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Analysis of an LMS Algorithm for Unbiased Impulse
Response Estimation

H. C. So and Y. T. Chan

Abstract—In this correspondence, a least mean squares (LMS)-based
algorithm is devised for unbiased system identification in the presence of
white input and output noise, assuming that the ratio of the noise powers is
known. The proposed approach aims to minimize the mean square value
of the equation-error function under a constant-norm constraint and is
equivalent to minimizing a modified mean square error (MSE) function.
An analysis of the algorithm shows that the estimates will converge to the
true values in the mean sense. The variances of the parameter estimates
are also available. Computer simulations are included to corroborate the
theoretical development and to evaluate the impulse response estimation
performance of the LMS algorithm under different conditions.

Index Terms—Adaptive filter, bias removal, system identification.

I. INTRODUCTION

Estimation of the impulse response of an unknown system from
its measured input and output has found many applications in signal
processing, communications, and control [1]–[3]. Many estimation al-
gorithms based on least squares (LS) and least mean squares (LMS)
techniques [4]–[9] have been developed for accurate system param-
eter estimation if additive noise exists only at the output. However,
noise-free input measurements are difficult to obtain in many prac-
tical situations because these signals are also corrupted by quantiza-
tion noise, self-noise, and/or other additive noise [10], and neglecting
the presence of input noise will lead to biased impulse response esti-
mates.

The total least squares (TLS) approach [11] seems to be an
appropriate choice for system identification with noisy input and
output because it considers both stimulation and response errors.
Computationally attractive adaptive impulse response estimation
schemes employing the TLS criterion include the recursive total
least squares (RTLS) [10], constrained anti-Hebbian (CAH) [12],
and total least mean squares (TLMS) [13] algorithms. Nevertheless,
these methods are restricted for parameter estimation of finite impulse
response (FIR) systems and assume that the input and output noise
powers are identical. For the general case of infinite impulse response
(IIR) system modeling, the Koopmans–Levin method [14], which is
based on spectral decomposition of a covariance matrix formed using
the input-output data and a modified LS algorithm [15] that requires
estimation of the measurement noise variances, can be used to provide
reliable estimates but they involve intensive computations. In this
correspondence, we develop an LMS approach for unbiased impulse
response estimation for which real-time implementation is allowed,
assuming that the power ratio of the input and output interference is
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Fig. 1. System block diagram for equation-error IIR filtering.

known [14]. In estimating IIR system parameters, the equation-error
configuration is employed because it has advantages of unimodal
error surface and guaranteed system stability over the output-error
approach, although direct minimization of the mean square value of
the equation-error cannot provide unbiased parameter estimates in
input and/or output noise [7]–[9].

The organization of the paper is as follows. In Section II, the problem
of impulse response estimation using noisy input and output measure-
ments is formulated. It is shown that bias-free estimation is possible
if the minimization is subject to a constant-norm constraint. The con-
strained problem is then converted into an unconstrained minimization
of a weighted mean square error (MSE) function by an LMS algorithm.
Learning characteristics and steady-state MSEs of the impulse response
estimates are derived in Section III. Simulation results are presented in
Section IV to corroborate the theoretical analyses and to evaluate the
system identification performance of the new approach under different
conditions. Finally, conclusions are drawn in Section V.

II. BIAS-FREE LMS ALGORITHM

The block diagram for adaptive equation-error IIR filtering is in
Fig. 1. Without loss of generality, we consider that the unknown system
H(z) is stable as well as causal and has the form

H(z) =
B(z)

A(z)
(1)

where

A(z) = 1 +

M�1

i=1

aiz
�i

B(z) =

N�1

j=0

bjz
�j
: (2)

The orders of the denominator and numerator polynomialsM andN ,
respectively, are assumed to be known. The observed system input and
output are

x(k) = s(k) + ni(k)

r(k) = d(k) + no(k) (3)

wheres(k) andd(k) denote the noise-free input and output, respec-
tively, whereasni(k) andno(k) represent the input and output mea-
surement noise that are independent ofs(k). It is assumed thatni(k)
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andno(k) are uncorrelated white processes with variances�2n and
�2n , respectively, and the ratio of the noise powers, say
 = �2n =�2n ,
is available. Our goal is to findai, i = 1; 2; . . . ; M � 1 and bj ,
j = 0; 1; . . . ; N � 1 from x(k) andr(k) using the adaptive FIR
filters Â(z) = 1 + M�1

i=1
âiz

�i andB̂(z) = N�1

j=0
b̂jz

�j , where

fâig andfb̂jg are the parameter estimates.
In the equation-error formulation, the output error functione(k) is

computed from

e(k) = r(k) +

M�1

i=1

âir(k � i)�

N�1

j=0

b̂jx(k � j): (4)

