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Abstract—In 1983, Burt and Adelson introduced the Laplacian
pyramid (LP) as a multiresolution representation for images. We
study the LP using the frame theory, and this reveals that the usual
reconstruction is suboptimal. We show that the LP with orthogonal
filters is a tight frame, and thus, the optimal linear reconstruction
using the dual frame operator has a simple structure that is sym-
metric with the forward transform. In more general cases, we pro-
pose an efficient filterbank (FB) for the reconstruction of the LP
using projection that leads to a proved improvement over the usual
method in the presence of noise. Setting up the LP as an oversam-
pled FB, we offer a complete parameterization of all synthesis FBs
that provide perfect reconstruction for the LP. Finally, we consider
the situation where the LP scheme is iterated and derive the con-
tinuous-domain frames associated with the LP.

Index Terms—Filterbanks, framelets, frames, Laplacian
pyramid, multiresolution signal processing, projection, pseudo
inverse, wavelets.

I. INTRODUCTION AND MOTIVATION

M ULTIRESOLUTION data representation is a powerful
idea. It captures data in a hierarchical manner where

each level corresponds to a reduced-resolution approximation.
One of the early examples of such a scheme is the Laplacian
pyramid (LP) proposed by Burt and Adelson [1] for image
coding. The basic idea of the LP is the following. First, derive a
coarse approximation of the original signal by lowpass filtering
and downsampling. Based on this coarse version, predict the
original (by upsampling and filtering) and then calculate the
difference as the prediction error. Usually, for reconstruction,
the signal is obtained by simply adding back the difference
to the prediction from the coarse signal. The process can be
iterated on the coarse version. Analysis and usual synthesis of
the LP are shown in Fig. 1(a) and (b), respectively.

A drawback of the LP is implicit oversampling. Therefore,
in compression applications, it is normally replaced by sub-
band coding or wavelet transform, which is a critically sampled
scheme and often an orthogonal decomposition. However, the
LP has the advantage over the critically sampled wavelet scheme
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that each pyramid level generates only one bandpass signal,
even for multidimensional cases. This property makes it easy
to apply many multiresolution algorithms using a coarse-to-fine
strategy [2] to the LP. Furthermore, the resulting bandpass sig-
nals of the LP do not suffer from the “scrambled” frequencies as
in the critical sampling scheme. The reason for this frequency
scrambling effect is illustrated in Fig. 2 for the one-dimensional
(1-D) case. As can be seen, the highpass channel is folded back
into the low frequency after downsampling, and thus, its spec-
trum is reflected. In the LP, this effect is avoided by downsam-
pling the lowpass channel only. Therefore, the LP permits fur-
ther subband decomposition to be applied on its bandpass im-
ages. A possible scheme is a pyramidal decomposition where
the bandpass images of the LP are fed into directional filter-
banks (FBs) [3]. The final result is a set of directional subband
images at multiple scales [4], [5].

For many applications like compression and denoising, the
coefficients in the transform domain are processed further,
and this can introduce errors due to quantization or thresh-
olding. The processed coefficients are then used to reconstruct
the original data. For the LP, the usual reconstruction algo-
rithm—adding the prediction from the coarse version with
the difference—produces a perfectly reconstructed signal in
the absence of noise but turns out to be usually suboptimal
otherwise.

Because the LP is an overcomplete representation (there are
more coefficients after the analysis than in the input), it must be
treated as aframeoperator. Frames are generalizations of bases
that lead to redundant expansions. A key observation is that one
should use thedual frameoperator for the reconstruction. While
this seems a somewhat trivial observation, it has not been used in
practice, probably because the usual reconstruction, while sub-
optimal, is very simple. Yet, we will show that gains around 1
dB are actually possible over the usual reconstruction. Beyond
this improvement, we also believe that a full treatment of what
is one of the most standard image processing structure is prob-
ably worthwhile in its own right, even if only for pedagogical
reasons.

Recently, there have been a considerable interest in wavelet
and FB frames [6]–[9], where the greater design freedom avail-
able by the overcomplete systems leads to a variety of attrac-
tive features over bases. The LP frame offers a simple scheme
that has low computation complexity (there is only one filtering
channel), can be easily extended to higher dimensions (e.g., via
separable extension), and has small redundancy (even in higher
dimensions).

The outline of the paper is as follows. In Section II, we
introduce the notation and set up the operators for the LP using
both the time-domain and the polyphase-domain representa-
tions. The dual frame operator or the pseudo inverse is defined
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Fig. 1. Laplacian pyramid scheme. (a) Analysis: Outputs are a coarse approximationc and a differenced between the original signal and the prediction. The
process can be iterated by decomposing the coarse version repeatedly. (b) Usual synthesis.

Fig. 2. Illustration of the “frequency scrambling” in 1-D due to downsampling
of the highpass channel.Upper: Spectrum after highpass filtering.Lower:
Spectrum after downsampling. The filled regions indicate that the high
frequency is folded back into the low frequency.

together with its properties for reconstruction. In Section III,
we consider the LP with orthogonal filters and show that it is a
tight frame, and thus, the pseudo inverse has a simple structure
which is symmetrical with the forward transform. In Section IV,
inspired by the structure of the pseudo inverse for the tight
frame LP, we propose a new reconstruction for more general
LPs that leads to better performance compared to the usual
method. In Section V, by setting up the LP as an oversampled
FB, we find a parameterization for all synthesis FBs providing
perfect reconstruction for the LP. The oversampled FB view
of the LP leads to a study of iterated LP and its associated
continuous frames—so-called framelets—in Section VI. We
conclude in Section VII with some discussions.

II. PRELIMINARIES

A. Signals, Operators, and Notations

Since the LP is valid for signals in any dimension and often
used for images, we use multidimensional notation for gener-
ality. A -dimensional discrete-time signal is a sequence of real-
valued numbers defined on the integer lattice, e.g., ,

. Signals with finite energy belong to a Hilbert space
with the inner product defined as ,
and thus, the -norm is .
The -transform of a -dimensional signal is denoted by

where raising a -dimensional complex vector
to a -dimensional integer vector

yields . On the unit hyper-sphere,
, is the Fourier transform of .

