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Correpondence

Analysis of an LMS Algorithm for Unbiased Impulse ng(k)

Response Estimation +
Unknown system| d(k)

H.C. Soand Y. T. Chan s(k) H(z)

Abstract—In this correspondence, a least mean squares (LMS)-based r(k)
algorithm is devised for unbiased system identification in the presence of / \
white input and output noise, assuming that the ratio of the noise powers is +
known. The proposed approach aims to minimize the mean square value x(K) [ ~
of the equation-error function under a constant-norm constraint and is B(z) A(z)
equivalent to minimizing a modified mean square error (MSE) function. s
An analysis of the algorithm shows that the estimates will converge to the / e(k) \
true values in the mean sense. The variances of the parameter estimates ni(k) ¢
are also available. Computer simulations are included to corroborate the
theoretical development and to evaluate the impulse response estimation Fig. 1. System block diagram for equation-error IIR filtering.
performance of the LMS algorithm under different conditions.

Index Terms—Adaptive filter, bias removal, system identification. known [14]. In estimating IR system parameters, the equation-error
configuration is employed because it has advantages of unimodal
error surface and guaranteed system stability over the output-error
approach, although direct minimization of the mean square value of
Estimation of the impulse response of an unknown system frofile equation-error cannot provide unbiased parameter estimates in
its measured input and output has found many applications in sigi@ut and/or output noise [7]-[9].
processing, communications, and control [1]-[3]. Many estimation al- The organization of the paper is as follows. In Section Il, the problem
gorithms based on least squares (LS) and least mean squares (L¥t$hpulse response estimation using noisy input and output measure-
techniques [4]-[9] have been developed for accurate system parafents is formulated. It is shown that bias-free estimation is possible
eter estimation if additive noise exists only at the output. Howevef,the minimization is subject to a constant-norm constraint. The con-
noise-free input measurements are difficult to obtain in many pragrained problem is then converted into an unconstrained minimization
tical situations because these signals are also corrupted by quani#arweighted mean square error (MSE) function by an LMS algorithm.
tion noise, self-noise, and/or other additive noise [10], and neglectingarning characteristics and steady-state MSEs of the impulse response
the presence of input noise will lead to biased impulse response egtitimates are derived in Section I1I. Simulation results are presented in
mates. Section IV to corroborate the theoretical analyses and to evaluate the
The total least squares (TLS) approach [11] seems to be @jstem identification performance of the new approach under different

appropriate choice for system identification with noisy input angonditions. Finally, conclusions are drawn in Section V.
output because it considers both stimulation and response errors.

Computationally attractive adaptive impulse response estimation Il. BiAS-FREE LMS ALGORITHM

schemes employing the TLS criterion include the recursive total ] ) ) o
least squares (RTLS) [10], constrained anti-Hebbian (CAH) [12], The bllock diagram for adgptlve equa.tlon-error IIR filtering is in
and total least mean squares (TLMS) [13] algorithms. Neverthele @.kl..WlthOUt loss of generality, we consider that the unknown system
these methods are restricted for parameter estimation of finite impuféé=) 1S stable as well as causal and has the form

response (FIR) systems and assume that the input and output noise Hiz) = B(z)

. INTRODUCTION

1)

powers are identical. For the general case of infinite impulse response A(2)

(IIR) system modeling, the Koopmans—Levin method [14], which i&vhere

based on spectral decomposition of a covariance matrix formed using .
M—1

the input-output data and a modified LS algorithm [15] that requires i
estimation of the measurement noise variances, can be used to provide Az) =1+ Z @iz
reliable estimates but they involve intensive computations. In this =
correspondence, we develop an LMS approach for unbiased impulse N1 .
response estimation for which real-time implementation is allowed, B(z)= Y bz . (2)
assuming that the power ratio of the input and output interference is 3=0

The orders of the denominator and numerator polynondiéland V',
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andn,(k) are uncorrelated white processes with variarmi;s and
oy, respectively, and the ratio of the noise powers,say o, /o. _,
is available. Our goal is to find;, : = 1,2,..., M — 1 andb;,
j=0,1,..., N -1 from (k) andz(L) usmg the adaptlve FIR
filters A(z ) ) + 3V Gz and B(2) = Z b2, where
{a;} and{b;} are the parameter estimates.

