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Abstract—This paper proposes a spatial filtering technique for cepted that the presence of multiuser interference constitutes
the reception of pilot-aided multirate multicode direct-sequence the strongest limitation to the spectral efficiency of these sys-
code division multiple access (DS/CDMA) systems such as wide-yomg To overcome this, antenna array configurations have also

band CDMA (WCDMA). These systems introduce a code-multi- b d interf itigat that null out th
plexed pilot sequence that can be used for the estimation of the P€€MN US€d as INterierence mitigators that null out the response

filter weights, but the presence of the traffic signal (transmitted N certain directions and enhance the spatial response toward

at the same time as the pilot sequence) corrupts that estimation others, thus improving the signal-to-noise plus interference ratio
and degrades the performance of the filter significantly. This is (SINR) at the receiver.

caused by the fact that although the traffic and pilot signals are . . )

usually designed to be orthogonal, the frequency selectivity of the In DS/CDMA, both Spat'_al and space-time f!lters have us_u-
channel degrades this orthogonality at hte receiving end. Here, ally been proposed to alleviate the co-channel interference (i.e.,
we propose a semi-blind technique that eliminates the self-noise interference of other users in the system) and achieve a desired
caused by the code-multiplexing of the pilot. We derive analyt- sijgnal enhancement. For example, in [1], a space-and-then-time
ically the asymptotic performance of both the training-only and = 5 chitecture for DS/CDMA composed of a spatial matched filter

the semi-blind techniques and compare them with the actual sim- . L
ulated performance. It is shown, both analytically and via simula- ollowed by & conventional Rake receiver is proposed. The space

tion, that high gains can be achieved with respect to training-only- filter steers the beampattern toward the direction of arrival of the

based techniques. user of interest (matched filter in the space domain), whereas the
Index Terms—Free probability, pilot-aided CDMA, spatial fil-  Rake filter constitutes an effective matched filter to the signal
tering, WCDMA. in the time domain. This idea was then generalized to what are

widely known as “2-D Rake receivers,” i.e., space-time filters
that combine multipath coherently in both space and time do-
mains [2]. This type of algorithm can be thought of as a collec-
a Scalar. tion of space-and-then-time receivers combined in parallel and

I. NOTATION

Z \I\cleaﬁtr?xr' designed to maximize the desired signal power at the output of
AH Conjuéate transpose &. the filter. Other contrlbu_tlons in this direction, takmg into ac-
lall, Euclidean norm. count the presence of interference, can be found in, e.g., [3]
a] Weighted norm/a# Wa, and [4]. In general terms, one can st_ate that space-time filters
C w Complex field. are much more powerful that conventional beamformers. How-
CMxN  Setof M x N matrices over. ever, the advantage of space-and-then-time processing consid-
I L x L identity matrix. ered here lies in the simplicity of implementation and the good
{A}z’.j {i, j}th element ofA.. compatibility with existing time-only processing methods (such
(A) Trace ofA. as Rake filters, MMSE equalizers, etc.).
® Kronecker product. In this paper, we consider the application of these spatial
interference mitigators to third-generation mobile communica-
Il. INTRODUCTION tion systems. We consider the multirate DS/CDMA modulation

HE use of multiple antennas at the basestation has becoi@fénat corresponding to the basic structure of the frequency di-
a practical way of obtaining additional degrees of diveNision duplex (FDD) mode of a universal mobile telecommuni-
sity in mobile radio communication systems. It is widely accations system (UMTS) [S]. The basic problem associated with
. . . . , the use of spatial filters in these systems stems from the fact
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we will see that the same conclusion describes the behavioitlod desired signal. Both terms are affected by the same channel
training-only and semi-blind spatial filtering techniques. matrix H € CX*F, which contains, at each of its columns, the

Traditional training-based techniques identify the traffitmpulse response of the channel at a different receive antenna,
signal multiplexed with the pilot as an additional source dfe.,
interference and try to null it out instead of enhancing it. In
order to avoid this, we propose a semi-blind beamforming tech- H=[h, --- hp].
nique based on a subspace pro!ecu_on approach that_ n_eutralﬁg% that we are modeling the channel as a finite impulse re-
this effect and makes the traffic signal virtually invisible to ) . .

sponse filter with maximum channel ordérso that each of the

the spatial filter. We demonstrate via an asymptotic analySf'ows of H can be identified with a different spatial signature,

that this spatial filter performs substantially better than its o o .

. ntaining the spatial information about each of thdelayed

training-based counterpart. The approach taken to analyze? e. : ; MN. XL
: : N e clop|es of the received signal. On the other hahd; C**-

asymptotic performance is quite different from other traditional . e . .

. iS.a convolution matrix with a Toeplitz structure that contains

methods. On the one hand, we present a systematic methofitotraninin sequende(n)} disnosed as

study the asymptotic behavior of the solution to a generalizede gseq P

eigenvalue problem that can be exported to many other signal t(0) t(—1) t(1—1L)

processing applications. On the other, we use concepts of free #(1) 4(0)

probability theory [7], [8] to reveal the inherent structure of = _

random orthogonal projection matrices. : : t(MN.—-L-1)

The paper is organized as follows. First, in Section Il, we in- t(MN.—1) t(MN.—2) --- t(MN.—1L)
troduce the multirate DS/CDMA signal model for array obser-nds € CM-x1 is a column vector with thd/, symbols that

vatiqn;. n Sectioq I”Z we present two possiblg strategies f fe transmitted duringM + 1) N, chip intervals. FinallyC €
designing the spatial filter weights, and we obtain two differenty;n_«ar. 1 contains the code signatures associated with the

zglcu;':;sc‘)’ntgg:!g: OgrE;tblfsefdr?hnetrh'iftcr)?rlrr:;%?%T)il ?Tﬁ/eagd; ﬁferent received symbols. Assume th@tdifferent code se-
! porating Tu ! ! u '9IXences are transmitted in parallel. In that case

structure. In Section IV, we derive and compare the asymp-
totic performance for the two beamformers in terms of variance C=[C --- Cq]
and output signal-to-noise-plus-interference ratio (SINR), an

. . : : whereC, € CMN-xM:(0)L js the code matrix associated with
in Section V, we validate the asymptotic performance formul?ﬁ ) )
via simulation. Finally, Section VI concludes the paper € qth parallel code, transportingf(q) different symbols, so

' ' ’ that M, = Zqul M, (q). If we now assume that thgh code

sequence is periodic with peridd., the matrixC, can be de-

nez

Il. SIGNAL MODEL

scribed as
Consider an uplink communication where the signal is re- C,(2) C,(1)
. q q
ceived by an antenna array 6f > 1 elements. The bandpass
signal received by thé” antennas is simultaneously sampled, _ Cq(2)
and downconverted, and a collection &fN, baseband sam- e, (1)

ples is gathered into a common matrix with complex entries
X € CMN:xP (the physical meaning of/ and N, will be -
revealed below, but we can anticipate that, if the DS/CDMA se-
guences are periodi®/]. will denote the number of chips per pe- L
riod andM the number of periods in the observation windowsyhere

q
C(I (2) C(I (1) M x M +1blocks

EZ) = [Cq,h e ,CqJ\TS(q)] c CQNCXNS((I)L (3)

