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Abstract

We analyze the effects of pilot assisted channel estimation on achievable data rates
(lower bound on information capacity) over a frequency flat time-varying channel.
Under a block-fading channel model, the effects of the estimation error are evaluated
in the case of the estimates being available at the receiver only (open loop), and in
the case when the estimates are fed back to the transmitter allowing water pouring
transmitter optimization (closed loop). Using a characterization of the effective noise
due to estimation error, we analyze the achievable rates as a function of the power
allocated to the pilot, the channel coherence time, the background noise level as well
as the number of transmit and receive antennas. The analysis presented here can
be used to optimally allocate pilot power for various system and channel operating
conditions, and to also determine the effectiveness of closed loop feedback.
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1 Introduction

Fading channels are an important element of any wireless propagation environment [1]. Different

aspects of fading channels have been studied and publicized. It has been recognized that the

inherent temporal and spatial variations of wireless channels impose stringent demand on design

of a communication system to allow it approach the data rates that are achievable in, for example,

wire-line systems. A number of different solutions exploit variations in wireless channels. For

example, a transmitter optimization scheme (using power control), known as the water pouring

algorithm, maximizes the capacity for the constrained average transmit power [2] (see also [3]).

In addition to power control, recent applications of variable coding rate and modulation formats

illustrate a wide range of resource allocation techniques used to exploit and combat effects of

fading channels in multiuser wireless systems [4]. An extensive review of the information theoretical

aspects of communications in fading channels is given in [5]. Furthermore, modulation and channel

coding for fading channels is also being studied (see [5] and references therein).

Multiple-transmit multiple-receive antenna systems represent an implementation of the MIMO

concept in wireless communications [6]. This particular multiple antenna architecture provides

high capacity wireless communications in rich scattering environments. It has been shown that the

theoretical capacity (approximately) increases linearly as the number of antennas is increased [6,7].

This and related results point to the importance of understanding all aspects of MIMO wireless

systems. For example, the studies regarding propagation [8–10], detection [11, 12], space-time

coding and implementation aspects [13–15] are well publicized.

Next generation wireless systems and standards are supposed to operate over wireless channels

whose variations are faster and/or further pronounced. For example, using higher carrier frequen-

cies (e.g., 5 GHz for 802.11a) results in smaller scale of spatial variations of the electro-magnetic

field. Also, compared to SISO channels, MIMO channels have greater number of parameters that

a receiver and/or transmitter has to operate with, consequently pronouncing the channel varia-

tions. In addition, there has been a perpetual need for supporting higher mobility within wireless

networks. These are just a few motivations for studying the implications of channel variations on
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achievable data rates in wireless systems.

In this paper we analyze how the estimation error of the channel response affects the perfor-

mance of a MIMO wireless system. Considering the practical importance of single-input single-

output (SISO) systems, we analyze them as a subset of MIMO systems. Considering terminology

in literature (see [5] and references therein), the channel response estimate corresponds to channel

state information (CSI). We assume a frequency-flat time-varying wireless channel with additive

white Gaussian noise (AWGN). More precisely, a quasi-static block-fading channel model is used.

Furthermore, the temporal variations of the channel are characterized by the correlation between

successive channel blocks. The above system may also correspond to one subchannel (i.e., carrier)

of an OFDM wireless system [16]. We consider two pilot (training) arrangement schemes in this

paper. The first scheme uses a single pilot symbol per block with the different power than the data

symbol power. The second scheme uses more than one pilot symbol per block, whose power is the

same as the data symbol power. For the given pilot schemes, in both cases, maximum-likelihood

(ML) estimation of the channel response is considered [17]. In the MIMO case, the orthogonality

between the pilots assigned to different transmit antennas is assumed. The effects of the esti-

mation error are evaluated in the case of the estimates being available at the receiver only, and

in the case when the estimates are fed back to the transmitter allowing water pouring optimiza-

tion. The presented analysis may be viewed as a study of mismatched receiver and transmitter

algorithms in MIMO systems. The analysis connects results of information theory (see [18, 19]

and references therein) with practical wireless communication systems (employing pilot assisted

channel estimation) and generalizing it to MIMO systems. Previously published studies on MIMO

channel estimation and its effects include [20] and [21]. An elaborate information-theoretical study

analyzing different training schemes, and optimizing their parameters to maximize the open loop

MIMO capacity lower bounds, is also presented in [22]. We will highlight the similarities and

differences of the work presented here to that in [22] in the subsequent sections of this paper.

