal. Since multiscale operators like footprints are ffootprint expansion and show that these methods can further
bust to noise, by choosing, as large as possible, we increasanprove wavelet-based algorithms. The main characteristic of
this robustness. Second, the signal is reconstructed in termshaf footprint methods is that they can deal more efficiently with
the footprint dictionary with/ = log, IV, and this dictionary is discontinuities.
unconditional for the class of piecewise constant signals (Propo- o
sition 2). Thus, we are sure that the reconstructed signal is sfil Denoising
piecewise constant. This is a useful property when the signal taThe term denoising usually refers to the removal of noise
estimate has been corrupted by noise. from a corrupted signal. In the typical problem formulation,
The algorithm generalizes to the piecewise polynomial caske original signak has been corrupted by additive noise. One
The discontinuities are estimated witlbat- 1-order derivative, observes:[n] = z[n] + e[n], wheree[n] are independent and
whereas the coefficients\”) are evaluated with a procedureidentically distributed (i.i.d.) zero mean Gaussian variables with
similar to the one presented above. That is, at each iteratigariances?, and the original signal is deterministic and inde-
we choose/ such that the footprints related to the two closegiendent of the noise. The goal of the denoising algorithm is to
discontinuities are orthogonal, we estimate the footprint coefbtain an estimaté of the original signal which minimizes a
ficients of these two discontinuities, and we iterate the processk function, usually the mean square erfofi| = — 2 ||?].
on the residual. Finally, the coefficienf] is computed using The wavelet-based denoising algorithm introduced by Donoho
(17). As for the previous case, sinde= log, IV, Proposition and Johnstone [11] simply shrinks the wavelet coefficients. That
4 guarantees that the reconstructed signal is always piecewssdt sets all wavelet coefficients smaller than a threshold to
polynomial. zero and keeps the coefficients above the threshold (hard thresh-
olding) or shrinks them by a fixed amount (soft thresholding).
The threshold is usually set 6 = ov/21n N, whereN is the
size of the signal [11]. A limit of this approach is that it does not
In this section, we focus on three main applications for whiatxploit the dependency across scales of the wavelet coefficients.
wavelets are successful, namely denoising, deconvolution, arttus, to overcome this limit, we apply a threshold in the foot-
compression. We present alternative algorithms based on ghist domain rather than in the wavelet domain. Doing so, we

V. APPLICATIONS
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Fig. 3. Deconvolution of a piecewise linear signal. (a) Test sigivaK 256). (b) Signal convolved with a box filter. (c) Observed signal.(SNF5.5 dB) (d)
Deconvolution with WaRD (SNR= 8.8 dB). (e) Deconvolution with footprints (SNR- 13.4 dB).

better exploit the dependency of the wavelet coefficients acrasguivalent to applying a vector threshold in the wavelet domain
scales. As a matter of fact, denoising in the footprint domainiiather than a scalar threshold as in the usual methods.
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Assume that:[n] is piecewise polynomial. We can expresshen compute the residual
piecewise polynomial signals in terms of footprints; thus, out! = = — 1/|| /" [l¢z, £ /ILFE ) £
denoising system attempts to estimate this footprint represeréy-Iterate step 4-5 on the residual until
tion from the observed noisy versiaifin]. The estimation pro- condition (21) is no longer verified.

cedure follows the same steps as Algorithms IV.1 and IV.2. Tha} Once (21) is no longer verified,
is, one first estimates the discontinuity locations and then evéite two discontinuity locations

remove
km—l ’ km

uates the footprint coefficients. Since we only observe a noiftpm K.

version of the signal, we need to slightly modify these two steg3 If

K is empty, stop. Otherwise, go to

to make them more robust to noise. Again, for simplicity, wetep 2.
focus on piecewise constant signals. The discontinuity locations

are estimated in the following way

Algorithm V.1: (location Estimation, Noisy

Case)
1) Choose a dictionary
D = {fk = Z]: ]k_y'i/}jkb,;k = 0,1,...,n — 1} of

footprlnts with j = logy N. This dictionary
represents a bhiorthogonal basis.