For a matrix in the -domain with real coefficients , de-
note by . On the unit hyper-sphere, is
the transpose conjugation of .

The sampling operation is represented by a nonsingular
integer matrix [10]. For an -fold downsampling, the input

and the output are related by

For an -fold upsampling, the input and the output
are related by

if
otherwise.

In the -domain, the upsampling operation can be simply
written as M . The quantity M is defined to be
a vector whose th element is given by , where is the

th column of the matrix . We denote by .

B. Burt and Adelson’s Laplacian Pyramid

The structure of the Laplacian pyramid is shown in Fig. 1.
We concentrate first on one level of the LP; multilevel LPs are
discussed later. The filtering and downsampling operation for
the LP shown in Fig. 1(a) yields the coarse approximation signal

(1)

where we denote . The upsampling and filtering
operation results in

(2)

Writing signals as column vectors, for example,
, we can express these operations

as matrix multiplications

and

where and correspond to and , respectively.
For example, in the usual case and , we have

...

...
and
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...
...

...

...

...
. . .

(3)

In general, has as its rows and has
as its columns. Typically, those are infinite matrices,

but they can also be considered as finite matrices when dealing
with finite-length signals with appropriate boundary treatments.
In the sequel, we denoteas the identity matrices with appro-
priate sizes depending on the context. Using this matrix nota-
tion, the difference signal of the LP can be written as

By combining the previous relations, we can write the anal-
ysis operator of the LP as follows:

A

(4)

The usual inverse transform of the LP [refer to Fig. 1(b)] com-
putes ; thus, it can be written as

S

(5)

It is easy to check that for any and , which agrees
with the fact that the LP can be perfectly reconstructed with any
pair of filters and .

C. Polyphase-Domain Analysis

The matrix notation for the LP operations in the previous sec-
tion is simple to use, but it does not reveal the matrix block struc-
ture of the LP operators, as can be seen in (3). To overcome this,
we introduce thepolyphase-domainrepresentation [10], [11] for
the LP. The polyphase decomposition of a signal with respect to
the sampling matrix is a set of subsignals that have the
same indexes modulo, for example

(6)

where M is the set of integer vectors of the form
, such that . The signal is reconstructed from its

polyphase components by simply adding up the upsampled
and shifted signals from those polyphase components. More
precisely, we can write in the -domain as

M

M (7)

Therefore, a signal can be represented by the vector of its
polyphase components, that is, M

. The synthesis filter is decomposed just as the signal,
whereas the analysis filter has reverse phase. With this
representation, the output of the filtering and downsampling
operation (1) can be written as

M

or in the -domain

M

(8)

where M . Similarly, the
polyphase components of the upsampling and filtering opera-
tion (2) are

which is written in the -domain as

or (9)

where M . Therefore, the
polyphase vector of the difference signal in the LP is

Combining these, we obtain the analysis operator of the LP
in the polyphase-domain as

A

(10)

This clearly resembles the time-domain representation of the
LP analysis operation in (4). Therefore, in the sequel, we can
use the time-domain and the polyphase-domain representations
interchangeably. Expressions derived for the time-domain rep-
resentation also hold for the polyphase-domain representations
with the obvious modifications and vice versa. Note that is
a polynomial matrix of size .

From this, it is straightforward that the usual inverse operator
for the LP has the polyphase representation as

where

D. Frame Analysis

The frame theory was originally developed by Duffin and
Schaeffer [12] as a generalization of bases; for a detailed in-
troduction, see [13]–[16]. A family of functions in a
Hilbert space is called aframe if there exist two constants

and such that

(11)

where and are called the frame bounds. When , the
frame is said to betight. Associated with a frame is theframe
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operator , which is defined as the linear operator fromto
as

for (12)

It can be shown that the frame condition (11) is satisfied if
and only if is invertible on its range with a bounded inverse
[16]. For the Laplacian pyramid, there always exists a bounded
reconstruction inverse, which is the usual reconstruction, and
thus, we immediately get the following result.

Proposition 1: The LP with stable filters1 provides a frame
expansion in .

As shown above, the frame operator for the LP is represented
by a left matrix multiplication with . Since the LP is a redun-
dant transform, its frame operator admits an infinite number of
left inverses. Among those, the most important is thedual frame
operator or thepseudo inverseof [17]

(13)

In the polyphase-domain, the pseudo inverse of is given
by [18]

(14)

When there is additive noise in the frame coefficients, the
pseudo inverse eliminates the influence of errors that are or-
thogonal to the range of the frame operator. Therefore, if we
have access to instead of , then the pseudo in-
verse provides the solution that minimizes the residual

. This is called the least-squares solution. For a tight
frame, the pseudo inverse is simply the scaled transposed matrix
of the frame operator since .

We will now review results that allow us to quantify the per-
formance of a left inverse. It can be shown [16] that the pseudo
inverse has minimumsup normamong all the left inverses of
the frame operator. Let be an arbitrary left inverse of. The
sup norm of an operator is defined as

(15)

and for a matrix, it can be computed by [17]

is an eigenvalue of (16)

The influence of the sup norm in the reconstruction can be
seen in the following. With the noise model setup as above, the
reconstruction error by is

(17)

Therefore

(18)

1Stability of a filter means that a bounded input produces a bounded output.

In other words, when the energy of the noiseis bounded,
the sup norm of the inverse matrix provides an upper bound for
the reconstruction error, and this bound is tight.

In some cases, we can assume that the additive noiseis
white and zero-mean, which means that

and

for all (19)

or its autocorrelation matrix . This noise
model is approximately true when, for instance,is uniformly
scalar quantized. In this case, the autocorrelation of the recon-
struction error by is

Hence, for signals of finite length , the reconstruction mean
squared error (MSE) is [19]

MSE
tr tr

(20)

For infinite-length signals that have polyphase representation
defined as before, the reconstruction MSE can be computed in
the Fourier domain using the power spectrum of, which is
given by [10]

Therefore, similarly to (20), with the white noise model given
in (19), we have

MSE tr (21)

Since the trace of a matrix equals to the sum of its eigenvalues,
the eigenvalues of and [which are also the
squares of the singular values ofand , respectively] play
an important role in analyzing the reconstruction error due to.
Using the orthogonal projection property of the pseudo inverse,
it can be shown [14], [20] that among all left inverses, the pseudo
inverse minimizes the reconstruction MSE due to white noise in
the frame coefficients. In summary, the pseudo inverse provides
the optimal linear reconstruction.

