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Regularity-Constrained Pre- and Post-Filtering for
Block DCT-Based Systems
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Abstract—t is well known that the traditional block transform  coefficients turns a ramp-like gradient signal such as a shading
can only have at most one degree of regularity. In other words, by region in portrait photographs or a smooth blue sky in landscape
retaining only one subband, these transforms, including the pop- photographs into a piece-wise constant signal. This problem
ular discrete cosine transform (DCT), can only capture the con- . o .
stant signal. The ability to capture polynomials of higher orders is §tems from a lack of regularity—it is well known that the trad!-
critical in smooth signal approximation, minimizing blocking ef-  tional block DCT can only have at most one degree of regularity.
fects. This paper presents the theory, design, and fast implemen- In other words, by retaining only DC coefficients, the transform
tation of rf—;gularity constrained pre-/post-filters .fOI‘ block-based. can only capture the constant signal. The ability to capture poly-
decomposition systems. We demonstrate that simple pre-/post-fil- 3o mia|s of higher orders is critical in smooth signal approxima-

tering modules added to the current block-based infrastructure fi leviating blocki tifacts in si | tructi
can help the block transform capture not only the constant signal lon, alleviaing blocking artiracts in signal reconstructon.

but the ramp signal as well. Moreover, our proposed framework [N this paper, we demonstrate that simple pre- and post-fil-
can be used to generate various fast symmetrigZ-band wavelets tering modules added along the block boundaries of the cur-
with up to two degrees of regularity. rent block DCT infrastructure can help the transform capture
Index Terms—DCT, M-band wavelets, linear-phase fil- Not only the constant signal but the ramp signal as well. The
terbanks, pre/post-filtering, pre-/post-processing, regularity, pre- and post-filtering framework is illustrated in Fig. 1 [3].
vanishing moments. The pre-filterP processes the block boundaries, extracting in-
terblock correlation. The pre-processed samples are then fed to
the DCT to be transformed and encoded as usual. On the de-
. ) ) coder sideP~! serves as the post-filter, matching the signal
T HE block-dicrete cosine transform (DCT) coding framefyom two sides of the block boundaries and eliminating blocking
work plays an important role in most image and videgtifacts. Generally;P, P~} can be any invertible matrix pair.
coding standards [1], [2]. In this coding framework, the inpytiowever, in most visual applications, linear phase is highly pre-
signal is partitioned into small local blocks of si2é, each of ferred. In other words, it is desirable to have symmetric/anti-
which is decorrelated by tha/-point DCT and then encodedsymmetric basis functions. Given the linear-phase DCT basis
by various quantization and entropy coding techniques. Thgction, the particular proposed form B not only guaran-
block DCT coding framework does offer numerous advantagggeg symmetry but also reduces the design complexity. From
fast-computable DCT algorithms; small on-board memofyy 1 it is easy to see that the designRboils down to the
requirement; parallel processing capability; flexibility; an@jesign of a smaller size matri. Unlike the previous pre- and
adaptability on the block level, e.g., coding mode can bgsst-filtering approaches, the pre and post-filters here are inti-
selected on a block-by-block basis. Besides, there has b@efely related. In fact, they are the exact inverse of each other,
a tremendous number of software/hardware investments gy together with the existing block DCT, they form a general
block-based infrastructures over the last 20 years. It is a chglpck-based signal decomposition with arbitrary-length over-
lenge to improve the coding efficiency as well as reconstructiggping windows. Our focus in this paper is on the various prop-
quality, yet keep the existing infrastructures intact or minimizgties and designs of the one-stage pre and post-filter depicted in
the required modifications. Fig. 1(a) and (b). The proposed regularity-constrained pre and
Two major drawbacks of this block-based approach are thiist-filters are also shown to be capable of generating various
interblock correlation has been virtually ignored at the encodesgt symmetric\/-band wavelets with up to two vanishing mo-
and reconstruction mismatch after aggressive quantizationyjants and support up to leng2fi/.
low bit-rate situation creates annoying blocking artifacts at the The organization of the paper is as follows. In Section I,
decoder. Blocking artifacts are particularly prominentin smoothe offer a brief review of background materials: notations,
slowly changing regions of the signal. A typical example is thabnyentions, pre-/post-filtering, the filterbank connection, reg-
the staircase effect, where quantization of the AC of the DCGlfiarity, vanishing moments, ant-band wavelets. Section Il
addresses the imposition of various regularity constraints onto

. . _ the pre and post-filters to help the DCT capture polynomials
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Fig. 1. Global viewpoint of pre-/post-filtering at block boundaries for (a) even block size; (b) odd block size; (c) general structure with meshustgiltering

stages.

is conducted in Section VII to confirm the validity of the theory)-point type-IV IDCT matrix C1V", the identity matrixI,
the reversal matrixd (I flipped left-right), the null matrix0,

and final conclusions are drawn in Section VIII.

Il BACKGROUND the column unity vectomn = [1 1 --- 1]7, theTramp
' vector of sizeN with slope 1:r = [1 2 --- N]J, the
A. Notations and Conventions ramp vector of sizeN with odd-valued samples and slope
Bold-faced upper-case characters denote matrices, widleq = [1 3 --- 2N — 1]T, and the column vector
bold-faced lower-case characters denote vectors. The symhwith all entries being zero, except the first entry being unity
AT and A~ denote the transpose and the inverse of the=[1 0 --- 0]".We denote the flooring function afas

matrix A, respectively. Several reserved symbols are thje], i.e., the largest integer less than or equat to

M-point type-Il DCT matrixC%!, the M-point type-IV DCT

In most cases, the size of matrices and vectorsu,e.,q, e

matrix CIV, the M-point type-ll IDCT matrix CII', the can be readily determined from the context. Ifitis not clear from
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Fig. 2. Polyphase representation of the pre-/post-filtering framework. (a) Even block size. (b) Odd block size.