21(0) e zp(0) [ q,5(0) T
X = : : . @) : '
l'l(MNc—l) :L‘p(MNc—l) Cq_’j _ cq,j(N(',_l) Cq,j(()) € C2NexD,
This matrix contains two different contributions: the signal re- . :
ceived by the user of interest and the signal coming from other coi(Ne— 1)
users plus background noise. Assuming that the sampling oper- LI

ation is performed respecting the Nyquist criterion (e.g., digital ) )
modulation without excess bandwidth sampled at the symegre: Ns(¢) = N./SF; is the number of symbols trans-

rate), the contribution from these two components can be q@rted duringN. chips by theqth code so thatM(q) =
scribed as (M + 1) Ns(q). The code sequencés, ;(n)} are constructed
from the original onegc,(n)}, setting to zero all the samples
X= IH +CseoH) + N . (2) outsidethejth symbolinterval, i.e.,
Training Signal e Signal Noise+Interf. ) (n) B { cq(n)7 (] . l)SFq <n< ]SFq
Here,N € CMN:-xP contains the samples of the noise plus ! 0, otherwise.

interfering signals and has the same S_tr_UCturKaB (1_)' The 1To simplify the notation, we sometimes assuie< N.. All the results
other two terms correspond to the training and traffic parts pfesented here are equally valid in the case N..
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If the code sequences are aperiodic, the signal model is &here we have defined the orthogonal projection matrices
actly the same but modifying, so that each of its\/ + 1

block columnsin (3) correspond to different sequences (without Pr=1,-P+=7T (THT)_l TH.
repetitions).

At this point, we consider a beamformere C”** used to Of course, the solution to (5) is defined up to a scalar factor
combine the input of th& different antennas. The output of the(this scalar factor should be fixed according to the constraint in
spatial filter can be expressed as the minimization problem). This factor has no effect in the filter

performance because it affects both desired and undesired signal
Xout = XW = RHw + Nw in the same way.
In practice, the performance of the solution based on the
with training information only is quite poor due to the presence
of the traffic signal, which is seen from the base station as
R=7T+C(s®1y). an interfering source coming from the direction of arrival of
the desired user. For this reason, at high signal-to-noise ratios
After the space filtering stage, the signal would be processg®NRSs), the beamformer tries to null out the signal coming
in the time domain with conventional techniques aimed at effom the desired user instead of enhancing it. This can be
tracting the transmitted information. The basic objective of thshserved in Fig. 1(a), where we have represented the array
spatial filter is the suppression of the noise compoérand response obtained in (5) for different values of the traffic to
the enhancement of the desired sigR4il. training power ratio, which is denoted /o’ and defined as

We will assume that the code and training sequences are ple quotient between the traffic signal power and the training
sistently exciting of all orders, and we will further impose theequence power of the desired user signal. In the simulated
structural restrictiomV/, L. < M N.. This condition, which is scenario, we considered two different punctual sources trans-
usually verified in practical situations, ensures tats full mitting to a uniform linear array of? = 4 elements with
column rank and that the column rankadis higher thanitsrow an interelement separation of half a wavelength. The desired
rank (so that a column vector subspace can be defined properéiy)d interfering signals came from directions of arrival of 20
and —30°, respectively, and both were received with a power
20 dB above the noise floor. The code and training sequences
were constructed as Walsh—-Hadamard orthogonal codes from

Let us consider the design of a spatial filter as an interfer-QPSK constellation, and the impulse response of the channel
ence canceller. In order to design the spatial filter weights,\as exponentially shaped with delay spread equal to the
seems reasonable to minimize the mean squared error betwéigtion of two chips. Note that as the traffic-to-training-power
the received signal and the training sequence (known signaly@io increases, the spatial filter recognizes a new source of
the output of the beamformer. If the filter Weights are properiyterference Coming from the direction of arrival of the desired
designed, the spatial filter will identify and cancel the contriuser. Hence, as the power of this interference grows, the spatial
bution from all interfering signals. We first examine a classicéilter steers a new null toward the direction of arrival of the

solution that takes into account only the presence of the trainiéigsired user. We will show in Section IV that this effect causes
symbols. a severe degradation of the performance of the spatial filter.

The poor performance of the proposed training-only beam-
former can be made extensive to other similar training-based
solutions such as the traditional sample matrix inversion (SMI)

Disregarding the presence of the traffic data in )= 0),  algorithm [10]. If the auto-interference problem is not properly
we can design the spatial filter in very simple terms as proposggated, the spatial filter will always perceive a new source of
in[9], i.e., minimizing the squared error between its output anferference coming from the direction of arrival of the desired
the channel-filtered training sequence subject to a fixed outQer. It is out of the scope of this paper to compare the perfor-

IV. MINIMUM MEAN SQUARED ERRORBEAMFORMING

A. Training-Based Solution

power constraint: mance of the SMI algorithm with the solution in (5). We will
. o ) only mention that the same techniques that are presented here
Wro = arg minmin | Xw—Th, can be used to describe the asymptotic behavior of the SMI so-

subject tow " X Xw = ¢ (4) lution. In fact, this has been done in [11] and [12], although in
orthogonal frequency division multiplexing (OFDM) contexts.
Here, we prefer to analyze the solution in (5) for two main rea-
tive constant. Note that in (4), the column vedioe CZ%! con-  SONS- First, we will see that this sqlutio_n—as opposed to the SMI
tains the channel impulse response filtered by the spatial stag: prithm—is asymptotically optimal in the sense that it maxi-
izes the output SINR regardless of the rank of the channel ma-

h = Hw. The solution for the spatial filter weightg can be ob- "’ X . X
tained (cf. [9]) as the generalized eigenvector corresponding[tt H (se€ Section IV for further details). Second, since the ef-

the maximum generalized eigenvalue of the following systen{?Ct of the code-multiplexed traffic signal is very similar in both
solutions, we prefer to focus on the technique in (5) to main-

tain a certain coherence with the semi-blind approach proposed
next.

where the subindex TO stands for training only, @nsl a posi-

1 N 1
XHPTXWTO = )\max FVEva

N v X PrXwro - (5)
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Arraly ResponsleoftheTraining-or:lynSpatial'Filtir ‘ *_ Wlth PKT - K — PI'JiT - KT (THKT)_l THK, and
e where the factot /M N.. is inserted for normalization purposes.
Note that forK = I,sn,, the solution is the one obtained by
training-only approach. Here, for each choice of weighting
matrix K, we will have a different solution and, consequently,
a different performance. A reasonable choice for the weighting
matrix is the minimizer of the asymptotic mean squared error
of the filter weigths as the number of samples grows without
bound. This is the traditional way of operating in “weighted
least squares” estimation [13]. In a general framework, how-
s A 1 ever, the weighting matrix minimizing the asymptotic variance
- depends on the minimization variables suchuah in (6), and
— od-10 consequently, the solution can only be obtained using iterative
wol=0 methods. Here, we try to avoid these types of solutions with a
: suboptimal approach; instead of using the optimal weighting
W e o e m v & & o = e Matrix, we propose a simplified architecture where the spa-
Azimuth (deg) tial filter weights can be obtained with a single eigenvector
(@ computation.
. ‘ __ Away Responso of the Semi-Blnd Spatial Fiter ‘ Consider the singular value decomposition of the code matrix
C:

