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Abstract—It is well known that the traditional block transform
can only have at most one degree of regularity. In other words, by
retaining only one subband, these transforms, including the pop-
ular discrete cosine transform (DCT), can only capture the con-
stant signal. The ability to capture polynomials of higher orders is
critical in smooth signal approximation, minimizing blocking ef-
fects. This paper presents the theory, design, and fast implemen-
tation of regularity constrained pre-/post-filters for block-based
decomposition systems. We demonstrate that simple pre-/post-fil-
tering modules added to the current block-based infrastructure
can help the block transform capture not only the constant signal
but the ramp signal as well. Moreover, our proposed framework
can be used to generate various fast symmetric -band wavelets
with up to two degrees of regularity.

Index Terms—DCT, -band wavelets, linear-phase fil-
terbanks, pre/post-filtering, pre-/post-processing, regularity,
vanishing moments.

I. INTRODUCTION

T HE block-dicrete cosine transform (DCT) coding frame-
work plays an important role in most image and video

coding standards [1], [2]. In this coding framework, the input
signal is partitioned into small local blocks of size, each of
which is decorrelated by the -point DCT and then encoded
by various quantization and entropy coding techniques. The
block DCT coding framework does offer numerous advantages:
fast-computable DCT algorithms; small on-board memory
requirement; parallel processing capability; flexibility; and
adaptability on the block level, e.g., coding mode can be
selected on a block-by-block basis. Besides, there has been
a tremendous number of software/hardware investments on
block-based infrastructures over the last 20 years. It is a chal-
lenge to improve the coding efficiency as well as reconstruction
quality, yet keep the existing infrastructures intact or minimize
the required modifications.

Two major drawbacks of this block-based approach are that
interblock correlation has been virtually ignored at the encoder,
and reconstruction mismatch after aggressive quantization in
low bit-rate situation creates annoying blocking artifacts at the
decoder. Blocking artifacts are particularly prominent in smooth
slowly changing regions of the signal. A typical example is that
the staircase effect, where quantization of the AC of the DCT
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coefficients turns a ramp-like gradient signal such as a shading
region in portrait photographs or a smooth blue sky in landscape
photographs into a piece-wise constant signal. This problem
stems from a lack of regularity—it is well known that the tradi-
tional block DCT can only have at most one degree of regularity.
In other words, by retaining only DC coefficients, the transform
can only capture the constant signal. The ability to capture poly-
nomials of higher orders is critical in smooth signal approxima-
tion, alleviating blocking artifacts in signal reconstruction.

In this paper, we demonstrate that simple pre- and post-fil-
tering modules added along the block boundaries of the cur-
rent block DCT infrastructure can help the transform capture
not only the constant signal but the ramp signal as well. The
pre- and post-filtering framework is illustrated in Fig. 1 [3].
The pre-filter processes the block boundaries, extracting in-
terblock correlation. The pre-processed samples are then fed to
the DCT to be transformed and encoded as usual. On the de-
coder side, serves as the post-filter, matching the signal
from two sides of the block boundaries and eliminating blocking
artifacts. Generally, can be any invertible matrix pair.
However, in most visual applications, linear phase is highly pre-
ferred. In other words, it is desirable to have symmetric/anti-
symmetric basis functions. Given the linear-phase DCT basis
function, the particular proposed form of not only guaran-
tees symmetry but also reduces the design complexity. From
Fig. 1, it is easy to see that the design ofboils down to the
design of a smaller size matrix. Unlike the previous pre- and
post-filtering approaches, the pre and post-filters here are inti-
mately related. In fact, they are the exact inverse of each other,
and together with the existing block DCT, they form a general
block-based signal decomposition with arbitrary-length over-
lapping windows. Our focus in this paper is on the various prop-
erties and designs of the one-stage pre and post-filter depicted in
Fig. 1(a) and (b). The proposed regularity-constrained pre and
post-filters are also shown to be capable of generating various
fast symmetric -band wavelets with up to two vanishing mo-
ments and support up to length .

