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Spatial Filtering for Pilot-Aided WCDMA Systems:
A Semi-Blind Subspace Approach
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Abstract—This paper proposes a spatial filtering technique for
the reception of pilot-aided multirate multicode direct-sequence
code division multiple access (DS/CDMA) systems such as wide-
band CDMA (WCDMA). These systems introduce a code-multi-
plexed pilot sequence that can be used for the estimation of the
filter weights, but the presence of the traffic signal (transmitted
at the same time as the pilot sequence) corrupts that estimation
and degrades the performance of the filter significantly. This is
caused by the fact that although the traffic and pilot signals are
usually designed to be orthogonal, the frequency selectivity of the
channel degrades this orthogonality at hte receiving end. Here,
we propose a semi-blind technique that eliminates the self-noise
caused by the code-multiplexing of the pilot. We derive analyt-
ically the asymptotic performance of both the training-only and
the semi-blind techniques and compare them with the actual sim-
ulated performance. It is shown, both analytically and via simula-
tion, that high gains can be achieved with respect to training-only-
based techniques.

Index Terms—Free probability, pilot-aided CDMA, spatial fil-
tering, WCDMA.

I. NOTATION
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II. I NTRODUCTION

T HE use of multiple antennas at the basestation has become
a practical way of obtaining additional degrees of diver-

sity in mobile radio communication systems. It is widely ac-
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cepted that the presence of multiuser interference constitutes
the strongest limitation to the spectral efficiency of these sys-
tems. To overcome this, antenna array configurations have also
been used as interference mitigators that null out the response
in certain directions and enhance the spatial response toward
others, thus improving the signal-to-noise plus interference ratio
(SINR) at the receiver.

In DS/CDMA, both spatial and space-time filters have usu-
ally been proposed to alleviate the co-channel interference (i.e.,
interference of other users in the system) and achieve a desired
signal enhancement. For example, in [1], a space-and-then-time
architecture for DS/CDMA composed of a spatial matched filter
followed by a conventional Rake receiver is proposed. The space
filter steers the beampattern toward the direction of arrival of the
user of interest (matched filter in the space domain), whereas the
Rake filter constitutes an effective matched filter to the signal
in the time domain. This idea was then generalized to what are
widely known as “2-D Rake receivers,” i.e., space-time filters
that combine multipath coherently in both space and time do-
mains [2]. This type of algorithm can be thought of as a collec-
tion of space-and-then-time receivers combined in parallel and
designed to maximize the desired signal power at the output of
the filter. Other contributions in this direction, taking into ac-
count the presence of interference, can be found in, e.g., [3]
and [4]. In general terms, one can state that space-time filters
are much more powerful that conventional beamformers. How-
ever, the advantage of space-and-then-time processing consid-
ered here lies in the simplicity of implementation and the good
compatibility with existing time-only processing methods (such
as Rake filters, MMSE equalizers, etc.).

In this paper, we consider the application of these spatial
interference mitigators to third-generation mobile communica-
tion systems. We consider the multirate DS/CDMA modulation
format corresponding to the basic structure of the frequency di-
vision duplex (FDD) mode of a universal mobile telecommuni-
cations system (UMTS) [5]. The basic problem associated with
the use of spatial filters in these systems stems from the fact
that traffic and training signals are code-multiplexed and trans-
mitted at the same time, rather than time-multiplexed, such as
in other mobile communications systems. Although the traffic
signal and the pilot sequence are usually designed to be or-
thogonal (and thus perfectly separable at the receiving end),
the channel frequency selectivity destroys this orthogonality and
turns the traffic signal into an additional source of interference,
as far as the receiver is concerned. In [6], we studied the effect of
this multiplexing structure on the performance of the channel es-
timator, and we showed that semi-blind techniques perform sub-
stantially better than classical training-based approaches. Here,
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we will see that the same conclusion describes the behavior of
training-only and semi-blind spatial filtering techniques.

Traditional training-based techniques identify the traffic
signal multiplexed with the pilot as an additional source of
interference and try to null it out instead of enhancing it. In
order to avoid this, we propose a semi-blind beamforming tech-
nique based on a subspace projection approach that neutralizes
this effect and makes the traffic signal virtually invisible to
the spatial filter. We demonstrate via an asymptotic analysis
that this spatial filter performs substantially better than its
training-based counterpart. The approach taken to analyze the
asymptotic performance is quite different from other traditional
methods. On the one hand, we present a systematic method to
study the asymptotic behavior of the solution to a generalized
eigenvalue problem that can be exported to many other signal
processing applications. On the other, we use concepts of free
probability theory [7], [8] to reveal the inherent structure of
random orthogonal projection matrices.

The paper is organized as follows. First, in Section II, we in-
troduce the multirate DS/CDMA signal model for array obser-
vations. In Section III, we present two possible strategies for
designing the spatial filter weights, and we obtain two different
solutions, the first one based on the training signal only and the
second one incorporating further information about the signal
structure. In Section IV, we derive and compare the asymp-
totic performance for the two beamformers in terms of variance
and output signal-to-noise-plus-interference ratio (SINR), and
in Section V, we validate the asymptotic performance formulas
via simulation. Finally, Section VI concludes the paper.