We believe that the results presented here are directly applicable to current and next generation

wireless systems [13–15, 23]. Furthermore, the results may be used as baseline benchmarks for
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performance evaluation of more advanced estimation and transmitter optimization schemes, such

as anticipated in future systems.

2 System Model

In the following we present a MIMO communication system that consists on M transmit and N

receive antennas (denoted as a M × N system). At the receiver we assume sampling with the

period Tsmp = 1/B, where B is the signal bandwidth, thus preserving the sufficient statistics. The

received signal is a spatial vector y

y(k) = H(k)x(k) + n(k), y(k) ∈ CN ,x(k) ∈ CM ,n(k) ∈ CN ,H(k) ∈ CN×M (1)

where x(k) = [g1(k) · · ·gM(k)]T is the transmitted vector, n(k) = [n1(k) · · ·nN(k)]T is the AWGN

vector with (E[n(k)n(k)H] = N0 IN×N), and H(k) is the MIMO channel response matrix, all

corresponding to the time instance k. We assign index m = 1, · · · , M to denote the transmit

antennas, and index n = 1, · · · , N to denote the receive antennas. Thus, hnm(k) is the n-th

row and m-th column element of the matrix H(k). Note that it corresponds to a SISO channel

response between the transmit antenna m and the receive antenna n. gm(k) is the transmitted

signal from the m-th transmit antenna The n-th component of the received spatial vector y(k) =

[y1(k) · · ·yN(k)]T (i.e., signal at the receive antenna n) is

yn(k) =
M∑

m=1

hnm(k)gm(k) + nn(k). (2)

To perform estimation of the channel response H(k), the receiver uses a pilot (training) signal

that is a part of the transmitted data. The pilot is sent periodically, every K sample periods. We

consider the transmitted signal to be comprised of two parts: one is the data bearing signal and the

other is the pilot signal. Within the pilot period consisting of K symbols, L symbols (i.e., signal

dimensions) are allocated to the pilot, per transmit antenna. As a common practical solution

(see [13–15,24]), we assume that the pilot signals assigned to the different transmit antennas, are

mutually orthogonal. For more details on signal design for multiple transmit antenna systems see
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also [25, 26]. This assumption requires that K ≥ LM . Consequently we define a K-dimensional

temporal vector gm = [gm(1) · · · gm(K)]T, whose k-th component is gm(k) (in (2)), as

gm =
K−LM∑

i=1

ad
imdd

imsd
i

︸ ︷︷ ︸
Data

+
L∑

j=1

ap
jmdp

jmsp
jm

︸ ︷︷ ︸
Pilot

. (3)

In the above the first sum is the information, i.e., data bearing signal and the second corresponds to

the pilot signal, corresponding to the transmit antenna m. Superscripts ”d” and ”p” denote values

assigned to the data and pilot, respectively. dd
im is the unit-variance circularly symmetric complex

data symbol. The pilot symbols (dp
jm, j = 1, · · · , L) are predefined and known at the receiver.

Without loss of generality, we assume that |dp
jm|

2 = 1. We also assume that the amplitudes are

ad
im = A, and ap

jm = AP , and they are known at the receiver. Further, the amplitudes are related

as AP = αA. Note that the amplitudes are identical across the transmit antennas (because we

assumed that the transmit power is equally distributed across them).

Furthermore, sd
i = [sd

i (1) · · · sd
i (K)]T, (i = 1, · · · , (K − LM)) and sp

jm = [sp
jm(1) · · · sp

jm(K)]T,

(j = 1, · · · , L, and m = 1, . . .M) are waveforms, denoted as temporal signatures. The temporal

signatures are mutually orthogonal. For example, sd
i (or sp

jm) could be a canonical waveform such

as a TDMA-like waveform, where sd
i (or sp

jm) is the unit-pulse at the time instance i. Alternately,

sd
i (or sp

jm) could also be a K-dimensional CDMA sequence spanning all K sample intervals

[23]. Note that the above model while being general enough is particularly suitable for MIMO

implementations over CDMA systems (see [24]).