The organization of the paper is as follows. In Section II,
we offer a brief review of background materials: notations,
conventions, pre-/post-filtering, the filterbank connection, reg-
ularity, vanishing moments, and -band wavelets. Section III
addresses the imposition of various regularity constraints onto
the pre and post-filters to help the DCT capture polynomials
more efficiently. Section IV introduces fast and efficient
pre-/post-filter designs that have the regularity constraints in
the Section III structurally built in. Numerous design examples
are presented in Section V, and several interesting observations
are discussed in Section VI. A simple image coding experiment
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Fig. 1. Global viewpoint of pre-/post-filtering at block boundaries for (a) even block size; (b) odd block size; (c) general structure with multiple pre-/post-filtering
stages.

is conducted in Section VII to confirm the validity of the theory,
and final conclusions are drawn in Section VIII.

II. BACKGROUND

A. Notations and Conventions
Bold-faced upper-case characters denote matrices, while

bold-faced lower-case characters denote vectors. The symbols
and denote the transpose and the inverse of the

matrix , respectively. Several reserved symbols are the
-point type-II DCT matrix , the -point type-IV DCT

matrix , the -point type-II IDCT matrix , the

-point type-IV IDCT matrix , the identity matrix ,
the reversal matrix ( flipped left-right), the null matrix0,
the column unity vector , the ramp
vector of size with slope 1: , the
ramp vector of size with odd-valued samples and slope
2: , and the column vector
with all entries being zero, except the first entry being unity

. We denote the flooring function ofas
, i.e., the largest integer less than or equal to.

In most cases, the size of matrices and vectors, i.e.,, , ,
can be readily determined from the context. If it is not clear from
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Fig. 2. Polyphase representation of the pre-/post-filtering framework. (a) Even block size. (b) Odd block size.

the context, uppercase subscripts are added to indicate the size
of the matrices or vectors. Lower-case subscripts are reserved
for indexing purpose.

B. Filterbank Connection

An equivalent representation of the pre-/post-filtering frame-
work in Fig. 1 is shown in Fig. 2, which can be interpreted as the
polyphase implementation of an -band uniform filterbank.
The pre-filtering operator consists of two stages of butterflies
and a matrix between them

(1)

The corresponding polyphase matrix for even block size is

(2)

whereas the polyphase matrix for odd block size is

(3)

Here

and

are the permuted advanced chains, and they play the central
role in the time-domain pre-/post-processing across block
boundaries. It can be easily verified that the determinant of
the polyphase matrix in (2) and (3) is a monomial, i.e.,

, ; hence, one can obtain FIR perfect
reconstruction by simply choosing [4]–[6].
The -transforms of the analysis filters and synthesis filters in
matrix notation are

respectively. The structure of the pre-filterin (1) ensures that
all analysis and synthesis filters have linear phase, which is a
desirable feature in image and video processing applications.

Since every component in is paraunitary except the free
parameter matrix , if is chosen orthogonal ( ),
we have an orthogonal solution. In this case, and

. Otherwise, if is only invertible, we have a
biorthogonal solution. The matrix holds all of the degrees of
freedom in this structure, thus controlling the performance and
properties of pre-/post-filtering.

At first glance, it seems that the framework in Fig. 1(a) can
only generate filters of length 2 , whereas the
framework in Fig. 1(b) can only generate filters of length (2
). However, by controlling properly, we can also obtain fil-

ters of shorter support. For example, if , then ,
and the entire structure degenerates to the familiar block-based
DCT. If takes the form of
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then the resulting filter length is , where
. To obtain filters with longer support, more pre-/post-

filtering stages are required. Each processing stage works at
the boundary of the previous stage as illustrated in Fig. 1(c).
The same symmetry constraint as in (1) can be added to the
building block if linear phase filters are desired. The ma-
trices ’s in different stages are not necessarily the same.
They can be optimized to achieve optimal performance for spe-
cific applications.