the context, uppercase subscripts are added to indicate the aizethe permuted advanced chains, and they play the central
of the matrices or vectors. Lower-case subscripts are reservel® in the time-domain pre-/post-processing across block

for indexing purpose. boundaries. It can be easily verified that the determinant of
) _ the polyphase matrif(z) in (2) and (3) is a monomial, i.e.,
B. Filterbank Connection |E(z)] = 2", n € Z; hence, one can obtain FIR perfect

An equivalent representation of the pre-/post-filtering framéeconstruction by simply choosinB.(z) = E~!(z) [4]-[6].
work in Fig. 1 is shown in Fig. 2, which can be interpreted as thehe z-transforms of the analysis filters and synthesis filters in
polyphase implementation of aW-band uniform filterbank. matrix notation are
The pre-filtering operataP consists of two stages of butterflies

and a matrixV between them [Ho(z) Hi(z) -+ Hu-a(2)]"
_ M .. SM-11T
Pé;H JIHI 3] H JI] @ “E(M)[1 2 M1
2 -1]10 - [Fo(z) Fi(z) -+ Fu-1(2)]
The corresponding polyphase matrix for even block size is =[1 2zt ... 27D R (ZM)

A ~IT
Ecven(#)=Chs Acven(2)P respectively. The structure of the pre-fil#érin (1) ensures that

=c!! { 0 I} all analysis and synthesis filters have linear phase, which is a
210 desirable feature in image and video processing applications.
1 [I J } [I 0 ] [I J } @ Since every component i(z) is paraunitary except the free

21J -Ij|0 V||J -I parameter matri®, if V is chosen orthogonaM~! = V7T),
whereas the polyphase matrix for odd block size is we have an orthogonal solution. In this caBe,' = P” and
N R(z) = ET(271). Otherwise, ifV is only invertible, we have a
Eoqd(2)=CJ[Acda(2)P’ biorthogonal solution. The matri¥ holds all of the degrees of
_clt {0((1\/”1)/2)“(1\,1_1)/2) Lar41y)2 } freedom in this structure_, th_us controlling the performance and
M 2Lar—1y/2 O((M—1)/2)x ((M+1)/2) prope_rtles of pre-(post-ﬂlterlng. o
Poaroy)  Oar_1yx1 At first glance, it seems that the framework in Fig. 1(a) can
X |:01><(1\/[—1) 1 } . () only generate filter§ H, (), F;(z)} of length 21, whereas the
Here framework in Fig. 1(b) can only generate filters of lengthA2
1). However, by controllingv properly, we can also obtain fil-
A (z)é [ 0 I} ters of shorter support. For example Mf = I, thenP = T,
even 2I 0 and the entire structure degenerates to the familiar block-based
DCT. If V takes the form of
and
Aodd(z)é |:0((]\J+1)/2)><((]\J—1)/2) Lars1y)2 V= Vinxn Onx|(M—2N)/2)
2Lar-1)/2 0((ar-1)/2)x((M41)/2) 0\ (ar—2ny2ixn Lj(m—2ny /2
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then the resulting filter length i3/ + 2NV, where0 < N < Theorem 2: (Equivalent Characterizations{df ., K, }-Reg-
| M/2]. To obtain filters with longer support, more pre-/postular Biorthogonal M-Band Filters) [8]: In an M-band
filtering stages are required. Each processing stage workshatrthogonal filterbank, the analysis scaling filté&f,(z) is
the boundary of the previous stage as illustrated in Fig. 1(&,-regular, and the synthesis scaling fili&y(z) is Ks-regular
The same symmetry constraint as in (1) can be added to thend only if the following equivalent statements are true.

building block P; if linear phase filters are desired. The ma- 1) All moments up to ordeK, — 1 of the M — 1 analysis
tricesV;’s in differentP; stages are not necessarily the same.  \yavelet filters are zeros, .6, n* hi[n] =0, fork =

They can be optimized to achieve optimal performance for spe- ¢ 1,.. ., (K, —1)and fori = 1,2,...,(M —1). All
cific applications. moments up to ordek, — 1 of the M — 1 synthesis

_ . wavelet filters are zeros, i.€}, n* fi[n] = 0, fork =
C. Review of Regularity 0,1,...,(K, —1)andfori=1,2,...,M — 1.

A recursive cascade of the previously mentiongdband 2) The frequency response of the analysis scaling filter has
decomposition on the lowpass channel output can generate @ zero of ordei, at theMth root of unityw = 2kw /M
M-band wavelets. Smoothness of the resulting continuous-time ~ for & = 1,2,..., M — 1. The frequency response of the
scaling functiony(t) and the wavelet function(t) is crucial in synthesis scaling filter has a zero of ordéy at theMth
signal approximation and interpolation. In this section, we shall ~ root of unityw = 2k /M fork =1,2,...,M — 1.
follow the wavelet community’s definition of regularity, which ~ 3) All polynomial sequences up to degre€,(— 1) can be
is a loose measure of the smoothness of the scaling filter. We ~expressed as a linear combination/d¥integer-shifted
also review several important results regarding the regularity ~ analysis scaling filters. On the other hand, all polynomial
of M-band orthogonal and biorthogonal filterbanks. First, the =~ sequences up to degréé, — 1 can be expressed as a
Fourier transforms of the analysis and synthesis scaling and linear combination of\/-integer-shifted synthesis scaling