Array Factor (dB)
b
o
T

C=[® ¥]AOT

with A € CM-LxM:L g diagonal matrix containing (in its
upper-left corner) the: nonzero singular values af and
zeros elsewherer¢ denotes the rank af), ® € CMNexre
and® ¢ CMN-x(M:L-r¢) having as columns the left singular
vectors associated with nonzero and zero singular values,
respectively, and, finally® € CM:LxM:L containing the right
singular vectors. We propose to use as weighting matrix

-30f

Array Factor (dB)
1N
o
T

-50-

——r, | K=Pg =00 (8)

~ odol=1

i 1  which does not depend on the minimization parameters and can
be computed offline (because it only depends on the code se-
R ey . ® %@ quences, Whiqh are _known b_eforehan_d). _

To justify this choice, consider again the problem in (4) but

®) with a slight modification to take into account the presence of
Fig. 1. Array response of the (a) training-only and (b) semi-blind spatial filteggye traffic signal:
for different values of the traffic-to-training-power ratio. The direction of arrival
of the desired and interfering souces weré 20d—30° respectively, and both
signals were received with a power 20 dB above the noise floor. The array

consisted of four linearly equispaced antennas situated half a wavelength apart. . . . . . .
The signal parameters were fixed as followd: = 1, N. = SF, = 256, subject to certain power constraint to avoid the trivial solution,

Q = 1,andL = 10. where heres;, € CM-L*1 jsan unstructured column vector that
replacegs ® H) u (the symbols affected by the channel after
the spatial filter). Solving fos,; and substituting the solution

) o ) ) back into the cost function, we obtain
We consider a design similar to the one in (4) but with the in-

R ) . . . . L. A . . 2
troduction of a weighting Hermitian positive semidefinite ma- u = arg ninmin ||Xu—7h||pg
trix K

U = arg min min min || Xu—7h—Cs,, ||§
u h s

B. Semi-Blind Subspace Approach

with PE = Ty, — C (CHC)* CH = 07 = Py and()#
u (K) = arg min min ||Xu—Th||f< denoting the Moore—Penrose pseudo-inverse. Thus, the choice
voh of aweighting matriXP ¢ corresponds to an extended minimiza-
tion criterion that treats the unknown data and the channel as a

. " . . single unstructured minimization variable.
wherec is a positive constant. The solution can be obtained | conclusion, the proposed space-time weight vector will

as t'he maX|mu.m generalized eigenvalue eigenvector of the fBE the maximum generalized eigenvalue eigenvector of the fol-
lowing system: lowing system:

1
MN.

subject touf XFKXu=¢ (6)

1
MN,

1
MN.

1
MN.,

XAPyrXa (K) =4, XAPy, Xa(K) (7) XAPp, 7 Xi1sp = Ymax X"Pg, rXasg (9)
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where SB stands for semi-blind approach. In the next sectidactor, wheread. remains fixed. This asymptotic limit is a re-
we analyze the asymptotic performance of this filter and coralistic approximation in scenarios where the maximum code
pare it with the training-only approach. spreading factor is high compared with the channel order as-

Fig. 1(b) represents the spatial response of the semi-blisgmed at the receiver, whereas the number of codes and their
spatial filter obtained from (9) under the same scenario asdorresponding spreading factors are of the same order of mag-
Fig. 1(a). We observe that thanks to the introduction of the proitude. This situation will be referred to hggh number of codes
jections onto the null space of the code sequences, we are abkgproximation(High @ or HQ). The second asymptotic sce-
avoid a null steering toward the direction of arrival of the desirasario will be derived, assuming that bathand M remain fixed
user. Hence, the proposed spatial filter is able to provide a goatile the code spreading factoi$K,) and the assumed channel
spatial response even at high values of the traffic-to-trainimgngth () grow without bound at the same rate. This situation
power ratio. In the next two sections, we will quantify and provis much more difficult to handle than the previous one and rep-
this assertion in several asymptotic scenarios. resents a scenario where the channel length assumed at the re-
ceiver is of the same order of magnitude as the spreading fac-
tors of the transmitting codes. This will be referred tohégh
channel order approximatiofHigh L, or HL). The assumptions

Let us now consider the asymptotic performance of the twaade in order to tackle this situation are much more restrictive
proposed beamformers presented in the last section. Our intetean the ones made in the high number of codes approximation,
here is not so much the effect of the choice of codes and trainidgd therefore, we will treat the two cases separately. Note that
sequence on the performance of our spatial filter as the chartitg traditional asymptotic approximation obtained\as— oo
terization of their global interaction as desired and interferinghen all the other parameters remain fixed (asymptotically large
signals. Therefore, we will assume right from the beginning tha&@mple size) can be obtained from either one of the two asymp-
both code and training sequences are random and independdatig situations simply by letting the second parameter go to zero
chosen. in the asymptotic expressions.

One soon discovers that the problem treated here is stronglyn what follows, and in order to simplify the derivations,
related to the problem of characterizing the behavior of muie will assume that all the code sequences present the same
tiuser linear receivers in DS/CDMA systems. To see this, nod@reading factor (i.e§Fy = --- = SFo = N.). The general-
that the signal model in (2) can be regarded as the signal #ation of the results presented here to the general case where
ceived by an antenna array in a multiuser scenario so that egéigh code is transmitted with a different spreading factor is,
user transmits with a different code sequence, and the trainit@vever, straightforward. Furthermore, and also for simplicity,
sequence is seen as the contribution from an additional user. 8y model the code matri€, corresponding to theth code
making this parallelism, one can readily guess that the appHhith the following block-diagonal structure:
priate tools to describe the asymptotic behavior of these spatial C,
filters should be closely related to the machinery used to de- c = . € CMNXMN,(9)L (10)
scribe the behavior of linear multiuser receivers. This motivates 1 L
a choice between two different strategies to analyze the asymp- Cq
totic behavior of the spatial filters. The “traditional” strateg¥vhereC, = C,(1) + C,(2) € CN*N-()L as defined in (3).

would be to describe the asymptotic performance of the spaiigdte that in comparing (3) and (10), in our simplified model,

filters as the observation window length/(V.) grows without e are disregarding the effect of the intersymbol interference in
bound. This is, for instance, the approach taken in [14] to an@g traffic signal, and we are modeling the time-shifted code se-
lyze the performance of a subspace blind multiuser receiver. Thances as circularly rotated. In practice, this has little relevance
basic problem with this type of analysis is the fact that the results; the purposes of evaluating the mutual interference between

are not representative of situations where the number of usgggfic and training signal. The derivation of the results, how-
and the observation sample size are of the same order of maghy, is significantly simplified.

tude. For this reason, recent approaches (see, e.g., [15] and [16])
have focused on asymptotic results, whisoghthe observation A. High Number of Codes Approximation

window size and the number of users increase without bound.AS explained above, this asymptotic limit accounts for a situ-

The results are s_tiII asymptotic, but since the ratio betwgen th%ﬁﬁm where the code spreading factors and the number of trans-
two parameters is held constant, they turn out to describe Mmyghyeq codes have the same order of magnitude, which is much

more 'accurathely a I’ea|IS.tI(i. S|_tuat|0n. The approp_rlathe t°°|sﬁ her than the channel order. The asymptotic limits will be de-
describe sucl asymptotic limits are random matrix theory andeq under the following statistical assumptions.
free probability theory.