Example 1: To get a gist of the aforementioned properties
of frames, consider the following illustrative example. Consider
a redundant transform that takes a scalar and outputs
a vector such that .
There are infinite ways to reconstruct from ; one simple
way is to assign , and another way is to compute

. Under the white noise model given in (19),
the performance by these two reconstruction methods can be
quantified as MSE , and
MSE . Thus,
we reduce the MSE by half by using the second reconstruction
method instead of the first one. In fact, the second reconstruc-
tion method is the pseudo inverse, which minimizes the MSE in
this case.
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III. L APLACIAN PYRAMID WITH ORTHOGONAL FILTERS

A. Tight Frame Case

Consider a special case where the filters in the LP are orthog-
onal filters with respect to the sampling matrix, which means

(22)

and

(23)

or equivalently, and . The condition (23) can
be written in the polyphase-domain as . Since

M

taking the -transform of both sides of (22), the orthogonality
condition on the filter is equivalent to

M

(24)

Orthogonal filters can be designed by using well-known
methods, such as separable filters from 1-D orthogonal filters
[10], [11] or nonseparable filters in 2-D for [21],
[22].

Theorem 1: The Laplacian pyramid with orthogonal filters is
a tight framewith frame bounds equal to 1. Conversely, suppose
the LP is a tight frame; then, the frame bounds must be 1 and
either or ,

.
Proof: See Appendix A.

Remark 1: Under the orthogonality conditions, a geomet-
rical interpretation of the tight frame can be seen by rewriting
(2) as

Denote the subspace spanned by the set of orthogonal vec-
tors . Then, is the orthogonal projection of
onto . Combined with , thePythagoreantheorem
leads to

(25)

where since are the coefficients in the orthonormal
expansion (2) of in . Equation (25) says that the LP is a tight
frame with the frame bounds .

Consequently, with orthogonal filters, the pseudo inverse of
is simply its transpose matrix. Thus

Therefore, the reconstruction using the pseudo inverse is

(26)

The last expression is derived in order to reduce the compu-
tational complexity of the pseudo inverse. It leads to an efficient

Fig. 3. Proposed reconstruction scheme for the Laplacian pyramid in Fig. 1(a).
It is the pseudo inverse when the filters are orthogonal.

filterbank structure for reconstruction of the LP that is shown in
Fig. 3. In the polyphase domain, the pseudo inverse becomes

We emphasize two important facts here. First, the usual in-
verse is different from the pseudo inverse and, thus, is subop-
timal. We will make a precise comparison latter. Second, the
pseudo inverse in this case has a symmetrical structure with the
forward transform and, thus, has the same order of complexity.

Example 2 (Haar Case):Consider the 1-D LP with Haar fil-
ters: and . The output of the LP
can be written as

(27)

In order to see the block structure of the transform
matrices, we slightly change the notation and write

. Using (27), the
analysis matrix of the LP is a block diagonal matrix

...

A

A

. . .

where A

Similarly, the usual synthesis matrix is also a block diag-
onal matrix with

S (28)

The pseudo inverse is also a block diagonal matrix
with A A

. Since there is no overlapping between blocks,
we can consider the transform for a single block with two in-
puts and three outputs. The eigenvalues ofA A

are ,
whereas the eigenvalues ofS S

are . Consequently

A tr A A

and

S tr S S

Therefore, in this case, if we use the pseudo inverse instead of
the usual inverse, then we would reduce the upper bound of the
reconstruction square error in (18) by half and the reconstruction
MSE in (20) by two thirds.
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B. Eigenvalues of the LP Operators

The improvements of the pseudo inverse over the usual in-
verse in the last example can be generalized for all LPs with
orthogonal filters. The key is to study the eigenvalues of certain
matrices. We need the following result on the eigenvalues.

Theorem 2 [17, p. 53]:Suppose and are real matrices of
size and respectively, with . Then, has
the same eigenvalues as, counting multiplicity, together with
additional eigenvalues equal to 0.

For a square matrix, denote the set of all its eigenvalues by
, where an eigenvalue with multiplicity is written as
. These eigenvalues are the roots of the characteristic poly-

nomial of , which is defined as A . For
a polynomial matrix , its characteristic polynomial would
generally have coefficients as polynomials ofas well. The-
orem 2 says thatBA AB . It can be verified that
this result also holds whenand are polynomial matrices.

Proposition 2: Suppose the LP uses orthogonal filters. Then
a) M ;
b) M .

Proof: Since represents a tight frame with frame
bounds equal to 1, we have . Therefore, a)
follows directly. Next, consider .
Since by the orthogonal condition, from
Theorem 2, it follows that M , or
G G

M . Thus

G G I

G G

M

which implies b).
Recall that with orthogonal filters, the pseudo inverse of the

LP is . Thus, applying Proposition 2 to (16) and
(21), we immediately obtain the following results.

Corollary 1: Suppose the LP uses orthogonal filters. Then
a) ;
b) .

As a result, when the noise energy is bounded, the upper bound
of the reconstruction square error in (18) using the pseudo in-
verse is equal to half of the one that uses the usual inverse.

Corollary 2: Suppose the LP uses orthogonal filters and its
coefficients are contaminated by an additive white noise with
variance . Then, forone levelLP, the reconstruction mean
square error using the usual inverse is MSE ,
while using the pseudo inverse, it is MSE . When the LP
is iterated with -levels, then for the usual inverse we have

MSE

whereas for the pseudo inverse, we still have MSE .
Therefore, with white noise on the LP coefficients, the re-

duction in the reconstruction MSE by using the pseudo inverse
instead of using the usual inverse is from times for
one-level LP up to times for multiple-level LPs.
In particular, for the commonly used LP in 2-D with ,
the pseudo inverse improves the signal-to-noise ratio (SNR) of
the reconstruction signal from 0.97 dB (with one level LP) up
to 1.25 dB (with iterated LP).