C. Review of Regularity

A recursive cascade of the previously mentioned-band
decomposition on the lowpass channel output can generate

-band wavelets. Smoothness of the resulting continuous-time
scaling function and the wavelet function is crucial in
signal approximation and interpolation. In this section, we shall
follow the wavelet community’s definition of regularity, which
is a loose measure of the smoothness of the scaling filter. We
also review several important results regarding the regularity
of -band orthogonal and biorthogonal filterbanks. First, the
Fourier transforms of the analysis and synthesis scaling and
wavelet functions and , for , are
defined as

Definition 1: The lowpass filter is said to be a -reg-
ular -band scaling filter if it can be written in the form of

[7].
Definition 2: An -band biorthogonal filterbank is said

to be -regular if the analysis lowpass filter is
-regular and the synthesis lowpass filter is -regular

[8].
Theorem 1: (Equivalent Characterizations of-Regular Or-

thogonal -Band Filters) [7], [9]: In an -band orthogonal
filterbank, the scaling filter is -regular, has degree of regu-
larity, or has vanishing moments if and only if the following
equivalent statements are true.

1) All moments up to order of the wavelet filters
are zeros, i.e., , for

and for .
2) The frequency response of the scaling filter has a zero

of order at the th root of unity for
.

3) All polynomial sequences up to degree ( ) can be
expressed as a linear combination of-integer-shifted
scaling filters. All polynomials of degree up to ( ) can
be expressed as a linear combination of integer-shifted
scaling functions.

Theorem 2: (Equivalent Characterizations of -Reg-
ular Biorthogonal -Band Filters) [8]: In an -band
biorthogonal filterbank, the analysis scaling filter is

-regular, and the synthesis scaling filter is -regular
if and only if the following equivalent statements are true.

1) All moments up to order of the analysis
wavelet filters are zeros, i.e., , for

and for . All
moments up to order of the synthesis
wavelet filters are zeros, i.e., , for

and for .
2) The frequency response of the analysis scaling filter has

a zero of order at the th root of unity
for . The frequency response of the
synthesis scaling filter has a zero of order at the th
root of unity for .

3) All polynomial sequences up to degree ( ) can be
expressed as a linear combination of-integer-shifted
analysis scaling filters. On the other hand, all polynomial
sequences up to degree can be expressed as a
linear combination of -integer-shifted synthesis scaling
filters.

The concept of polynomial sequence capturing and represen-
tation is the direct method we pursue when enforcing more van-
ishing moments on the synthesis filters.

III. REGULARITY CONSTRAINTS FORPRE/POST-FILTERING

As previously mentioned, the filterbank generated
by the one stage of pre-/post-filtering in Fig. 2 has
a filter length up to 2 . According to the Defini-
tion 1, a -regular -band scaling filter has the form

. The filter
length should satisfy with equality
when is a constant. Thus,

. When , a
3-regular 2-bank 4-tap filter bank is a possibility. However,
when and , we can only expect to have at
most two vanishing moments, implying three possibilities:

-regularity, -regularity, and -regularity. This
can be summarized as Proposition 1.

Proposition 1: An -channel 2 -tap filterbank has a max-
imum number of two vanishing moments when .

If higher degrees of regularity are desired, we need to cascade
more pre- and post-filtering stages, as shown in Fig. 1(c).

Consider the block DCT coding framework in Fig. 2.
Let denote the DCT block size. Notice that the

-point DCT is a 1-regular orthogonal -band -tap
filterbank with unitary scaling filter

(here, is chosen as
).The original problem statement is simplified to the

following: Design the pre-filter and the post-filter
such that the resulting combined decomposition obtains the
maximum possible number of vanishing moments .
In other words, given the input as a polynomial sequence
of a particular order, design and such that the DC
coefficients of the DCT capture all of the input energy. For this
purpose, the first equivalent characterization in Theorems 1 and
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2 turn out to be both intuitive and effective. The characterization
can be interpreted as polynomial capturing and polynomial
rejection. Since for ,
the polynomial input is rejected by all AC coefficients, and it
can be solely captured in the DC coefficients. Since the matrix

contains all free parameters of pre-/post-filtering, we expect
to be able to express every regularity condition in term of this
crucial matrix.

