IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 9, SEPTEMBER 2003 2329

Framing Pyramids

Minh N. Do, Member, IEEEand Martin Vetterlj Fellow, IEEE

Abstract—in 1983, Burt and Adelson introduced the Laplacian that each pyramid level generates only one bandpass signal,
pyramid (LP) as a multiresolution representation for images. We even for multidimensional cases. This property makes it easy
study the LP using the frame theory, and this reveals that the usual to apply many multiresolution algorithms using a coarse-to-fine
reconstruction is suboptimal. We show that the LP with orthogonal X .
filters is a tight frame, and thus, the optimal linear reconstruction strategy [2] to the LP. Furthermore, the resulting bandpags SIg-
using the dual frame operator has a simple structure that is sym- Nals of the LP do not suffer from the “scrambled” frequencies as
metric with the forward transform. In more general cases, we pro- in the critical sampling scheme. The reason for this frequency
pose an efficient filterbank (FB) for the reconstruction of the LP  scrambling effect is illustrated in Fig. 2 for the one-dimensional
using projection that leads to a proved improvement over the usual (1-D) case. As can be seen, the highpass channel is folded back
method in the presence of noise. Setting up the LP as an oversam-. ' . .
pled FB, we offer a complete parameterization of all synthesis FBs Into the low frequency after dpwnsamplmg, .and thus, its spec-
that provide perfect reconstruction for the LP. Finally, we consider trum is reflected. In the LP, this effect is avoided by downsam-
the situation where the LP scheme is iterated and derive the con- pling the lowpass channel only. Therefore, the LP permits fur-
tinuous-domain frames associated with the LP. ther subband decomposition to be applied on its bandpass im-

Index Terms—Filterbanks, framelets, frames, Laplacian ages. A possible scheme is a pyramidal decomposition where
pyramid, multiresolution signal processing, projection, pseudo the bandpass images of the LP are fed into directional filter-
inverse, wavelets. banks (FBs) [3]. The final result is a set of directional subband

images at multiple scales [4], [5].
|. INTRODUCTION AND MOTIVATION For many applications like compression and denoising, the

ULTIRESOLUTION data representation is a powerfupoeﬁicients in the transform domain are processed further,

M idea. It captures data in a hierarchical manner whe?é‘q this can introduce errors due to quantization or thresh-
each level corresponds to a reduced-resolution approximatifiing- The processed coefficients are then used to reconstruct
One of the early examples of such a scheme is the Laplaci3g original data. For the LP, the usual reconstruction algo-
pyramid (LP) proposed by Burt and Adelson [1] for imagénhm.—addlng the prediction from the coarse version Wlth
coding. The basic idea of the LP is the following. First, derive ®€ dlfference—pro_duces a perfectly reconstructed 5'9”"{“ n
coarse approximation of the original signal by lowpass filterin§€ absence of noise but tumns out to be usually suboptimal
and downsampling. Based on this coarse version, predict #fgerwise.
original (by upsampling and filtering) and then calculate the Because the LP is an overcomplete representation (there are
difference as the prediction error. Usually, for reconstructiomore coefficients after the analysis than in the input), it must be
the signal is obtained by simply adding back the differendecated as rameoperator. Frames are generalizations of bases
to the prediction from the coarse signal. The process can that lead to redundant expansions. A key observation is that one
iterated on the coarse version. Analysis and usual synthesisbbuld use thdual frameoperator for the reconstruction. While
the LP are shown in Fig. 1(a) and (b), respectively. this seems a somewhat trivial observation, it has not been used in

A drawback of the LP is implicit oversampling. Thereforepractice, probably because the usual reconstruction, while sub-
in compression applications, it is normally replaced by sulptimal, is very simple. Yet, we will show that gains around 1
band coding or wavelet transform, which is a critically sampledB are actually possible over the usual reconstruction. Beyond
scheme and often an orthogonal decomposition. However, thées improvement, we also believe that a full treatment of what
LP has the advantage over the critically sampled wavelet scheisiene of the most standard image processing structure is prob-

ably worthwhile in its own right, even if only for pedagogical
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Fig. 1. Laplacian pyramid scheme. (a) Analysis: Outputs are a coarse approximatioha differencel between the original signal and the prediction. The
process can be iterated by decomposing the coarse version repeatedly. (b) Usual synthesis.

highpass (HP) The sampling operation is represented ljad nonsingular
] :..4 integer matrixM [10]. For anM-fold downsampling, the input
-

x[n] and the outpuk,[n] are related by

downsampled HP

R

Fig. 2. lllustration of the “frequency scrambling” in 1-D due to downsamplin
of the highpass channeUpper. Spectrum after highpass filterindg.ower.
Spectrum after downsampling. The filled regions indicate that the high ;p[k]7 ifn=Mk, ke 74
frequency is folded back into the low frequency. Tu ["] = 0 otherwise

zq[n] = x[Mn].

For anM-fold upsampling, the input[»] and the output:, [n]
gre related by

together with its properties for reconstruction. In Section IlI, In the z-domain, the upsampling operation can be simply
we consider the LP with orthogonal filters and show that it is\&ritten asX,(z) = X(z"). The quantityz" is defined to be
tight frame and thus, the pseudo inverse has a simple struct@#ector whoséth element is given by™*, wherem, is the
which is symmetrical with the forward transform. In Section IVkth column of the matrixt. We denote det(M)| by [M].

inspired by the structure of the pseudo inverse for the tight

frame LP, we propose a new reconstruction for more geneBil Burt and Adelson’s Laplacian Pyramid

LPs that leads to better performance compared to the usuafhe structure of the Laplacian pyramid is shown in Fig. 1.
method. In Section V, by setting up the LP as an oversampl@g concentrate first on one level of the LP; multilevel LPs are
FB, we find a parameterization for all synthesis FBs providingiscussed later. The filtering and downsampling operation for

perfect reconstruction for the LP. The oversampled FB viee | P shown in Fig. 1(a) yields the coarse approximation signal
of the LP leads to a study of iterated LP and its associated

continuous frames—so-called framelets—in Section VI. We c[n] = Z 2[k]h[Mn — k] = <$ B[ — Mn]> 1)
conclude in Section VII with some discussions. /

kezd
[l. PRELIMINARIES where we denoté[n] = h[—n]. The upsampling and filtering
A. Signals, Operators, and Notations operation results in
Since the LP is valid for signals in any dimension and often p[n] = Z c[k]gln — ME]. )

used for images, we use multidimensional notation for gener-
ality. A d-dimensional discrete-time signal is a sequence of real-
valued numbers defined on the integer lat#€ee.qg.,z[n], n € Writing signals as column vectors, for example,
Z°. Signals with finite energy belong to a Hilbert spdeeZ?) =z = (z[n]: n € Z%)T, we can express these operations
with the inner product defined ag;, y) = >, .z« z[n]y[n], as matrix multiplications

and thus, théy-norm is||z|| = \/(z, =) = /> ,cz4 #[n]>.