III. SIGNAL MODEL

Consider an uplink communication where the signal is re-
ceived by an antenna array of elements. The bandpass
signal received by the antennas is simultaneously sampled
and downconverted, and a collection of baseband sam-
ples is gathered into a common matrix with complex entries

(the physical meaning of and will be
revealed below, but we can anticipate that, if the DS/CDMA se-
quences are periodic, will denote the number of chips per pe-
riod and the number of periods in the observation windows)

...
... (1)

This matrix contains two different contributions: the signal re-
ceived by the user of interest and the signal coming from other
users plus background noise. Assuming that the sampling oper-
ation is performed respecting the Nyquist criterion (e.g., digital
modulation without excess bandwidth sampled at the symbol
rate), the contribution from these two components can be de-
scribed as

(2)

Here, contains the samples of the noise plus
interfering signals and has the same structure asin (1). The
other two terms correspond to the training and traffic parts of

the desired signal. Both terms are affected by the same channel
matrix , which contains, at each of its columns, the
impulse response of the channel at a different receive antenna,
i.e.,

Note that we are modeling the channel as a finite impulse re-
sponse filter with maximum channel order1 so that each of the
rows of can be identified with a different spatial signature,
containing the spatial information about each of thedelayed
copies of the received signal. On the other hand,
is a convolution matrix with a Toeplitz structure that contains
the tranining sequence disposed as

...
...

...
...

and is a column vector with the symbols that
are transmitted during chip intervals. Finally,

contains the code signatures associated with the
different received symbols. Assume thatdifferent code se-
quences are transmitted in parallel. In that case

where is the code matrix associated with
the th parallel code, transporting different symbols, so
that . If we now assume that theth code
sequence is periodic with period , the matrix can be de-
scribed as

...

...

(3)

where

...
...
.. .
. . .

...

Here, is the number of symbols trans-
ported during chips by the th code so that

. The code sequences are constructed
from the original ones , setting to zero all the samples
outside the th symbol interval, i.e.,

otherwise.

1To simplify the notation, we sometimes assumeL < N . All the results
presented here are equally valid in the caseL � N .
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If the code sequences are aperiodic, the signal model is ex-
actly the same but modifying so that each of its
block columns in (3) correspond to different sequences (without
repetitions).

At this point, we consider a beamformer used to
combine the input of the different antennas. The output of the
spatial filter can be expressed as

with

After the space filtering stage, the signal would be processed
in the time domain with conventional techniques aimed at ex-
tracting the transmitted information. The basic objective of the
spatial filter is the suppression of the noise componentand
the enhancement of the desired signal .

We will assume that the code and training sequences are per-
sistently exciting of all orders, and we will further impose the
structural restriction . This condition, which is
usually verified in practical situations, ensures thatis full
column rank and that the column rank ofis higher than its row
rank (so that a column vector subspace can be defined properly).

IV. M INIMUM MEAN SQUARED ERRORBEAMFORMING

Let us consider the design of a spatial filter as an interfer-
ence canceller. In order to design the spatial filter weights, it
seems reasonable to minimize the mean squared error between
the received signal and the training sequence (known signal) at
the output of the beamformer. If the filter weights are properly
designed, the spatial filter will identify and cancel the contri-
bution from all interfering signals. We first examine a classical
solution that takes into account only the presence of the training
symbols.

A. Training-Based Solution

Disregarding the presence of the traffic data in (2) ( ),
we can design the spatial filter in very simple terms as proposed
in [9], i.e., minimizing the squared error between its output and
the channel-filtered training sequence subject to a fixed output
power constraint:

subject to (4)

where the subindex TO stands for training only, andis a posi-
tive constant. Note that in (4), the column vector con-
tains the channel impulse response filtered by the spatial stage

. The solution for the spatial filter weightscan be ob-
tained (cf. [9]) as the generalized eigenvector corresponding to
the maximum generalized eigenvalue of the following system:

(5)

where we have defined the orthogonal projection matrices

Of course, the solution to (5) is defined up to a scalar factor
(this scalar factor should be fixed according to the constraint in
the minimization problem). This factor has no effect in the filter
performance because it affects both desired and undesired signal
in the same way.

In practice, the performance of the solution based on the
training information only is quite poor due to the presence
of the traffic signal, which is seen from the base station as
an interfering source coming from the direction of arrival of
the desired user. For this reason, at high signal-to-noise ratios
(SNRs), the beamformer tries to null out the signal coming
from the desired user instead of enhancing it. This can be
observed in Fig. 1(a), where we have represented the array
response obtained in (5) for different values of the traffic to
training power ratio, which is denoted by and defined as
the quotient between the traffic signal power and the training
sequence power of the desired user signal. In the simulated
scenario, we considered two different punctual sources trans-
mitting to a uniform linear array of elements with
an interelement separation of half a wavelength. The desired
and interfering signals came from directions of arrival of 20
and 30 , respectively, and both were received with a power
20 dB above the noise floor. The code and training sequences
were constructed as Walsh–Hadamard orthogonal codes from
a QPSK constellation, and the impulse response of the channel
was exponentially shaped with delay spread equal to the
duration of two chips. Note that as the traffic-to-training-power
ratio increases, the spatial filter recognizes a new source of
interference coming from the direction of arrival of the desired
user. Hence, as the power of this interference grows, the spatial
filter steers a new null toward the direction of arrival of the
desired user. We will show in Section IV that this effect causes
a severe degradation of the performance of the spatial filter.