In the equation-error formulation, the output error functigh) is
computed from

M—1

e(h)=r(k)+ > air(k—1i)

=1

N—-1
- Z bk —j). 4)

It is easy to show that the mean square value(df, E{e*(k)} is

E{(k)}=E { <

M—1

+Zadk—7

2009

subject to
(6)

Since the variable$a; } and{b;} in (6) appear in the first and second
degrees only, the error surface is quadratic, and thus, it is unimodal
[5]. This implies that gradient search approach can be utilized for the
constrained minimization. From (6)

G=1+ a4y b 7)
As a result, (6) is identical to an unconstrained optimization of mini-
mizing a modified error functiod {¢*(k)} of the form
E{e?( k)}

E{C(h)} = —— :
I+ X aity Z b2

8)

In our study, the computationally attractive LMS algorithm is used to
estimateH (=) on a sample-by-sample basis. Based on (8), the instan-

In the presence of input and/or output noise, it is obvious that miRineous value of (k) is

mizing E{¢? (k) } with respect to{d, } and{b,

Using the idea of [6], if we minimize‘]{a”(k)} subject to the con-

straint that( 1+ >>'77" a7 + Y )2, b7 ) is a positive constant, say

;} cannot give unbiased
impulse response estimates because (5) contains the noise components.

G, then the desired solutlon can be attalned. This optimization problem

is equivalent to

minimize

E{*(k)}

k
(k) = e(k) ©)
M—1 N—1
¢1+ SRACEER A
=1
wherei;(k),i=1,2,.... M —1,b;(k),andj =0, 1, ..., N —1

denote the estimates 6f; } and{b;} attimek, whereag (k) is calcu-

lated using the instantaneous parameter estimates. The bias-free least
mean squares (BFLMS) updating equations for unbiased system iden-
tification are then derived as in (10) and (11), shown at the bottom of
the page, wherg, andyu, are positive scalars that govern convergence

M—1 N-1 2
1 E{ [ dk)+ Z aid(k — 1) — Z bis(k — ) rate and stability of the adaptive algorithm. We note that (10) and (11)
T p— =0 are a modification of the equation-error scheme where bias-removal
) M1 N1 terms are added to the update{df (k)} and{b;(k)}. At each sam-
+ e (14 Z %+ b2 pling interval, only(4A + 4N — 2) multiplications, one division, and
G = i (4M + 4N — 4) additions are required in the BFLMS algorithm.
M—1 o o
I HORS z B |
ai(k—l—l):a,i(k)— 5 aflz(k)
. . . e(k
=ai(k) — pae(k) [r(k—1i)—a;(k) — (k) N
L4+ >0 ai(k)+~ X bi(k)
i=1 7=0
i=1,2, ..., M—-1 (10)
and
Mol N
s |1+ X ai(k)+v X b5(k) B2
~ =1 =0 9
bk +1) =b,(k) — , ’ <)
2 b; (k)
e(k)

=b,(k) + ppe(k) |x(k = j) + vb; (k)

j=0,1,....,N

M—1

1+ Z ai(k)+~ Z b (k)

Jj=

11
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Assume the fluctuations inAthe coefficient errors are small so that
the elements ofa;(k)} and {b;(k)} can be replaced by their true

Ill. PERFORMANCEANALYSIS OF BFLMS ALGORITHM

values and thaE {e?(k)} = (k). Thene?(k)/(1+ M a2 (k) +

Y5 B (k) = o, Let

7

=1

alk) =[F{ai1(k)} —ar, E{az(k)} — aq, ...
E{ay—1(k)} — (l,Mfl]T

B(k) =[E{bo(k)} — by, E{by(k)} — by, ...
E{?;Auﬂk)} - bel]T
d(k) =[d(k —1), d(k—2), ... d(k — M +1)]"

s(k) =[s(k), s(k—1), ...s(k = N + 1)]"

where T' denotes the transpose operation, as well Rag;
E{d(k)d" (k)}, Rus = E{d(k)s" (k)}, Ree = E{s(k)s’(k)},
andx = ps/p.. Together with the independence assumption [Sach parameter estimate is dependent on the auto-correlation and cross-

and taking expectations on both sides of (10) and (11), the learniggrrelation functions, although they can be determined by brute force if
behavior of the BFLMS estimates can be obtained from

where

(12)

alk+1)] _q R [ (k) 13
Alk+1) == ]_8(k) (13)
R— [ Raa  Ra. | (14)

B R R | ’
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andIisthe(M + N —1) x (M + N — 1) identity matrix. From (13),
it is observed that closed-form solutions B{a; (k) } andE{b;(k)}
are not generally available because the convergence characteristic of

the signal statistics are known. Nevertheless, we can seé;tiigt—
aii=1,2,...., M —1,andb;(k) — b;,j = 1,2, ..., N — 1,
ask — oo in the mean sense, provided thlak p. < 2/Amax and
0 < up < 26/ Amax, Whered ... is the largest eigenvalue &, that
is, there is convergence.