wavelet functionss(t) andsy(t), forl = 1,2,..., M — 1, are filters.
defined as The concept of polynomial sequence capturing and represen-
oo 1 w tation is the direct method we pursue when enforcing more van-
= H {_ G } ishing moments on the synthesis filters.
e LV
_ ﬁ {L L ] 1. REGULARITY CONSTRAINTS FORPRE/POST-FILTERING
VM \M* . , ,
k=1 As previously mentioned, the filterbank generated
1 > w by the one stage of pre-/post-filtering in Fig. 2 has
Va(w) = ( ) I1 L/——HU (W)} a filter length up to 2/. According to the Defini-
C: tion 1, a K-regular M-band scaling filter has the form
1 w 1 w Ho(z) = [(1+2 4 42~ M-D/ANEQ(z). The filter
Wsi(@) _\/—MFI (M) kl:[Q [\/—MF (W)] ' Ien;t%L s[rfould satisfy, > K(M —/ 1))]+ l(w)ith equality
- when Q(z) is a constant. Thusk < L—-1/(M —1) <
Definition 1: The lowpass filteto (=) is said to be &-reg- (20 —1)/(M —1) < 2 + 1/(M —1). WhenM = 2, a
ular M-band scaling filter if it can be written in the form of 3.reqular 2-bank 4-tap filter bank is a possibility. However,
Hy(z) = [(1+ 27" 4 -+ 4 27 M=DANEQ(2) [7]. whenM > 2 andL < 2M, we can only expect to have at

Definition 2: An M band biorthogonal filterbank is saidmost two vanishing moments, implying three possibilities:
to be {K,, K }-regular if the analysis lowpass filtdio(z) is  {1,2}-regularity, {2, 1}-regularity, and{2, 2}-regularity. This
K,-regular and the synthesis lowpass filtex(z) is Ks-regular can be summarized as Proposition 1.

[8]. Proposition 1: An M-channel 2/-tap filterbank has a max-

Theorem 1: (Equivalent Characterizations6fRegular Or- - imum number of two vanishing moments whih > 2.
thogonalM-Band Filters) [7], [9]: In an M-band orthogonal  |f higher degrees of regularity are desired, we need to cascade
filterbank, the scaling filter ig<-regular, hads" degree of regu- more pre- and post-filtering stages, as shown in Fig. 1(c).
larity, or hasK vanishing moments if and only if the following  Consider the block DCT coding framework in Fig. 2.

equivalent statements are true. Let M denote the DCT block size. Notice that the
1) AllmomentsuptoordeK —1 ofthe M —1 waveletfilters M-point DCT is a 1-regular orthogonalM-band M-tap
are zeros, i.e)., n* h;[n] =0,fork =0,1,...,(K — filterbank with unitary scaling filterHo(z) = Fy(z) =
1)andfori =1,2,..., M — 1. 14z 4+ 4 2= M=D)/\/M (here, Q(z) is chosen as

2) The frequency response of the scaling filter has a zeyd\).The original problem statement is simplified to the
of order K at the Mth root of unityw = 2kx/M for following: Design the pre-filterP and the post-filterP—!
k=1,2,...,M — 1. such that the resulting combined decomposition obtains the

3) All polynomial sequences up to degreg€ ¢ 1) can be maximum possible number of vanishing momefif§,, K}.
expressed as a linear combination dfinteger-shifted In other words, given the input as a polynomial sequence
scaling filters. All polynomials of degree upt&(—1) can of a particular order, desigl® and P! such that the DC
be expressed as a linear combination of integer-shiftedefficients of the DCT capture all of the input energy. For this
scaling functions. purpose, the first equivalent characterization in Theorems 1 and
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2 turn out to be both intuitive and effective. The characterizati@ven andH(z) = a[(1 4+ 2z~ + --- + 2= M=D/M)]? for M

can be interpreted as polynomial capturing and polynomiatid.
rejection. Since>_, n* hin] = 0fori = 1,2,...,(M — 1),

Theorem 4: The pre-filterP produces a 2-regular synthesis

the polynomial input is rejected by all AC coefficients, and iscaling filter if and only ifVq = Mu. Analogously, the post-
can be solely captured in the DC coefficients. Since the matfiker P~! produces a 2-regular analysis scaling filter if and only

V contains all free parameters of pre-/post-filtering, we expeiétV —
Proof:

to be able to express every regularity condition in term of this
crucial matrix. a)

A. 1-Regular Condition

For convenience, denote,, as the input sequence to each
pre-filterP, x,,, as the resulting preprocessed sequenceygnd
as the input to each DCT block.

Lemma 1: The pre-/post-filter produces/d, (K,)-regular,
K., K, > 1, analysis (synthesis) scaling filter if and only if it
can map all polynomial sequences up to dedtee- 1 (K, — 1)
into a piece-wise constant signal, or, equivalently, the input to
each block DCT is constant.

Proof: Accordingto Theorem 2, all polynomial sequences
up to degred(, — 1 can be captured by the analysis scaling filter
and rejected by the analysis wavelet filters. From Fig. 1, this
means that the output of each block DCT is zero, except the DC
coefficient. Since théd/-point DCT has one vanishing moment,
it can capture only the constant sequence; thus, the block input
to the M-point forward DCT should be a piece-wise constant

sequence.
By changing roles of®, P~') and (X,, K,), we can obtain
the same result for the synthesis bank. [ |

Lemma 2: The pre-filterP is a mirror mapping operator for
constant sequences, i.Pu = u.
Proof:

Pu:;{l JHI 0} [I J}u
21J -I{|0 V||J -I
I JV Upr/2
SERIIEHES .

Note that Lemma 2 holds, regardless of the choic¥ of his
resultis quite intuitive from Fig. 1(a) and (b). When the inputis a
constant sequence, after the butterfly, the differences of the inpu
are zeros, renderiny insignificant. As long as the pre-filter
has this particular structure, the mirror propertyPofloes not
depend orV. Next, since the post-filteP ~! also has the same
structure, we hav® ~'u = u as well asP~7Tu = u. Lemmas
1 and 2 readily establish the following 1-regular condition.