kez

The z-transform of ad-dimensional signal[n] is denoted by c=Hr and p=Ge
X(2) = Z{z[n)} & S afn)e" whereH andG correspond t@| M)H andG(] M), respectively.
nezd For example, in the usual cade= 1 andM = 2, we have
where raising al-dimensional complex vector = (zq, ...,
z4)T to ad-dimensional integer vector = (nq, ..., ng)?
yieldsz" = [[’_, 2. On the unit hyper-sphere, = ¢/~ %' g | h2] R[1] n[0] -
(efr, ..., edva)T | X (e/*) is the Fourier transform of[n). -~ h[2] R[] A[0]

For a matrix in thez-domain with real coefficientd(z), de-
note[A(z~1)]T by A*(z). On the unit hyper-sphere; (/) is
the transpose conjugation pfe’*). and
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(2))T. The synthesis filtet7 is decomposed just as the signal,

' whereas the analysis filteH has reverse phase. With this
9[0] representation, the output of the filtering and downsampling
gl operation (1) can be written as
G=1 g2 gl0] | @®) M=
. c[n] = Z Z x;[m]h;[n — m)]
gl1] i=0 mezd
2
g[_ ] or in thez-domain
|m|—1
In generall has{h[n—Mk]},cz« as its rows and has{g[n— O(z) = Y Hi(2)Xi(2) = H(z)a(2) 8
=0

Mk]},cza @s its columns. Typically, those are infinite matrices,
but they can also be considered as finite matrices when deal\i/r\}ﬁere

H(z) ' (Ho(2) Hyi—1(2)). Similarly, the
with finite-length signals with appropriate boundary treatments, N A i 1y,
In the sequel, we denoteas the identity matrices with appro_polyphase components of the upsampling and filtering opera-

priate sizes depending on the context. Using this matrix nottélQn (2) are

tion, the difference signal of the LP can be written as pilm] = Z c[n]gim — n]

d=z—p=1x—GHz = (I — GH)zT. nezs

- . . ) which is written in thez-domain as
By combining the previous relations, we can write the anal-

ysis operator of the LP as follows: Pi(z) = Gi(2)C(z) or p(z)=G(2)C(z) 9)
<c> = ( i )z, (4) Wwhere G(z)"éf(Go(z), .., Gu—1(2))".  Therefore, the
d I —GH polyphase vector of the difference signal in the LP is

Y A
, , d(z) = z(2) — p(2) = (I - G(2)H(2))=(2).
The usual inverse transform of the LP [refer to Fig. 1(b)] com-

putesz = Ge + d; thus, it can be written as Combining these, we obtain the analysis operator of the LP

in the polyphase-domain as
&= (G I)(c>. (5)
E 2N <c<z>> _ ( H(2) ) o) 10
! d(z) I—-G(2)H(z)
Itis easy to check tha; A = I for anyH andG, which agrees v(e) RS

with the fact that the LP can be perfectly reconstructed with any

pair of filters H andG. This clearly resembles the time-domain representation of the
LP analysis operation in (4). Therefore, in the sequel, we can

C. Polyphase-Domain Analysis use the time-domain and the polyphase-domain representations

The matrix notation for the LP operations in the previous seffltérchangeably. Expressions derived for the time-domain rep-
tion is simple to use, butit does not reveal the matrix block strutgSentation also hold for the polyphase-domain representations

ture of the LP operators, as can be seen in (3). To overcome tHf&h the obvious modifications and vice versa. Note th{af) is
we introduce th@olyphase-domairepresentation [10], [11] for & Polynomial matrix of sizg[M| + 1) x |M|. _

the LP. The polyphase decomposition of a signal with respect to-rom this, itis straightforward that the u_sual inverse operator
the sampling matrixt is a set ofjM| subsignals that have thefor the LP has the polyphase representation as

same indexes modulg, for example #(2) = 81 (2)y(2), where $1(z) = (G(2) 1),
z;[n] = xMn + k;], i=0,1,..., M -1 (6)

. . D. Frame Analysis
where {k;}o<i<u is the set of integer vectors of the form
Mt, such that € [0, 1)%. The signal is reconstructed from its The frame theory was originally developed by Duffin and
polyphase components by simply adding up the upsampieghaeffer [12] as a generalization of bases; for a detailed in-
and shifted signals from those polyphase components. Mdfeduction, see [13]-[16]. A family of function§ps }rer in a
precisely, we can write in the z-domain as Hilbert spaceH is called aframeif there exist two constants
W1 a > 0andg < oo such that
NOED DR (2 M alfIP <YL <BIAP,  VieH (1)
1=0 kel
Therefore, a signal can be represented by the vector of \{Bere« andg are called the frame bounds. When= 3, the

polyphase components, that is(z) def (Xo(2),...,Xm-1 frame is said to béight. Associated with a frame is ttffeame
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operator F', which is defined as the linear operator frdinto In other words, when the energy of the noigés bounded,
[5(T") as the sup norm of the inverse matrix provides an upper bound for
the reconstruction error, and this bound is tight.
(Ff)e ={f, dr), for keI (12) In some cases, we can assume that the additive mpise

white and zero-mean, which means that
It can be shown that the frame condition (11) is satisfied if

and only if £ is invertible on its range with a bounded inverse E{n[i]} =0,
[16]. For the Laplacian pyramid, there always exists a boundggdd
reconstruction inverse, which is the usual reconstruction, and E{nlil, nl5]} = [i — 5]o2, for all 4, j (19)

thus, we immediately get the following result.

Proposition 1: The LP with stable filters provides a frame
expansion in,(Z%).

As shown above, the frame operator for the LP is represen
by a left matrix multiplication witha. Since the LP is a redun-
dant transform, its frame operator admits an infinite number

leftinverses. Among those, the most important isthalframe def T _ ToTy _ T %aaT
operator or thgseudo inversef A [17] Re = Eec’} = E{Smm"S"} = SRyS" = 07857,

or its autocorrelation matrix,, L E{mm?} = 02 1. This noise
maodel is approximately true when, for instangeas uniformly

tse lar quantized. In this case, the autocorrelation of the recon-
g}ruction error bys is

Hence, for signals of finite lengtN, the reconstruction mean

_ Ta\—1,T
AT = (aTa)~aT. (13)  squared error (MSE) is [19]
In the polyphase-domain, the pseudo inversg(ef is given aet E{||€]|?}  tr(Re)  o?tr(ssT)
by [18] MSE= — = = === ——. (20)
AT(z) _ (A*(z)A(z))_lA*(z)- (14) For infinite-length signals that have polyphase representation

defined as before, the reconstruction MSE can be computed in

When there is additive noise in the frame coefficients, tg€ Fourier domain using the power spectrumeptvhich is
pseudo inverse eliminates the influence of errors that are §fven by [10]
thogonal to the range of the frame operator. Therefore, if we PN e e i
have access # = y +n instead ofy = Az, then the pseudo in- Re(e”™) = 5(e/ )Ry (e")8™ (e").
verse provides the solutiagh= A4 that minimizes the residual
||Az — g||. This is called the least-squares solution. For a tiglht
frame, the pseudo inverse is simply the scaled transposed matfi
of the frame operator sindg'A = o - 1. o2 , ,