The poor performance of the proposed training-only beam-
former can be made extensive to other similar training-based
solutions such as the traditional sample matrix inversion (SMI)
algorithm [10]. If the auto-interference problem is not properly
treated, the spatial filter will always perceive a new source of
interference coming from the direction of arrival of the desired
user. It is out of the scope of this paper to compare the perfor-
mance of the SMI algorithm with the solution in (5). We will
only mention that the same techniques that are presented here
can be used to describe the asymptotic behavior of the SMI so-
lution. In fact, this has been done in [11] and [12], although in
orthogonal frequency division multiplexing (OFDM) contexts.
Here, we prefer to analyze the solution in (5) for two main rea-
sons. First, we will see that this solution—as opposed to the SMI
algorithm—is asymptotically optimal in the sense that it maxi-
mizes the output SINR regardless of the rank of the channel ma-
trix (see Section IV for further details). Second, since the ef-
fect of the code-multiplexed traffic signal is very similar in both
solutions, we prefer to focus on the technique in (5) to main-
tain a certain coherence with the semi-blind approach proposed
next.
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(a)

(b)

Fig. 1. Array response of the (a) training-only and (b) semi-blind spatial filters
for different values of the traffic-to-training-power ratio. The direction of arrival
of the desired and interfering souces were 20� and�30� respectively, and both
signals were received with a power 20 dB above the noise floor. The array
consisted of four linearly equispaced antennas situated half a wavelength apart.
The signal parameters were fixed as follows:M = 1, N = SF = 256,
Q = 1, andL = 10.

B. Semi-Blind Subspace Approach

We consider a design similar to the one in (4) but with the in-
troduction of a weighting Hermitian positive semidefinite ma-
trix

subject to (6)

where is a positive constant. The solution can be obtained
as the maximum generalized eigenvalue eigenvector of the fol-
lowing system:

(7)

with , and
where the factor is inserted for normalization purposes.
Note that for , the solution is the one obtained by
training-only approach. Here, for each choice of weighting
matrix , we will have a different solution and, consequently,
a different performance. A reasonable choice for the weighting
matrix is the minimizer of the asymptotic mean squared error
of the filter weigths as the number of samples grows without
bound. This is the traditional way of operating in “weighted
least squares” estimation [13]. In a general framework, how-
ever, the weighting matrix minimizing the asymptotic variance
depends on the minimization variables such as, in (6), and
consequently, the solution can only be obtained using iterative
methods. Here, we try to avoid these types of solutions with a
suboptimal approach; instead of using the optimal weighting
matrix, we propose a simplified architecture where the spa-
tial filter weights can be obtained with a single eigenvector
computation.

Consider the singular value decomposition of the code matrix
:

with a diagonal matrix containing (in its
upper-left corner) the nonzero singular values of and
zeros elsewhere ( denotes the rank of ),
and having as columns the left singular
vectors associated with nonzero and zero singular values,
respectively, and, finally, containing the right
singular vectors. We propose to use as weighting matrix

(8)

which does not depend on the minimization parameters and can
be computed offline (because it only depends on the code se-
quences, which are known beforehand).

To justify this choice, consider again the problem in (4) but
with a slight modification to take into account the presence of
the traffic signal:

subject to certain power constraint to avoid the trivial solution,
where here, is an unstructured column vector that
replaces (the symbols affected by the channel after
the spatial filter). Solving for and substituting the solution
back into the cost function, we obtain

with and
denoting the Moore–Penrose pseudo-inverse. Thus, the choice
of a weighting matrix corresponds to an extended minimiza-
tion criterion that treats the unknown data and the channel as a
single unstructured minimization variable.

In conclusion, the proposed space-time weight vector will
be the maximum generalized eigenvalue eigenvector of the fol-
lowing system:

(9)
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where SB stands for semi-blind approach. In the next section,
we analyze the asymptotic performance of this filter and com-
pare it with the training-only approach.

Fig. 1(b) represents the spatial response of the semi-blind
spatial filter obtained from (9) under the same scenario as in
Fig. 1(a). We observe that thanks to the introduction of the pro-
jections onto the null space of the code sequences, we are able to
avoid a null steering toward the direction of arrival of the desired
user. Hence, the proposed spatial filter is able to provide a good
spatial response even at high values of the traffic-to-training
power ratio. In the next two sections, we will quantify and prove
this assertion in several asymptotic scenarios.

V. ASYMPTOTIC PERFORMANCEPREDICTION

Let us now consider the asymptotic performance of the two
proposed beamformers presented in the last section. Our interest
here is not so much the effect of the choice of codes and training
sequence on the performance of our spatial filter as the charac-
terization of their global interaction as desired and interfering
signals. Therefore, we will assume right from the beginning that
both code and training sequences are random and independently
chosen.

One soon discovers that the problem treated here is strongly
related to the problem of characterizing the behavior of mul-
tiuser linear receivers in DS/CDMA systems. To see this, note
that the signal model in (2) can be regarded as the signal re-
ceived by an antenna array in a multiuser scenario so that each
user transmits with a different code sequence, and the training
sequence is seen as the contribution from an additional user. By
making this parallelism, one can readily guess that the appro-
priate tools to describe the asymptotic behavior of these spatial
filters should be closely related to the machinery used to de-
scribe the behavior of linear multiuser receivers. This motivates
a choice between two different strategies to analyze the asymp-
totic behavior of the spatial filters. The “traditional” strategy
would be to describe the asymptotic performance of the spatial
filters as the observation window length ( ) grows without
bound. This is, for instance, the approach taken in [14] to ana-
lyze the performance of a subspace blind multiuser receiver. The
basic problem with this type of analysis is the fact that the results
are not representative of situations where the number of users
and the observation sample size are of the same order of magni-
tude. For this reason, recent approaches (see, e.g., [15] and [16])
have focused on asymptotic results, whereboththe observation
window size and the number of users increase without bound.
The results are still asymptotic, but since the ratio between these
two parameters is held constant, they turn out to describe much
more accurately a realistic situation. The appropriate tools to
describe such asymptotic limits are random matrix theory and
free probability theory.