In our situation, the role of the sample size is taken by the?The asymptotic results presented here are independent of whether periodic

- aperiodic codes are used. In any case, if aperiodic codes are to be modeled,

quantity M N., whereas the rOI,e ,Of tTe, ”“mper O’T ysers an matrice€’, across the diagonal 6f, in (10) should be different.
taken by one of the two remaining dimensions” in the S|gna| 3The validity of this assumption will be confirmed in Section V. One could
model: the number of parallel code@) or the channel order at first think that this assumption is strongly violated in the high channel order
(L). Thus. we will consider two different asymptotic situationdimit. Note, however, that increasing does not necessarily mean increasing
In the fi ! h b f cod d by th bil .the effective delay spread of the channel because in our asymptotic analysis, the
n the first one, the number of codes used by the mobile Stat'%nnel frequency response will be held constant regardidssudiich is only

(Q) increases without bound at the same rate as their spreadiegshannel ordeassumed at the receiver

V. ASYMPTOTIC PERFORMANCEPREDICTION
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Asl) The noise-plus-interference compon&his a circu- The limiting covariance matriceSy andC y are defined as
larly symmetric Gaussian-distributed random vector

1 1
with cross-spectral density between hle andgth an- Cy = / Cu(f)df, Cy= / Cn(H)df  (15)
tennas denoted by, (f), f € [0,1). Equivalently,in o 0
matrix notation beingCx(f) defined in (12) antl
E [vec(NH) VeC(NH)H] {CH(f>}pq = Hy(f)Hy(f)- (16)
~ ~ Finally, H,( f) stands for the channel frequency response at the
Cn(0) o Cy(MNe-1) qth antenna.
= : : Proof: See the Appendix. n
Cny(1-MN,) --- Cn(0) We see from this first result that under the asymptotic con-

MN:XMN_.:block " . A .
* “*  ditions considered here, the two proposed spatial filters tend

(11) to the same limit (up to a scalar factor) & N, — oo at
the same rate. Both solutions are asymptotically proportional to
the maximum generalized eigenvalue eigenvector of the pencil
ok (Cu, Cn), which is denoted byv,. This solution will be re-
MN, f} df ferred to as the optimal one in the sense that it maximizes the
output signal-to-interference-plus-noise ratio because

with

Cxth) = [ Cxipen E

Cn(f) € CP*P defined as
wHCyw'

{CN ()} = Spia(f) (12)

. . The two proposed designs for the spatial filter tend to the
and whe.re the matr_|x-argumented Intggrgl stands f8[>timum solution, provided that the spreading factor of the
th_e matrix with entries the element-wise integrals. Iéode sequences is sufficiently high. Therefore, from the point
will be assumed that for any, ¢ =1... P of view of the asymptotic solution, there is no difference in

oo performance between the training-only and the semi-blind
Zi < oo (13) spatial filters. This does not mean that in a real (nonasymptotic)
i=1 scenario, the two solutions are equivalent. The difference in

i.e., the noise plus interference correlation decays fazg¢rformance will be given by the difference in the asymptotic
enough in the time domain. covariance of the beamvector weights around the optimum

As2) The transmitted symbols are independent and ideritlue. A different asymptotic covariance matrix will translate
cally distributed (i.i.d.) circularly symmetric randominto a different asymptotic signal-to-noise-plus-interference

variables, with zero mean, unit variance, and boundéatio at the output of the spatial filter. In this paper, we define
higher order moments. They are also independent 6 (mean) output signal-to-noise-plus-interference ratio of a

wHCgw
Wopt = argmax —r~——

{Cn(it,.,

the received noise. particular beamformew as

As3) The training and code sequences are i.i.d. circularly R (a+a')E [WHCyrw]
symmetric Gaussian distributed random variables SINR(W) = E[WHCyw] (17)
with zero mean and variande ['t(n)|2] = o and where the expectation is taken with respect to the statistics of
[EL|cq(n)|2} = «/Q, respectively. They are alsow. We prefer to use this performance measure rather than the
independent of the received noise and the transmittegPectation of the instantaneous SINR because (17) is much
symbols. simpler to compute (only second-order statistics are needed),

For technical reasons. we assume that code and trainf¥gereas both performance measures are very close in practical
sequences follow a Gaussian distribution. This is becauseSifations [17]. _ _ _
our derivations, we use the concept of asymptotic freeness>Nce the spatial weight vector is defined up to a constant
almost everywhere of random matrices, which has only befftor, it will be useful to impose some amplitude and phase
proven under the Gaussianity assumption. It would be ratHgnstraints to avoid ambiguities in the definition of the weight
surprising to find out that the results derived under the Gaussi4tfto" covariance. - , , _
assumption do not hold under milder statistical conditions suchRémark 1: Let (A, B) represent a generic stochastic matrix
as bounded moments. In any case, we prefer to be strict and RRCil, @nd denote by¥;} and{4; } the generalized eigenvec-
use any result that still has not been mathematically proven. {0rs and associated eigenvalues ordered according to their mag-

Proposition 1 (Asymptotic Spatial Filters}nder As1-As3 Nitude. Assume thaA— A and B—B in probability, and let
and asQ, N. — oo at the same rate, the two spatial filterd Vé} @nd{o;} denote the generalized eigenvectors and asso-
proposed in Section Il tend in probability to the same limit (ufiated eigenvalues of the limiting deterministic matrix pencil
to a scalar factor), which is given by the maximum eigenvallfét- B)- It may happen that some have multiplicities higher
eigenvector of the following systems: than one; in that case, thlev;} form a convenient basis for

the associated subspace and can be treated as usual generalized

t
a'Cgwrpo =A aC Cy)w

‘ Ao e ( H N) To “Note that the matrixC  (f) has rank one for eacf,, although this might
o' CHusp =YmaxCNusp. (14) not be true ofCy.
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eigenvectors. From now on, and without loss of generality, vfith w; “~'w; ® w; and@; ' u; ® u;. Furthermore); and-;
will be assumed that the asymptotic generalized eigenvectafe theith largest generalized eigenvalues of (14) (ordered as
are normalized as follows: Amax =AM > Ao > AP, Ymax = 71 > Y2+ > YP), Wi
(18) andu; are the corresponding generalized eigenvectors normal-

) ized as in Remark 1, and
Moreover, letV andV contain, at each of their columns, the

H Y Y H e
viiAv;=0;6;_;, Vv;Bv;=0,_;.

set of limiting and stochastic generalized eigenvectors§.}If, def [* o
stands for theth element on the diagonal, it will be assumed Can= /0 [Cn(f)® Cn(f)ldf
that dor [

{V’l\Af} . (19) Cyu = ./0 [Cn(f)® Cu(f)]df

i 1
def

whenever; has multiplicity one. I; has multiplicityr;, it will Cun= /0 [Cu(f) @ Cn()]df. (21)
be assumed that the corresponding r; block of the diagonal
of V-1V is fixed to be an identity matrix. Proof: See the Appendix. |