We will now review results that allow us to quantify the per- MSE = M2 / tr(s(e’*)s*(e’*)) dw.  (21)
formance of a left inverse. It can be shown [16] that the pseudo =l

inverse has minimunsup normamong all the left inverses of  Since the trace of a matrix equals to the sum of its eigenvalues,
the frame operator. Let be an arbitrary left inverse df. The the eigenvalues #s” ands(e’«)s*(ei+) [which are also the

Therefore, similarly to (20), with the white noise model given
)((19), we have

sup norm of an operata is defined as squares of the singular valuessodinds (7« ), respectively] play
an important role in analyzing the reconstruction error dug to
lIS|| = sup M (15) Using the orthogonal projection property of the pseudo inverse,
v=0 ||yl it can be shown [14], [20] that among all left inverses, the pseudo

inverse minimizes the reconstruction MSE due to white noise in
the frame coefficients. In summary, the pseudo inverse provides
the optimal linear reconstruction.
[|8[| = max {\/Xi A is an eigenvalue CﬁST} . (16)  Example 1: To get a gist of the aforementioned properties
of frames, consider the following illustrative example. Consider
The influence of the sup norm in the reconstruction can lzeredundant transform that takes a scalac R and outputs
seen in the following. With the noise model setup as above, thevectory = (y1, y2)7 € R? such thaty; = =,i = 1, 2.
reconstruction error bg is There are infinite ways to reconstrugtfrom y; one simple
way is to assignt; = y;, and another way is to compute
e=z-x=Sy+n)—zxz=SAr+n)—xz=5Sn. (17) <2 = (y1 +y2)/2. Under the white noise model given in (19),
the performance by these two reconstruction methods can be
Therefore quantified as MSE = E{||z — #1]|?} = E{n?} = o2, and
MSE; = E{||z —i»||?} = (1/4)E{(n1+n2)?} = 0?/2. Thus,
llell < 1IS]] 1ml]- (18) we reduce the MSE by half by using the second reconstruction
method instead of the first one. In fact, the second reconstruc-
tion method is the pseudo inverse, which minimizes the MSE in
1Stability of a filter means that a bounded input produces a bounded outptinis case.

and for a matrix, it can be computed by [17]

[N
h
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I1l. L APLACIAN PYRAMID WITH ORTHOGONAL FILTERS

A. Tight Frame Case d N

T
Consider a special case where the filters in the LP are orthog- @ - @ T

onal filters with respect to the sampling matrixwhich means

(g, g[- B Mn]) - 6[n], (22) Fig.3. Proposed reconstruction scheme for the Laplacian pyramid in Fig. 1(a).
and It is the pseudo inverse when the filters are orthogonal.

h[n] = g[-n] (23)

r r filterbank structure for reconstruction of the LP that is shown in
or equivalentlyG™ G = I andH = G". The condition (23) can Fig. 3. |n the polyphase domain, the pseudo inverse becomes
be written in the polyphase-domaini#sz) = G(z). Since

AT(z) = A*(2) = (G(2) I—G(2)6*(2)).

| —1
(9, 9[- —¥n]) Z Z gi[mlgilm —n] We emphasize two important facts here. First, the usual in-
=0 mez? verse is different from the pseudo inverse and, thus, is subop-
taking thez-transform of both sides of (22), the orthogonalitfimal. We will make a precise comparison latter. Second, the
condition on the filterG is equivalent to pseudo inverse in this case has a symmetrical structure with the
forward transform and, thus, has the same order of complexity.
] -1 Example 2 (Haar Case)Consider the 1-D LP with Haar fil-
Z Gi(z)Gi(z"1) =1 or G*(2)6(z) = L. (24) ters:h = g = (1/V/2, 1//2) andM = 2. The output of the LP
i=0 can be written as
Orthogonal filters can be designed by using well-known [n] = Lx[Zn] n Ll,[%H_ 1]
methods, such as separable filters from 1-D orthogonal filters V2 V2
[10], [11] or nonseparable filters in 2-D for = 2 - I [21], d[2n] = 3x[2n] — $2[2n + 1]
[22]. d2n + 1] = —1z[2n] + 1z[2n + 1]. 27)

Theorem 1: The Laplacian pyramid with orthogonal filters is
atight framewith frame bounds equal to 1. Conversely, supposeIn order to see the block structure of the transform
the LP is a tight frame; then, the frame bounds must be 1 aftrices, we slightly change the notation and write
either H(z) = 0 orG(z) = a(2)H*(2), 6*(2)G(z) = af2) + ¥ = (..., c[n], d[2n], d[2n + 1], ...)". Using (27), the

alz™') — 1. analysis matrix of the LP is a block diagonal matrix
Proof: See Appendix A. [ |
Remark 1: Under the orthogonality conditions, a geomet-
rical interpretation of the tight frame can be seen by rewriting A= By
(2) as By
= , gl- — Mk — MK]. K
plrl = 3 (o ol Mol — 4 V3 VB
whereB, = | 1/2 —1/2
DenoteV the subspace spanned by the set of orthogonal vec-
tors {g[- — Mk]}rez«. Then,p is the orthogonal projection af -1/2 1/2
onto V. Combined withd = = — p, the Pythagoreartheorem Similarly, the usual synthesis mati$x is also a block diag-
leads to onal matrix with
1/vV2 1 0
lall” = lpll> + ) = llel® + 1> (25) By, = ( ) | 28
2= {175 o0 1 (28)
where||p|| = ||¢|| sincec are the coefficients in the orthonormal

The pseudo inverse’ = AT is also a block diagonal matrix
with B,+ = B} . Since there is no overlapping between blocks,
Te can conS|der the transform for a single block with two in-
puts and three outputs. The elgenvalueﬁpB are{l, 1},
Whereas the elgenvalueus,-fB are{1, 2}. Consequently

expansion (2) op in V. Equation (25) says that the LP is a tight
frame with the frame bounds = 8 = 1.

Consequently, with orthogonal filters, the pseudo inverse Q
A is simply its transpose matrix. Thus

H T T
At =aT = ( T) =(G 1-0GT). [Batll =1,  tr(ByiBy;) =2
I -GG and
Therefore, the reconstruction using the pseudo inverse is lIBs, || = V2, tr(Bs,By, ) = 3.
&= ATy =Ge+ (I - 667)d = G(c — Hd) + d. (26) Therefore, in this case, if we use the pseudo inverse instead of

the usual inverse, then we would reduce the upper bound of the
The last expression is derived in order to reduce the compeconstruction square error in (18) by half and the reconstruction
tational complexity of the pseudo inverse. It leads to an efficieMSE in (20) by two thirds.
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B. Eigenvalues of the LP Operators Remark 2: Let us clarify the difference in the performance

The improvements of the pseudo inverse over the usual [Reasurements between Corollaries 1 and 2. The results in

verse in the last example can be generalized for all LPs wittProllary 1 use thenaximaleigenvalues from Proposition 2,

orthogonal filters. The key is to study the eigenvalues of certaffl’éreas the resuits in Corollary 2 use deerageof these

matrices. We need the following result on the eigenvalues. €9envalues. Thus, the gain factor by the pseudo inverse in
Theorem 2 [17, p. 53]: Suppose: andB are real matrices of Corollary 1 is fixed, whereas the gain factor in Corollary 2 gets

sizem x n andn x m respectively, withn < n. Then,BA has Smaller agi| becomes larger. _

the same eigenvalues &, counting multiplicity, together with ___Finally, we have the following properties on the operators

additionaln — m eigenvalues equal to O. that reconstruct from the coarse and difference signals using the
For a square matrik, denote the set of all its eigenvalues bPS€udo inverse. _

o(A), where an eigenvalug with multiplicity n is written as _ PYOPOsition 3: ConsiderG(z) andD(z) = I — G(z)H(z).