In our situation, the role of the sample size is taken by the
quantity , whereas the role of the number of users can be
taken by one of the two remaining “dimensions” in the signal
model: the number of parallel codes () or the channel order
( ). Thus, we will consider two different asymptotic situations.
In the first one, the number of codes used by the mobile station
( ) increases without bound at the same rate as their spreading

factor, whereas remains fixed. This asymptotic limit is a re-
alistic approximation in scenarios where the maximum code
spreading factor is high compared with the channel order as-
sumed at the receiver, whereas the number of codes and their
corresponding spreading factors are of the same order of mag-
nitude. This situation will be referred to ashigh number of codes
approximation(High or HQ). The second asymptotic sce-
nario will be derived, assuming that bothand remain fixed
while the code spreading factors ( ) and the assumed channel
length ( ) grow without bound at the same rate. This situation
is much more difficult to handle than the previous one and rep-
resents a scenario where the channel length assumed at the re-
ceiver is of the same order of magnitude as the spreading fac-
tors of the transmitting codes. This will be referred to ashigh
channel order approximation(High , or HL). The assumptions
made in order to tackle this situation are much more restrictive
than the ones made in the high number of codes approximation,
and therefore, we will treat the two cases separately. Note that
the traditional asymptotic approximation obtained as
when all the other parameters remain fixed (asymptotically large
sample size) can be obtained from either one of the two asymp-
totic situations simply by letting the second parameter go to zero
in the asymptotic expressions.

In what follows, and in order to simplify the derivations,
we will assume that all the code sequences present the same
spreading factor (i.e., ). The general-
ization of the results presented here to the general case where
each code is transmitted with a different spreading factor is,
however, straightforward. Furthermore, and also for simplicity,
we model the code matrix corresponding to theth code
with the following block-diagonal structure:

... (10)

where as defined2 in (3).
Note that in comparing (3) and (10), in our simplified model,
we are disregarding the effect of the intersymbol interference in
the traffic signal, and we are modeling the time-shifted code se-
quences as circularly rotated. In practice, this has little relevance
for the purposes of evaluating the mutual interference between
traffic and training signal.3 The derivation of the results, how-
ever, is significantly simplified.

A. High Number of Codes Approximation

As explained above, this asymptotic limit accounts for a situ-
ation where the code spreading factors and the number of trans-
mitted codes have the same order of magnitude, which is much
higher than the channel order. The asymptotic limits will be de-
rived under the following statistical assumptions.

2The asymptotic results presented here are independent of whether periodic
or aperiodic codes are used. In any case, if aperiodic codes are to be modeled,
the matrices�C across the diagonal ofC in (10) should be different.

3The validity of this assumption will be confirmed in Section V. One could
at first think that this assumption is strongly violated in the high channel order
limit. Note, however, that increasingL does not necessarily mean increasing
the effective delay spread of the channel because in our asymptotic analysis, the
channel frequency response will be held constant regardless ofL, which is only
the channel orderassumed at the receiver.
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As1) The noise-plus-interference componentis a circu-
larly symmetric Gaussian-distributed random vector
with cross-spectral density between theth and th an-
tennas denoted by , . Equivalently, in
matrix notation

vec vec

...
...

...

(11)

with

defined as

(12)

and where the matrix-argumented integral stands for
the matrix with entries the element-wise integrals. It
will be assumed that for any

(13)

i.e., the noise plus interference correlation decays fast
enough in the time domain.

As2) The transmitted symbols are independent and identi-
cally distributed (i.i.d.) circularly symmetric random
variables, with zero mean, unit variance, and bounded
higher order moments. They are also independent of
the received noise.

As3) The training and code sequences are i.i.d. circularly
symmetric Gaussian distributed random variables
with zero mean and variance and

, respectively. They are also
independent of the received noise and the transmitted
symbols.

For technical reasons, we assume that code and training
sequences follow a Gaussian distribution. This is because in
our derivations, we use the concept of asymptotic freeness
almost everywhere of random matrices, which has only been
proven under the Gaussianity assumption. It would be rather
surprising to find out that the results derived under the Gaussian
assumption do not hold under milder statistical conditions such
as bounded moments. In any case, we prefer to be strict and not
use any result that still has not been mathematically proven.

Proposition 1 (Asymptotic Spatial Filters):Under As1-As3
and as at the same rate, the two spatial filters
proposed in Section III tend in probability to the same limit (up
to a scalar factor), which is given by the maximum eigenvalue
eigenvector of the following systems:

(14)

The limiting covariance matrices and are defined as

(15)

being defined in (12) and4

(16)

Finally, stands for the channel frequency response at the
th antenna.

Proof: See the Appendix.
We see from this first result that under the asymptotic con-

ditions considered here, the two proposed spatial filters tend
to the same limit (up to a scalar factor) as at
the same rate. Both solutions are asymptotically proportional to
the maximum generalized eigenvalue eigenvector of the pencil
( ), which is denoted by . This solution will be re-
ferred to as the optimal one in the sense that it maximizes the
output signal-to-interference-plus-noise ratio because

The two proposed designs for the spatial filter tend to the
optimum solution, provided that the spreading factor of the
code sequences is sufficiently high. Therefore, from the point
of view of the asymptotic solution, there is no difference in
performance between the training-only and the semi-blind
spatial filters. This does not mean that in a real (nonasymptotic)
scenario, the two solutions are equivalent. The difference in
performance will be given by the difference in the asymptotic
covariance of the beamvector weights around the optimum
value. A different asymptotic covariance matrix will translate
into a different asymptotic signal-to-noise-plus-interference
ratio at the output of the spatial filter. In this paper, we define
the (mean) output signal-to-noise-plus-interference ratio of a
particular beamformer as

SINR (17)

where the expectation is taken with respect to the statistics of
. We prefer to use this performance measure rather than the

expectation of the instantaneous SINR because (17) is much
simpler to compute (only second-order statistics are needed),
whereas both performance measures are very close in practical
situations [17].