2) Compute the dual basis of D and call

fk = 1,2,...,N — 1 the elements of this

dual basis

3) Compute the N — 1 inner products
(2, fO) k=1,2,...,N - 1.

4) Consider as discontinuity locations the

ones related to the inner products Iarger

than the threshold Ty ||fk |T. That is,
it |(z, /")) > T then assume that there is

a discontinuity at location k. T is the
universal threshold equal to ov2In N [11].

Finally, the estimated signalis

]\r[*l 1 2(0)
r = <27 ¢J0> ¢J0 [TL] (0 <R;n/ j‘(’gt) > 1531) [n]

&l
(22)
where M is the total number of iteration®R?* is the residual
afterm iterations, and?? = 2.

First, notice that since the footpring: 0) in (22) are obtained
taking a wavelet transform with = log, N decomposition
levels, we are sure that the estimated signizl piecewise con-
stant likex (Proposition 2). This is an important property be-
cause traditional denoising algorithms suffer from the presence
of artifacts around discontinuities (pseudo-Gibbs effects). The
advantage of denoising in the footprints basis is that these arti-
facts are automatically eliminated.

Notice that at each iteration, given the two closest disconti-
nuity locationsk, 1., km, we run a complete matching pursuit
algorithm on the mtervalk[m_l, Ji m] (steps 3—6 of the algo-
rithm). In this way, if there is a discontinuity that has not been
detected in the discontinuity estimation step, it can be found in

m

We have a set of estimated discontinuity locationghis step. This is the main difference between the noiseless and

. The problem is that due to the noise, thigoisy version of the algorithm.

estimation can have errors. Thus, this possibility must beThe proposed denoising algorithm generalizes to piecewise
considered in the next step, where the footprints coefficienslynomial signals. In this case, given the intervig),[ 1, k],

are evaluated.

Algorithm V.2: (coefficient Estimation,
Noisy Case)

1) Call K the set of estimated disconti-
nuity locations.

2) Choose J; = Llogz(lém—l%m_l)J, where IA<:m_1./I<:m
are the two closest discontinuity loca-

tions in K. ) A

3) For each possible location k € [km—1,km],

compute the inner product (z,(f,go)/||f,§0)||)),
where f(o) is the sub-footprint obtained

by considering only the first J1 wavelet
coefficients of fk

4) Choose the location k1 such that

|<) OO is maximum,
5

N >T (21)

instead of running matching pursuit on this interval, we run the
subspace pursuit presented in Section IV-A. That is, for each
k € [l%m_l,l%m], we project the set of corresponding noisy
wavelet coefficients on the right subspace, we choose the largest
projection, and if this projection is larger than the threshold, we
keep it. All the other previous considerations apply also to the
piecewise polynomial case.

Denoising in the wavelet domain suffers from the lack of shift
invariance of the wavelet basis. One way to overcome this lim-
itation is to use a denoising method called cycle-spinning [5].
For a range of shifts, cycle spinning shifts the noisy signal, de-
noises each shifted version and finally, unshifts and averages
the denoised signals. Since footprints suffer from the same lack
of shift invariance as wavelets, one can use the idea of cycle
spinning to reduce this shift dependency. The only difference
between cycle spinning with wavelets and cycle spinning with
footprints is that in this second case, each shifted version of
the signal is denoised with footprints (Algorithms V.1 and V.2)
rather than wavelets. The only limit of this approach is that we
can no longer guarantee that the denoised signal is piecewise
polynomial. That is, Propositions 2 and 4 do not apply to this
case. In Section VI, we consider both methods (denoising with
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Fig. 4. Deconvolution of a piecewise smooth signal. (a) Test sighiae 256). (b) Observed signal (SNR- 16.7 dB). (c) Piecewise polynomial estimation

(SNR= 21.1 dB). (d) Residuali = y — h*p. () Deconvolution of the residual with a Wiener filter. (f) Complete deconvolved signal (SKR.8 dB).
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footprints and cycle spinning with footprints) and compare the®) Call the denpised signal R
with the equivalent wavelet-based algorithms. gln] = N L g + S P @5‘1).{]5:1) [n].