A These eigenvalues are the roots of the characteristic poRftPPOSe the LP uses orthogonal filters. Then

nomial of A, which is defined ag’ (\) % det(AT — ). For @ 0(G(2)6"(2)) = {07, 1};

a polynomial matrixA(z), its characteristic polynomial would b) D*(2) = D(2);

generally have coefficients as polynomialszoés well. The-  €) D(2)D(2) = D(Z)(;IM‘_D

orem 2 says thalbys (A\) = A"~ ™ Py(\). It can be verified that d) o(D(2)) = {0, 1 }-

this result also holds wheandB are polynomial matrices. Proof: Part a) was proved in the proof of Proposition 2.
Proposition 2: Suppose the LP uses orthogonal filters. TheRarts b) and c) are easily verified using the orthogonal condi-
a) o(A*(2)A(2)) = {1(MDY; tions:G*(lz)G(z_) =1 andH(z) = G*(2). Using.characteristic_
b) o(S1(2)S%(2)) = {1(M-D 2}, polynomials similarly to the proof of Proposition 2, part d) is

oved by observing that,.)(A) = £ FPsye () (1 —A). ®

As a result, the operator for the difference signal in the LP
d = (I — GH)z is an orthogonal projection onto a subspace,
which has dimension equal (01| — 1)/|M| times the dimension

Proof: Since A(z) represents a tight frame with frameP"
bounds equal to 1, we hawe (z)A(z) = I. Therefore, a)
follows directly. Next, conside$;(2)S%(z) = G(2)G*(z) + I.

. . T s ; . .
'?Ihnecc()ar:m(zz) Gi(f]?O" OWS tht;);(t:(i ﬁ?&??ozal{g&?ﬂt)lo?} fg:m of the signal space Such a view can also be inferred from the
Patoye-( )()\; — (A= DAM-I, Thus Y geometrical proof of Theorem 1.

PG(z)G*(z)«FI()\) = det()\I — G(Z)G*(Z) — I)

=P, . -1 . .
s (9 (A= 1) A. New Reconstruction Algorithm

M—1
=(A-2)(A - l)l | In this section, we consider a more general case wihemd
which implies b). B (G are arbitrary filters. Even though any frame operator has a
Recall that with orthogonal filters, the pseudo inverse of thgseudo inverse, for complexity reasons, we will consider only
LP isA'(z) = A*(2). Thus, applying Proposition 2 to (16) antthe inverses that can be realized by a structured transform with

IV. RECONSTRUCTIONUSING PROJECTION

(21), we immediately obtain the following results. fast algorithm. Motivated by the tight frame case, we focus on
Corollary 1: Suppose the LP uses orthogonal filters. Thenthe reconstruction that has a structure shown in Fig. 3. We then
a) |Is1]| = V2; turn the problem around by asking for which filters such an algo-
b) ||Af]| = 1. rithm is indeed an inverse or pseudo inverse. This has the same

As a result, when the noise energy is bounded, the upper bodilgtor as the filter design problem for perfect reconstruction fil-
of the reconstruction square error in (18) using the pseudo tefbanks; thus, we can resort to many existing results.
verse is equal to half of the one that uses the usual inverse.  Theorem 3:

Corollary 2: Suppose the LP uses orthogonal filters and its 1) The reconstruction shown in Fig. 3 is an inverse transform
coefficients are contaminated by an additive white noise with  of the LPif and only iftwo filters H andG are biorthog-

variances?. Then, forone levelLP, the reconstruction mean onal with respect to the sampling lattifewhich means
square error using the usual inverse is MSEo?(1 + 1/|M]), the prediction operator of the LRK) is a projector, or
while using the pseudo inverse, it is MSE o2. When the LP HG = T.
is iterated withJ-levels then for the usual inverse we have 2) Furthermore, that reconstruction is the pseudo inviérse
) _ o 1 1 5 M| and only ifthe prediction operator of the LRK) is an
MSE" =o (1 + ] +t W) BT orthogonal projectot.

. . Proof. See Appendix B. |
2
whereas for the pseudo inverse, we still have M@E— o, R rk 3: Itis interesting t te that the two conditions for

Therefore, with white noise on the LP coefficients, the "She LP in the above proposition, i.e., projection and orthogonal
duction in the reconstruction MSE by using the pseudo inverse brop » 1-€., Proj 9

instead of using the usual inverse is fréir+ 1/|M|) times for projection, are exactly the same as the condit_i(_)ns for the im-
one-level LP up td1+1/([|— 1)) imes for muitiple-level LPs. proved LPs that are studied in [23]. Those conditions lead to LP

In particular, for the commonly used LP in 2-D with= 2 - I,,
b y 2 2For infinite length signals, this has to be interpreted in the polyphase-domain.

the pseudo inverse improves the signal-to-noise ratio (SNR) of . ) . ;
h tructi . | from 0.97 dB ( ith one level LP) Rgcall that given a Hllbert spadg, a linear op(_arayoP mapplr_lgH onto
the reconstruction signa . wi Vi URself is called aprojectorif P2 = P. Furthermore, it? is self-adjoint orP? =

to 1.25 dB (with iterated LP). PT thenP is called arorthogonal projector
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TABLE | with the new reconstruction using the FB as in Fig. 3, which is
COEFFICIENTS FOR THE'Q-7" BIORTHOGONAL FILTERS denoted REC-2
n 0 +1 +2 +3 +4 Ty = Sy = Ge + (I — GH)d. (30)
h[n] | 0.852699 0377403 -0.110624 -0.023849 0.037828 . . . .
oln] [ 0.78848  0.418092 -0.040680 -0.064539 These two reconstruction algorithms are different in the way

of handling the difference signdl More specifically, the REC-1
method addsl directly, whereas the REC-2 method adds the

TABLE I Py, projection ofd to the reconstructed signal. As shown in
COEFFICIENTS FOR THEORIGINAL LP ALTER AND ITS DUAL FILTER Fig. 4(b), when there is noise in the LP coefficients, the REC-2
- 5 ) ;) = metho?l elllmlnates the influence of the error componedtirat
R[n]/v2 |06 0.25 -0.05 is parallel toV.
gln)/v/2 | 0607143 0.260714 -0.053571 -0.010714 For more quantitative measurements on the performance of

the two methods, suppose that we wish to approxinra&en
4 = Az + 5. With no further information about the error in the

with interpolation and least-squares LP, respectively. The motiP coefficientsy, it makes sense to choge which minimizes
vation for those modifications there is to minimize the predidhe residual|Az — g|. As mentioned before, the optimal linear
tion errord of the LP, whereas our motivation here is to have golution to this problem is the pseudo inversetotsing this
better reconstruction algorithm for the LP. Still, the results fros the measurement for the performance in reconstruction, the
[23] motivate the use of filters with the aforementioned propefollowing result states that REC-2 always performs better than
ties for the LP. REC-1.