In brief, the first two identities in (18) are amplitude and The asymptotic output SINR for each spatial filter can be ob-
phase constraints of the asymptotic eigenvectors, or the asstained inserting the covariance matrices into (17) and imposing
ated subspaces if we are dealing with multiplicities higher thane constraints in Remark 1. It turns out that under the high
one, and ensure that eigenvectors associated with single nmumber of codes approximatios/(Q)
tiplicity eigenvalues are univocally defined from the limiting
matrix pencil (A, B). The last equation in (19) translates these INRE@ (
constraints into equivalent conditions on the stochastic eigen-
vectors in the columns oV . Note that without imposing any
restriction to the columns oV, one should have, asymptoti- gINRA? (q1gp) __ SINRop: (22)
cally, thatV—VD with D a diagona matrix with entries de- 1+ 37 tr [Psg]
pending on the constraints fixed % and V. This is because
A—A andB—B, and this implies that the generalized eigerwith SINR,,; the optimum output signal-to-noise ratio
vectors of A, B) tend asymptotically to the generalized eigen-
vectors of &, B) up to scalar factors. Therefor¥,~'V—D, SINR,., = max (a+ o) wHCyxw 23)
and forcing the diagonal elements'¥f 'V to 1 is equivalent P wiCyw ’

to fixing the appropriate constraints M in order to guarantee o )
that V-1V TI. To simplify these expressions even further, assume now that the

Proposition 2 (Asymptotic Covarianceldnder As1-As3 frequency-dependent covariance matri€es(f), Cu(f) have
and ag, N. — oo at the same rate, the covariance matrices §te following structure:
the two properly normalized spatial filters around the optimum

SINR,¢
L+ MINC (1 + ﬁSWRom) tr [Pro]

wro) =

s H(f)
valuew,, tend to Cx(f) = — (f) N. Cu(f) = .1| (f.)|2 Cy
1 . 1 - Jo ST (f)df Jo 1H(H)I™ df
Cwro = le'I’ToWl , Cagp = WUI'I)SBUl (24)
¢ ¢ (20) with Cy andCy defined in (15). These assumptions imply that
whereW; = [wy --- wplandU; = [uy --- up]. the channel fading is proportional over all the antennas for both
The two matricesp o and®gp have, as thei(j)th entry desired user and interferences. Furthermore, according to the
& definitions in (24), the channel matri®; must have rank 1,
{ TO}m’ and consequentlyy; = v, = 0 fori = 2... P. Under these
~ W[ [MCnn + (o' + Ma) (Cyu + Cun)| W; circumstances, we can formulate the following result.
- (A1 =) (A1 =) Corollary 1 (Spatially Invariant Frequency Behavior):
{®sp}, . Whenever the noise and channel covariance matrices can be
e expressed as in (24), the asymptotic output SINR is given by
_ 1 LQ V2 + 7 +m)] 6i (22), where the two quantities [bto] and tr[®sp] take the
(=) (m =) | Ne — LQ ! form
2
Q>_H 2 : _ 1 1+ 2 (14 SINR,)
+ <l—L— u; ['71CNN+0¢/(CNH+CHN)] u; tr [® — at pt/ o
N, | porierol SINR, . Snm
SIf there are generalized eigenvalues with multiplicities higher than one, their (1 + %) le\' + %SINROpthH
associated generalized eigenvectors are linearly independent vectors of an asso- 14+ <2 (1+SIN
. . IS . . . + t ( + Ropt)
ciated subspace. In this case, one¥Was VD with D ablockdiagonal matrix, @
where each diagonal block of size higher than one is associated with an eigen-1 tr [(I> ] _ LQ Ty
vector of multiplicity higher than one. In this situation, instead of imposing (19),p — | SBI= N~ LQ NN

one should force the block diagonal entries\of 'V to be identity matrices. I
This is enough to guarantee tiédt— VD with D block-diagonal with orthog- + (1 + g) Exnm + Q
onal matrices as entries. ot N, — LQ

1
SINRop
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whereéyg andény are two fading-related parameters training-only and the semi-blind solutions tend in probability to
the solutions of
1 ann 1 nn g
Expt = Jo S™(H) HI* df fan _ LS () df [( , ) ]
-l nn 1 2 WT0O
Jo S™(f)df fo |H(f | df [fo Snn(f)df:| MZZC MN,

=Amax | 1 — aCyg + Cyl|w 25

and SINR, is the optimum output signal-to-noise ratio. ( MNC> [#Cx nlwzo (29)

The approximation of spatially invariant frequency behavior t(1 L C L

allows us to describe the asymptotic covariance matrices of the B Qﬁc HT 1 N. Y| UsB

two proposed beamformers in very simple terms. For instance, 1\ L

the effect of the frequency selectivity of both channel and in- =Ymax < <Q + M) F) Cnusp (26)

terferences can be described through the two paramgters
andéxx. Simple application of the Cauchy—Schwarz inequalitior  the training-only and the semi-blind approaches,
shows thatxy > 1 with equality only when the interferencesrespectively.

are white in the frequency domain. Since the asymptotic eigen- Proof: See the Appendix. ]
vectors do not depend on this parameter, we can conclude thdt is interesting to note that as it happened in the high number
frequency selectivity of the noise plus interference compone®ft codes approximation, the same asymptotic solution is ob-
always increases the filter weights variance under the asynt@ined for both the training-only and the semi-blind approaches
totic conditions above (note that boti&ro] and tr[®sg] in-  (Up to a scalar factor). Moreover, the asymptotic solution is in
crease linearly withtxy). As for éxg, one readily sees thatturn proportional to the optimum spatial filtew(,,;), which is

&xa < VEnnémm, Whereép g is defined astyn replacing the one that maximizes the output signal-to-noise-plus-interfer-
S (f)with |H(f)|?. If either the interference-plus-noise comence ratio, as defined in (23).

ponent or the channel are frequency nonselective, one will havéAs before, the difference in asymptotic performance of the
&vm = 1. Otherwise, one can expect any positive valuetfas.  two filters will be dictated by the variance of the beamformers
In practical situations, though, bogk andéxx are observed around the optimum value. Next, we give closed expressions for

to oscillate between 1 and 3. such asymptotic variance.
Proposition 4 (Asymptotic CovariancelJnder Asl-As3
B. High Channel Order Approximation and asV.., I. — o at the same rate, the covariance matrices of

Let us now concentrate on the asymptotlc situation where tﬂ.@ two properly normalized Spatlal filters around the Optlmum

spreading factor of the code sequencas)(and the channel valuewoy, tend to
order assumed at the receivé) (ncrease without bound at the

same rate. Now, the number of codé$) @nd the number of Ciro = MN
symbols in the observation window (proportionalitt) are the

two fixed parameters. Unfortunately, under this situation, thith W1 andUj, as defined in Proposition 2. The two matrices
Toeplitz structure of the matrice® andC poses a great im- @10 and®sg have, as thei(;) th entry

pediment to obtain asymptotic results as their two dimensions ( .

increase without bound (in particular, we are not able to show 4

——W,010WH, Cu, = MN ——U,0s5U¢

that these matrices are asymptotically free from deterministic. 1 l { L (1 L ﬂ 2
ones). Random Toeplitz matrices have a very particular behavior (A\; — \;) (A1 — A;) | | MN. ! MN.
that is difficult to characterize asymptotically. For instance, itis &H (C c _

still unknown whether the empirical distribution function of the (Cnvw = Cw) W;

s . o e . - )]W CanW,

i.i.d. entries tends to a nonrandom limit as the matrix dimensions c MN.

increase without bound (see, for instance, [18]). For this reason, ¢

we will have to avoid the structural assumptions imposed by the @ ta < < ))]

Toeplitz structure o andC. In the high channel order simpli-

fication, we will model different delayed copies of both training - (CNH + CHN ]

and code sequences (corresponding to different multipaths) as

statistically independent. Thus, as far as the high channel order{®sg}, ;

approximation is concerned, the entriesfoéindC, in (10) are 1

independent and identically distributed and follow the statistical= (

assumptions in As3. This approximation is commonly used in (=) (11 =)

the literature, and in fact, it has been shown that under some - @/’ CNN CNN) 0,

asymptotic conditions different from the ones considered here, [ ( ( 1\ L )}

+y{1- ~

) Q

eigenvalues of a random square Hermitian Toeplitz matrix with [ L A2 (
'

circularly rotated sequences behave just like independent onest Q+ i
[16].