A. 1-Regular Condition

For convenience, denote as the input sequence to each
pre-filter , as the resulting preprocessed sequence, and
as the input to each DCT block.

Lemma 1: The pre-/post-filter produces a ( )-regular,
, , analysis (synthesis) scaling filter if and only if it

can map all polynomial sequences up to degree ( )
into a piece-wise constant signal, or, equivalently, the input to
each block DCT is constant.

Proof: According to Theorem 2, all polynomial sequences
up to degree can be captured by the analysis scaling filter
and rejected by the analysis wavelet filters. From Fig. 1, this
means that the output of each block DCT is zero, except the DC
coefficient. Since the -point DCT has one vanishing moment,
it can capture only the constant sequence; thus, the block input
to the -point forward DCT should be a piece-wise constant
sequence.

By changing roles of ( , ) and ( , ), we can obtain
the same result for the synthesis bank.

Lemma 2: The pre-filter is a mirror mapping operator for
constant sequences, i.e., .

Proof:

Note that Lemma 2 holds, regardless of the choice of. This
result is quite intuitive from Fig. 1(a) and (b). When the input is a
constant sequence, after the butterfly, the differences of the input
are zeros, rendering insignificant. As long as the pre-filter
has this particular structure, the mirror property ofdoes not
depend on . Next, since the post-filter also has the same
structure, we have as well as . Lemmas
1 and 2 readily establish the following 1-regular condition.

Theorem 3: The pre-/post-filter always produces analysis
(synthesis) scaling filter with at least one vanishing moment,
regardless of the choice of .

Proof: Refer to Fig. 1(a)–(b). Suppose that the inputis
a constant sequence. Since the pre-filteris a mirror operator
according to Lemma 2, the input to the block DCT is also a
constant sequence. From the result established in Lemma 1, the
scaling filter has at least one vanishing moment.

B. 2-Regular Condition

In this paper, we only discuss filterbanks produced by
one stage of pre-/post-filtering. Therefore, the scaling
filter can only take the following forms:

for

even and for
odd.

Theorem 4: The pre-filter produces a 2-regular synthesis
scaling filter if and only if . Analogously, the post-
filter produces a 2-regular analysis scaling filter if and only
if .

Proof:

a) When is even, the size of the pre-filter is ,
and the size of is . Consider two connected
input sequences , , which form a continuous
ramp and

. The sig-
nals after preprocessing are and

, respectively

Therefore, the input to the DCT is

The input signal can be completely captured by the low-
pass subband or the DC coefficient if and only if is
a constant sequence, implying that must be a con-
stant signal, i.e., , where is a certain scalar.
Thus,

, and
.

b) When is odd, the input sequences to the pre-filter
are ,

,

, etc. The size of the pre-filter
is , and the size of is

.
The outputs of pre-filter are

The input to the DCT is shown in the equation at the
bottom of the next page. The synthesis filter is 2-regular if
and only if is a constant sequence, that is,

.
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c) Switching the role of the analysis and synthesis bank, we
can easily establish the analogous result for a 2-regular
analysis filter: .

C. Orthogonal Solution

Recall that we have orthogonal pre-/post-filter if the
matrix is orthogonal, i.e., . In this case,

the analysis and synthesis scaling filters will have the same num-
bers of vanishing moments. Due to the strict orthogonal con-
straint, we can only obtain at most a -regular orthogonal

-band system with one stage of pre-/post-filtering.
Theorem 5: The pre-filter and the post-filter can only

produce an orthogonal -band system with at most one van-
ishing moment.

Proof: Suppose that there exists an-band orthogonal
filterbank produced by and with two vanishing mo-
ments. Then, according to Theorem 4, the orthogonal matrix
must satisfy the regularity constraint , or, equiva-
lently, . Of course, is a positive integer larger
than unity, i.e., . In this case

(4)

On the other hand, we also have

(5)

which is contradictory to (4). Therefore, a matrix that can
produce a 2-regular orthogonal-band system does not exist.