By squaring (10) and (11), taking the expected values on both sides,
and then considering the steady-state with sufficiently smadind,
the variances of the impulse response estimates, which are denoted by
{var(a;)} and{var(h;)}, can be approximated as in (15) and (16),



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 7, JULY 2003

TABLE |
MEAN IMPULSE RESPONSEESTIMATES OF DIFFERENTMETHODS IN FIR FILTERING
Filter Coefficient bo b, by b3 by
Actual Value -0.3 -0.9 0.8 -0.7 0.6
BFLMS | —2.994 x 10~! | —9.009 x 10~! | 8.000 x 10~! | —7.004 x 10~! | 6.008 x 10~*
on, =01 CAH | -3837x107! | —1.154x 10° | 1.026 x 10° | —8.993 x 107! | 7.721 x 107!
on, = 1.0 TLMS | —3.844 x 107! | —1.156 x 10° | 1.031 x 10° | —9.071 x 107! | 7.784 x 107!
BFLMS | —2.996 x 10~! | —9.008 x 10~! | 8.002 x 10~! | —7.007 x 10! | 6.002 x 10~!
on, =01 CAH | -2.995x10~! | —9.001 x 10~ | 7.999 x 10~ | —=7.003 x 10~ | 6.002 x 101
on, =01 TLMS | —2.996 x 107! | —9.024 x 10~! | 8.028 x 10~ | —=7.051 x 10~! | 6.036 x 10!
BFLMS | —3.042 x 10~! | —9.087 x 10! | 8.047 x 10! | —7.094 x 10~! | 6.059 x 10~!
o5, =10 CAH | —2.979x 10! | —8.983 x 10~! | 7.995 x 10~ | —7.033 x 10~ | 6.020 x 107!
o, = 1.0 TLMS | —3.001 x 10! | —=9.007 x 10~ | 8.024 x 10~! | —7.065 x 10~! | 6.053 x 10~!
BFLMS | —3.050 x 10™! | —9.077 x 107! | 8.044 x 107! | —7.089 x 107! | 6.042 x 107!
on, =10 CAH | —2.263 x 107! | —6.822x 1071 | 6.066 x 107! | —5.325 x 10! | 4.547 x 107!
On, = 0.1 TLMS | —2.279 x 10~! | —6.839 x 10~ | 6.080 x 10! | —5.345 x 10~ | 4.563 x 10~
TABLE I
MSES OF THEPARAMETER ESTIMATES FORDIFFERENTMETHODS IN FIR HLTERING
Filter Coeflicient bo by by b3 by
BFLMS 1.435x 1073 | 1.385 x 103 [ 1.314 x 1073 | 1.321 x 1073 | 1.452 x 1073
o2 =0.1 | BFLMS (pred.) | 1.362 x 1073 | 1.355 x 1073 | 1.357 x 1072 | 1.358 x 1072 | 1.359 x 1072
o =10 CAH 8.296 x 1072 | 6.689 x 1072 | 5.330 x 1072 | 4.175 x 1072 | 3.144 x 1072
TLMS 1.107 x 1072 | 7.303 x 1072 | 6.029 x 1072 | 4.935x 1072 | 3.742 x 1072
BFLMS 3.950 x 1074 | 3.708 x 10™* | 3.532 x 10™* | 3.502 x 10™* | 3.833 x 10~*
oZ, =0.1 | BFLMS (pred.) | 3.720 x 107* | 3.648 x 107* | 3.665 x 10™* | 3.680 x 10~* | 3.693 x 10~*
o2 =0.1 CAH 2.085 x 107* | 4.161 x 10™* | 3.771 x 107* | 3.340 x 10™* | 3.127 x 10~
TLMS 2.091 x 1073 | 4.435 x 1073 | 4.091 x 1073 | 3.709 x 1073 | 3.189 x 1073
BFLMS 7.741 x 1073 | 5.051 x 1073 | 5.221 x 1073 | 5.398 x 103 | 5.673 x 1073
2 =1.0 | BFLMS (pred.) | 6.690 x 1072 | 5.970 x 1072 | 6.140 x 103 | 6.290 x 102 | 6.420 x 1073
2 =10 CAH 3.803 x 1073 | 5.059 x 1073 | 4.920 x 103 | 4.520 x 10™3 | 4.228 x 103
TLMS 3.813x 1073 | 5.139 x 1073 | 4.997 x 10~3 | 4.627 x 103 | 4.295 x 1073
BFLMS 6.053 x 1073 | 3.371 x 1073 | 3.305 x 1073 | 3.397 x 1073 | 3.465 x 10~3
0% =1.0 | BFLMS (pred.) | 4.890 x 1073 | 4.170 x 1073 | 4.340 x 1073 | 4.490 x 1073 | 4.620 x 10~3
o2 =01 CAH 6.699 x 1073 | 4.929 x 1072 | 3.914 x 1072 | 2.967 x 1072 | 2.260 x 10~
TLMS 7.099 x 1073 | 4.950 x 1072 | 3.954 x 1072 | 2.986 x 102 | 2.288 x 1072