Theorem 3:The pre-/post-filter always produces analysis
(synthesis) scaling filter with at least one vanishing moment,

regardless of the choice &f.
Proof. Refer to Fig. 1(a)—(b). Suppose that the ingtis

Tq = Mu.

WhenM is even, the size of the pre-filt& is M x M,
and the size oV is M /2 x M /2. Consider two connected
input sequences$x,,,, X»+1}, which form a continuous
rampx, = [1 2 M|" = ry andx,q; =
[M+1 M+2 2M " = Muys+ry. The sig-
nals after preprocessing akg, = Px,, andX,,+1 =
Px,,+1, respectively

T J I oI J

J —I} {0 V} [J —I}W
1 JV} [(M—i—l)u]

|J -V —q

(M + l)u—JVq}

| (M +1)u+Vq |’

Xm+1 =P (MllM + I‘]\/[) = Muyp; + Pry,

1[(M+1)u-JVq
—Muy + - .
tt g [ (M +1)u+Vq
Therefore, the input to the DCT is
Vo = [0M/2 Inr2 Oy 01»1/2} [ Xom }
" Orrs2 Onrzz Tarze Ongja | | Xemgn

_1 (M+1u+Vq

2 {(31\4 +1)u-— qu} '

The input signal can be completely captured by the low-
pass subband or the DC coefficient if and onlyijf, is

a constant sequence, implying tfédg must be a con-
stant signal, i.e.Vq = Su, whereS is a certain scalar.
Thus,(M + 1)u+ Vq = (3M + 1)u — JVq <=
M+1+S)u=BM+1-Su<= S =M, and
Vq = Mu.

b) When) is odd, the input sequences to the pre-filRer

arex,, = [1 2 M—l]T = TM—1, Xjm+1 =
[M+1 M+2 oM — 11" = Mu + ry_1,
Xpy2 = [2M+1 2M +2 M -1 =

2Mu + rp_q, etc. The size of the pre-filte®®
is (M — 1) x (M — 1), and the size ofV is
(M —-1)/2x (M -1)/2.

The outputs of pre-filteP are

. 1[1 J7[1 o][1 3
Xm =513 _1||lo Vv||J —1|™

a constant sequence. Since the pre-fiRels a mirror operator 171 3V Mu 1 [ Mu—JVq
according to Lemma 2, the input to the block DCT is also a =3 {J —V} { _q} =3 [ Mu + Vq }
constant sequence. From the result established in Lemma 1, the |

scaling filter has at least one vanishing moment. ] Xmg1 =P (Mups 141y 1) = Mupy, 1 +Pry g
B. 2-Regular Condition M=1T o Mu+Vq |

In this paper, we only discuss filterbanks produced by
one stage of pre-/post-filtering. Therefore, the scaling
filter can only take the following forms:Hg(z)
(1 + 27" + - + 2=M=D/MD%(a + az™') for M

The input to the DCT is shown in the equation at the
bottom of the next page. The synthesis filter is 2-regular if
and only ify,, is a constant sequence, thatisu+Vq =
2Mu = 3Mu - JVq < Vq = Mu.
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¢) Switching the role of the analysis and synthesis bank, we TABLE |

: : _ MMARY OF THE NECESSARY AND SUFFICIENT CONDITIONS FORREGULAR
can e"",s"Y eStati“fh the analOgous result for a 2 regul:§f" M -BAND FILTERBANKS PRODUCED BY PRE/POSTFILTERING
analysis filter:-V—*q = Mu.

Regularity Orthogonal Biorthogonal
; {1,1} any orthogonal V' | any invertible V
C. Orthogonal Solution {12} impossible Vaq = Mu
Recall that we have orthogonal pre-/post-filter if {iie /2] x {2,1} impossible v-Tq :.bji/l u
| M /2] matrix V is orthogonal, i.e.V~! = V. In this case, ﬁg% i”m‘gg:igiz V2 M=2
the analysis and synthesis scaling filters will have the same num- (3.1} impossible V= %’, M =2

bers of vanishing moments. Due to the strict orthogonal con-

straint, we can only obtain at most{&, 1}-regular orthogonal

M-band system with one stage of pre-/post-filtering. 25 in the orthogonal case
Theorem 5: The pre-filterP and the post-filteP ~! can only ) gon - ,

produce an orthogona¥/-band system with at most one van- Theorem 6: It is impossible for the pre-filteP and the post-

ishing moment filter P—! to produce a biorthogond2, 2}-regular M -band

Proof: Suppose that there exists a-band orthogonal syStePT(;of' Since we need to impose two vanishing moments
filterbank produced byP and P! with two vanishing mo- ' b g

ments. Then, according to Theorem 4, the orthogonal mi&trix 2" bot_h banks,_ anonsingular matN&shouIEJTsaUsfy both O.f the
. . . . following requirementsVq = Mu andV—*q = Mu. Sim-
must satisfy the regularity constraiMq = Mu, or, equiva- . . -
T T . L ilarly, we obtain the same contradiction when the DCT block
lently,q” V* = Mu*. Of course M is a positive integer larger _. o1 T o T 9
L : sizeM > 2:q?V~1IVq =qlq = M?utu = M?|M/2|.
than unity, i.e.,M > 2. In this case . N . .
To summarize, the{1,1}-regular condition is automati-
o T - , | M cally satisfied for any invertible matriv. The {1,2}- or
q V' Vgq=M"uw'u=qq=M {7J {2, 1}-regular condition is possible if and only if the regularity
constraintVq = u or V-Tq = u is satisfied, respectively.
M The {2, 2}-regular condition is not achievable. Whé# = 2,
2 we have the only triviak1,3} or {3,1}-regular system with
9 V = [2] or V = [1/2]. These results are tabulated in Table I.
:>1 {%J 4 {%J —1) = Mm? {MJ . (4) Inpractice, we expect smoother basis functions in the synthesis
312 2 2 bank. Therefore, in general, we prefét, 2}-regularity over
{2,1}-regularity.