It is easy to show that the mean square value ofe(k),Efe2(k)g is

Efe2(k)g= E d(k) +

M�1

i=1

âid(k � i)�

N�1

j=0

b̂js(k � j)

2

+�2n 1 +

M�1

i=1

â2i + 


N�1

j=0

b̂2j : (5)

In the presence of input and/or output noise, it is obvious that mini-
mizingEfe2(k)g with respect tofâig andfb̂jg cannot give unbiased
impulse response estimates because (5) contains the noise components.
Using the idea of [6], if we minimizeEfe2(k)g subject to the con-

straint that 1 + M�1

i=1
â2i + 
 N�1

j=0
b̂2j is a positive constant, say

G, then the desired solution can be attained. This optimization problem
is equivalent to

minimize
Efe2(k)g

G
or

1

G
E d(k) +

M�1

i=1

âid(k � i)�

N�1

j=0

b̂js(k� j)

2

+
�2n
G

1 +

M�1

i=1

â2i + 


N�1

j=0

b̂2j

subject to

1

G
1 +

M�1

i=1

â2i + 


N�1

j=0

b̂2j = 1: (6)

Since the variablesfaig andfbjg in (6) appear in the first and second
degrees only, the error surface is quadratic, and thus, it is unimodal
[5]. This implies that gradient search approach can be utilized for the
constrained minimization. From (6)

G = 1 +

M�1

i=1

â2i + 


N�1

j=0

b̂2j : (7)

As a result, (6) is identical to an unconstrained optimization of mini-
mizing a modified error functionEf�2(k)g of the form

Ef�2(k)g =
Efe2(k)g

1 +
M�1

i=1

â2i + 

N�1

j=0

b̂2j

: (8)

In our study, the computationally attractive LMS algorithm is used to
estimateH(z) on a sample-by-sample basis. Based on (8), the instan-
taneous value of�(k) is

�(k) =
e(k)

1 +
M�1

i=1

â2i (k) + 

N�1

j=0

b̂2j (k)

(9)

whereâi(k), i = 1; 2; . . . ; M � 1, b̂j(k), andj = 0; 1; . . . ; N � 1
denote the estimates offaig andfbjg at timek, wherease(k) is calcu-
lated using the instantaneous parameter estimates. The bias-free least
mean squares (BFLMS) updating equations for unbiased system iden-
tification are then derived as in (10) and (11), shown at the bottom of
the page, where�a and�b are positive scalars that govern convergence
rate and stability of the adaptive algorithm. We note that (10) and (11)
are a modification of the equation-error scheme where bias-removal
terms are added to the update offâi(k)g andfb̂j(k)g. At each sam-
pling interval, only(4M +4N � 2) multiplications, one division, and
(4M + 4N � 4) additions are required in the BFLMS algorithm.

âi(k + 1) = âi(k)�

�a 1 +
M�1

i=1

â2i (k) + 

N�1

j=0

b̂2j (k)

2

@�2(k)

@âi(k)

= âi(k)� �ae(k) r(k � i)� âi(k)
e(k)

1 +
M�1

i=1

â2i (k) + 

N�1

j=0

b̂2j (k)

i = 1; 2; . . . ; M � 1 (10)

and

b̂j(k + 1) = b̂j(k)�

�b 1 +
M�1

i=1

â2i (k) + 

N�1

j=0

b̂2j (k)

2

@�2(k)

@b̂j(k)

= b̂j(k) + �be(k) x(k � j) + 
b̂j(k)
e(k)

1 +
M�1

i=1

â2i (k) + 

N�1

j=0

b̂2j (k)

j = 0; 1; . . . ; N � 1 (11)
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Fig. 2. Estimates ofb using different methods in FIR filtering.

Fig. 3. Estimates ofb using different methods in FIR filtering.