As said earlier, we assume that the pilot signals are orthogonal between the transmit antennas.

The indexing and summation limits in (3) conform to this assumption, i.e, temporal signatures

sp
jm(j = 1, · · · , L) are uniquely assigned to the transmit antenna m. In other words, transmit

antenna m must not use the temporal signatures that are assigned as pilots to other antennas and

assigned to data, which is consequently lowering the achievable data rates (will be revisited in the

following sections). Unlike the pilot temporal signatures, the data bearing temporal signatures sd
i

(i = 1, . . . , (K − LM)) are reused across the transmit antennas, which is an inherent property of

MIMO systems, potentially resulting in high achievable data rates. It is interesting to note that the
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assumptions regarding the orthogonality between the pilots (motivated by practical considerations)

are also shown to be optimal in [22], maximizing the open loop capacity lower bound. Similar

conclusions are drawn in [20, 26]. We rewrite the received spatial vector in (1) as

y(k) = H(k)(d(k) + p(k)) + n(k), d(k) ∈ CM ,p(k) ∈ CM (4)

where d(k) is the information, i.e., data bearing signal and p(k) is the pilot portion of the

transmitted spatial signal, at the time instance k. The m-th component of the data vector

d(k) = [d1(k) · · ·dM(k)]T (i.e., data signal at the transmit antenna m) is

dm(k) =
K−LM∑

i=1

ad
imdd

imsd
i (k). (5)

The m-th component of the pilot vector vector p(k) = [p1(k) · · ·pM(k)]T (i.e., pilot signal at the

transmit antenna m) is

pm(k) =
L∑

j=1

ap
jmdp

jmsp
jm(k). (6)

Let us now describe the assumed properties of the MIMO channel H(k). The channel coherence

time is assumed to be greater or equal to KTsmp. This assumption approximates the channel

to be constant over at least K samples (hnm(k) ≈ hnm, for k = 1, · · · , K, for all m and n),

i.e., approximately constant during the pilot period. In the literature, channels with the above

property are known as block-fading channels [16]. Furthermore, we assume that the elements of H

are independent identically distributed (iid) random variables, corresponding to highly scattering

channels. In general, the MIMO propagation measurements and modeling have shown that the

elements of H are correlated (i.e., not independent) [8–10]. The effects of correlation on the

capacity of MIMO systems is studied in [27]. Assuming independence is a common practice because

the information about correlation is usually not available at the receiver and/or the correlation is

time varying (not stationary) and hard to estimate. Based on the above, the received temporal

vector at the receiver n, whose k-th component is yn(k) (in (2)), is

rn = [yn(1) · · ·yn(K)]T =
M∑

m=1

hnmgm + nn, rn ∈ CK (7)

where nn = [nn(1) · · ·nn(K)]T and E[nnn
H
n ] = N0 IK×K.
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Note that when applying different number of transmit antennas, the total average transmitted

power must stay the same, i.e., conserved. This is a common assumption in MIMO systems [6,7].

Also, the power is equally distributed across the transmit antennas. The average transmit power

(from all transmit antennas) is

Pav = M

(∑K−LM
i=1 (ad

im)2 +
∑L

j=1(a
p
jm)2

)

K
= M

((K − LM) + Lα2)A2

K
. (8)

Thus

A =

√
K

((K − LM) + α2L)

Pav

M
. (9)

As seen from the above, we assume that the total average transmitted energy (within the pilot

period) is the same, but differently distributed between the data bearing portion of the signal and

the pilot. Consequently, we observe the performance of the system with respect to the amount of

transmitted energy that is allocated to the pilot (percentage wise). This percentage is denoted as

µ and is given as

µ =
Lα2

(K − LM) + Lα2
100 [%]. (10)

As said earlier, in this study we consider two different pilot arrangements:

1. L = 1 and AP 6= A. The amplitude is

A1 =

√
K

((K − M) + α2)

Pav

M
. (11)

In the remainder of the paper, the above pilot arrangement is referred to as case 1. For

example, in SISO systems the above pilot arrangement is applied in CDMA wireless systems

(e.g., IS-95 and WCDMA [23]). In MIMO systems, it is applied in narrowband MIMO

implementations described in [13–15]. It is also applied in a wideband MIMO implementation

based on 3G WCDMA [24]. Note that under certain assumptions to be pointed out in the

next section, the above pilot arrangement scheme is equivalent to the scheme in [22]

2. L ≥ 1 and AP = A (α = 1). The amplitude is

A2 =

√
K

(K − L(M − 1))

Pav

M
. (12)
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In the remainder of the paper, the above pilot arrangement is referred to as case 2. Note that

the above pilot arrangement is frequently used in SISO systems, e.g., wire-line modems [28]

and some wireless standards (e.g., IS-136 and GSM [16]). This arrangement is typically not

used in MIMO systems.