Proposition 3 (Asymptotic Spatial Filters)under As1-As3 Can <1 _ i) af ot (CNH + CHN) i
and asL, N. — oo at the same rate, the spatial weights of the N.) ! !
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. t _
Output SINR as a function of SINROP‘. /=01, &, =1, LO/NC=L/MNC=0.1, (P—1)/MNC-0.4

. _ def _ def
with w; = w; ® w; andii; = u; ® u;. Furthermore); and~;

=S

50 T T T T T
are theith largest generalized eigenvalues of (14) (ordered i g
/\max = )‘1 > e Z )\Pl Ymax — V1 > - Z ’YP): Wi, U; or ,*'/
are the corresponding generalized eigenvectors normalized | = -
in Remark 1 S
20 ¥ -
CNN:CN(X)CN; CNH:CN®CH7 CHN:CH@)CN & 10f * " .
andC y is as defined in (21). A
Proof: See the Appendix. m
The asymptotic output SINR for each beamformer under t+° ™[
high channel order approximatiof/ (L) can be expressed as |-~ SN
—*— SINR(HQ,TO)
SINRE (o) = SINRope - S
T - - 3
1+ o (1 ¥ ﬁSlNRopt) tr [@r0] o]
SINR?E (agp) — SRy 27) % o o 0 2 e w0 50
1+ —MlN tr [@gsg] SINR,, (4B)

@)

The expressions for the asymptotic output SINR are quite gen- .
Output SINR as a function of SINR , o/a'=0.1, &, =& =3, LN =LIMN =0.1, (P~1)/MN =0.4

eral but do not introduce much insight into the problem. Nex

we consider the spatially invariant model for the frequency re s
sponse of both channel and interference in (24). Hence, we i  *f e ]
sume that the spectral density of both channel and interferenc '

301 -
is the same (up to a scale factor) in all the receiving antennas ‘
Corollary 2 (Spatially Invariant Frequency Behavior):
Whenever the noise and channel covariance matrices cz 1ol
be expressed as in (24), the asymptotic output SINR for t@’
two beamformers can be expressed as in (27), where the tg

20

=)
T

quantities tf@® o] and tr{@sg] take the form 3 ol
1 « _20f .
tr[@ro] =L+ (v — 1) (14 ) ) L
P—-1 o % — SINR(HL,TO)
1 - * - SINR(HQ,SB)
. - — - SINR(HL,SB)
1+ 2 (14 SINRyy) -4,
1+ %(1+SINR0pt) L 50 . : ! . . .
-20 -10 0 10 20 30 40 50
SINR, ¢ MN,.— L SINR _, (dB)
iR 14+ 2 (14 SINR,p) ] ()
SINR, ¢ Fig. 2. Asymptotic output SINR for the training-only (TO, solid line) and the

semi-blind (SB, dash-dotted line) spatial filters under (a) frequency nonselective

and and (b) frequency selective fading. We represent the two asymptotic situations
under consideration: the high number of codes approximation (HQ, no markers)
1 N, and the high channel order approximation (HL, asterisks). The optimum SINR
1" [Osp] =&x~ — 1+ N.—LO is plotted in dotted line.
(&

R (1+
SINRope

o))

L

C. Comparative Evaluation Under Spatially Invariant
Frequency Behavior

NC
* e (v rir )
1 ar]? InFig. 2, we represent the asymptotic output SINR for the two
: [1 + SINR.., (1 + ;)} beamformers and asymptotic cases under consideration in two
Pt different situations: a frequency nonselective fading scenario,
whereéyy is as in Corollary 1. whereéxy = éva = 1, and a frequency selective fading sce-
We see, as it happened in the high number of codes appragtio withéxy = Exg = 3. The traffic to training power ratio
imation studied in Section IV-A, that when we assume that thveas relatively small, i.eq/a’ = 0.1. Note, first of all, that the
frequency behavior of both channel and interferences is spao asymptotic approximations give very close results at the re-
tially invariant, we get very simple expressions depending aion of high SINR .., whereas the results for low SINR are
structural parameters (namely)/N. or L/M N.), as well as quite different. In any case, we see that as SINRyrows, the
very simple quantities that describe the scenario ({fike or output SINR of the training-only beamformer levels off to a con-
SINR,pt). stant value. This behavior is observed in the two asymptotic sit-
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uations, and in fact, one can easily calculate the saturation SII
in either case.

: t
Output SINR as a function of a/ar, SINHopt=20dB, ;NH
T

=5nN
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=1, LQ/N_=UMN =0.1, (P-1)/MN =0.4

T

T T T
K=K = e = e = e = e e

=
N

15+ :n\&\
. HQ [~

&NI%E%OSINR (Wro) o
Lot MN. 1 |
- [0 P — 1£NH . oF
lim  SINR?L(w g .l
SINR, o0 (W) g s
ot MN, L an]” g

e ] I
aP—1[+MNC—L +at] 157

Itis interesting to observe that the saturation output SINR of tt
training-only spatial filter depends linearly with the sample siz -25f
(M N.) and inversely with the number of antennd?)(This

is reasonable because the higher the sample size, the more
thogonal the training and traffic signals are, and consequent
a lower level of interference coming from the direction of ar-
rival of the desired user is observed. On the other hand, as the
number of antennas increases, a larger sample size in the sp:
covariance estimators of the eigensystems is needed to obta
certain fixed performance. Hence, it is also reasonable to fit
out that the saturation output SINR depends inversely with tt
number of receiving antennas.

The saturation effect is a direct consequence of the code m
tiplexing of training sequence and traffic data. At high value _
of the input signal-to-noise ratio, the traffic signal is seen b% 5
the array as a new interfering source coming from the directics
of arrival of the desired user. Thus, the spatial filter uses d ™
grees of freedom to steer a null toward the direction of arrivi -
of the desired user, blocking the desired signal instead of €
hancing it. Thanks to the projection onto the null space of tt
code sequences, the semi-blind beamformer does not perce
any interference from the traffic signal. As a consequence, tl
spatial filter is able to sustain an increasingly high output SINI
even at high values of SINR;. In fact, it is easy to see that the
output SINR for the semi-blind beamformer increases linearly
with SINR,, i.e.,

—* SINR(HQ,TO)
— SINR(HL,TO)
*- SINR(HQ,SB)
—- SINR(HL,SB)

-30

-35—
10°

Output SINR as a function of u/ut, SINRDP(=20dB, QNH=§NN

=3, LO/N =LMN_=0.1, (P-1)/MN_=0.4

20

-20

 SINR(HQ,TO)
— SINR(HL,TO)
*- SINR(HQ,SB)
~ - SINR(HL,SB)

-25

-30

35 L . . . s
10"

(b)