III. PERFORMANCEANALYSIS OF BFLMS ALGORITHM

Assume the fluctuations in the coefficient errors are small so that
the elements offâi(k)g and fb̂j(k)g can be replaced by their true
values and thatEfe2(k)g � e2(k). Then,e2(k)=(1+ M�1

i=1
â2i (k)+


 N�1

j=0
b̂2j (k)) � �2n . Let

�(k) = [Efâ1(k)g � a1; Efâ2(k)g � a2; . . .

EfâM�1(k)g� aM�1]
T

�(k) = [Efb̂0(k)g � b0; Efb̂1(k)g� b1; . . .

Efb̂N�1(k)g� bN�1]
T

d(k) = [d(k � 1); d(k� 2); . . . d(k �M + 1)]T

s(k) = [s(k); s(k � 1); . . . s(k�N + 1)]T (12)

where T denotes the transpose operation, as well asRdd =
Efd(k)dT (k)g, Rds = Efd(k)sT (k)g, Rss = Efs(k)sT (k)g,
and � = �b=�a. Together with the independence assumption [5]
and taking expectations on both sides of (10) and (11), the learning
behavior of the BFLMS estimates can be obtained from

�(k + 1)

�(k + 1)
= [I� �aR]

�(k)

�(k)
(13)

where

R =
Rdd Rds

�RT
ds �Rss

: (14)

Fig. 4. Estimates ofb using different methods in FIR filtering.

Fig. 5. Estimates ofb using different methods in FIR filtering.

Fig. 6. Estimates ofb using different methods in FIR filtering.

andI is the(M +N � 1)� (M +N � 1) identity matrix. From (13),
it is observed that closed-form solutions forEfâi(k)g andEfb̂j(k)g
are not generally available because the convergence characteristic of
each parameter estimate is dependent on the auto-correlation and cross-
correlation functions, although they can be determined by brute force if
the signal statistics are known. Nevertheless, we can see thatâi(k)!
ai, i = 1; 2; . . . ; M � 1, andb̂j(k) ! bj , j = 1; 2; . . . ; N � 1,
ask ! 1 in the mean sense, provided that0 < �a < 2=�max and
0 < �b < 2�=�max, where�max is the largest eigenvalue ofR, that
is, there is convergence.

By squaring (10) and (11), taking the expected values on both sides,
and then considering the steady-state with sufficiently small�a and�b,
the variances of the impulse response estimates, which are denoted by
fvar(âi)g andfvar(b̂j)g, can be approximated as in (15) and (16),
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TABLE I
MEAN IMPULSE RESPONSEESTIMATES OFDIFFERENTMETHODS IN FIR FILTERING

TABLE II
MSES OF THEPARAMETER ESTIMATES FORDIFFERENTMETHODS IN FIR FILTERING

shown at the bottom of the next page. We observe that the MSEs of
fâi(k)g andfb̂j(k)g are characterized by the step sizes, signal and
noise powers as well as the system parameters ofH(z).

IV. NUMERICAL EXAMPLES

This section contains simulation results to corroborate the theoret-
ical derivations and to evaluate the performance of the BFLMS al-
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gorithm for estimating FIR and IIR system parameters using noisy
measurements. For FIR system identification, performance comparison
was also made with two LMS-style TLS algorithms, namely, the CAH
and TLMS methods. The noise-free inputs(k) was a white Gaussian
process of unity power, and the measurement noisesni(k) andno(k)
were independent white uniform random variables. All simulation re-
sults provided were averages of 200 independent runs.