Since the spatial weight vector is defined up to a constant
factor, it will be useful to impose some amplitude and phase
constraints to avoid ambiguities in the definition of the weight
vector covariance.

Remark 1: Let ( ) represent a generic stochastic matrix
pencil, and denote by and the generalized eigenvec-
tors and associated eigenvalues ordered according to their mag-
nitude. Assume that and in probability, and let

and denote the generalized eigenvectors and asso-
ciated eigenvalues of the limiting deterministic matrix pencil
( ). It may happen that some have multiplicities higher
than one; in that case, the form a convenient basis for
the associated subspace and can be treated as usual generalized

4Note that the matrixC (f) has rank one for eachf , although this might
not be true ofC .
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eigenvectors. From now on, and without loss of generality, it
will be assumed that the asymptotic generalized eigenvectors
are normalized as follows:

(18)

Moreover, let and contain, at each of their columns, the
set of limiting and stochastic generalized eigenvectors. If
stands for theth element on the diagonal, it will be assumed
that

(19)

whenever has multiplicity one. If has multiplicity , it will
be assumed that the corresponding block of the diagonal
of is fixed to be an identity matrix.

In brief, the first two identities in (18) are amplitude and
phase constraints of the asymptotic eigenvectors, or the associ-
ated subspaces if we are dealing with multiplicities higher than
one, and ensure that eigenvectors associated with single mul-
tiplicity eigenvalues are univocally defined from the limiting
matrix pencil ( ). The last equation in (19) translates these
constraints into equivalent conditions on the stochastic eigen-
vectors in the columns of . Note that without imposing any
restriction to the columns of , one should have, asymptoti-
cally, that with a diagonal5 matrix with entries de-
pending on the constraints fixed to and . This is because

and , and this implies that the generalized eigen-
vectors of ( ) tend asymptotically to the generalized eigen-
vectors of ( ) up to scalar factors. Therefore, ,
and forcing the diagonal elements of to 1 is equivalent
to fixing the appropriate constraints in in order to guarantee
that .

Proposition 2 (Asymptotic Covariance):Under As1-As3
and as at the same rate, the covariance matrices of
the two properly normalized spatial filters around the optimum
value tend to

(20)
where and .
The two matrices and have, as the ( )th entry

5If there are generalized eigenvalues with multiplicities higher than one, their
associated generalized eigenvectors are linearly independent vectors of an asso-
ciated subspace. In this case, one has^V!VD withD ablockdiagonal matrix,
where each diagonal block of size higher than one is associated with an eigen-
vector of multiplicity higher than one. In this situation, instead of imposing (19),
one should force the block diagonal entries ofV ^V to be identity matrices.
This is enough to guarantee that^V!VD withD block-diagonal with orthog-
onal matrices as entries.

with and . Furthermore, and
are the th largest generalized eigenvalues of (14) (ordered as

, ),
and are the corresponding generalized eigenvectors normal-
ized as in Remark 1, and

(21)

Proof: See the Appendix.
The asymptotic output SINR for each spatial filter can be ob-

tained inserting the covariance matrices into (17) and imposing
the constraints in Remark 1. It turns out that under the high
number of codes approximation ( )

SINR
SINR

SINR tr

SINR
SINR

tr
(22)

with SINR the optimum output signal-to-noise ratio

SINR (23)

To simplify these expressions even further, assume now that the
frequency-dependent covariance matrices , have
the following structure:

(24)
with and defined in (15). These assumptions imply that
the channel fading is proportional over all the antennas for both
desired user and interferences. Furthermore, according to the
definitions in (24), the channel matrix must have rank 1,
and consequently, for . Under these
circumstances, we can formulate the following result.

Corollary 1 (Spatially Invariant Frequency Behavior):
Whenever the noise and channel covariance matrices can be
expressed as in (24), the asymptotic output SINR is given by
(22), where the two quantities tr and tr take the
form

tr
SINR

SINR

SINR

SINR

tr

SINR
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where and are two fading-related parameters

and SINR is the optimum output signal-to-noise ratio.
The approximation of spatially invariant frequency behavior

allows us to describe the asymptotic covariance matrices of the
two proposed beamformers in very simple terms. For instance,
the effect of the frequency selectivity of both channel and in-
terferences can be described through the two parameters
and . Simple application of the Cauchy–Schwarz inequality
shows that with equality only when the interferences
are white in the frequency domain. Since the asymptotic eigen-
vectors do not depend on this parameter, we can conclude that
frequency selectivity of the noise plus interference component
always increases the filter weights variance under the asymp-
totic conditions above (note that both tr and tr in-
crease linearly with ). As for , one readily sees that

, where is defined as replacing
with . If either the interference-plus-noise com-

ponent or the channel are frequency nonselective, one will have
. Otherwise, one can expect any positive value for.

In practical situations, though, both and are observed
to oscillate between 1 and 3.