D. Biorthogonal Solution

In a biorthogonal filterbank, the number of analysis and
synthesis vanishing moments can be different. In this section,
we will show that although a -regular or a -regular
system is possible, it is still impossible to design a -reg-
ular biorthogonal -band wavelet with only one stage of

TABLE I
SUMMARY OF THE NECESSARY ANDSUFFICIENT CONDITIONS FORREGULAR

M -BAND FILTERBANKS PRODUCED BY PRE/POSTFILTERING

pre-/post-filtering. This can be explained in a similar fashion
as in the orthogonal case.

Theorem 6: It is impossible for the pre-filter and the post-
filter to produce a biorthogonal -regular -band
system.

Proof: Since we need to impose two vanishing moments
on both banks, a nonsingular matrixshould satisfy both of the
following requirements: and . Sim-
ilarly, we obtain the same contradiction when the DCT block
size : .

To summarize, the -regular condition is automati-
cally satisfied for any invertible matrix . The - or

-regular condition is possible if and only if the regularity
constraint or is satisfied, respectively.
The -regular condition is not achievable. When ,
we have the only trivial or -regular system with

or . These results are tabulated in Table I.
In practice, we expect smoother basis functions in the synthesis
bank. Therefore, in general, we prefer -regularity over

-regularity.

IV. FAST IMPLEMENTATIONS OF REGULAR

PRE- AND POST-FILTER

The free-parameter matrix can be modeled using the LDU
decomposition. The upper triangular matrix and the lower
triangular matrix are constructed by cascading lifting steps.
However, modeling the matrix as described above leads to a
computational overhead in the order of multiplications
and additions comparing to the complexity of the DCT without
pre-/post-processing. To further reduce the complexity of the
pre- and post-filter, several simplified models forproviding
significant computational saving while maintaining coding per-
formance have been proposed [10]. Two of such models are
depicted in Fig. 3. Following [10], we label the corresponding
preprocessing operators the type-III and the type-IV pre-filter,
respectively. Note that when , the type-III and -IV pre-
filter are equivalent.
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Fig. 3. Two lifting-based simplified models for the matrixV. (a) Type-III
model. (b) Type-IV model.

A. Type-III Fast Implementation

In this simplified model, the matrix
has three sets of parameters to be determined: diagonal
scaling factors , predict lifting steps , and

update lifting steps . Those parameters should
also satisfy the regularity conditions in Table I. We concentrate
mainly on the 2-regular conditions since it is trivial to achieve
the 1-regular condition.

Proposition 2: The synthesis scaling filter constructed
by the type-III pre-filter is 2-regular if and only if the design
parameters in satisfy the conditions shown at the bottom of
the page.

Proof: Let , be the input and output of the linear system
, i.e., . If satisfies the 2-regular constraint, then

and .
For , .
For ,

.
For ,

.

B. Type-IV Fast Implementation

Although the lifting structure of in the type-III and -IV
pre-/post-filters are different, they both have the same degree
of freedom. If the parameters satisfy the 2-regular condition in
Theorem 4, then will produce a {1,2}-regular system. Fol-
lowing the same derivation as in Proposition 2, we can obtain
the following proposition.

Proposition 3: The synthesis scaling filter constructed
by the type-IV pre-filter is 2-regular if and only if

for

C. Integer/Rational Implementation

If the DCT is replaced by its integer approximations such as
the binDCT [11], then dictates the rational or integer prop-
erty of the entire system since every other component already
has integer coefficients. If all lifting steps as well as the diagonal
scaling factors in Fig. 3 are chosen to be rational, then we have
a complete system (both analysis and synthesis) with rational
coefficients. Moreover, if these parameters are chosen to be
dyadic, then we have an integer-coefficient analysis bank. The
key to achieving integer-coefficient synthesis bank lies in the in-
version of the diagonal scaling factors. Table II tabulates sev-
eral examples of parameter sets of the type-III and
-IV dyadic rational -band wavelets. All listed coding gains
are computed with an AR(1) signal model . Many more
design examples can be found in Section V.