IV. NUMERICAL EXAMPLES
shown at the bottom of the next page. We observe that the MSEs of
{a:(k)} and{b;(k)} are characterized by the step sizes, signal and This section contains simulation results to corroborate the theoret-
noise powers as well as the system parametef§(af). ical derivations and to evaluate the performance of the BFLMS al-
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gorithm for estimating FIR and IIR system parameters using noisy 0
measurements. For FIR system identification, performance comparisor ~  , I eStimat? of ay "
was also made with two LMS-style TLS algorithms, namely, the CAH 1\ =77~ theoretical trajectory for ay(k)
and TLMS methods. The noise-free inpii:) was a white Gaussian @ -0.2 * estimate of a, .
process of unity power, and the measurement noisgls) andn., (k) 5 I theoretical trajectory for a(k)
were independent white uniform random variables. All simulation re- ¢ 03 T
sults provided were averages of 200 independent runs. T 04

In the first test, the system to be estimated was an FIR filter with E
N =5 characterized by = —0.3,b1 = —0.9,b = 0.8,b5 = —0.7, g OS8R
andb, = 0.6. Inthis caseA(z) = 1, and only (11) was involved in the 06 1
proposed algorithm. All adaptive filter coefficients were set to zero ini- T
tially, except that the initial weight for(%) in the TLMS method was o 2000 2000 5000 8000

—1. We assigned., = p, = 0.002, and the step sizes for the other
two algorithms were chosen to be 0.001 so that all schemes had similar
convergence times. Figs. 2—-6 show the learning behavior of the impulse Fig. 7. Estimates ofa,} for BFLMS algorithm in lIR filtering.
response estimates for different methods Whéin: 0.1 andaio =
1.0. We see that all parameter estimates converged approximately ai ¢
the 2000th iteration, and the unbiasedness of the BFLMS algorithm
was demonstrated. The convergence characteristics of the BFLMS es
timates also agreed with the predicted trajectories based on (13). Or—. 0
the other hand, the CAH and TLMS could not give unbiased estima- =~
tion, and interestingly, they provided almost identical steady-state filter
coefficient estimates. This test was repeated with three more noise con-
ditions, namely{s>. = 0.1, ¢ = 0.1}, {o7, = 1.0, 07 = 1.0},
and{s;. = 1.0, ¢ = 0.1}, and Tables | and Il tabulate the means
and MSEs of the impulse response estimates, respectively, for the three
approaches in all four cases. From Table |, it can be observed that the
BFLMS method always attained unbiased system parameter estima- ) I 1 1
tion, whereas the TLS-based algorithms gave accurate estimates only  © 2000 4000 6000 8000
whens?. = o2 . Furthermore, we noticed that the CAH and TLMS no. of iterations
estimates were also very close fof, = 1.0 ands., = 0.1, and
their biases varied with the noise powers. From Table II, we see that
the variances of the BFLMS estimates conformed with the theoretical
calculation based on (16) for all noise conditions, and it achieved mineise conditions, and Figs. 7 and 8 show the learning trajectories of
imum MSE estimation for the cases wheh, # o2, because the bi- {a:(k)} and{b;(k)} ate;,, = 0.1 ando, = 1.0. From Table Il
ases of the CAH and TLMS estimates had contributed to their MSBge see that the proposed approach attained unbiased impulse response
Foro,, = o, = 1.0, all three methods provided similar values ofestimation and the measured MSEs of the parameter estimates agreed
MSEs, whereas for., = o, = 0.1, the measured MSEs obtainedwith the predicted values of (15) and (16) for all noise conditions.
from the BFLMS and CAH algorithms were also comparable and wele addition, the variances dfi;(k)} and{b;(k)} were smallest for
far fewer than those of the TLMS scheme. As expected, the MSEsaffi = Jio = 0.1 and were largest whem?,i = aﬁo = 1.0. From
all three techniques increased with the values of the noise variancebigs. 7 and 8, it is observed that(k) — —0.3 andbo(k) — 1.0