pre-/post-filtering. This can be explained in a similar fashion

1M/2]
= ) (2i-1)7=M
=1

On the other hand, we also have

9 IV. FAST IMPLEMENTATIONS OF REGULAR
1{% (4 {MJ _1> <M - @w PRE- AND POSTFILTER
312 2 -

—(M?*-1)
0 5 2 The free-parameter matri can be modeled using the LDU
<MM(M —-1) < M2 {MJ (5) decomposition. The upper triangular matfix and the lower
triangular matrixL. are constructed by cascading lifting steps.
However, modeling the matri¥ as described above leads to a
computational overhead in the order@fM?) multiplications
and additions comparing to the complexity of the DCT without
pre-/post-processing. To further reduce the complexity of the
pre- and post-filter, several simplified models Mrproviding
significant computational saving while maintaining coding per-
In a biorthogonal filterbank, the number of analysis anfbrmance have been proposed [10]. Two of such models are
synthesis vanishing moments can be different. In this sectiatgpicted in Fig. 3. Following [10], we label the corresponding
we will show that although &1, 2}-regular or a{2, 1}-regular preprocessing operators the type-Ill and the type-IV pre-filter,
system is possible, it is still impossible to desigfi2a2}-reg- respectively. Note that whel < 4, the type-Ill and -1V pre-
ular biorthogonalM-band wavelet with only one stage offilter are equivalent.

which is contradictory to (4). Therefore, a matik that can
produce a 2-regular orthogon&él-band system does not exist.

D. Biorthogonal Solution

O(rr—1y/2 Lv-12 Omr—1y2x1 Ou—1),2 Onr—1/2 Xm
Ym = | Oixr—1)/2 O1x(ar—1)/2 1 O1x(a—1)72 O1x(ar—1)/2 M
Or—1)/2 Onr—12  Or—ny2x1 Lovr—1y)2 Or—1)2 Xm+1
Mu+Vq
== 2M

3Mu—-JVq
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C. Integer/Rational Implementation

% lp“ TU“ i lp" TU“ If the DCT is replaced by its integer approximations such as
A2 P l"' T Yi s, 1"' T”' the binDCT [11], therV dictates the rational or integer prop-

Snz Sxva erty of the entire system since every other component already

Sas 1PMIUM St *’"-Zl Ium has integer coefficients. If all lifting steps as well as the diagonal

scaling factors in Fig. 3 are chosen to be rational, then we have
a complete system (both analysis and synthesis) with rational
Fig. 3. Two lifting-based simplified models for the matk. (a) Type-lll  coefficients. Moreover, if these parameters are chosen to be

() (b)

model. (b) Type-IV model. dyadic, then we have an integer-coefficient analysis bank. The
key to achieving integer-coefficient synthesis bank lies in the in-
A. Type-lll Fast Implementation version of the diagonal scaling factdfs Table Il tabulates sev-

eral examples of parameter s¢f3, U;, S;} of the type-IIl and

-IV dyadic rational M -band wavelets. All listed coding gains

are computed with an AR(1) signal moget= 0.95. Many more
ddesign examples can be found in Section V.

In this simplified model, the| M /2| x |M/2] matrix V
has three sets of parameters to be determihkt}:2| diagonal
scaling factorq S;}, | M/2] — 1 predict lifting stepg P; }, and
| M /2] — 1 update lifting stepgU, }. Those parameters shoul
also satisfy the regularity conditions in Table I. We concentrate
mainly on the 2-regular conditions since it is trivial to achieve
the 1-regular condition. A. Design Process

Proposition 2: The synthesis scaling filtefy[»] constructed  Thjs section presents various filterbank design examples
by the type-Ill pre-filter is 2-regular if and only if the designyja regular-constrained pre-/post-filtering and the block DCT
parameters ifV satisfy the conditions shown at the bottom oframework. We pay most attention to fast implementations and
the page. ) ] rational-coefficientM -band systems. All designs are obtained

_Proof: Letx, y be the inputand output of the linear systenyom the framework portrayed in Fig. 2 and the propositions
V,ie,y = Vx. If V satisfies the 2-regular constraint, themyesented in previous sections. Generally speaking, a reg-

V. DESIGN EXAMPLES

x = qandy = Mu. ular-constrained pre-/post-filter h&s7/2] x (| M /2] —1) free

Fori = 0,yo = Soxo + Uoy1 = M = So + M Up. parameters, whereas an unconstrained solutior( heg'2|)>

Forl <i < |[M/2] —2,y; = Sixi + Pi_1Sic1Xi-1 4+ free parameters. The number of parameters can be reduced to
Uiyiv1 = M = Si(2i +1) + P;_15;1(2i — 1) + U; M. 3|M/2] — 2 when'V is modeled by the lifting structure in

Fori = [M/2] —1,y; = Six; + Pi—1Si-1xi-1 = M = Section IV. In each design example, we convert the regular-con-
(M = 1)S; + (M = 3)S;—1Pi_1. B strained optimization problem into an unconstrained one by

properly choosing regularity constraints developed in previous

B. Type-1V Fast Implementation sections. The unconstrained optimization algorithm used to

Although the lifting structure oV in the type-lll and -IV o_btain all design e>_(ampl_es in this paper is _the Nelder—Mead
pre-/post-filters are different, they both have the same degi@BIPlex search available in Matlab Optimization Toolbox.
of freedom. If the parameters satisfy the 2-regular condition in Since regularity has been robustly built into the pre-/post-
Theorem 4, theiV will produce a {1,2}-regular system. Fol- filter's structure, we only optimize for one criterion in the de-
lowing the same derivation as in Proposition 2, we can obtan Process—transform coding gain [12]-{14]:

the following proposition. N2t
Proposition 3: The synthesis scaling filtefy[] constructed N 1.;0 i
by the type-IV pre-filter is 2-regular if and only if Gre = 10logio 1/N (6)
N-1 o m\Y
(Hi:o ‘71‘2]‘1‘2)
So+ MUy =M

‘ whereo? is the variance of théth subband, ang? is the £?
20+ 1)8i + M (1 = Ui1) Pioy + MU; =M norm of theith synthesis filter. When the transform is orthog-
for 1 =1.2 {MJ _9 onal, the synthesis scalingg drop out of the coding gain equa-
L2 tion. The input signal is assumed to be 4®(1) model with
(M —=1)S|pj2)-1 + M (1 - ULM/QJ_Z) Piarj2)—2 =M. autocorrelation coefficient = 0.95 throughout.