Fig. 3. Asymptotic output SINR for the training-only (TO, solid line) and the
semi-blind (SB, dash-dotted line) spatial filters under (a) frequency nonselective
and (b) frequency selective fading. We represent the two asymptotic situations

SINRH? (11gp)

SINF\I",III)ItﬁOo SINR, ¢ under consideration: the high number of codes approximation (HQ, no markers)
1 and the high channel order approximation (HL, asterisks).
i P-1 LQ +éxn
T MN AN -LQ T _ - - _ -
SINRPE (4 optimal weighting matrix in (6). When we project, we elimi-
im w nate not only the traffic signal but part of the training sequence
SINR,,.—»c0  SINRopt transmitted in parallel as well. Thus, it might sometimes be more
P—-1 MN. -1 convenient to disregard the presence the traffic signal instead of
= [1 + MN, <5NN -1+ MN.—-L(1+ MQ)H : trying to block it out. This will be especially true when the di-

mension of the subspace generated by the code sequenes in

Atlow values of SINR ¢, the two beamformers perform veryis close to its column dimensiod{N..) so that in blocking the
similarly. In fact, when SINR,; — 0, the output SINR of traffic part of the signal, we eliminate also a sizeable part of the
the two beamformers tends to zero(SetNRopt)2 in the high training sequence (see [17]).
number of codes asymptotic situation andﬁkt\lRopt)3 in the In Fig. 3, we represent the asymptotic output SINR for the
high channel order asymptotic situation. Observe, in any casgo spatial filters and asymptotic situations as a function of the
that at low values of the SINR;, the semi-blind beamformer traffic-to-training-power ratio¢/«"). When the power of the
seems to perform slightly worse than the training-only spatitbining sequence is much higher than the power of the traffic
filter. This effect is due to the fact that we are projecting on th&gnal (/a’ — 0), the two beamformers perform very simi-
subspace orthogonal to the code signatures instead of usinglénly, regardless of the asymptotic situation under consideration.
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Convergence of the beamvector variance (high channel order approximation) Convergence of the beamvector variance (high number of codes approximation)
T T T T T

10° T T T 10 T
—— Training-only (simulation) — " -
S . - —— Training-only (simulation)
—%— Semi-blind (simulation) S . y
SNRinpm=25 a8 Training-only (theory) > _?far;::i:]blT:n§5|I?:;2txo;1)
— - Semi-blind (theory) _ Semi t?l d yh Ty
SNR._ =20dB emi-blind (theory)
input
SNR, =15 dB :\\ 10° |
0 / SNR,_,=20dB, 250B, 30dB
o o . S
2 b T B3 /
& o0’  —
s 5
r4 z
= =
10° 1
/ o’ e ]
SNRinput=15dB e e ——
SNRinpm:ZO dB \SNRmpm=20dB, 25dB, 30dB
SNHi"pm=25 dB
107 L 1 1 1 1 L 107" L L L L 1 1
10 20 30 40 50 60 5 10 15 20 25 30

k k

Fig. 4. Convergence of the normalized beamvector variance. We fiked  Fig. 5. Convergence of the normalized beamvector variance. We fiked
2,Q =2,N. = 8k,andL = k, wherek varied from 1 to 64. 1, N, = 16k, Q = k, andL = 3, wherek varied from 1 to 32.

If the opposite is trued/at — o0), the output signal-to-noise . In Fig. 6(.a), we reprgsent the. sim_ulated OUtPUt SINR versus

ratio for the two beamformers under consideration tends to z EBUt t.SNR 'rf' a r_ezillfstlz%oscdena}nc:jw.lth tTreeddlifOer(;nF fources

linearly with o/« in the high number of codes situation an rections ot arrival.— 2 (desired signal) an , 2Qnter-
ering signals)] impinging on a antenna array such as the one

quadratically with(a? /«) in the high channel order approxima-, _ i .
tion. Either way, we see that the semi-blind beamformer is adnathe example above. The interfering sources where received

to sustain an output SINR close to the optimum one over amudl h a power 20 dB above the noise floor, and_the chanqel
wider range of values of /o Impulse response for all users had an exponentially decaying

power delay profile (delay spread of two chips) in the time do-
main. All sources were received with a Laplacian power angular
VI. NUMERICAL VALIDATION spectrum having an angular spread bfEhe signal parameters

In this section, we present a numerical validation via simwere fixed asVl = 2,Q =4, L =5, a/a! = 1, andN, = 32.
ulation of the asymptotic study presented in the last sectiofhe simulated signal model corresponded to the one presented
We considered an scenario with five users transmitting froim Section I, without the simplifications in the form of the ma-
the azimuths (in degrees}-R0 (desired signal), 10, 40, 25,trices7 andC in Section IV. By simulated SINR, we mean the
—35 (interfering signals)] and impinging on an linear antenriastantaneous SINR averaged over 100 realizations of the code
array of four elements situated half a wavelength apart. Thad training sequences, which were all randomly drawn from a
channel power delay profile was exponentially decaying witBPSK alphabet. The covariance results were in turn averaged
a mean delay spread of two chips, and the traffic-to-trainirayer 50 different channel realizations.
power ratio was fixed tax/a' = 0 dB. All the interfering Observe that predicted SINR under the two approximations
users were received with a mean power 20 dB above the naisgery close to the actual average SINR at the output of the spa-
floor, whereas the received desired signal-to-noise-power rati@| filter. This good match is especially remarkable when the
which is defined as SNR,.: = (a+ o) (tr (Cg)/tr(Cn)), input SNR level is high and the output SINR takes reasonable
varied from 15 to 30 dB. In order to show the rate of converalues. In addition, note that the simulation results confirm the
gence toward the asymptotic expressions presented in the fasiicted asymptotic behavior and that the output SINR of the
section, we varied firs¥. andL, and thenV. and@, at the same training-only beamformer saturates as SYyR— oo, whereas
rate. Letw denote a generic beamvector aiq, its variance; the semi-blind spatial filter is able to sustain an increasingly
in Fig. 4, we represent the quantify N (tr (Cy,)/||w||*) for high output SINR. On the other hand, we see that the degra-
the two beamformers under consideration and the high chandation of the performance of the training-only spatial filter is
order approximation. We fixed the two signal paramet®rs noticeable, even for moderate values of the traffic to training
andL asN. = 8k andL = k and letk vary from 1 to 64. We power ratio. In the case presented here, we fixgd"' = 1, but
observe that the convergence toward the asymptotic value is negractice, this ratio is expected to be higher, since in a real situ-
sonably fast and that the asymptotic value is actually achievation, the traffic signal should obviously carry more power than
whenN, = 64. For lower values ofV,., the simulated variance the training signal.
is not very far from the asymptotic value. In Fig. 5, we repre- In Fig. 6(b), we represent the output SINR as a function of
sent the same quantity in a scenario where we fiXed= 16k the traffic to training power ratio for the same scenario as before
and@ = k and letk vary from 1 to 32. Once more, we observéut fixing the input SNR to 30 dB. We observe a good match be-
a that the rate of convergence is quite reasonable and thatttlieen the simulated output SINR and the predicted values under
asymptotic expressions are very accurate in practical situatiotie two asymptotic situations in a very wide range of values of
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Ouiput SINR as a function ofinput SNR, N=32 tial domain, we resort to orthogonal projection techniques to
' ' ‘ ' ’ ' eliminate its effect. In brief, our method projects the received
' signal onto the null space of the traffic signal signatures and uses
the resulting signal to design the spatial filter. Due to the fact
that the auto-interference is eliminated via orthogonal projec-
tion methods (as opposed to substraction techniques), some per-
formance is lost at low values of the input SNR, especially when
the dimension of the traffic signature subspace is high. However,
the method that we propose has the advantage of providing the
solution for the beamformer weights in a single eigenvalue com-
Smuton TO putation, avoiding the use of iterative techniques. Moreover, our
 Treoy TOHQ 1 technique does not resultin a significant increase of the compu-
S Theoy ToHL tational complexity of the filtering algorithm with respect to the
ey SR training-only approach. This is because the code projection ma-
trices can be computed offline and stored in memory for their re-
current use (code sequences are in practice periodic and known
Input SNR (d8) to the receiver).
@) Toillustrate the advantages of using the projection technique,
Output SINR s a function of e, N, <32 we have presented an asymptotic analysis of the training-only
30 . . ‘ . — , . and the semi-blind spatial filters under two asymptotic situ-
o ‘ ations. The analytical results are general because little is as-
sumed regarding the spatio-temporal characteristics of the re-
i ceived signal. Moreover, numerical evaluation shows that the
obtained expressions are a clear illustration of the nonasymp-
totic reality. We have shown that the gain derived from the use
of semi-blind techniques in the design of the spatial filter is
very impressive, especially at moderate and high values of the
input SNR. In fact, we have seen that the performance of the
training-only spatial filter saturates as the input signal-to-noise
ratio increases. The semi-blind beamformer, on the contrary, is
able to sustain an increasingly high output SINR. In terms of
the traffic to training power ratio, the performance of both fil-
ters tends to drop for values of this ratio higher than a certain
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. x § value. However, the margin of values of the traffic-to-training
0 e e P ~ o 10 -« power ratio at which the filter provides a reasonably good re-
oot sponse is much wider for the semi-blind beamformer.
(b)
Fig. 6. Output SINR as a function of (a) input SNR and (b) the power ratio APPENDIX
a/atinascenariowithi! = 2,Q = 4,L = 5,andN,. = 32.In (a), we . . . L
fixed /ot = 1, and in (b), the input SNR was set equal to 30 dB. In this Appendix, we give a sketch of the derivation of the