B. High Channel Order Approximation

Let us now concentrate on the asymptotic situation where the
spreading factor of the code sequences () and the channel
order assumed at the receiver () increase without bound at the
same rate. Now, the number of codes () and the number of
symbols in the observation window (proportional to) are the
two fixed parameters. Unfortunately, under this situation, the
Toeplitz structure of the matrices and poses a great im-
pediment to obtain asymptotic results as their two dimensions
increase without bound (in particular, we are not able to show
that these matrices are asymptotically free from deterministic
ones). Random Toeplitz matrices have a very particular behavior
that is difficult to characterize asymptotically. For instance, it is
still unknown whether the empirical distribution function of the
eigenvalues of a random square Hermitian Toeplitz matrix with
i.i.d. entries tends to a nonrandom limit as the matrix dimensions
increase without bound (see, for instance, [18]). For this reason,
we will have to avoid the structural assumptions imposed by the
Toeplitz structure of and . In the high channel order simpli-
fication, we will model different delayed copies of both training
and code sequences (corresponding to different multipaths) as
statistically independent. Thus, as far as the high channel order
approximation is concerned, the entries ofand in (10) are
independent and identically distributed and follow the statistical
assumptions in As3. This approximation is commonly used in
the literature, and in fact, it has been shown that under some
asymptotic conditions different from the ones considered here,
circularly rotated sequences behave just like independent ones
[16].

Proposition 3 (Asymptotic Spatial Filters):Under As1-As3
and as at the same rate, the spatial weights of the

training-only and the semi-blind solutions tend in probability to
the solutions of

(25)

(26)

for the training-only and the semi-blind approaches,
respectively.

Proof: See the Appendix.
It is interesting to note that as it happened in the high number

of codes approximation, the same asymptotic solution is ob-
tained for both the training-only and the semi-blind approaches
(up to a scalar factor). Moreover, the asymptotic solution is in
turn proportional to the optimum spatial filter ( ), which is
the one that maximizes the output signal-to-noise-plus-interfer-
ence ratio, as defined in (23).

As before, the difference in asymptotic performance of the
two filters will be dictated by the variance of the beamformers
around the optimum value. Next, we give closed expressions for
such asymptotic variance.

Proposition 4 (Asymptotic Covariance):Under As1-As3
and as at the same rate, the covariance matrices of
the two properly normalized spatial filters around the optimum
value tend to

with and , as defined in Proposition 2. The two matrices
and have, as the ( ) th entry
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with and . Furthermore, and
are the th largest generalized eigenvalues of (14) (ordered as

, ), ,
are the corresponding generalized eigenvectors normalized as
in Remark 1

and is as defined in (21).
Proof: See the Appendix.

The asymptotic output SINR for each beamformer under the
high channel order approximation ( ) can be expressed as

SINR
SINR

SINR tr

SINR
SINR

tr
(27)

The expressions for the asymptotic output SINR are quite gen-
eral but do not introduce much insight into the problem. Next,
we consider the spatially invariant model for the frequency re-
sponse of both channel and interference in (24). Hence, we as-
sume that the spectral density of both channel and interferences
is the same (up to a scale factor) in all the receiving antennas.

Corollary 2 (Spatially Invariant Frequency Behavior):
Whenever the noise and channel covariance matrices can
be expressed as in (24), the asymptotic output SINR for the
two beamformers can be expressed as in (27), where the two
quantities tr and tr take the form

tr

SINR
SINR

SINR

SINR

SINR

and

tr

SINR

SINR

where is as in Corollary 1.
We see, as it happened in the high number of codes approx-

imation studied in Section IV-A, that when we assume that the
frequency behavior of both channel and interferences is spa-
tially invariant, we get very simple expressions depending on
structural parameters (namely or ), as well as
very simple quantities that describe the scenario (like or
SINR ).

(a)

(b)

Fig. 2. Asymptotic output SINR for the training-only (TO, solid line) and the
semi-blind (SB, dash-dotted line) spatial filters under (a) frequency nonselective
and (b) frequency selective fading. We represent the two asymptotic situations
under consideration: the high number of codes approximation (HQ, no markers)
and the high channel order approximation (HL, asterisks). The optimum SINR
is plotted in dotted line.

C. Comparative Evaluation Under Spatially Invariant
Frequency Behavior

In Fig. 2, we represent the asymptotic output SINR for the two
beamformers and asymptotic cases under consideration in two
different situations: a frequency nonselective fading scenario,
where , and a frequency selective fading sce-
nario with . The traffic to training power ratio
was relatively small, i.e., . Note, first of all, that the
two asymptotic approximations give very close results at the re-
gion of high SINR , whereas the results for low SINR are
quite different. In any case, we see that as SINRgrows, the
output SINR of the training-only beamformer levels off to a con-
stant value. This behavior is observed in the two asymptotic sit-
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uations, and in fact, one can easily calculate the saturation SINR
in either case.

SINR
SINR

SINR
SINR

It is interesting to observe that the saturation output SINR of the
training-only spatial filter depends linearly with the sample size
( ) and inversely with the number of antennas (). This
is reasonable because the higher the sample size, the more or-
thogonal the training and traffic signals are, and consequently,
a lower level of interference coming from the direction of ar-
rival of the desired user is observed. On the other hand, as the
number of antennas increases, a larger sample size in the spatial
covariance estimators of the eigensystems is needed to obtain a
certain fixed performance. Hence, it is also reasonable to find
out that the saturation output SINR depends inversely with the
number of receiving antennas.