, The deconvolved signal Z[n] is given by
B. Deconvolution N/27—1 4

~ DeT R’ D A (d) (d)
zn] = o adh n] + Yo _oG; 27 [n],
In its simplest form, the deconvolution problem can be statecﬁj] hl 0 ) IJI [ ]I dz 0 Zil<d)() ’j[h ]
as follows. The original unknown signajn] is blurred by a con- w dere we have simply replace fiﬁ- [n] wi
volution operatoh[n] and corrupted by additive white Gaussiarff: )[n].

noise. One searches for a good estimate[ef from the ob-

served signal If 2[n] is piecewise smooth, we uséveo-stepdeconvolution
_ X algorithm. The procedure of this algorithm is based on the result
yln] = hin]"z[n] + e[n]. (23) of Theorem 1, which says thafn] can be written as the sum of

Either h[n] is known, or it has to be estimated (blind deconvc? Piecewise polynomial signa[n] and a regular functionr|.
lution). In most cases,[n] behaves as a lowpass filter and doe§hat is,z[n] = p[n] + r[n]. Therefore, the observed signgh|
not have a bounded inverse, and for this reason, such a decgil Pe written ag[n] = h[n]«p[n] + h[n]+r[n] + e[n]. The aim
volution problem is usually called ill-posed. of th_e algont.hm is to estimate the two COﬂtI’IbUtI.QD'[ﬁ] and
There is alarge number of methods that provide possible sofiiz] in two different phases. The complete algorithm operates
tions to the deconvolution problem [1], [2], [7], [14], [18], [19],in the following way (we assume thafn] is known).
[24], [29]. Among them, wavelet-based methods have become
popular recently [1], [2], [14], [18], [24]. This is mostly becausétlgorithm V.4: (Two-Step Deconvolution)
these methods deal well with discontinuities and are compufa- Estimate the piecewise polynomial be-
tionally simple. In our approach, we use the footprint expansi@vior underlying y[n] with the deconvo-
to further improve wavelet-based techniques. We assume thgion Algorithm V.3. Call the estimated
h[n] is known?2 signal  p[n].
Consider the case wherén] is piecewise polynomial. We 2) Compute the residual 7[n] = y[n] — h[n]«p[n].
know that it can be written as a linear combination of footprint®) Deconvolve the residual with a Wiener
[see (15)]. Thus, by replacingn] with its footprints represen- filter — g[n]: #[n] = g[n]+7[n]
tation, (23) becomes 4) The estimated signal is Z[n] = p[n] + #[n].

N (@) (@)
n| = cadh n D hin] « £Yn] + eln
o ,z:% W'l ]+§;} el STl e Wavelets are widely used in compression. The reason is that
N/27 -1 Xk D wavelets have very good approximation properties for repre-
_ per (@) £(d) senting certain classes of signals like piecewise smooth sig-
Z ady ]+ ZZ% Ji ol +eln] nals. While good approximation properties are necessary for
7 good compression, it might not be enough. In compression, one
where, in the last equality, we assumeﬁfcf) [2] = has to consider the costs corresponding to indexing, and com-
hln] * f,f,f)[n].13 That is, y[n] is given by a linear combi- pressing the retained elements in the approximation and inde-
nation of blurred footprintsf,ﬁ‘_” [n] plus the additive white Pendent coding of these coefficients might be inefficient [31].
noisee[n]. In our deconvolution algorithm, we first attempt to Consider a piecewise smooth signal defined as in (2), that is,
remove the white noise and then the blurring effect. The noiddunction with pieces that are-Lipschitz regular and with a
is removed using the denoising Algorithms V.1 and V.2, but wiité number of discontinuities. It was shown in [4] that stan-
use the blurred dictionar to perform denoising rather thandard wavelet-based schemes such as zerotrees [28] can achieve
D. The deblurring process then simply consists in replaciige following distortion-rate performance:
the f',gfi)’s with the corresponding nonblurred footprints. The D(R) < e, R7> + ¢oy/R.27*VEe (24)
complete algorithm can be summarized as follows.