asymptotic results presented in this paper. Due to strict space

limitations, we are unable to provide the full proof of the results

a/a’. Itis confirmed that as it was predicted by the asympere. the interested reader can consult them in [17].
totic formulas, the semi-blind beamformer is able to provide an

output SINR very close to the optimum one, whereas the p
formance of the training-only beamformer drops quite drasti- _ _ _ o
cally asa/a! increases. Note that due to the finite sample-size The asymptotic matrix pencil for the training-only approach
effect, the output SINR does not actually reach Sij\Reven can readily be obtained using the classical weak law of the

whena/a! — 0. The loss caused by this effect is, howevetarge numbers. In the semi-blind case, however, the derivation
very small. is a bit more involved. In the high number of codes approx-

imation, for example, one encounters expressions such as
(I/MN)tr[PgA4] or (1/MN)tr[PgA1PgAs], where
Py isdefined in (8), and\; and A are deterministic matrices

In this paper, we have presented a semi-blind beamformiafy appropriate dimensions. AQ, N. — oo, both tr[Pg]
technique for the reception of pilot-aided multirate DS/CDMAand the dimensions d?¢ scale up at the same rate. For this
signals. The basic motivation for using this approach is the presason, one cannot apply the weak law of large numbers, and
ence of a code-multiplexed training sequence, which acts amare sophisticated techniques have to be used. Free probability
self-interference associated with the received signal. Since ttlisory seems to be the appropriate tool for dealing with these
signal cannot be separated from the desired one in the spapes of limits. In short, free probability is a theory proposed

. Asymptotic Spatial Filters

VII. CONCLUSIONS
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by Voiculescu [7], [8] that describes the behavior of somso that\; > R
noncommutative random variables and, in particular, randafa — A andB — B in probability, whereAF =

2677

> Ay, and assume that a8 — oo,

BFA,

matrices as their dimensions increase without bound. Freendssand B are K x K Hermitian deterministic matrices and

is the noncommutative analog of classical independence, anF it= [f;,
allows us to describe the behavior, the product, and additiontb& ordered asymptotic eigenvalues > Ao >

fx ], andA are a diagonal matrix containing
- > Ak

random matrices as their dimensions increase without boutidis further assumed that the joint distribution (A(B) has
For example, it can be shown that the random matrices of theunded moments for alV. Define F and A just like F
form CCH are asymptotically free almost surely from certaimnd A, replacingf, and \; with £ and )\, respectively, and
deterministic matrices a§, N. — oo at the same rate. This assume thaF andF are normalized as in Remark 1. Assume
implies that under these asymptotic conditions, one can daeher that the largest asymptotic root has multiplicity one

the two sets of matrice§CC*} and {A;,A,} as two sets (\; >

- > Ag_1 > Ag). The asymptotic variance of the

of mutually free noncommutative random variables. Thankkargest generalized eigenvalue eigenvector is given by

to that, one can asymptotically factorize/ M N.)tr [Py A4]

as the product(1/MN)tr [Py] (1/MN)tr[A4], just as |,

the expectation of the product of two independent classicétoc

NE

[(fl 1) (6 - ﬂﬂ

random variables is equal to the product of the corresponding K K o [AMn = A Ma}, , {M; — MM}
expectations. Furthermore, since asymptotic freeness holds —szf E SV : VDY -
almost surely, one can state that i=2 j=2 Lo L=
tr[PgAi] — Tr[Pg]Tr[A] = (1— —S ) Tr[A,] With M; = \/N(FHAF - A) and M, = VN
MN MN, .
(FHBF - IK).

with probability one, where- denotes the rank of, and
Tr[] (1/MN)tr[]. Similar factorization rules can be
obtained for higher order products, namely (see [17] for further
details)
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Tr[PyA PyA,] — (1 -

2
MNC > Tr [A1A2]

rc
+MN( <1 VN, )Tr [A1]Tr[Az]. (28) "
Using this type of result, one readily obtains the matrix pen—[ |
2

cils in Proposition 1 (note that almost sure convergence im-
plies convergence in probability). For the high channel order ap-
proximation, one must consider similar asymptotic limits where [3]
the two dimensions of the matricds andC increase without
bound. Once again, one easily shows th&7 '}, {CCH},

(4]
and{A,, A,} are asymptotically free, and applying factoriza-
tion rules such as the one in (28), one can show that 3]

1 P A+re 1 (6]
Mthr [Pp,rA1] — (1 - . ) Mthr [A4]
(7]
1 Ao\ tr[AA]
N A 1_>\—|—rc tr[Aq]tr [A,] 18]
MN. MN. ) (MN,)?* -
with A = min (L, M N, — r¢). With these and other similar
factorization results, one can prove Proposition 3.
(10]
B. Asymptotic Covariance [11]

The limit covariance matrices in Propositions 2 and 4 can be
obtained applying the factorization results from free probability, 12]
theory presented above and the following Lemma (see [17] and
[19] for further details).

Lemma 1: Consider the following eigensystem: [13]

[14]

k=1...K

the quality of a previous version of the manuscript.
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