V. DESIGN EXAMPLES

A. Design Process

This section presents various filterbank design examples
via regular-constrained pre-/post-filtering and the block DCT
framework. We pay most attention to fast implementations and
rational-coefficient -band systems. All designs are obtained
from the framework portrayed in Fig. 2 and the propositions
presented in previous sections. Generally speaking, a reg-
ular-constrained pre-/post-filter has free
parameters, whereas an unconstrained solution has
free parameters. The number of parameters can be reduced to

when is modeled by the lifting structure in
Section IV. In each design example, we convert the regular-con-
strained optimization problem into an unconstrained one by
properly choosing regularity constraints developed in previous
sections. The unconstrained optimization algorithm used to
obtain all design examples in this paper is the Nelder–Mead
simplex search available in Matlab Optimization Toolbox.

Since regularity has been robustly built into the pre-/post-
filter’s structure, we only optimize for one criterion in the de-
sign process—transform coding gain [12]–[14]:

(6)

where is the variance of theth subband, and is the
norm of the th synthesis filter. When the transform is orthog-
onal, the synthesis scalings drop out of the coding gain equa-
tion. The input signal is assumed to be an model with
autocorrelation coefficient throughout.

for



DAI AND TRAN: REGULARITY-CONSTRAINED PRE- AND POST-FILTERING FOR BLOCK DCT-BASED SYSTEMS 2575

TABLE II
EXAMPLES OFM -BAND WAVELET WITH RATIONAL /INTEGERPARAMETERS

Fig. 4. Four-band 8-tap wavelet with dyadic and rational coefficients.

TABLE III
COEFFICIENTS OFANALYSIS FILTERS IN THE 4-BAND DESIGN EXAMPLE 1

B. -Regular 4-Band 8-Tap Filterbank

Fig. 4 presents a 4-band 8-tap {1,2}-regular system with ra-
tional-coefficient pre-/post-filtering and the binDCT [11] as the
block transform. The parameters used in constructingare tab-
ulated in the second row of Table II. The coefficients of the
analysis filters are listed in Table III. Because of the in-
version of the diagonal scalars in the post-filter, the coefficients
of the synthesis filters are rational instead of dyadic. Generally,
it is difficult to make both banks dyadic while maintain good
coding gain (the diagonal scaling factorhas to be pure powers
of two). The normalized frequency responses of the filters are
shown in Fig. 5. The smoothness in the synthesis bank is evident
from the synthesis scaling and wavelet function.

C. -Regular 8-Band 16-Tap Filterbank

Fig. 6 presents an 8-band 16-tap {1,2}-regular design ex-
ample under the fast type-III regular constraints in Proposition
2. The parameters used in the construction ofare listed in
the fourth row of Table II. Fig. 6 also shows the zero distribu-
tion of the analysis and the synthesis scaling filter, confirming
that synthesis scaling filter has exactly three zeros at
and two zeros at all other aliasing frequencies. This is consis-
tent with the fact that the synthesis scaling filter has the form

, which is the
definition of an 8-band 2-regular scaling filter.

D. -Regular 16-Band 32-Tap Filterbank

Systems with large number of channels can be designed as
easily using the general constraint . Fig. 7 shows
a 16-band {1,2}-regular design example whose coding gain is
9.9364 dB.

E. -Regular Odd-Band Filterbank

We complete the section with two regular odd-band design
examples. Fig. 8 shows a biorthogonal 5-band 9-tap filterbank
constructed via the 5-point DCT and 4-point pre-/post-filtering.
The 3-band rational-coefficient design example whose detailed
lattice structure is illustrated in Fig. 9 is constructed from a
3-point binDCT and the 2-point pre-filter with .