C. Compression

=0 i=0 d=0

whereR = R; + R. and R, are the bits used to quantize
the wavelet coefficients generated by the discontinuities,
whereasR, are the bits used to code the wavelet coefficients
corresponding to the smooth parts of the signal. Now, suppose

Algorithm V.3: (Deconvolution of Piecewise
Polynomial Signals)
1) Consider the Dictionary of Blurred

Footprints D — {f(d)'k — 01 n—1D = that the signal is piecewise polynomial. Then, the wavelet
0.1 D}. Remove th,fe ’noise in ’ "'y'[’n] usin7g coefficients related to the smooth parts of the signal are exactly
A./Igznlri.t.h7ms 'V 1 and V.2 and assuming D as zero; therefore, there is no need to use any bits to code them.

the reference footprints dictionary. The distortion of a wavelet-based scheme becomes

D(R) < c;VR2™VE, (25)

12t is worth pointing out that in some cases, footprints can be used for blind

deconvolution as well [15]. However, a direct approach to compression of piecewise poly-

13In practice, the convolution filter has little effect on the Iow-frequenc;ig ial si s b d | li h di .
scaling coefficients. Therefore, in our formulation, we do not consider thiROMial signals, based on an oracle telling us where discontinu-

effect and use the original scaling functions. ities are, will lead taD(R) < c42~%E [25], and such behavior
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is achievable using dynamic programming [25]. This large ge
between ideal performance given by the scheme based on
namic programming and wavelet performance is mainly due  _is¢
the independent coding of the wavelet coefficients across scal
Statistical modeling [9] of such dependencies can improve ti
constants in (25), but going frorfR to R in the exponent re- _
quires taking the deterministic behavior of wavelet coefficientg
across scales at singularities into account. This is well dolgé-zs—
using footprints, which thus close the gap with the ideal pesg’
formance. -

Theorem 3:Consider piecewise polynomial signals with
polynomials of maximum degre® and no more thank
discontinuities. A coder, which represents these signals in t -ssf
footprints basis and which scalar quantizes the discontinui
locations and the footprint coefficients, achieves

_40 I L I L L I I
30 35 40 45 50 55 60 65 70 75 80

Rate
D(R) < ¢g2 "R, (26)
Fig. 5. Theoretical and experimental D/R curves. Dashed-dotted: theoretical

. wavelet performance. Dashed: empirical footprint performance. Line: ideal
Proof. See AppendIX C. D performance.

Thus, this theorem shows that in case of piecewise polyno-
mial signals, footprints significantly improve performance OA
wavelet coders. Footprints can be used for piecewise smooth e ] . ) o
signals as well. Theorem 1 shows that a piecewise smooth signdr©r denoising, we consider only piecewise polynomial sig-
can be separated into two contributions: a piecewise polynonfi@!S- In Table I, we compare the performance of our denoising
part (call itp[n]) and a residuat[n], which is regular g-Lips- systems_wqh a classu:a_l hard thresholdlng algerlthm_[ll] end
chitz overlR). Now, p[r] can be compressed with footprints, an@Ycle-spinning [5]. In this experiment, we consider piecewise
this coder achieves (26). The residufit] can be compressed“near signals with no more than three discontinuities. The per-

Denoising

with any other coder that achieves [4] formance is analyzed in function of the si¥eof the signal. The
table clearly shows that denoising with footprints outperforms
D(R) < es R, 27) the hard thresholding system, whereas cycle-spinning with foot-

prints outperforms traditional cycle-spinning. In Fig. 2, we show
an example of the denoising algorithm on piecewise quadratic

signals. We can see that signals denoised with footprints present

perf_ormance n (.27) can be a_chneved with & 5|mple coder ba%ee ter visual quality since they do not suffer from pseudo-Gibbs
on linear approximation of[n] in a wavelet or Fourier basis [4]. ffects

Combining (26) and (27) shows that a two-stage compressi%n
algorithm based on footprints and on linear approximation %I Deconvolution
the residual achieves '

It is worth noticing that because of the regularityr¢fi], the

In this case, we consider two different signals. One is a
D(R) < csR72® 4 ¢g2=c7Re (28) piecewise linear signal, a_md the other one is a line of the
image “Cameraman,” which represents a possible example