Remark 2: Let us clarify the difference in the performance
measurements between Corollaries 1 and 2. The results in
Corollary 1 use themaximaleigenvalues from Proposition 2,
whereas the results in Corollary 2 use theaverageof these
eigenvalues. Thus, the gain factor by the pseudo inverse in
Corollary 1 is fixed, whereas the gain factor in Corollary 2 gets
smaller as becomes larger.

Finally, we have the following properties on the operators
that reconstruct from the coarse and difference signals using the
pseudo inverse.

Proposition 3: Consider and .
Suppose the LP uses orthogonal filters. Then

a) M ;
b) ;
c) ;
d) M .

Proof: Part a) was proved in the proof of Proposition 2.
Parts b) and c) are easily verified using the orthogonal condi-
tions: and . Using characteristic
polynomials similarly to the proof of Proposition 2, part d) is
proved by observing thatD G G .

As a result, the operator for the difference signal in the LP
is an orthogonal projection onto a subspace,

which has dimension equal to times the dimension
of the signal space.2 Such a view can also be inferred from the
geometrical proof of Theorem 1.

IV. RECONSTRUCTIONUSING PROJECTION

A. New Reconstruction Algorithm

In this section, we consider a more general case whenand
are arbitrary filters. Even though any frame operator has a

pseudo inverse, for complexity reasons, we will consider only
the inverses that can be realized by a structured transform with
fast algorithm. Motivated by the tight frame case, we focus on
the reconstruction that has a structure shown in Fig. 3. We then
turn the problem around by asking for which filters such an algo-
rithm is indeed an inverse or pseudo inverse. This has the same
flavor as the filter design problem for perfect reconstruction fil-
terbanks; thus, we can resort to many existing results.

Theorem 3:

1) The reconstruction shown in Fig. 3 is an inverse transform
of the LPif and only iftwo filters and are biorthog-
onal with respect to the sampling lattice, which means
the prediction operator of the LP () is a projector, or

.
2) Furthermore, that reconstruction is the pseudo inverseif

and only if the prediction operator of the LP () is an
orthogonal projector.3

Proof: See Appendix B.
Remark 3: It is interesting to note that the two conditions for

the LP in the above proposition, i.e., projection and orthogonal
projection, are exactly the same as the conditions for the im-
proved LPs that are studied in [23]. Those conditions lead to LP

2For infinite length signals, this has to be interpreted in the polyphase-domain.
3Recall that given a Hilbert spaceH , a linear operatorP mappingH onto

itself is called aprojector if P = P . Furthermore, ifP is self-adjoint orP =
P , thenP is called anorthogonal projector.
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TABLE I
COEFFICIENTS FOR THE“9-7” BIORTHOGONAL FILTERS

TABLE II
COEFFICIENTS FOR THEORIGINAL LP FILTER AND ITS DUAL FILTER

with interpolation and least-squares LP, respectively. The moti-
vation for those modifications there is to minimize the predic-
tion error of the LP, whereas our motivation here is to have a
better reconstruction algorithm for the LP. Still, the results from
[23] motivate the use of filters with the aforementioned proper-
ties for the LP.

Remark 4: The orthogonal projection case obviously
includes the LP with orthogonal filters studied in the last
section. It is shown in [23] that under the orthogonal projection
condition, if one of the LP filters is given, then the other filter
is uniquely determined.

Therefore, the minimum requirement for the FB shown in
Fig. 3 to be a bona fide inverse of the LP is the biorthogonality
condition (56) on the filters and , which can be expressed
equivalently in the polyphase-domain as . There
exist many designs for such filters due to their role in wavelet
constructions [24], [25]. Among them, a popular choice for im-
ages is the “9-7” filters from [24], [25]. Another example is
based on the original LP filter suggested in [1], which is espe-
cially popular for applications in vision, together with its dual
filter [26]. Tables I and II list these filter coefficients. Note that
these filters are symmetric and close to being orthogonal. As
a result, the proposed reconstruction in Fig. 3 is close to the
pseudo inverse.

With biorthogonal filters, the proposed reconstruction algo-
rithm for the LP has an intuitive geometrical interpretation. Let
us define two subspaces and that are spanned by

and , respectively. These are also the
column and row spaces of and , respectively. For all in

, the prediction operator in the LP computes
a projection of onto . Since , the difference signal

has the property that

Therefore, is perpendicular to . This fact is illustrated in
Fig. 4(a). The prediction operator in the LP () can be called
anoblique projectorand is denoted by .

Let us define as the orthogonal complementary subspace
of . Then, it is easy to verify that is a projection
of onto such that the error is parallel to [again, refer to
Fig. 4(a)]. Denote this projection as , .

Next, let us compare the usual reconstruction method as in
Fig. 1(b), which is denoted REC-1

(29)

with the new reconstruction using the FB as in Fig. 3, which is
denoted REC-2

(30)

These two reconstruction algorithms are different in the way
of handling the difference signal. More specifically, the REC-1
method adds directly, whereas the REC-2 method adds the

projection of to the reconstructed signal. As shown in
Fig. 4(b), when there is noise in the LP coefficients, the REC-2
method eliminates the influence of the error component inthat
is parallel to .

For more quantitative measurements on the performance of
the two methods, suppose that we wish to approximategiven

. With no further information about the error in the
LP coefficients , it makes sense to chose, which minimizes
the residual . As mentioned before, the optimal linear
solution to this problem is the pseudo inverse of. Using this
as the measurement for the performance in reconstruction, the
following result states that REC-2 always performs better than
REC-1.