The saturation effect is a direct consequence of the code mul-
tiplexing of training sequence and traffic data. At high values
of the input signal-to-noise ratio, the traffic signal is seen by
the array as a new interfering source coming from the direction
of arrival of the desired user. Thus, the spatial filter uses de-
grees of freedom to steer a null toward the direction of arrival
of the desired user, blocking the desired signal instead of en-
hancing it. Thanks to the projection onto the null space of the
code sequences, the semi-blind beamformer does not perceive
any interference from the traffic signal. As a consequence, the
spatial filter is able to sustain an increasingly high output SINR
even at high values of SINR . In fact, it is easy to see that the
output SINR for the semi-blind beamformer increases linearly
with SINR , i.e.,

SINR

SINR
SINR

SINR

SINR
SINR

At low values of SINR , the two beamformers perform very
similarly. In fact, when SINR , the output SINR of
the two beamformers tends to zero asSINR in the high
number of codes asymptotic situation and asSINR in the
high channel order asymptotic situation. Observe, in any case,
that at low values of the SINR , the semi-blind beamformer
seems to perform slightly worse than the training-only spatial
filter. This effect is due to the fact that we are projecting on the
subspace orthogonal to the code signatures instead of using the

(a)

(b)

Fig. 3. Asymptotic output SINR for the training-only (TO, solid line) and the
semi-blind (SB, dash-dotted line) spatial filters under (a) frequency nonselective
and (b) frequency selective fading. We represent the two asymptotic situations
under consideration: the high number of codes approximation (HQ, no markers)
and the high channel order approximation (HL, asterisks).

optimal weighting matrix in (6). When we project, we elimi-
nate not only the traffic signal but part of the training sequence
transmitted in parallel as well. Thus, it might sometimes be more
convenient to disregard the presence the traffic signal instead of
trying to block it out. This will be especially true when the di-
mension of the subspace generated by the code sequences in
is close to its column dimension ( ) so that in blocking the
traffic part of the signal, we eliminate also a sizeable part of the
training sequence (see [17]).

In Fig. 3, we represent the asymptotic output SINR for the
two spatial filters and asymptotic situations as a function of the
traffic-to-training-power ratio ( ). When the power of the
training sequence is much higher than the power of the traffic
signal ( ), the two beamformers perform very simi-
larly, regardless of the asymptotic situation under consideration.
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Fig. 4. Convergence of the normalized beamvector variance. We fixedM =

2,Q = 2,N = 8k, andL = k, wherek varied from 1 to 64.

If the opposite is true ( ), the output signal-to-noise
ratio for the two beamformers under consideration tends to zero
linearly with in the high number of codes situation and
quadratically with in the high channel order approxima-
tion. Either way, we see that the semi-blind beamformer is able
to sustain an output SINR close to the optimum one over a much
wider range of values of .

VI. NUMERICAL VALIDATION

In this section, we present a numerical validation via sim-
ulation of the asymptotic study presented in the last section.
We considered an scenario with five users transmitting from
the azimuths (in degrees) [20 (desired signal), 10, 40, 25,

35 (interfering signals)] and impinging on an linear antenna
array of four elements situated half a wavelength apart. The
channel power delay profile was exponentially decaying with
a mean delay spread of two chips, and the traffic-to-training
power ratio was fixed to dB. All the interfering
users were received with a mean power 20 dB above the noise
floor, whereas the received desired signal-to-noise-power ratio,
which is defined as SNR tr tr ,
varied from 15 to 30 dB. In order to show the rate of conver-
gence toward the asymptotic expressions presented in the last
section, we varied first and , and then and , at the same
rate. Let denote a generic beamvector and its variance;
in Fig. 4, we represent the quantity tr for
the two beamformers under consideration and the high channel
order approximation. We fixed the two signal parameters
and as and and let vary from 1 to 64. We
observe that the convergence toward the asymptotic value is rea-
sonably fast and that the asymptotic value is actually achieved
when . For lower values of , the simulated variance
is not very far from the asymptotic value. In Fig. 5, we repre-
sent the same quantity in a scenario where we fixed
and and let vary from 1 to 32. Once more, we observe
a that the rate of convergence is quite reasonable and that the
asymptotic expressions are very accurate in practical situations.

Fig. 5. Convergence of the normalized beamvector variance. We fixedM =

1,N = 16k,Q = k, andL = 3, wherek varied from 1 to 32.

In Fig. 6(a), we represent the simulated output SINR versus
input SNR in a realistic scenario with three different sources
[directions of arrival: 20 (desired signal) and 10, 20(inter-
fering signals)] impinging on a antenna array such as the one
in the example above. The interfering sources where received
with a power 20 dB above the noise floor, and the channel
impulse response for all users had an exponentially decaying
power delay profile (delay spread of two chips) in the time do-
main. All sources were received with a Laplacian power angular
spectrum having an angular spread of 5. The signal parameters
were fixed as , , , , and .
The simulated signal model corresponded to the one presented
in Section II, without the simplifications in the form of the ma-
trices and in Section IV. By simulated SINR, we mean the
instantaneous SINR averaged over 100 realizations of the code
and training sequences, which were all randomly drawn from a
QPSK alphabet. The covariance results were in turn averaged
over 50 different channel realizations.

Observe that predicted SINR under the two approximations
is very close to the actual average SINR at the output of the spa-
tial filter. This good match is especially remarkable when the
input SNR level is high and the output SINR takes reasonable
values. In addition, note that the simulation results confirm the
predicted asymptotic behavior and that the output SINR of the
training-only beamformer saturates as SINR , whereas
the semi-blind spatial filter is able to sustain an increasingly
high output SINR. On the other hand, we see that the degra-
dation of the performance of the training-only spatial filter is
noticeable, even for moderate values of the traffic to training
power ratio. In the case presented here, we fixed , but
in practice, this ratio is expected to be higher, since in a real situ-
ation, the traffic signal should obviously carry more power than
the training signal.

In Fig. 6(b), we represent the output SINR as a function of
the traffic to training power ratio for the same scenario as before
but fixing the input SNR to 30 dB. We observe a good match be-
tween the simulated output SINR and the predicted values under
the two asymptotic situations in a very wide range of values of
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(a)

(b)

Fig. 6. Output SINR as a function of (a) input SNR and (b) the power ratio
�=� in a scenario withM = 2, Q = 4, L = 5, andN = 32. In (a), we
fixed�=� = 1, and in (b), the input SNR was set equal to 30 dB.