Remark 4:The 0rthogona| projection case 0bvious|y Proposition 4: Assume that{ andG are biorthogonal fil-
includes the LP with orthogonal filters studied in the lad€rs. Letz; andz, be the results of reconstruction from noisy
section. It is shown in [23] that under the orthogonal projectideP coefficientsy using REC-1 and REC-2, respectively. Then,
condition, if one of the LP filters is given, then the other filtekve have
is uniquely determined.

Therefore, the minimum requirement for the FB shown in
Fig. 3 to be a bona fide inverse of the LP is the biorthogonalifyhere equality holds if and only i#d = 0.
condition (56) on the filterd? andG, which can be expressed Proof: Using the definition ofs, S1, S» in (4), (5), (55),
equivalently in the polyphase-domain#&)G(z) = 1. There and the fact thatH = T, we have, after some manipulations
exist many designs for such filters due to their role in wavelet ud
constr_uctlons [24], _[25]. Among them, a popular choice for im- A —g=AS1g—gy= ( . )
ages is the “9-7” filters from [24], [25]. Another example is —GHd
based on the original LP filter suggested in [1], which is espend
cially popular for applications in vision, together with its dual ) . o 0
filter [26]. Tables | and Il list these filter coefficients. Note that Ay —y=ASy—y = (—GH&) .
these filters are symmetric and close to being orthogonal. ASTherefore
a result, the proposed reconstruction in Fig. 3 is close to the ~ ~ - - - e
pseudo inverse. |AZ1 — g[|” = ||Hd||” + [|GHd||" > ||GHd||" = [|AZ> — §||".

With biorthogonal filters, the proposed reconstruction algo- [ |
rithm for the LP has an intuitive geometrical interpretation. Let ) )
us define two subspacds and V" that are spanned bfy[- — B. Reconstruction Error Analysis
Mk|}keze and{h[- — Mk]},cz4, respectively. These are also the Note that the above comparison does not give us exact be-
column and row spaces 6f andH, respectively. For alle in havior of the reconstruction error. In this section, we will study
lo(Z%), the prediction operator in the LP = GHz computes this error under some additional assumptions on the coefficient
a projection ofz onto V. SinceHG = I, the difference signal noise. Our analysis is complicated further since in coding, the

[AZ1 — || = [[AZ2 — 9| (31)

d = z — p has the property that LP is often used with quantization noise feedback where the
coarse signat is quantizedoeforebeing fed back to the pre-
Hd = H(x — GHz) = Hr — Hz = 0. dictor. This case is referred to as the closed-loop mode in Fig. 5.

The open-loop mode refers to the case that has been consid-
ered so far, namely, when the noise is added to the coefficients
after the LP transform. A discussion of those two quantization
modes in pyramid coding can be found in [28]. Note that with
e closed-loop mode, we are no longer in the linear framework,
so that optimality of the pseudo-inverse does not Hold.

Therefored is perpendicular td. This fact is illustrated in
Fig. 4(a). The prediction operator in the L&H] can be called
anoblique projectorand is denoted by, .

Let us definelV as the orthogonal complementary subspa
of V. Then, itis easy to verify that =  — Py z is a projection

of z ontoW such that the error is parallel 16 [again, refer to . L
To analyze the reconstruction error, we separate the noise in

Fig. 4(a)]. Denote this projection d%y, Py = I.— GH. the LP coefficients into two componentg:= (1., n,)”, cor-
Next, let us compare the usual reconstruction method a5r&5ponding to the coarse and detail quantization, as shown in
Fig. 1(b), which is denoted REC-1 ponding q ’

) 4In that case, aonsistent reconstructicagorithm [29] can lead to improve-
1 =S1y=Ge+d (29) ments.
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\ p=Pyx

@ ‘ ®)

Fig. 4. Geometrical interpretation of the LP with biorthogonal filters. (a) LP as an oblique projpctor:Py  is the projection ofr ontoV' such that the
difference signal = = — Pyx is perpendicular td”. (b) Comparing two reconstruction methods wheis corrupted by noise and becomésThe usual
reconstruction REC-1 addksdirectly to the reconstructed signal, whereas the new reconstruction REC-2 adtls fh@jection ofd and thus eliminates the error
component ird that is parallel toV".

Ne finer analysis under the additive white noise model is provided
(L é by the following result.
Proposition 5: Suppose the LP use orthogonal filters, and the

I closed-loo
toop .
z__ @ ﬁ_ additive noises;. andn, to the LP coefficients are uncorrelated
oper+loop white with variances? anda?, respectively. Then, the recon-
Nd struction MSEs, by using REC-1 and REC-2, are the following.
a) For the open-loop mode

Fig. 5. Laplacian pyramid encoding. The open-loop mode bypasses the

coarse-level quantization, whereas the closed-loop mode includes it. MSE(OI) M 0 + Ud
Fig. 5. In the open-loop (ol) mode, we can apply (17) to obtain MSEgol) 1 o2 4 M| -1 o
the reconstruction errors using REC-1 and REC-2 as M| "¢ M| T4
ol b) For the closed-loop mode:
( ) _G’,IC +"ld ) (c1) p 9
and MSE;" =0}
ol c 1 Ml -1
e —an, + (1 - Gi)n,. (32) MSE(! = o2 + | '|M| o2

In the closed-loop (cl) mode, by direct computation, we ob-

tain the reconstruction errors using REC-1 and REC-2 as Proof: Sinces, ands, are uncorrelated and white, ap-

plying (21) to (32), we have
(cl) =, o2

(ol) _ c Jw\n*( Jw
MSE = o /[_T (e () de
e =6, + (1 - GH)n,. (33) o2

+ — / tr(D(e’*)D* (&) dw.