So+ M Uy =M
(Zi + 1)51 +MU; + (Zi — 1)Si_1pi_1 =M for i= 1,2,...

-

(M = 1)S\ay2)—1 + (M = 3)S|ary2)—2Parj2) 2 =M.
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TABLE I
EXAMPLES OF M -BAND WAVELET WITH RATIONAL /INTEGER PARAMETERS
Size Type I So S1 So Ss3 I Py Uo P Uy Py Us I Cg4(A) (dB)
4-band 8-tap III, IV | 5/4 23/16 - - -1/4  11/16 - - - - 8.533
4-band 8-tap III, IV 2 3/2 - - -1/4 1/2 - - - - 8.266
8-band 16-tap v 3/2 19/16 21/16 5/4 -3/8 13/16 -3/16 5/8 -1/8 1/4 9.4898
8-band 16-tap v 3/2  19/16 9/8 17/16 | -3/8 13/16  -3/8 5/8 1/8 7/16 9.4433
Forward binDCT Inverse binDCT .
Xl — oLl ¢ Y[0] se-sooaiiool T -- K(n)
& D 7@ D— —® @ B Dt
z | ] ! s 2
o @ @ 3 o= Loo @ @ n
z 1] V”Y””wz (2] S Erz] E Y3 E [in] 2] _____V_"____ 1] 72t
o -f—e+ o Z Lol =L oL@ +-Lo--1)
VA 5 : ZE : vill E 1 [1id][ua \ z?
' - ' ' — 1] ' |
Lo e & e el — o0

Fig. 4. Four-band 8-tap wavelet with dyadic and rational coefficients.

TABLE Il
COEFFICIENTS OFANALYSIS FILTERS IN THE 4-BAND DESIGN EXAMPLE 1

ho | -365/256  71/256  441/256  877/256 877/256 441/256 71256  -365/256
hi | -083/1024 133/1024 1403/1024 2007/1024 -2007/1024 -1403/1024 -133/1024 983/1024
ho | -141/512  -89/512  601/512  -371/512  -371/512 601/512  -89/512 -141/512
hs | -29/512 -169/512  681/512  -995/512 995/512  -681/512  169/512  29/512

B. {1,2}-Regular 4-Band 8-Tap Filterbank E. {1,2}-Regular Odd-Band Filterbank

Fig. 4 presents a 4-band 8-tap {1,2}-regular system with ra- We complete the section with two regular odd-band design
tional-coefficient pre-/post-filtering and the binDCT [11] as thexamples. Fig. 8 shows a biorthogonal 5-band 9-tap filterbank
block transform. The parameters used in construddrage tab- constructed via the 5-point DCT and 4-point pre-/post-filtering.
ulated in the second row of Table Il. The coefficients of th&he 3-band rational-coefficient design example whose detailed
analysis filtersh;[n] are listed in Table Ill. Because of the in-lattice structure is illustrated in Fig. 9 is constructed from a
version of the diagonal scalars in the post-filter, the coefficien®spoint binDCT and the 2-point pre-filter with = [3].
of the synthesis filters are rational instead of dyadic. Generally,
it is difficult to make both banks dyadic while maintain good VI. OBSERVATION
coding gain (the diagonal scaling factgyrhas to be pure POWErS n bra. and Post-filtering Effects
of two). The normalized frequency responses of the filters are
shown in Fig. 5. The smoothness in the synthesis bank is evidentt IS interesting to observe how pre- and post-filtering modify

from the synthesis scaling and wavelet function. the signals in time domain. In Fig. 10, the solid line indicates
the original signal, and the dotted line indicates the signal after
C. {1,2}-Regular 8-Band 16-Tap Filterbank pre-filtering. We can clearly observe the difference between the

) ) pre-filtering effects from a regular-constraindd and an or-
Fig. 6 presents an 8-band 16-tap {1,2}-regular design eg;,40na| closed-form, yet nonregulaf, suggested in [3]V =
ample under the fast type-Ill regular constraints in Propositi

¥l IV 3. The 2-regular constrained matiX maps the
. . . - M/2 M/2 . .
2. The parameters used in the constructiori/oére listed in ramp'into piece-wise constant sequences of sizevhereas the

t_he fourth row of Table Il. Fig. 6 alsc_) ShOW_S th? ZEro dis_tribl{]nconstrained matri¥ does not, confirming our previous re-
tion of the ar_1aIyS|s_ and_ the synthesis scaling filter, conﬂrmmg\jlts in Lemmas 1 and 2. The advantage of regular pre-/post-fil-
tha;[ synthesis scalllrg Elter ?as.exa]tcctly threg zeroﬁ a:: -1 tering is clear—after discarding all AC DCT coefficients, we
an tV\.IO zeros at all other aliasing lrequencies. This is CONSEN still reconstruct the ramp signal perfectly (except at the
tent with the factlthat the syr;theszls scallnglfllter _has.the formo boundaries) with thé1, 2}-regular post-filter, whereas the
g’O]EZ) — [(1f+ 28 b+ .c.1l.2+ z I)/g] (al'+ afzfl ), whichis the {1,1}-regular post-filter still exhibits a fair amount of blocking

efinition ot an 8-band 2-regular scaling fiter. artifacts. In any case, pre-/post-filtering clearly improve the tra-