VI. OBSERVATION

A. Pre- and Post-filtering Effects

It is interesting to observe how pre- and post-filtering modify
the signals in time domain. In Fig. 10, the solid line indicates
the original signal, and the dotted line indicates the signal after
pre-filtering. We can clearly observe the difference between the
pre-filtering effects from a regular-constrained and an or-
thogonal closed-form, yet nonregular,suggested in [3]:

. The 2-regular constrained matrix maps the
ramp into piece-wise constant sequences of size, whereas the
unconstrained matrix does not, confirming our previous re-
sults in Lemmas 1 and 2. The advantage of regular pre-/post-fil-
tering is clear—after discarding all AC DCT coefficients, we
can still reconstruct the ramp signal perfectly (except at the
two boundaries) with the -regular post-filter, whereas the

-regular post-filter still exhibits a fair amount of blocking
artifacts. In any case, pre-/post-filtering clearly improve the tra-
ditional block DCT, which yields a perfect stair-case in this toy
experiment.

Fig. 11 demonstrates the pre-filtering effect on the 256256
gray-scaleSlope image. The pre-filter tries to flatten each
input block to the DCT as much as possible, hence improving
the coding efficiency. Since interblock correlation has been
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Fig. 5. Design example 1: {1,2} regular 4-band 8-tap filterbank with 4-point binDCT. Top row from left to right: normalized frequency and time responses of the
analysis filters (coding gain: 8.544 dB), normalized frequency and time responses of the synthesis filters. Bottom row from left to right: analysis scaling function
� (t), first analysis wavelet function (t), synthesis scaling function� (t), and first synthesis wavelet function (t).

Fig. 6. Design example 2: {1,2} regular 8-band 16-tap filterbank. Top row from left to right: normalized frequency and time responses of the analysis filters
(coding gain: 9.4898 dB), normalized frequency and time responses of the synthesis filters. Bottom row from left to right: zeros of the analysis scaling filter h
and zeros of the synthesis scaling filterf .

extracted in this process, the pre-filtered image becomes very
blocky. For gradient-type signals, our regular-constrained

pre-filter perfectly flattens each DCT input block, turning the
input image into a chess-board.
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Fig. 7. Design Example 3: {1,2} regular 16-band 32-tap filterbank. Top row from left to right: normalized frequency and time responses of the analysisfilters
(coding gain: 9.9364 dB), normalized frequency and time responses of the synthesis filters.

Fig. 8. Design example 4: {1,2}-regular 5-band 9-tap filterbank. Top row from left to right: normalized frequency and time responses of the analysis filters
(coding gain: 8.5868 dB), normalized frequency and time responses of the synthesis filters. Bottom row, from left to right: analysis scaling function � (t), first
analysis wavelet function (t), synthesis scaling function� (t), and first synthesis wavelet function (t).

Fig. 9. Detailed lattice structure of a regular 3-band 5-tap filterbank with rational coefficients.
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Fig. 10. Comparison between {1,2}-regular and {1,1}-regular pre- and post-filtering in the processing of a ramp signal. From left to right: pre-processing effect
of a {1,2}-regular pre-filter and a {1,1}-regular pre-filter; reconstructed ramps from DC coefficients only.

Fig. 11. Effects of {1,2}-regular preprocessing. Left: originalSlopeimage.
Right: after {1,2}-regular pre-filtering.

Fig. 12. Geometric interpretation of the regularity-constrained mapping
operatorV. (a) Two-dimensional mapping for block DCT of size 4. (b) Three-
dimensional mapping for block DCT of size 6.

B. Geometric Interpretation

The 2-regular constraint also has interesting geometric
meaning. For , we have and

. If is orthogonal, then
. In our 2-regular constraint, we have

and . Since the norm of is less than the norm of
, cannot be an orthogonal matrix. In other words, we

need a nonorthogonal matrix to compensate for the norm
of the ramp . This means that only one of the following
can hold: i) orthogonality andii) 2-regularity. For example,
when the block size is 4, should map vector of
norm into vector of norm . For a block
size of 6, should map , which has norm
into , which has norm . The geometric
interpretation is illustrated in Fig. 12. It is quite obvious that
cannot be an orthogonal projection operator in this case. This
geometric interpretation offers an alternate intuitive proof that
orthogonality and 2-regularity are mutually exclusive when
only one stage of pre-/post-filtering is involved.