From (32) and (33), we observe that with the REC-1 method, M| (27)9 [—, 7w]d
the coarse-level noisg. does not effect the reconstruction From this, using Proposition 3, we get the desired result for
signal in the closed-loop mode. This makes the usual rechSEz"l) Other results follow similarly. ]
struction method REC-1 attractive in coding applications. Numerical results on real images follow the above analysis
However, the problem of allocating bits to the quantizesgery closely, even for filters that are only approximately orthog-
Q. and @  for the coarse and dlfference signals becomemal such as the “9-7” biorthogonal filters in Table | (which
difficult. The reason is that in m|n|m|zm(5.11 , the choice for were used in all of our experiments). For example, in the image
Q4 depends on the choice fdp., and thus, one must use acoding application, assume that uniform scalar quantizers with
complicated bit allocation technique [28]. On the other handgual step for coarse and difference signels= Ay = A are
with the new method REC-2, the reconstruction errors awsed; then, we have? ~ ~ A?/12. In this case, the new
the same in both open- and closed-loop modes; thus, we daverse REC-2 improves the SNR of the reconstructed signal
simply use the open-loop mode. Furthermore, when the filtesger the usual inverse REC-1 B9 log,,(5/4) = 0.97 dB in
are close to being orthogonal, becalief’ ~ ||n||?, the square the open-loop mode, while giving the same performance as the
error distortion can be minimized in the LP domain using mualsual inverse in the closed-loop mode. Fig. 6 shows the result
simpler bit allocation techniques such as [30]. for the “Barbara” image of size 512 512.

Now, suppose that||r.|| is negligible compared with Insome other applications like denoising, the LP coefficients
llmqll- This is a reasonable assumption simgehas|M| times are thresholded so that only thé most significant coefficients
fewer samples tham,. Furthermore, suppose that the preare retained. (This is normally done in the open-loop mode.)
dictor (GH) becomes an orthogonal projection, which impliel this case, it is difficult to model the coefficient noise, which
(T — GH)n,ll < l|myll- Under these conditions in both modesstrongly depends on the input signal. Table 11l presents the nu-
we havé|ez || < ||e1]|, or REC-2 performs better than REC-1. Americal results for some standard test images. We observe that

and
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ﬂi&’!ﬁ?ﬁ?ﬁ%ﬁiﬁfﬁﬁ) Similarly, on the synthesis side, for the REC-1 method, the
equivalent fiIterF,i[l] has the polyphase vector s therefore

i | O Usualinverse (closed-loop)

F(z)y=z"%  fori=o0,.... M -1 (35)

For the REC-2 method, the equivalent filteféz] has the
polyphase vector as — G(z)H,(z), which implies that

FP(2) = 27% - G(2)Hy("),  fori=0, ..., |M—1.
il (36)
o Since H(z) andG(z) are both lowpass filters, it is easy to
: ‘ 3 : : S see thaf(;(z) andF,L-[z](z) are highpass filters, whereﬁé”(z)
T T T BT I TS - T are allpass filters. Fig. 8 displays the frequency responses of the

Quantization step A

equivalent filters for the LP in 1-D using the biorthogonal filter
Fig. 6. Comparison of reconstructions from the quantized LP coefficients pRir “9-7” from Table I.

the “Barbara” image. The LP is decomposed with just two levels. In the 1-D case with\/ = 2 and biorthogonal filters, using
the propertyGo(z)Ho(z) + G1(z)H1(z) = 1, we can simplify

TABLE lI ; ; - ;
SNRS OF THE RECONSTRUCTEDSIGNALS FROM THE M MOST the expressions for equivalent filters in (34) as
SIGNIFICANT LP COEFFICIENTS THE IMAGE SIZES ARE 512 x 512. Ko(z) = —zHy( Z)G(_ )
THE LP Is DECOMPOSEDWITH SiX LEVELS o\z) =—=H 22 z
M 212 old 916 Kl(z) = +ZH0(Z )G(_Z)
Barbara | REC-1 | 9.68 1256 20.94 and for the synthesis filters of the REC-2 method as
REC-2 | 9.87 13.18 2175
Goldhill | REC-1 | 1230 1579 2155 F(2) =27 'G1 (2% H(~2)
REC-2 | 12.60 1623 22.19 2] . )
Peppers | REC-1 | 15.06 2081 26.77 Fi7(z) =427 Go(z°)H(—2).
REC-2 | 15.62 2133 27.32 ) ) ) . )
As aresult, if the LP filterd? (¢’*) andG(e’*) are designed
~ e to havep;, andp, zeros atv = T, then.{(i(ef“) gndFF](eW)
H @ @- G havep, andp;, zeros atv = 0, respectively. This result can be
d observed in Fig. 8 for the “9-7” case, wheig = p, = 4. The
Ky /&—M\ f9 /f—M\ I - number of zeros at = = of the filter determines the maximum
T S\ N . ,
i ' degree of polynomials that can be reproduced by that filter and
: P : is referred to as thaccuracynumber [31]. The number of zeros
é:iIMl—l": 7 atw = 0 indicates the maximum degree of polynomial that
IMl—]‘—"—“'— L @ IM|-1 are annihilated by the filters and is referred to as the number of
vanishing moment3 herefore, the LP with high-accuracy filters
d also has good compression properties for polynomial signals.
Fig. 7. Laplacian pyramid as an oversampled FB, wHetg .... djy_1} For example, for th.e LP .Wlth ‘9-7" f||'§ers,_ the Outpd{n] IS
are the polyphase componentsdof zero whenever the input is a polynomial signal of degree up to
three.

the new inverse consistently provides better performance by .
around 0.5 dB in SNR. B General Reconstruction
An interesting question follows: What is the most general re-
V. LAPLACIAN PYRAMID AS AN OVERSAMPLED FB construction for a given LP? In the polyphase-domain, this is
equivalent to determining the most general form of the synthesis
polyphase matrig(z) such that it satisfies the following perfect
The polyphase matrices for the LP operators given in Se&gconstruction (PR) condition [10], [11]:
tion II-C suggest that we can treat each polyphase component

of the difference signal separately as being filtered and down- S(z)A(z) = 1. @37
sampled byi. We can reformulate the LP as an oversampled FB, Corresponding to a polyphase matsik:) satisfying the PR

as shown in Fig. 7. Note that every LP can be expressed as@Rdition (37) is a set of synthesis filtefsand F; for the FB in
oversampled FB, but not every oversampled filter bank in Fig.7q. 7 so that the input signal can be perfectly reconstructed from
corresponds to a LP structure since we will see that for the LLRe output of the LP. One parameterization for the left inverse

A. Equivalent Filters in an Oversampled FB

all filters K; are specified byd andG. of A(z) is given in [32] as
From (10), it follows that the polyphase vector for the equiv- . ~
alent filter K; is the (i -+ 1)st row of the matrixt — G(z)H(z), S(z) = 8(2) + U(2)[I — A(2)S(2)] (38)

which is equal tee] — Gi(2)H(z), wheree; is the (i + 1)St \yhere§(2) is any particular leftinverse af, andu(=) is an|M| x
column of the identity matrix. Thus (JM]+ 1) matrix with bounded entries. In our case, a good choice
Ki(z) = 2" —Gy(Z?")H(z), fori=0,..., M—1. (34) for$(z)isthe usualinverse,(z) = (G(z) I —G(z)H(z)). Let
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Fig. 8. Frequency responses of the equivalent filters for the LP using the biorthogonal filter pair “9-7.” (a) Analysis. (b) Synthesis, using fREQsLja
denoted by superscript') and the new (REC-2, denoted by supersdfijtmethods.