Proposition 4: Assume that and are biorthogonal fil-
ters. Let and be the results of reconstruction from noisy
LP coefficients using REC-1 and REC-2, respectively. Then,
we have

(31)

where equality holds if and only if .
Proof: Using the definition of , , in (4), (5), (55),

and the fact that , we have, after some manipulations

and

Therefore

B. Reconstruction Error Analysis

Note that the above comparison does not give us exact be-
havior of the reconstruction error. In this section, we will study
this error under some additional assumptions on the coefficient
noise. Our analysis is complicated further since in coding, the
LP is often used with quantization noise feedback where the
coarse signal is quantizedbeforebeing fed back to the pre-
dictor. This case is referred to as the closed-loop mode in Fig. 5.
The open-loop mode refers to the case that has been consid-
ered so far, namely, when the noise is added to the coefficients
after the LP transform. A discussion of those two quantization
modes in pyramid coding can be found in [28]. Note that with
the closed-loop mode, we are no longer in the linear framework,
so that optimality of the pseudo-inverse does not hold.4

To analyze the reconstruction error, we separate the noise in
the LP coefficients into two components: , cor-
responding to the coarse and detail quantization, as shown in

4In that case, aconsistent reconstructionalgorithm [29] can lead to improve-
ments.
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Fig. 4. Geometrical interpretation of the LP with biorthogonal filters. (a) LP as an oblique projector:ppp = P xxx is the projection ofx ontoV such that the
difference signalddd = xxx � P xxx is perpendicular to~V . (b) Comparing two reconstruction methods whenddd is corrupted by noise and becomesd̂dd. The usual
reconstruction REC-1 addŝddd directly to the reconstructed signal, whereas the new reconstruction REC-2 adds theP projection of̂ddd and thus eliminates the error
component in̂ddd that is parallel toV .

Fig. 5. Laplacian pyramid encoding. The open-loop mode bypasses the
coarse-level quantization, whereas the closed-loop mode includes it.

Fig. 5. In the open-loop (ol) mode, we can apply (17) to obtain
the reconstruction errors using REC-1 and REC-2 as

and

(32)

In the closed-loop (cl) mode, by direct computation, we ob-
tain the reconstruction errors using REC-1 and REC-2 as

and

(33)

From (32) and (33), we observe that with the REC-1 method,
the coarse-level noise does not effect the reconstruction
signal in the closed-loop mode. This makes the usual recon-
struction method REC-1 attractive in coding applications.
However, the problem of allocating bits to the quantizers

and for the coarse and difference signals becomes
difficult. The reason is that in minimizing , the choice for

depends on the choice for , and thus, one must use a
complicated bit allocation technique [28]. On the other hand,
with the new method REC-2, the reconstruction errors are
the same in both open- and closed-loop modes; thus, we can
simply use the open-loop mode. Furthermore, when the filters
are close to being orthogonal, because , the square
error distortion can be minimized in the LP domain using much
simpler bit allocation techniques such as [30].

Now, suppose that is negligible compared with
. This is a reasonable assumption sincehas times

fewer samples than . Furthermore, suppose that the pre-
dictor ( ) becomes an orthogonal projection, which implies

. Under these conditions in both modes,
we have , or REC-2 performs better than REC-1. A

finer analysis under the additive white noise model is provided
by the following result.

Proposition 5: Suppose the LP use orthogonal filters, and the
additive noises and to the LP coefficients are uncorrelated
white with variances and , respectively. Then, the recon-
struction MSEs, by using REC-1 and REC-2, are the following.

a) For the open-loop mode

MSE

MSE

b) For the closed-loop mode:

MSE

MSE

Proof: Since and are uncorrelated and white, ap-
plying (21) to (32), we have

MSE tr

tr

From this, using Proposition 3, we get the desired result for
MSE . Other results follow similarly.

Numerical results on real images follow the above analysis
very closely, even for filters that are only approximately orthog-
onal such as the “9-7” biorthogonal filters in Table I (which
were used in all of our experiments). For example, in the image
coding application, assume that uniform scalar quantizers with
equal step for coarse and difference signals are
used; then, we have . In this case, the new
inverse REC-2 improves the SNR of the reconstructed signal
over the usual inverse REC-1 by dB in
the open-loop mode, while giving the same performance as the
usual inverse in the closed-loop mode. Fig. 6 shows the result
for the “Barbara” image of size 512 512.

In some other applications like denoising, the LP coefficients
are thresholded so that only the most significant coefficients
are retained. (This is normally done in the open-loop mode.)
In this case, it is difficult to model the coefficient noise, which
strongly depends on the input signal. Table III presents the nu-
merical results for some standard test images. We observe that
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Fig. 6. Comparison of reconstructions from the quantized LP coefficients of
the “Barbara” image. The LP is decomposed with just two levels.

TABLE III
SNRS OF THERECONSTRUCTEDSIGNALS FROM THE M MOST

SIGNIFICANT LP COEFFICIENTS. THE IMAGE SIZES ARE 512� 512.
THE LP IS DECOMPOSEDWITH SIX LEVELS

Fig. 7. Laplacian pyramid as an oversampled FB, wherefd ; . . . ; d M g
are the polyphase components ofd.

the new inverse consistently provides better performance by
around 0.5 dB in SNR.

V. LAPLACIAN PYRAMID AS AN OVERSAMPLEDFB

A. Equivalent Filters in an Oversampled FB

The polyphase matrices for the LP operators given in Sec-
tion II-C suggest that we can treat each polyphase component
of the difference signal separately as being filtered and down-
sampled by . We can reformulate the LP as an oversampled FB,
as shown in Fig. 7. Note that every LP can be expressed as an
oversampled FB, but not every oversampled filter bank in Fig. 7
corresponds to a LP structure since we will see that for the LP,
all filters are specified by and .

From (10), it follows that the polyphase vector for the equiv-
alent filter is the st row of the matrix ,
which is equal to , where is the st
column of the identity matrix. Thus

M for (34)

Similarly, on the synthesis side, for the REC-1 method, the
equivalent filter has the polyphase vector as; therefore

for (35)

For the REC-2 method, the equivalent filters has the
polyphase vector as , which implies that

M for
(36)

Since and are both lowpass filters, it is easy to
see that and are highpass filters, whereas
are allpass filters. Fig. 8 displays the frequency responses of the
equivalent filters for the LP in 1-D using the biorthogonal filter
pair “9-7” from Table I.