) ditional block DCT, which yields a perfect stair-case in this toy

D. {1,2}-Regular 16-Band 32-Tap Filterbank experiment.

Systems with large number of channels can be designed afig. 11 demonstrates the pre-filtering effect on the 586
easily using the general constrai¥iy = Mu. Fig. 7 shows gray-scaleSlopeimage. The pre-filter tries to flatten each
a 16-band {1,2}-regular design example whose coding gainiigut block to the DCT as much as possible, hence improving
9.9364 dB. the coding efficiency. Since interblock correlation has been
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Fig. 5. Design example 1: {1,2} regular 4-band 8-tap filterbank with 4-point binDCT. Top row from left to right: normalized frequency and timeesespiires
analysis filters (coding gain: 8.544 dB), normalized frequency and time responses of the synthesis filters. Bottom row from left to right:catialy$isstion
¢ (t), first analysis wavelet functiof{ (t), synthesis scaling functiof®(t), and first synthesis wavelet functiaff (¢).

Magniude Resyionse ()

DC AR >=322.1021 8 Siopban At >= 75471 8 Cod Gein = 9.4808 &8
T T T T T T

M’
Hi

ot T
“,?Mv

L

. 1
0y

[
H

Pt

bt

e
'H“H

"ua

fe

sty

o8
osf
04t o
o2f
g5
02t
04} o
06}

08

L
05

L
1

s
15

DC At > 28 1227 0B Stophand At >= 13,8909 (8 Corl. Gain = 7.8993 &8
T T T T T T T

it e )
6 P

EEEEARRRRREEET

“"""'ug“gﬂ"

(AR} fhe,,,

HLA! L]
o .H

0y |

RN
L

QL!

°°A°'o!”§o?'5°i

sttty 0 e
""yl'oe?lvu°°u
* Nomcafremeny o"n’érsvt*en.,n
1 ] (g
08 : -
g 3
06l .
04f
02}
0] 6 ))5
-02 :
-0.4
-06
3 P
-08 _
-1 @
-1 o5 o os 1

Fig. 6. Design example 2: {1,2} regular 8-band 16-tap filterbank. Top row from left to right: normalized frequency and time responses of theilteralysis f
(coding gain: 9.4898 dB), normalized frequency and time responses of the synthesis filters. Bottom row from left to right: zeros of the anatyfiteséali
and zeros of the synthesis scaling filtgr.

extracted in this process, the pre-filtered image becomes veng-filter perfectly flattens each DCT input block, turning the

blocky. For gradient-type signals, our regular-constrainédput image into a chess-board.
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Fig. 7. Design Example 3: {1,2} regular 16-band 32-tap filterbank. Top row from left to right: normalized frequency and time responses of théilearalysis
(coding gain: 9.9364 dB), normalized frequency and time responses of the synthesis filters.
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Fig. 8. Design example 4: {1,2}-regular 5-band 9-tap filterbank. Top row from left to right: normalized frequency and time responses of theikedysis f
(coding gain: 8.5868 dB), normalized frequency and time responses of the synthesis filters. Bottom row, from left to right: analysis scalingf(nctfiost
analysis wavelet functiofb{ (t), synthesis scaling functiop*(t), and first synthesis wavelet functiai (¢).
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Fig. 9. Detailed lattice structure of a regular 3-band 5-tap filterbank with rational coefficients.
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Fig. 10. Comparison between {1,2}-regular and {1,1}-regular pre- and post-filtering in the processing of a ramp signal. From left to rightepeingreffect
of a {1,2}-regular pre-filter and a {1,1}-regular pre-filter; reconstructed ramps from DC coefficients only.

TABLE IV
COMPARISON OFOBJECTIVE CODING RESULTS(PSNRIN DECIBELS)
Comp.Ratio DCT | with pre/post DCT | with pre/post
i Goldhill (512 x 512) Barbara (512 x 512)
1:8 34.36 34.64 33.05 34.11
1:16 31.45 31.72 27.78 29.06
1:32 28.33 28.85 24.34 25.00
1:64 24.07 24.50 B 19.20
Woman (2048 x 2560) Bike (2048 x 2560)
) ) » ) 1:8 34.44 34.19 34.17 33.72
Fig. 11. Effects of {1,2}-regular preprocessing. Left: origirglbpeimage. 1- 16 3055 30.67 30.13 90.09
Right: after {1,2}-regular pre-filtering. 1. 39 37,08 5717 26.29 36.95
1:64 22.75 21.32 - 20.25
Cafe (2048 x 2560) Boat (512 x 512)
s e 1:8 28.52 28.50 36.46 36.60
PP 1:16 24.36 24.55 32.25 32.67
- 1:32 20.73 21.00 28.13 28.58
@ 1: 64 - 15.59 23.66 23.96
4 . 4
(1,31 -
. 2 _ - C. {1, 3}-Regular Biorthogonal Spline Wavelet
P When setting/ = 2 andV = [2], the pre-/post-filtering
- framework generates the following polyphase matrix:
0 2 4 0 2 4 6
(a) (b) - - -
171 1 0 1
Fig. 12. Geometric interpretation of the regularity-constrained mapping \/§ _1 —1_ | Z 0_
operatorV. (a) Two-dimensional mapping for block DCT of size 4. (b) Three- 171 1 10 1 1
dimensional mapping for block DCT of size 6. X =
2|1 —-1]]10 2]|1 -1
. . I [t 1]]o 1]
B. Geometric Interpretation =—
V2|1 —1]]z 0]
The 2-regular constraint also has interesting geometric 173 —1]
meaning. Fory = V x, we have||x||? = x¥x and 5121 3
lyl? = y'y = xTVTVx. If V is orthogonal, then /3 - y
ll¥ll = |Ix||. In our 2-regular constraint, we havwe = q _VZ2|-1+3z 3- z} 7
andy = Mu. Since the norm ofj is less than the norm of 4 [-1-32z 3+=