Comparing (24) and (28), we can see that this coder do%fsmecemse smooth signals. We first consider the case of a

not change the asymptotics of the distortion-rate function giecewise linear signal and compare the performance of our

wavelet coders¢ cs R~2*). However, by coding the disconti-.syStem with WaRD [24]. In this simulation, the original signal

nuities efficiently, this coder reaches the asymptotic behavior first convolved with a box filter, and then, white noise is

more rapidly. Finally, notice that for this last performance, th dded. The noise variance is setat%)_: 0.02. _F'g' 3 shews
that our system outperforms WaRD in both visual quality and

underlying assumption is that the encoder knows in advan . . . .
R. It is of interest to note that the signal reconstructed with

the signal to code, and this way, it can separate the polyno torints d A t artifact d di it d
and the smooth parts of the signal. In the experimental resu otprints does not present artifacts around discontinutties an
at it manages to efficiently sharpen the discontinuities. Of

we will show that a realistic encoder can obtain similar perfor- . :
mance without knowing the signal characteristics in advance-0U's€: One of th? reasons why footpnnt_s perform so V\.’e” 'S
because the considered signal perfectly fits the model since it

is piecewise polynomial.

In Fig. 4, we consider the case where the signal is piecewise
smooth. Again, the original signal is convolved with a box

In this section, we compare footprints with wavelet-basditer, and then, white noise is added. In this case, we use the
methods on several examples. Our purpose is to show that fdete-step deconvolutioralgorithm. The estimated piecewise
prints are a versatile tool and that we can get good results ipaynomial behaviorp[rn] underlying the signal is shown in

variety of applications. Fig. 4(c). The estimated residuaJn] and the deconvolved

VI. NUMERICAL EXPERIMENTS
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Fig. 6. Compression of a piecewise smooth function.

residual #[n] are shown in Fig. 4(d) and (e), respectivelyThe allocation of the bits between the piecewise polynomial

Finally, the reconstructed signal is shown in Fig. 4(f). signal and the residual and the numbef wavelet coefficients
that are quantized is chosen off-line, using s@npeiori knowl-
C. Compression edge of the signal. In Fig. 6, we show an example of the perfor-

In Theorem 3, we have shown that in case of piecewise po _anls:e ofthe prfgglsﬁ_? c;mp_Fﬁsspn s<|:rt1eme and compare 'tt\)N ith
nomial signals, a footprint-based coder can achieve the id a% version o : [27]. € signal to COmPress IS given by
union of smooth pieces. In this example, our system outper-

rate-distortion performance. That is, it has the correct rate . . ;
decay of the R-D function. Now, we are interested in a num orms SPIHT by more than 4 dB. Since SPIHT is more suited to

ical confirmation of this theorem. We consider piecewise cofPMPress 2-D signals, this comparison is only indicative. How-

stant signals with no more than five discontinuities. The signgyer’ it shows that a compression system based on footprints

has sizeV = 21, and the discontinuity locations are uniformlycan outperform traditional wavelet methods also in the case of

distributed over the intervab[ N — 1]. The footprint coder op- piecewise smooth signals.
erates as in Theorem 3, that is, it scalar quantizes the footprint
coefficients and the discontinuity locations. Bits are allocated
with a reverse waterfilling strategy. In Fig. 5, we compare the In this paper, we have presented a new way of modeling the
rate-distortion performance of this footprint coder against tlteependency across scales of wavelet coefficients with elements
ideal bound and the ideal performance of a wavelet-based coaes. called footprints. Footprints form an overcomplete dictio-
We can see that the behavior of the footprint coder is consistexatry and are efficient at representing the singular structures of
with the theory since it has the same rate of decay as the idaadignal. With footprints, it is possible to get a sparser repre-
distortion function. sentation of piecewise smooth signals than with wavelet bases,
Finally, we consider a piecewise smooth signal. The compresid this is useful in several signal processing tasks. Numerical
sion operates in the following way. With a denoising-like algasimulations confirm that footprints outperform wavelet methods
rithm, we estimate the piecewise polynomial behavior unden several applications. In short, wavelets have been very suc-
lying the signal and compress it with footprints. The residual 2ssful on signals with discontinuities, be it for denoising, de-
assumed regular, and it is compressed in a wavelet basis. Thatdsvolution, or compression. Wavelet footprints pursue this pro-
the firstk coefficients of the wavelet decomposition are quargram further by explicitly using the structure of discontinuities
tized, whereas the others are set to zero (linear approximaticaross scales. The results, both theoretical and experimental,

VII. CONCLUSIONS
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confirm the potential of this approach. Together with the simp,+ () and only one discontinuity at locatioh. p,-(¢) and
plicity of the algorithms involved, this indicates the power ofgt; (t) are the Taylor expansions ¢ft) aboutt; taken from the

this new data structure.