In the 1-D case with and biorthogonal filters, using
the property , we can simplify
the expressions for equivalent filters in (34) as

and for the synthesis filters of the REC-2 method as

As a result, if the LP filters and are designed
to have and zeros at , then and
have and zeros at , respectively. This result can be
observed in Fig. 8 for the “9-7” case, where . The
number of zeros at of the filter determines the maximum
degree of polynomials that can be reproduced by that filter and
is referred to as theaccuracynumber [31]. The number of zeros
at indicates the maximum degree of polynomial that
are annihilated by the filters and is referred to as the number of
vanishing moments. Therefore, the LP with high-accuracy filters
also has good compression properties for polynomial signals.
For example, for the LP with “9-7” filters, the output is
zero whenever the input is a polynomial signal of degree up to
three.

B. General Reconstruction

An interesting question follows: What is the most general re-
construction for a given LP? In the polyphase-domain, this is
equivalent to determining the most general form of the synthesis
polyphase matrix such that it satisfies the following perfect
reconstruction (PR) condition [10], [11]:

(37)

Corresponding to a polyphase matrix satisfying the PR
condition (37) is a set of synthesis filtersand for the FB in
Fig. 7 so that the input signal can be perfectly reconstructed from
the output of the LP. One parameterization for the left inverse
of is given in [32] as

(38)

where is any particular left inverse of, and is an
matrix with bounded entries. In our case, a good choice

for is the usual inverse . Let
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Fig. 8. Frequency responses of the equivalent filters for the LP using the biorthogonal filter pair “9-7.” (a) Analysis. (b) Synthesis, using the usual (REC-1,
denoted by superscript ) and the new (REC-2, denoted by superscript) methods.

us split into two submatrices and of size
and , respectively: and similarly
for : . Then, the reconstruction for
the LP using such a can be written in polyphase-domain as

Substituting into (38) and after some manipu-
lations on the block matrices, we obtain the following result.

Theorem 4: The most general form for the synthesis
polyphase matrix providing perfect reconstruction for a LP can
be written as with

(39)

and where and are matrices of size and
, respectively, with bounded entries.

As a consequence of the above result, for a given LP, matrices
and can be optimized so that the resulting synthesis

filters have certain desired properties. We observe that if the LP
uses biorthogonal filters satisfying , then from
(39), we have . This means that all the synthesis
FBs providing perfect reconstruction for the LP in this case nec-
essarily have as the synthesis filter for the coarse channel.

Example 3: Let us consider the LP with Haar filters as
in Example 2. In this case, we have

. By applying (39) and denoting
, , any

synthesis polyphase matrices providing PR can be written
as

Thus, by denoting , we obtain
that the most general form of synthesis filters for the Haar LP
are , , and , with any
stable filter . The usual and pseudo inverses correspond to

and , respectively.

VI. I TERATED LAPLACIAN PYRAMIDS AND DERIVED

CONTINUOUS FRAMES

A. Iterated Laplacian Pyramids

We now shift our focus to multilevel LPs where the scheme in
Fig. 1 is iterated on the coarse signal. The oversampled FB rep-
resentation of the LP in Fig. 7 allows us to analyze the multilevel
LP as an iterated FB. Using the multirate identity, which says
that filtering by followed by upsampling by is equiv-
alent to upsampling by followed by filtering by M [10],
[11], we have the following equivalent synthesis filters at the

-level of a multilevel LP as

M M

(40)

Next, consider what happens, when the synthesis filters in
(35) and (36) are substituted into (40). Fig. 9 shows an example
of frequency responses for the equivalent filters. In the REC-1
method, we see that the synthesis functions for the LP are all
low-frequency signals. Thus, the errors from highpass subbands
of a multilevel LP do not remain in these subbands but appear
as broadband noise in the reconstructed signal. In [33], this ef-
fect was noted as the most serious disadvantage of the LP for
coding applications. In the REC-2 method, the synthesis func-
tions have similar frequency characteristics as the analysis func-
tions, which are essentially highpass filters. Clearly, reconstruc-
tion using the REC-2 method remedies the previous mentioned
problem of the LP.

The advantage of the new reconstruction method REC-2 over
REC-1 is even more prominent when the errors in the LP co-
efficients have nonzero mean. In such a case, with the REC-1
method, this nonzero mean propagates through all the lowpass
synthesis filters and appears in the reconstructed signal. By con-
trast, with the REC-2 method, the nonzero mean is canceled by
the bandpass synthesis filters. Fig. 10 shows an example of this
situation where the errors in the LP coefficients are uniformly
distributed in [0, 0.1].
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Fig. 9. Frequency responses of the equivalent synthesis filters for the multilevel LP with “9-7” filters. (a) Usual reconstruction method REC-1. Note that all
synthesis filters are lowpass. (b) New reconstruction method REC-2. Here, the synthesis filters are bandpass and match with the frequency regions ofcorresponding
subbands, as expected. Consequently, REC-2 confines the influence of noise from the LP only in these localized bands.

Fig. 10. Reconstructions from the LP coefficients that are contaminated by an additive i.i.d. uniform noise in the interval [0, 0.1] (the original pixel values are
between 0 and 1). The LP is decomposed with 6 levels. (a) Usual reconstruction method REC-1: SNR= 6.28 dB. (b) New reconstruction method REC-2: SNR=
17.42 dB.