us splits(z) into two submatriceS,.(z) andS,(z) of size|M| x 1 VI. I TERATED LAPLACIAN PYRAMIDS AND DERIVED
and|M| x |M|, respectivelyS(z) = (S.(z) Sa(z)) and similarly CONTINUOUS FRAMES
for U(2): U(z) = (U.(2) U4(2)). Then, the reconstruction for . .
the L(P)usir(19)suc£1 a((z)) can (b(g)vvritten in polyphase-domain aéa" Iterated Laplacian Pyramids
We now shift our focus to multilevel LPs where the scheme in
#(2) = 8:(2)C(2) + S4(2)d(2). Fig. 1is iterated on the coarse signal. The oversampled FB rep-
~ resentation of the LP in Fig. 7 allows us to analyze the multilevel
Substitutings(z) = S;(z) into (38) and after some manipu-LP as an iterated FB. Using the multirate identity, which says
lations on the block matrices, we obtain the following result. that filtering by G(z) followed by upsampling by! is equiv-
Theorem 4:The most general form for the synthesisilent to upsampling by followed by filtering by G/(2") [10],
polyphase matrix providing perfect reconstruction for a LP cgm1], we have the following equivalent synthesis filters at the

be written ass(z) = (S.(z) Sa(z)) with n-level of a multilevel LP as
5.(2) =0(2) ~ [0.(2) ~ Va(2)0(H()GC) ~ 1] -
Sa(2) =T — [0(2) — Ua(2)G(2)]H(2) (39) F() = F (= )EOG (=)
P=0, . M- 1. (40)

and whereU.(z) andU,(z) are matrices of sizé4| x 1 and

[M| x |M|, respectively, with bounded entries. . o )
As a consequence of the above result, for a given LP, matricedVext, consider what happens, when the synthesis filters in

U.(z) andU,(z) can be optimized so that the resulting synthesf§5) and (36) are substituted into (40). Fig. 9 shows an example

filters have certain desired properties. We observe that if the Ppfrequency responses for the equivalent filters. In the REC-1
uses biorthogonal filters satisfyirg(z)G(z) = 1, then from method, we see that the synthesis functions for the LP are all

(39), we haves,(z) = G(z). This means that all the Symhesigow—frequ_ency signals. Thus, the errors from highpass subbands
FBs providing perfect reconstruction for the LP in this case nef @ multilevel LP do not remain in these subbands but appear

essarily haves as the synthesis filter for the coarse channel. @ broadband noise in the reconstructed signal. In [33], this ef-
Example 3:Let us consider the LP with Haar filters adect was noted as the most serious disadvantage of the LP for

in Example 2. In this case, we havéy(z) = Hy(z) = c_oding appl@ca}tions. In the REC-2 me_thpd, the synthesi§ func-
Go(z) = Gi(z) = 1/v2. By applying (39) and denoting 1ONs hav_e S|m|Iarfrequ_ency gharacter_lstlcs as the analysis func-
Vi(z) = (=2U; 1(2) + Ui 2(2) + Ui 3(2)/(2v/2),i = 1, 2, any  tONS, vyh|ch are essentially h|ghpass.fllters. Clea.rly, reconstruc-
synthesis polyphase matricﬂsz) providing PR can be written tion using the REC-2 method remedies the previous mentioned

as problem of the LP.
The advantage of the new reconstruction method REC-2 over
S(2) — Go(z) 1+Wi(z)  Vi(2) REC-1 is even more prominent when the errors in the LP co-
#)= G1(2) Va(2) 14+ Va(2) /) efficients have nonzero mean. In such a case, with the REC-1

method, this nonzero mean propagates through all the lowpass
Thus, by denoting/(z) = V1(22) + 2~ 1V»(2?), we obtain synthesis filters and appears in the reconstructed signal. By con-
that the most general form of synthesis filters for the Haar LtPast, with the REC-2 method, the nonzero mean is canceled by
areG(z), Fy(z) = 14V (z),andF1(z) = 2~ '+ V(z),withany the bandpass synthesis filters. Fig. 10 shows an example of this
stable filterV (z). The usual and pseudo inverses correspondsauation where the errors in the LP coefficients are uniformly
V(z) = 0andV(z) = (-1 + 271)/2, respectively. distributed in [0, 0.1].
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Fig. 9. Frequency responses of the equivalent synthesis filters for the multilevel LP with “9-7" filters. (a) Usual reconstruction method REG@haAt Kbt
synthesis filters are lowpass. (b) New reconstruction method REC-2. Here, the synthesis filters are bandpass and match with the frequencynregiomsding
subbands, as expected. Consequently, REC-2 confines the influence of noise from the LP only in these localized bands.

(a) ()

Fig. 10. Reconstructions from the LP coefficients that are contaminated by an additive i.i.d. uniform noise in the interval [0, 0.1] (the orbirsdlpsare
between 0 and 1). The LP is decomposed with 6 levels. (a) Usual reconstruction method REC=1.65MRIB. (b) New reconstruction method REC-2: SNR

17.42 dB.

B. Framelets From the Laplacian Pyramid ﬂ V; ={0}. (43)

As iterated orthogonal FBs lead to wavelets, a multilevel LP i€z
is associated with a frame for continuous functions that is calledThe scaling functiorp is specified from the filteG via the
awavelet frame or a framelet [34], [35]. We concentrate first dwo-scale equation:
the orthogonal case. Using the multiresolution analysis frame-
work by Mallat and Meyer [16], [36], [37], it follows that, under o(t) = MY2 3 glnlp(ut — n). (44)
certain conditions, associated with the orthogonal lowpass filter
G in the LP, is an orthonormal scaling functigiit) ¢ L2(R¢) ~ Denote
that generates a multiresolution analysis (MRA) represented by¢j W(t) = M2 pMt — n), jeZ,nezl. (45)
a sequence of nested subspaf€s} jcz. '

nezd

Then, the family{¢; ,},.cz« is an orthonormal basis df;

VocWVicVoCc Vo ,CVige- (41) forally € Z. DefineW; to be the orthogonal complementiéf
in ‘/}_1:
with
Vici=V; @ W;. (46)
Closure U Vi | = L*(R%) 42)  LetF? (0 <i < M- 1) be the equivalent synthesis filters

jez for the new reconstruction method REC-2, which, in this case,
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Fig. 11. Bi-frame from the LP with the “9-7" filters. (a) Analysis framelets. (b) Synthesis framelets using the new reconstruction method.

are simply the time-reversed versions of the analysis fili&rs is a tight frame ofZ2(R?). In all cases, the frame bounds
Note thatFi[Q] are highpass filters. As in the wavelet FB, we as- equal to 1.
sociate to each of these filters a continuous functién, where 2) Furthermore, suppose thate’~’) has anLth-order zero
at2mM—k;, i = 1, ..., |M| — 1.5 Then, all polynomials
i wl/2 2] of total degree less thah are reproduced by projection
PO (t) = M|t Zd fi " [n]p(ME — n). (47) onto the spac#, spanned by{¢(t — n)},cz¢, and the
et functions () (¢) have all moments up to orddy — 1
. . vanish, i.e.,
These functions also generate families of scaled and trans-
lated functions )
/ 2 by () dt = 0 (52)
. R4
P = MO Mt —n),  jeZ,nezl. (48)
foralli=0,..., M —-1,p14+---4+ps < L-1.