APPENDIX A

A. Proof of Theorem 1

Consider first, a piecewise smooth sigiiéd) ¢ € [0, T'[ with
only two pieces. That i (¢) = f1(t)1jo4,[ + f2(t) 1, ) and
f1(t), f2(t) are uniformly Lipschitza over [0, 4] and ¢y, T7,
respectively. Recall that if a functiofi is uniformly Lipschitz
a > d in the neighborhood of, then it is necessarily times
continuously differentiable in that neighborho®dMoreover,
the polynomialp,, (¢) in (1) is the Taylor expansion of at v.
Now, sincefi(t), f2(t) are uniformly Lipschitza: over [0, ¢1]
and[t1,T], they are necessarily = |a] times continuously
differentiable on these intervals. Cal(t) = Py (D)L, +

Pyt (t)1p, 71 t € [0, T[ the piecewise polynomial signal whose

two piecesp, - (¢) andp,+ (1) are given byp,— (t) = fi(t1) +
Filb) (=) +-- +f<d><f1>/d'<f—t1>dandpﬁ( 1) = falts)+
Fo(t)(E—t1) +- -+ £ (01) /di(t — 1), Thatis,p, (¢) and
Pyt (t) are the Taylor expansions §ft) aboutt, taken from the
left and from the right of,. Now, the signat, (¢t) = f(¢t)—p(t)

is d times continuously differentiable {0, T[—{¢: }, and inty,
it verifies

lim r,(t) = hm fi(t) —

t—>t

i (1)

= lim r,(¢t
t—t} *)
=, 20 -
lim O (¢) :tlirgl fl(l)( t) —
—t1

t—t,

pt+( ) =0
P2 ()

= lim (1)

t—t}

—pﬁf(t):07l:1727...7d.

left and from the right of;. Then, the piecewise polynomial
signalp(t) = 32K pi(t) is such that, (t) = f(t) — p(t) is d
times continuously differentiable ity, t», ..., tx. Therefore,
rqo(t) is d times continuously differentiable orD,[T] and
uniformly Lipschitza’ > d on that interval. Finally, as in the
previous example, one can show that= «

APPENDIX B

A. Proof of Proposition 1

We are considering signalsIR”Y and the union of footprints
and scaling functions give§ elements. We need to show that
this set of elements is complete. This is equivalent to showing
that there exists ne[n] with ||z|] > 0 such that it has a zero
expansion, that is, such that

> (e ,5°>>\2+Z|<x,¢ﬂ>|2

We prove this for the casé = log, N, noting that with the
same method, one can prove it for afyConsider the repre-
sentation ofr in terms of the wavelet basis[n] = codjo[n] +

Z}']=1 ?;/02] ! yjji[n]. Equation (29) already implies that
the scaling coefficienty = (z, ¢ so) is zero. We will show that
if (29) is true, then also all the wavelet coefficientsiadre zero,
and therefore, it must || = 0. Recall that sincd = log, N,
there is only one wavelet coefficient at levEltwo wavelet co-
efficients at level/ — 1, and so on. First, consider the footprint

FOm) = Z] 1 4k, ik, [n] with & = 27/2 and the corre-
sponding inner produdtz, f, °)>. One can easily verify that the
only nonzero coefficientl;;,, of f,5°>[n] is the one at scald.
That is,f,go)[n] = d i, Yk, [n] = djotpso[n], where in the last
equality, we have used the fact thigt = 0. Thus, we have that
(, f,§°>> = ysod j0, and this inner product is equal to zero only
if 5,0 = 0. Consider now the footprint”) with & = 27 /4. In
this casef{” = drots0ln] + d(s—1)0%(s—1)o[n], that is, f{”