In the second test, we evaluated the system identification perfat-approximately the 2000th iteration, wheréask) andi;l(k) con-
mance of the BFLMS algorithm for an IIR system witthi = 3 and verged to their desired values at the 1000th and the 3000th iteration,
N = 2. The system parameters were givenday = —0.3, a2 = respectively. The learning characteristics of the parameter estimates
—0.54,b0 = 1.0, andb; = —2.4, whereas the settings of the proposedlso conformed to their predicted trajectories, except for the transient
method were identical to the previous experiment. Table Il tabulatbehavior ofia.(%). This discrepancy was due to the assumption of
the means and variances of the BFLMS estimates for four differerft(k)/(1 + M 7" a2(k) + v .75 b2 (k)) = o2, in deriving (13),

i=1 j=0

no. of iterations

estimate of b,

----- theoretical trajectory for B,(k)
- estimate of b,

————theoretical trajectory for B,(k)

estimates of {b

2+

Fig. 8. Estimates ofb,} for BFLMS algorithm in IIR filtering.

var(a) 2 lim E{(ai(k) - @)’}

M=1 N=1
on (raa(0) + ol <1 + 3 ai+y Y bf) — o} a?
=1 =0

= la =12,...,M-1 15
I 5r20(0) i=1, : (15)
and
var(h;) 2 lim E{(b;(k) = b,)°}
o ) M—-1 N—1 .
a5, (rss(0) + 07, <1+ > oai+vr Y bf) — o, b
Uy =1 =0 j=0,1,...,N-1 (16)

2r55(0) ’
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TABLE Il
MEANS AND VARIANCES OF THEPARAMETER ESTIMATES FORBFLMS ALGORITHM IN IIR FILTERING
Filter Coeflicient ay as bo by
Actual Value -0.3 —-0.54 1.0 —-2.4
Mean —3.021 x 107! | —=5.364 x 10! | 1.003 x 10° | —2.408 x 10°
on; =011 Measured MSE | 1.669 x 1073 | 1.787x 1072 | 2.197 x 1072 | 2.032 x 1073
on, = 1.0 Predicted MSE | 2.278 x 1073 | 2.256 x 10™2 | 2.253 x 1073 | 2.206 x 1073
Mean —3.008 x 107! | —5.399 x 107! | 1.002 x 10° | —2.406 x 10°
on, =01 Measured MSE | 7.915x 107* | 7.958 x 10™* | 8.560 x 10™* | 7.790 x 10~*
on, = 0.1 Predicted MSE | 8.232x 10™* | 8.200x 10~* | 8.856 x 10~* | 8.380 x 10~*
Mean —3.090 x 107! | —=5.379x 107! | 1.025x 10° | —2.472 x 10°
on; =10 Measured MSE | 9.269 x 10~3 | 9.314 x 10~3 | 1.406 x 10~2 | 1.467 x 10~2
on, = 1.0 Predicted MSE | 9.045 x 10=3 | 9.022x 103 | 1.528 x 10~2 | 1.052 x 10~2
Mean —3.070 x 1071 | —=5.415 x 1071 | 1.022 x 10° | —2.464 x 10°
Tn =10 Iy asured MSE | 7.579 x 10-° | 7.499 % 103 | 1.113 x 10~2 | 1.138 x 10-2
on, = 0.1 Predicted MSE | 6.975x 1073 | 6.975x 10~3 | 1.379 x 102 | 8.036 x 10~3

which possibly could not be applicable to all parameter estimates at the4]
beginning of the adaptation.
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An LMS-based algorithm, called the BFLMS method, has been de-
veloped for accurate system identification in the presence of input andm
output interference, given the noise power ratio. The idea is to mini-
mize the mean square value of the equation-error function subject tds]
a constant-norm constraint, and it is proved that the constrained opti-
mization can be converted into an unconstrained optimization of min- 9]
imizing a scaled mean square error function. Learning behavior ano[
mean square errors of the estimated parameters are derived and verified
by computer simulations. The unbiasedness of the proposed approaldf]
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input and output noise powers are not equal.
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