TABLE IV
COMPARISON OFOBJECTIVE CODING RESULTS(PSNRIN DECIBELS)

C. -Regular Biorthogonal Spline Wavelet

When setting and , the pre-/post-filtering
framework generates the following polyphase matrix:

(7)

which yields the scaled versions of the biorthogonal
quadratic spline scaling filters

The synthesis bank has three vanishing moments; however, the
analysis has only one. This is the single trivial example that
{1,3}-regularity can be achieved with filter length 2.
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Fig. 13. Image portions at 0.25 b/pixel (3� 300). From left to right: original image; coded by JPEG; coded by JPEG with the addition of the {1,2}-regular 8-point
pre-/post-filter. From top to bottom: bike at (1656, 1661), goldhill at (211 211), and cafe at (950, 1620).

D. -Regular 3-Band Wavelet

In the case where , the degenerated {1,2}-regular con-
straint requires . Hence, by setting , the re-
sulting pre-filter is

which leads to the following polyphase matrix:

The two corresponding analysis and synthesis scaling filters
are
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The synthesis scaling filter has exactly two degrees of regularity
and generates a triangular scaling (first-degree spline) filter.

VII. I MAGE CODING EXPERIMENT

This section presents a simple image coding experiment,
illustrating the potential application of our proposed regular
pre-/post-filters. The coder chosen is the Joint Photographic
Experts Group’s baseline JPEG coder. The test images are
standard 8-bit gray-scale: 512512 Barbara, Goldhill, and
Boat; 2048 2560 Bike, Cafe, and Woman.

Pre- and post-filtering modules are added outside the standard
JPEG coding framework. The pre-/post-filter chosen for the ex-
periment is the {1,2}-regular 8-point pre-/post-filter with

Pre-/post-filtering in 2–D is implemented in separable fashion.
On the encoder side, since the preprocessing enlarges the dy-
namic range of the data samples, we have to make sure that the
input sample value is within the 8-bit range [0, 255], as most
JPEG implementations require. Hence, pre-filtered samples are
first shifted so that all input samples are non-negative. Then,
these samples are prequantized to fit into the 8-bit range as the
DCT in JPEG expects. Every option is set to default, except the
quality factor, which is adjusted to control compression ratios.
On the decoder side, JPEG-decoded samples are first dequan-
tized and shifted to restore the original dynamic range and then
fed into the post-filtering module.

From Table IV, it can be observed that the proposed pre-/post-
filter helps JPEG improve PSNR in most cases. Several recon-
structed image portions from various test images at 1:32 com-
pression are depicted in Fig. 13. Subjectively, the combination
of pre-/post-filtering and the block DCT is usually superior at
preserving edges and textures while mitigating blocking arti-
facts. Without the [0, 255] range adjustment and with advanced
context based coding, pre-/post-filtering has been shown to im-
prove coding performance much more significantly [15], [16].

VIII. C ONCLUSION

In this paper, we present the design and fast implementation
of regularity constrained pre and post-filters for block-based
DCT systems. We show that simple pre-and post-filtering mod-
ules added to the current block-based DCT infrastructure can
help the block transform capture not only the constant signal
but the ramp signal as well. Our proposed framework can be
used to generate various fast symmetric-band wavelets with
up to two degrees of regularity. Coding experiments show that
blocking is minimized, whereas edges and textures are better
preserved compared with the traditional JPEG. Currently, we
have only considered one stage of pre and post-processing. By
adding more stages and extending the support of the pre-/post-
filter, polynomials of higher orders can be captured, leading to
smoother -band scaling and wavelet functions. This is a topic
for future research.
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