The relationship between these functions and the computa- Proof: See Appendix C.

tional procedure of the LP can be seen as follows. Suppdse ~ With this, the family{s\") }o<i<iui—1, jez, nez2 isreferredto
a function inV;_y; then as a tight wavelet frame or tight framelet [34]. For more general

filters, with a similar setup, the LP FB in Fig. 7 leads to a pair of
wavelet frames—sometimes called bi-framelets—generated by

F(#)= Y {F: dim1n) di-1.n(D): (49) functions{y()} and{+()} for the analysis and synthesis sides,
n€ZY oD [n] respectively. Fig. 11 shows the 1-D biframelets derived from the

iterated LP using “9-7” filters.

Using the two-scale equations forands), it is easy to verify
that the inner products gf with functions at the next scale can
be written as The Laplacian pyramid was studied using the theory of

frames and oversampled FBs. We proposed a new reconstruc-
D] =(f, ¢jn) = Z U=V [k]g[k — Mn) (50) tion algqrithm fqr the LP based on projection, which is the
pseudo inverse in certain cases. The new method presents an
D1 —f @y — G- £2 _ efficient FB that leads to improvements over the usual method
di ] =(f, l/}%") kzz:d ¢ (k11 1k nl- (51) for reconstruction in the presence of noise. With Theorems 1, 3,
€ and 4, we provided a complete characterization of tight frame,
) ) . reconstruction using projection, and general reconstruction for
_Therefore,{c!/[n], dV [ﬂ]%) is exactly the output of the LP the | p, respectively. Finally, we derived the continuous-domain
given the input sequena’~")[n]. frames associated with the iterated LP.
Theorem 5: For practical applications, we recommend the use of the sym-
1) Suppose the LP with orthogonal filter generates an MRnetric biorthogonal filters with sufficient accuracy numbers,

VII. CONCLUDING REMARKS

kezd

Then, for a scalej, {4\ Vocicm 4 is a tight _ . .
J {I/JJ n}OSEiS)IMI 1,nez? 9 ®An L th-order zero at a point means that all partial derivatii@dw, )»1
frame of W;. For all scales{qp].’n}og,;gm_l,jez,nezz < (8/0wa)PaG(e7¥), p1 + - + pa < L equal zero at that point.
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such as the “9-7” pair for the LP, together with the proposed re-We note thatl andG possess right and left inverses, respec-
construction method REC-2. The resulting LP exhibits an excéively (which involves inverse filters off and G). Thus, the
lent compression property for piecewise smooth signals, whjpeojection conditiorGH = GHGH is equivalent to

having a simple structure, even in higher dimensions. HG = T o (ﬁ[- MK gl — MI]) = 6]k 1], Vi1l

(56)
Filters H and G satisfying (56) are said to be biorthogonal
filters (with respect to the sampling mataf). This proves part

APPENDIX

A. Proof of Theorem 1

1.
Suppose that the Laplacian pyramid uses orthogonal filters.2) For Part 2, we require additionally th&t is a pseudo in-
A geometrical proof of the tight frame is already given in Segzerse ofa. From (13), this means thaf’ AS, = AT. Using the

tion Ill-A. Alternatively, usingG*(z)G(z) = 1 andH(z) = assumption thaiG = I, after some manipulations, we have that
G*(z), we can directly verify that
ATAS, = (HT (I —GH)(I —HTGT)).

H
A*(2)A(z) = (H*(2) I-H*"(2)G*(2) )< (2) (z)> =1 Therefore, the pseudo inverse condition is simplified to

I—-G(2)H
(1 —cH)(I —HTeT) = (1 — cH)T. (57)

Now, suppose that LP is a tight frame, [#]|? + ||d||? = _ _ _ _ _
B|lz||? for all z € 15(24). SinceH is a decimating operator, Notice that the left-hand side of (57) is a symmetric matrix,
there exists am # 0 such thatiz = 0. In this case, the output @nd thus, itis the case f¢I — GH)” andGH as well. Therefore,
ofthe LPisc = 0, d = z. Hence, the tight frame bourtimust GH is an orthogonal projector, which proves part 2.
be 1.

Therefore, the tight frame condition for the LP become%"
A*(2)A(z) = I. Expanding and grouping terms, this equation 1) Letf be afunctionin¥;. Thisis equivalenttg € V; ;
becomes andf L V;. Therefore,f can be expanded by an orthonormal

basis ofV;_; as in (49), andY[n] = (f, ¢; ,) = 0 for all
H(2)[H(2) — 6" (2) + G"(2)G(2)H(2)] = G(2)H(2).  (83) m € Z°.
) Now, suppose thaff is analyzed via the LP as in (51).

Letk(z) = H(z) — G*(2) + G*(2)G(2)H(z). Note tha’(z) IS From Theorem 1, with orthogonal filters, the LP provides
anl x |M| matrix, and denot#&(z) = (Ko(z), - .., Kjy-1(2)).  a tight frame with frame bounds equal 1, peli—||2 =

The key observation is that both sides of (53)@uter products ”c(j) 12 + Z\'Mlo—l Hd(j) 2.

Proof of Theorem 5

of two column vectors ofM| components. Thus, (53) can be Consequently
written as
. o M=l N
Ki(2)0*(2) = Hi(2)G(2),  fori=0,..., M —1. 112 = || = 3 o
=0

If H(z) = 0, then (53) holds, and we have a degenerated M1 2
LP tight frame sincee = 0, d = gz for all z. Otherwise, = Z Z ‘<f7 1/;1(‘>n>
there exists a polyphase componéht z) # 0, which implies i=0 nezd

G(z) = [Ki(2)/Hi(2)|H*(2) = a(z)H*(z). Substituting this

i which proves the tight frame condition fo¥;. The result for
back to (53), it becomes

L?(R?) immediately follows since the MRA conditions implies
o(2)a(x™ 1" (2)H(2) 2B (2)H (=) that
= [a(z) + a(z7Y) — 1JH*(2)H(z). (54) (R = Pw,
Jjez

SinceH (z) # 0, it can be shown that(z) has arightinverse N Y
H(z) such thati(z)H(z) = 1. Multiplying both sides of (54) which is a decomposition oL*(R%) into mutual orthogonal
with *(z) on the left and(z) on the right and noting that Subspaces.
G(z) = a(2)H*(2), we have equivalentlg*(2)G(z) = a(z) + 2) For Part 2, the first statement is the multivariate Strang—Fix
a(z7l) — 1. conditions (see, for example, [38]). The second statement comes

from the facts)() (t) € Wy andW, L V.

B. Proof of Theorem 3

1) The transform matrix for the reconstruction algorithm in ACKNOWLEDGMENT

Fig. 3 can be written as The authors would like to thank Prof. M. Unser, Dr. V. Goyal,
and J. Zhou for their helpful comments and suggestions.
So=(G I—GH). (55)
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