Mu, V' cannot be an orthogonal matrix. In other words, Wgich, yields the scaled versions of thg/4 biorthogonal
need a nonorthogonal matriX to compensate for the normquadratic spline scaling filters

of the rampq. This means that only one of the following

can hold:i) orthogonality andi) 2-regularity. For example, (2) = — 1 n 3, n 32 13

when the block size is 4V should map vectof1 3]" of 0 4 4 4 4

norm /10 into vector[4 4]" of norm v/32. For a block _ <1 +z> <—1 +4z — z2>

size of 6,V should map[1 3 5]", which has normy/35 S\ 2 2

into [6 6 6]7, which has normy/108. The geometric 1 3 3 1 14 2-1\3
interpretation is illustrated in Fig. 12. It is quite obvious that Fy(2) 212_3 + 12_2 + Zz_l 17 2 (T) .

cannot be an orthogonal projection operator in this case. This

geometric interpretation offers an alternate intuitive proof thathe synthesis bank has three vanishing moments; however, the
orthogonality and 2-regularity are mutually exclusive wheanalysis has only one. This is the single trivial example that
only one stage of pre-/post-filtering is involved. {1,3}-regularity can be achieved with filter length\2.
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Fig. 13. Image portions at 0.25 b/pixel £3300). From left to right: original image; coded by JPEG; coded by JPEG with the addition of the {1,2}-regular 8-point
pre-/post-filter. From top to bottom: bike at (1656, 1661), goldhill at (211 211), and cafe at (950, 1620).

D. {1,2}-Regular 3-Band Wavelet H(-1+22) =(2-2)
1 1
In the case wher#/ = 3, the degenerated {1,2}-regular con- = ﬁ(_l —22) ﬁ@ +2) 0
straint requireV[1] = [3]. Hence, by settingy = [3], the re- T(-1+22) S=(2-2) —F%
sulting pre-filter is The two corresponding analysis and synthesis scaling filters
_1[1 1”1 0”1 1] are .
201 —1|]0 3||1 -1 Hy(2) =3 (—1+2Z+22+223—Z4)
2 -1 2
= 1
[—1 2 ] :—(%) (132 +22)
which leads to the following polyphase matrix: 1
1 1 1 _ T -1 -2 -3 —4
= 5 5 01 0 9 1 0 Fo(z)—g(l—}-Qz +3277+ 227 +277)
E(z)=|75 0 -0 0 1[[-1 2 o0 L1214 ,-2\2
L2 1 z 0 0 0 0 1 = (f) :
V6 V6 V6
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The synthesis scaling filter has exactly two degrees of regularity
and generates a triangular scaling (first-degree spline) filter. [y

(2]

This section presents a simple image coding experiment,[3]
illustrating the potential application of our proposed regular [4]
pre-/post-filters. The coder chosen is the Joint Photographic
Experts Group’s baseline JPEG coder. The test images ars!
standard 8-bit gray-scale: 5¥2512 Barbara, Goldhill, and [6]
Boat; 2048x 2560 Bike, Cafe, and Woman.

Pre- and post-filtering modules are added outside the standarg ]
JPEG coding framework. The pre-/post-filter chosen for the ex-

VII. 1 MAGE CODING EXPERIMENT

periment is the {1,2}-regular 8-point pre-/post-filter with (8]
0.9454 0.7917 0.4207  0.3680
v — | 05654 08863  0.6731 0.3630 9l
~ | 0.1118 —0.3891 1.1034 0.5055 | °
—0.0312  0.0033 —0.1386 1.2449 [10]

Pre-/post-filtering in 2—-D is implemented in separable fashion.
On the encoder side, since the preprocessing enlarges the dy]
namic range of the data samples, we have to make sure that the
input sample value is within the 8-bit range [0, 255], as mos{2
JPEG implementations require. Hence, pre-filtered samples are
first shifted so that all input samples are non-negative. The
these samples are prequantized to fit into the 8-bit range as the
DCT in JPEG expects. Every option is set to default, except the
quality factor, which is adjusted to control compression ratios! 4
On the decoder side, JPEG-decoded samples are first dequan-
tized and shifted to restore the original dynamic range and thels]
fed into the post-filtering module.

From Table IV, it can be observed that the proposed pre-/posjzg)
filter helps JPEG improve PSNR in most cases. Several recon-
structed image portions from various test images at 1:32 co i7]
pression are depicted in Fig. 13. Subjectively, the combination
of pre-/post-filtering and the block DCT is usually superior at[18]
preserving edges and textures while mitigating blocking arti-
facts. Without the [0, 255] range adjustment and with advanceg g
context based coding, pre-/post-filtering has been shown to im-
prove coding performance much more significantly [15], [16]. [20]

VIIl. CONCLUSION [21]

In this paper, we present the design and fast implementation
of regularity constrained pre and post-filters for block-basecizz]
DCT systems. We show that simple pre-and post-filtering mod-
ules added to the current block-based DCT infrastructure calg3!
help the block transform capture not only the constant signal
but the ramp signal as well. Our proposed framework can bg4]
used to generate various fast symmeireband wavelets with
up to two degrees of regularity. Coding experiments show tha{g 3l
blocking is minimized, whereas edges and textures are better
preserved compared with the traditional JPEG. Currently, wél
have only considered one stage of pre and post-processing. By
adding more stages and extending the support of the pre-/post-
filter, polynomials of higher orders can be captured, leading td?7]
smootherV/-band scaling and wavelet functions. This is a topicy,g,
for future research.
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