. It is confirmed that as it was predicted by the asymp-
totic formulas, the semi-blind beamformer is able to provide an
output SINR very close to the optimum one, whereas the per-
formance of the training-only beamformer drops quite drasti-
cally as increases. Note that due to the finite sample-size
effect, the output SINR does not actually reach SINReven
when . The loss caused by this effect is, however,
very small.

VII. CONCLUSIONS

In this paper, we have presented a semi-blind beamforming
technique for the reception of pilot-aided multirate DS/CDMA
signals. The basic motivation for using this approach is the pres-
ence of a code-multiplexed training sequence, which acts as a
self-interference associated with the received signal. Since this
signal cannot be separated from the desired one in the spa-

tial domain, we resort to orthogonal projection techniques to
eliminate its effect. In brief, our method projects the received
signal onto the null space of the traffic signal signatures and uses
the resulting signal to design the spatial filter. Due to the fact
that the auto-interference is eliminated via orthogonal projec-
tion methods (as opposed to substraction techniques), some per-
formance is lost at low values of the input SNR, especially when
the dimension of the traffic signature subspace is high. However,
the method that we propose has the advantage of providing the
solution for the beamformer weights in a single eigenvalue com-
putation, avoiding the use of iterative techniques. Moreover, our
technique does not result in a significant increase of the compu-
tational complexity of the filtering algorithm with respect to the
training-only approach. This is because the code projection ma-
trices can be computed offline and stored in memory for their re-
current use (code sequences are in practice periodic and known
to the receiver).

To illustrate the advantages of using the projection technique,
we have presented an asymptotic analysis of the training-only
and the semi-blind spatial filters under two asymptotic situ-
ations. The analytical results are general because little is as-
sumed regarding the spatio-temporal characteristics of the re-
ceived signal. Moreover, numerical evaluation shows that the
obtained expressions are a clear illustration of the nonasymp-
totic reality. We have shown that the gain derived from the use
of semi-blind techniques in the design of the spatial filter is
very impressive, especially at moderate and high values of the
input SNR. In fact, we have seen that the performance of the
training-only spatial filter saturates as the input signal-to-noise
ratio increases. The semi-blind beamformer, on the contrary, is
able to sustain an increasingly high output SINR. In terms of
the traffic to training power ratio, the performance of both fil-
ters tends to drop for values of this ratio higher than a certain
value. However, the margin of values of the traffic-to-training
power ratio at which the filter provides a reasonably good re-
sponse is much wider for the semi-blind beamformer.

APPENDIX

In this Appendix, we give a sketch of the derivation of the
asymptotic results presented in this paper. Due to strict space
limitations, we are unable to provide the full proof of the results
here; the interested reader can consult them in [17].

A. Asymptotic Spatial Filters

The asymptotic matrix pencil for the training-only approach
can readily be obtained using the classical weak law of the
large numbers. In the semi-blind case, however, the derivation
is a bit more involved. In the high number of codes approx-
imation, for example, one encounters expressions such as

tr or tr , where
is defined in (8), and and are deterministic matrices

of appropriate dimensions. As , both tr
and the dimensions of scale up at the same rate. For this
reason, one cannot apply the weak law of large numbers, and
more sophisticated techniques have to be used. Free probability
theory seems to be the appropriate tool for dealing with these
types of limits. In short, free probability is a theory proposed
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by Voiculescu [7], [8] that describes the behavior of some
noncommutative random variables and, in particular, random
matrices as their dimensions increase without bound. Freeness
is the noncommutative analog of classical independence, and it
allows us to describe the behavior, the product, and addition of
random matrices as their dimensions increase without bound.
For example, it can be shown that the random matrices of the
form are asymptotically free almost surely from certain
deterministic matrices as at the same rate. This
implies that under these asymptotic conditions, one can see
the two sets of matrices and as two sets
of mutually free noncommutative random variables. Thanks
to that, one can asymptotically factorize tr
as the product tr tr , just as
the expectation of the product of two independent classical
random variables is equal to the product of the corresponding
expectations. Furthermore, since asymptotic freeness holds
almost surely, one can state that

tr Tr Tr Tr

with probability one, where denotes the rank of , and
Tr tr . Similar factorization rules can be
obtained for higher order products, namely (see [17] for further
details)

Tr Tr

Tr Tr (28)

Using this type of result, one readily obtains the matrix pen-
cils in Proposition 1 (note that almost sure convergence im-
plies convergence in probability). For the high channel order ap-
proximation, one must consider similar asymptotic limits where
the two dimensions of the matrices and increase without
bound. Once again, one easily shows that , ,
and are asymptotically free, and applying factoriza-
tion rules such as the one in (28), one can show that

tr tr

tr
tr

tr tr

with . With these and other similar
factorization results, one can prove Proposition 3.

B. Asymptotic Covariance

The limit covariance matrices in Propositions 2 and 4 can be
obtained applying the factorization results from free probability
theory presented above and the following Lemma (see [17] and
[19] for further details).

Lemma 1: Consider the following eigensystem:

so that , and assume that as ,
and in probability, where ,

, and are Hermitian deterministic matrices and
, and are a diagonal matrix containing

the ordered asymptotic eigenvalues .
It is further assumed that the joint distribution of ( ) has
bounded moments for all . Define and just like
and , replacing and with and , respectively, and
assume that and are normalized as in Remark 1. Assume
further that the largest asymptotic root has multiplicity one
( ). The asymptotic variance of the
largest generalized eigenvalue eigenvector is given by

with and

.
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