(29)

Thereforey, (t) is d times continuously differentiable on thehas only two nonzero CoefflClenﬂ%kJ at scales] andJ — 1.

entire interval (), T']. Therefore, itis uniformly Lipschita’ > d
onthatinterval. The remaining step is to prove lat «. This
is clearly true for all points away fromy, and we only need
to prove that, (¢) is a-Lipschitz int;. Using the definition of
Lipschitz regularity, we have thaf (t) —p,— (t)| < Ki|t—t1]%,
for t < ¢, and|f(t) — p,+ (£)| < Kolt — £1]*, fort > t;. Now,
sincera (t) = f(t) — p(t), we can writelrq (£)] < Ki|t — ],
fort < ¢t and|r,(t)| < Ka|t —t1|* fort > t;. Thus, if we call
K = max{K1, K-}, then in the neighborhood of, we have
Ira(t)| < K|t —t1]*, which proves that, () is Lipschitza in
t1. This completes the proof.

The generalization of this result to the case of
piecewise smooth signal f(¢) with K discontinu-
ities at locations ty,%s,...,tx is straightforward. Call
pi(t) = Py (t)l[o,ti[ + Dyt (t)l[ti,T[7 i = 1,2,...,K; the
piecewise polynomial signal with two polynomials (¢) and

14The converse is also true. That is, a function that tames continuously
differentiable in the neighborhood ofis Lipschitza’ > d atv.

Therefore, we have thdt, fk ) = ys0ds0 + Yr—1)0d1-1)0-

Since we have seen thaj, = 0, this second inner product is
zero only ify(y_1yo = 0. In the same way, but with the footprint
related to positior” /4427 /2, we can prove thaj ;_1y; = 0.
Therefore, the wavelet coefficients at scaleend.J —1 are zero.

The same analysis can be repeated at each scale, and in conclu-
sion, we have that (29) implies that all the wavelet coefficients
of x are zero. Therefore; must be the zero vector.

APPENDIX C

A

Proof of Theorem 3
Consider a piecewise polynomial signgh] € [0, N — 1]
of maximum degred> and with no more thard discontinu-
ities. Assume that the signal is bounded in magnitude between
[—A, A]. We want to prove that a compression scheme based on

footprints can achieve
D(R) < 62~ CR/(D+)E+(D+D) | o=crR
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Consider the representation ofin terms of footprints for the
caseJ = log, N:

(10]
(11]

(30) 12

K D

afn] = codly ) + 3 Y ol i [nl.

i=0 d=0 [13]
The compression algorithm consists in uniform scalar quan-
tizing the discontinuity locations; and the footprints coeffi- [14]
cientSaEd). Sincez is bounded, the square error relative to
the quantization of a single discontinuity location can be UpPef; 5]
bounded byl|z — #||*> < 4A4%|k; — k;|, wherei is the ap-
proximated signal. IRy, bits are used to quantize each dis-
continuity then|k; — k;| < (N/2)2=F* and the distortion
related to a single discontinuity iB;(Ry,) < 242N2~Fr:, [17]
Consider, now, the quantization of the coefficients of the foot-
prints expansiore Since||f,§d)|| = 1, the square error due to [1g
the quantization of a single coefficien/éd) is ||z — &2
(agd) - d(-d))2. Now, z is bounded, and therefore, each coef-|1g;
ficient o/ is bounded as wella!” € [-B™ B]. Thus,
if Rgd) bits are allocated to quantizel(d), then the distortion
due to this quantization can be upperbounded}ijgd)) <

(d) -
B222R;" where B

[16]

(20]

mMax; 4 de). The global distortion [21]

bound is obtained by adding all the distortion contributions:
D(R) < Y5, Di(Ri,) + 0 Yi o Da(R("), whereR =
S R + Zfio ZdD:o Rgd . Finally, by allocating bits over
the different distortions with a reverse waterfilling scheme [8],[23]
the global distortion becomes [24]

(22]

D(R) < 62~ QR/(D+)E+(DHD) | po—crR
[25]
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