In the first test, the system to be estimated was an FIR filter with
N = 5 characterized byb0 = �0:3, b1 = �0:9, b2 = 0:8, b3 = �0:7,
andb4 = 0:6. In this case,̂A(z) = 1, and only (11) was involved in the
proposed algorithm. All adaptive filter coefficients were set to zero ini-
tially, except that the initial weight forr(k) in the TLMS method was
�1. We assigned�a = �b = 0:002, and the step sizes for the other
two algorithms were chosen to be 0.001 so that all schemes had similar
convergence times. Figs. 2–6 show the learning behavior of the impulse
response estimates for different methods when�2n = 0:1 and�2n =
1:0. We see that all parameter estimates converged approximately at
the 2000th iteration, and the unbiasedness of the BFLMS algorithm
was demonstrated. The convergence characteristics of the BFLMS es-
timates also agreed with the predicted trajectories based on (13). On
the other hand, the CAH and TLMS could not give unbiased estima-
tion, and interestingly, they provided almost identical steady-state filter
coefficient estimates. This test was repeated with three more noise con-
ditions, namely,f�2n = 0:1; �2n = 0:1g, f�2n = 1:0; �2n = 1:0g,
andf�2n = 1:0; �2n = 0:1g, and Tables I and II tabulate the means
and MSEs of the impulse response estimates, respectively, for the three
approaches in all four cases. From Table I, it can be observed that the
BFLMS method always attained unbiased system parameter estima-
tion, whereas the TLS-based algorithms gave accurate estimates only
when�2n = �2n . Furthermore, we noticed that the CAH and TLMS
estimates were also very close for�2n = 1:0 and�2n = 0:1, and
their biases varied with the noise powers. From Table II, we see that
the variances of the BFLMS estimates conformed with the theoretical
calculation based on (16) for all noise conditions, and it achieved min-
imum MSE estimation for the cases when�2n 6= �2n because the bi-
ases of the CAH and TLMS estimates had contributed to their MSEs.
For �2n = �2n = 1:0, all three methods provided similar values of
MSEs, whereas for�2n = �2n = 0:1, the measured MSEs obtained
from the BFLMS and CAH algorithms were also comparable and were
far fewer than those of the TLMS scheme. As expected, the MSEs of
all three techniques increased with the values of the noise variances.

In the second test, we evaluated the system identification perfor-
mance of the BFLMS algorithm for an IIR system withM = 3 and
N = 2. The system parameters were given bya1 = �0:3, a2 =
�0:54, b0 = 1:0, andb1 = �2:4, whereas the settings of the proposed
method were identical to the previous experiment. Table III tabulates
the means and variances of the BFLMS estimates for four different

Fig. 7. Estimates offa g for BFLMS algorithm in IIR filtering.

Fig. 8. Estimates offb g for BFLMS algorithm in IIR filtering.

noise conditions, and Figs. 7 and 8 show the learning trajectories of
fâi(k)g andfb̂j(k)g at �2n = 0:1 and�2n = 1:0. From Table III,
we see that the proposed approach attained unbiased impulse response
estimation and the measured MSEs of the parameter estimates agreed
with the predicted values of (15) and (16) for all noise conditions.
In addition, the variances offâi(k)g andfb̂j(k)g were smallest for
�2n = �2n = 0:1 and were largest when�2n = �2n = 1:0. From
Figs. 7 and 8, it is observed thatâ1(k) ! �0:3 and b̂0(k) ! 1:0
at approximately the 2000th iteration, whereasâ2(k) and b̂1(k) con-
verged to their desired values at the 1000th and the 3000th iteration,
respectively. The learning characteristics of the parameter estimates
also conformed to their predicted trajectories, except for the transient
behavior ofâ2(k). This discrepancy was due to the assumption of
e2(k)=(1 + M�1

i=1
â2i (k) + 
 N�1

j=0
b̂2j (k)) � �2n in deriving (13),

var(âi)
�
= lim

k!1
Ef(âi(k)� ai)

2g

��a

�2n (rdd(0) + �2n ) 1 +
M�1

l=1

a2l + 

N�1

l=0

b2l � �4n a2i

2rdd(0)
; i = 1; 2; . . . ; M � 1 (15)

and

var(b̂j)
�
= lim

k!1
Ef(b̂j(k)� bj)

2g

��b

�2n (rss(0) + �2n ) 1 +
M�1

l=1

a2l + 

N�1

l=0

b2l � �4n b2j

2rss(0)
; j = 0; 1; . . . ; N � 1 (16)
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TABLE III
MEANS AND VARIANCES OF THEPARAMETER ESTIMATES FORBFLMS ALGORITHM IN IIR FILTERING

which possibly could not be applicable to all parameter estimates at the
beginning of the adaptation.

V. CONCLUSIONS

An LMS-based algorithm, called the BFLMS method, has been de-
veloped for accurate system identification in the presence of input and
output interference, given the noise power ratio. The idea is to mini-
mize the mean square value of the equation-error function subject to
a constant-norm constraint, and it is proved that the constrained opti-
mization can be converted into an unconstrained optimization of min-
imizing a scaled mean square error function. Learning behavior and
mean square errors of the estimated parameters are derived and verified
by computer simulations. The unbiasedness of the proposed approach
is demonstrated in both FIR and IIR filtering under different condi-
tions, and it is shown that the BFLMS algorithm outperforms the CAH
and TLMS methods in FIR system identification, particularly when the
input and output noise powers are not equal.
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