B. Framelets From the Laplacian Pyramid

As iterated orthogonal FBs lead to wavelets, a multilevel LP
is associated with a frame for continuous functions that is called
a wavelet frame or a framelet [34], [35]. We concentrate first on
the orthogonal case. Using the multiresolution analysis frame-
work by Mallat and Meyer [16], [36], [37], it follows that, under
certain conditions, associated with the orthogonal lowpass filter

in the LP, is an orthonormal scaling function
that generates a multiresolution analysis (MRA) represented by
a sequence of nested subspaces ,

(41)

with

Closure (42)

(43)

The scaling function is specified from the filter via the
two-scale equation:

(44)

Denote

(45)

Then, the family is an orthonormal basis of
for all . Define to be the orthogonal complement of
in :

(46)

Let be the equivalent synthesis filters
for the new reconstruction method REC-2, which, in this case,
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(a) (b)

Fig. 11. Bi-frame from the LP with the “9-7” filters. (a) Analysis framelets. (b) Synthesis framelets using the new reconstruction method.

are simply the time-reversed versions of the analysis filters.
Note that are highpass filters. As in the wavelet FB, we as-
sociate to each of these filters a continuous function, where

(47)

These functions also generate families of scaled and trans-
lated functions

(48)

The relationship between these functions and the computa-
tional procedure of the LP can be seen as follows. Supposeis
a function in ; then

(49)

Using the two-scale equations forand , it is easy to verify
that the inner products of with functions at the next scale can
be written as

(50)

(51)

Therefore, is exactly the output of the LP
given the input sequence .

Theorem 5:

1) Suppose the LP with orthogonal filter generates an MRA.
Then, for a scale , M is a tight

frame of . For all scales, M

is a tight frame of . In all cases, the frame bounds
equal to 1.

2) Furthermore, suppose that has an th-order zero
at .5 Then, all polynomials
of total degree less than are reproduced by projection
onto the space spanned by , and the
functions have all moments up to order
vanish, i.e.,

(52)

for all .
Proof: See Appendix C.

With this, the family M is referred to
as a tight wavelet frame or tight framelet [34]. For more general
filters, with a similar setup, the LP FB in Fig. 7 leads to a pair of
wavelet frames—sometimes called bi-framelets—generated by
functions and for the analysis and synthesis sides,
respectively. Fig. 11 shows the 1-D biframelets derived from the
iterated LP using “9-7” filters.

VII. CONCLUDING REMARKS

The Laplacian pyramid was studied using the theory of
frames and oversampled FBs. We proposed a new reconstruc-
tion algorithm for the LP based on projection, which is the
pseudo inverse in certain cases. The new method presents an
efficient FB that leads to improvements over the usual method
for reconstruction in the presence of noise. With Theorems 1, 3,
and 4, we provided a complete characterization of tight frame,
reconstruction using projection, and general reconstruction for
the LP, respectively. Finally, we derived the continuous-domain
frames associated with the iterated LP.

For practical applications, we recommend the use of the sym-
metric biorthogonal filters with sufficient accuracy numbers,

5An L th-order zero at a point means that all partial derivatives(@=@! )
� � � (@=@! ) G(e ); p + � � � + p < L equal zero at that point.



DO AND VETTERLI: FRAMING PYRAMIDS 2341

such as the “9-7” pair for the LP, together with the proposed re-
construction method REC-2. The resulting LP exhibits an excel-
lent compression property for piecewise smooth signals, while
having a simple structure, even in higher dimensions.

APPENDIX

A. Proof of Theorem 1

Suppose that the Laplacian pyramid uses orthogonal filters.
A geometrical proof of the tight frame is already given in Sec-
tion III-A. Alternatively, using and

, we can directly verify that

Now, suppose that LP is a tight frame, or
for all . Since is a decimating operator,

there exists an such that . In this case, the output
of the LP is . Hence, the tight frame boundmust
be 1.

Therefore, the tight frame condition for the LP becomes
. Expanding and grouping terms, this equation

becomes

(53)

Let . Note that is
an matrix, and denote M .
The key observation is that both sides of (53) areouter products
of two column vectors of components. Thus, (53) can be
written as

for

If , then (53) holds, and we have a degenerated
LP tight frame since , for all . Otherwise,
there exists a polyphase component , which implies

. Substituting this
back to (53), it becomes

(54)

Since , it can be shown that has a right inverse
such that . Multiplying both sides of (54)

with on the left and on the right and noting that
, we have equivalently

.

B. Proof of Theorem 3

1) The transform matrix for the reconstruction algorithm in
Fig. 3 can be written as

(55)

From the expression for in (4), we have
. Therefore, is a left inverse of if and only if
or is a projector.

We note that and possess right and left inverses, respec-
tively (which involves inverse filters of and ). Thus, the
projection condition is equivalent to

or
(56)

Filters and satisfying (56) are said to be biorthogonal
filters (with respect to the sampling matrix). This proves part
1.

2) For Part 2, we require additionally that is a pseudo in-
verse of . From (13), this means that . Using the
assumption that , after some manipulations, we have that

Therefore, the pseudo inverse condition is simplified to

(57)

Notice that the left-hand side of (57) is a symmetric matrix,
and thus, it is the case for and as well. Therefore,

is an orthogonal projector, which proves part 2.

C. Proof of Theorem 5

1) Let be a function in . This is equivalent to
and . Therefore, can be expanded by an orthonormal
basis of as in (49), and for all

.
Now, suppose that is analyzed via the LP as in (51).

From Theorem 1, with orthogonal filters, the LP provides
a tight frame with frame bounds equal 1, or

M .
Consequently

M

M

which proves the tight frame condition for . The result for
immediately follows since the MRA conditions implies

that

which is a decomposition of into mutual orthogonal
subspaces.

2) For Part 2, the first statement is the multivariate Strang–Fix
conditions (see, for example, [38]). The second statement comes
from the facts and .
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[19] V. K. Goyal, J. Kovăcević, and J. A. Kelner, “Quantized frame expan-

sions with erasures,”Applied Comput. Harmon. Anal., vol. 10, no. 3, pp.
203–233, May 2001.

[20] H. Bölcskei and F. Hlawatsch, “Noise reduction in oversampled filter
banks using predictive quantization,”IEEE Trans. Inform. Theory, vol.
47, pp. 155–172, Jan. 2001.

[21] G. Karlsson and M. Vetterli, “Theory of two-dimensional multirate filter
banks,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp.
925–937, June 1990.

[22] J. Kovaçevic´ and M. Vetterli, “Nonseparable two- and three-dimension-
alwavelets,”IEEE Trans. Signal Processing, vol. 43, pp. 1269–1273,
May 1995.

[23] M. Unser, “An improved least squares Laplacian pyramid for image
compression,”Signal Process., vol. 27, pp. 187–203, May 1992.

[24] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of
compactly supported wavelets,”Commun. Pure Appl. Math., vol. 45,
pp. 485–560, 1992.

[25] M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and de-
sign,” IEEE Trans. Signal Processing, vol. 40, pp. 2207–2232, Sept.
1992.

[26] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,”IEEE Trans. Image Processing, vol. 1, pp.
205–220, Apr. 1992.

[27] M. Unser and A. Aldroubi, “A general sampling theory for nonideal
acquisition devices,”IEEE Trans. Signal Processing, pp. 2915–2925,
Nov. 1994.

[28] K. Ramchandran, A. Ortega, and M. Vetterli, “Bit allocation for depen-
dent quantization with applications to multiresolution and MPEG video
coders,”IEEE Trans. Image Processing, vol. 3, pp. 533–545, Sept. 1994.

[29] V. K. Goyal, M. Vetterli, and N. T. Thao, “Quantized overcomplete ex-
pansions in Rn: Analysis, synthesis and algorithms,”IEEE Trans. In-
form. Theory, vol. 44, pp. 16–31, Jan. 1998.

[30] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set
of quantizers,”IEEE Trans. Acoust., Speech, Signal Processing, vol. 36,
no. 9, pp. 1445–1453, Sept. 1988.

[31] G. Strang and T. Nguyen,Wavelets and Filter Banks. Boston, MA:
Wellesley–Cambridge , 1996.

[32] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger, “Frame-theoretic anal-
ysis of oversampled filter banks,”IEEE Trans. Signal Processing, vol.
46, pp. 3256–3268, Dec. 1998.

[33] E. P. Simoncelli and E. H. Adelson, “Subband transforms,”Subband
Image Coding, pp. 143–192, 1991.

[34] A. Ron and Z. Shen, “Affine systems inL (R ): The analysis of the
analysis operator,”J. Functional Anal., pp. 408–447, 1997.

[35] J. Benedetto and S. D. Li, “The theory of multiresolution analysis frames
and applications to filter banks,”J. Appl. Comput. Harmon. Anal., vol.
5, no. 4, pp. 389–427, 1998.

[36] S. Mallat, “Multiresolution approximations and wavelet orthonormal
bases ofL (R),” Trans. Amer. Math. Soc., vol. 315, pp. 69–87, Sept.
1989.

[37] Y. Meyer, Wavelets and Operators, ser. Advanced mathe-
matics. Cambridge, U.K.: Cambridge Univ. Press, 1992.

[38] A. Cohen, K. Gröchenig, and L. F. Villemoes, “Regularity of multi-
variate refinable functions,”Constr. Approx., vol. 15, pp. 241–255, 1999.

Minh N. Do (M’02) was born in Thanh Hoa, Vietnam, in 1974. He received
the B.Eng. degree in computer engineering from the University of Canberra,
Canberra, Australia, in 1997 and the Dr.Sci. degree in communication systems
from the Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne,
Switzerland, in 2001.

Since 2002, he has been an Assistant Professor with the Department of Elec-
trical and Computer Engineering and a Research Assistant Professor with the
Coordinated Science Laboratory and the Beckman Institute, University of Illi-
nois at Urbana-Champaign. His research interests include wavelets, image and
multidimensional signal processing, multiscale geometric analysis, and visual
information representation.

Dr. Do received a Silver Medal from the 32nd International Mathematical
Olympiad in 1991, a University Medal from the University of Canberra in 1997,
the best doctoral thesis award from the EPFL in 2001, and a CAREER award
from the National Science Foundation in 2003.

Martin Vetterli (F’95) received the Dipl. El.-Ing. degree from ETH Zurich
(ETHZ), Zurich, Switzerland, in 1981, the M.S. degree from Stanford Univer-
sity, Stanford, CA, in 1982, and the D.Sc. degree from EPF Lausanne (EPFL),
Lausanne, Switzerland, in 1986.

He was a Research Assistant at Stanford and EPFL and has worked for
Siemens and AT&T Bell Laboratories. In 1986, he joined Columbia University,
New York, NY, where he was last an Associate Professor of electrical engi-
neering and co-director of the Image and Advanced Television Laboratory. In
1993, he joined the University of California, Berkeley, where he was a Professor
with the Department of Electrical Engineering and Computer Sciences until
1997, where he now holds an Adjunct Professor position. Since 1995, he has
been a Professor of communication systems at EPFL, where he chaired the
Communications Systems Division from 1996 to 1997 and heads the Audio-
visual Communications Laboratory. Since 2001, he has directed the National
Competence Center in Research on mobile information and communication
systems. He held visiting positions at ETHZ in 1990 and Stanford in 1998. He
is also on the editorial boards ofAnnals of Telecommunications, Applied and
Computational Harmonic Analysis, andThe Journal of Fourier Analysis and
Application. He has published about 85 journal papers on a variety of topics
in signal/image processing and communications and holds seven patents. His
research interests include sampling, wavelets, multirate signal processing,
computational complexity, signal processing for communications, digital video
processing and joint source/channel coding.

Dr. Vetterli received the Best Paper Award of EURASIP in 1984 for his
paper on multidimensional subband coding, the Research Prize of the Brown
Bovery Corporation (Switzerland) in 1986 for his doctoral thesis, and the IEEE
Signal Processing Society’s Senior Awards in 1991 and in 1996 (for papers
with D. LeGall and K. Ramchandran, respectively). He won the Swiss National
Latsis Prize in 1996, the SPIE Presidential Award in 1999, and the IEEE
Signal Processing Technical Achievement Award in 2001. He is a member
of the Swiss Council on Science and Technology. He was a plenary speaker
at various conferences (e.g. 1992 IEEE ICASSP) and is the coauthor, with
J. Kovacevic´, of the bookWavelets and Subband Coding(Englewood Cliffs,
NJ: Prentice-Hall, 1995). He is member of SIAM and was the Area Editor for
Speech, Image, Video, and Signal Processing of the IEEE TRANSACTIONS ON

COMMUNICATIONS.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