In Section 6 we will analyze the performance of these two cases because they are widely applied

in different communication systems.

3 Estimation of Channel Response

Due to the orthogonality of the pilots and assumption that the elements of H are iid, it can be

shown that to obtain the maximum likelihood estimate of H it is sufficient to estimate hnm (for

m = 1, · · · , M, n = 1, · · · , N), independently1. This is identical to estimating a SISO channel

response between the transmit antenna m and receive antenna n. The estimation is based on

averaging the projections of the received signal on dp
jmsp

jm (for j = 1, · · · , L and m = 1, · · · , M) as

ĥnm =
1

LAP

L∑

j=1

(dp
jmsp

jm)Hrn

=
1

L

L∑

j=1

(hnm + (dp
jmsp

jm)Hnn/AP )

= hnm +
1

LAP

L∑

j=1

(dp
jmsp

jm)Hnn (13)

where ĥnm denotes the estimate of the channel response hnm. It can be shown that for a frequency-

flat AWGN channel, given the pilot signal and the assumed properties of H, (13) is the maximum-

likelihood estimate of the channel response hnm [17]. The estimation error is

ne
nm =

1

LAP

L∑

j=1

(dp
jmsp

jm)Hnn. (14)

1Based on the above assumptions it can be shown that in this particular case the ML estimate is equal to the

LMMSE estimate considered in [22].
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Note that ne
nm corresponds to a Gaussian random variable with distribution N (0, N0/(L (αA)2)).

Thus, the channel matrix estimate Ĥ is

Ĥ = H + He (15)

where He is the estimation error. Each component of the error matrix He is an independent and

identically distributed random variable ne
nm given in (14) (where ne

nm is the n-th row and m-th

column element of He).

Having the channel response estimated, the estimate of the transmitted data that is associated

with the temporal signature sd
i is obtained starting from the following statistics

zni =
1

A
(sd

i )
Hrn (16)

where the amplitude A is assumed to be known at the receiver. zni corresponds to the n-th

component of the vector

zi = [z1i · · · zNi]
T = H di +

1

A
ni, i = 1, . . . , K − LM (17)

where the m-th component of di = [dd
i1 · · ·d

d
iM ]T is dd

im (data transmitted from the antenna m and

assigned to the temporal signature sd
i ). Further, E[nin

H
i ] = N0 IN×N . It can be shown that zi is

a sufficient statistic for detecting the transmitted data. Using zi a MIMO receiver would perform

detection of the transmitted data. Detection of the spatially multiplexed data which is not a focus

of this paper can be done for example, using the VBLAST algorithm [11, 24].

As a common practice, the detection procedure assumes that the channel response is perfectly

estimated, and that Ĥ corresponds to the true channel response. Let us rewrite the expression in

(17) as

zi = (H + He) di +
1

A
ni − He di = Ĥ di +

(
1

A
ni − He di

)
. (18)

The effective noise in the detection procedure (as a spatial vector) is

n̄i =
(

1

A
ni − He di

)
. (19)

For the given Ĥ, the covariance matrix of the effective noise vector is

Υ = Υ(A) = E
n̄i|Ĥ

[n̄in̄
H
i ] =

N0

A2
I + E

He|Ĥ
[HeHe

H] (20)
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and it is a function of the amplitude A. As said earlier He is a matrix of iid Gaussian random

variables with distribution N (0, N0/(L (αA)2)).

It can be shown that for a Rayleigh channel, where the entries of H are iid Gaussian random

variables with distribution N (0, 1), the above covariance matrix is

Υ =
N0

A2
I + M

1

1 + L (αA)2/N0
I +

(
1

1 + L (αA)2/N0

)2

ĤĤH. (21)

4 Estimates Available to Receiver:

Open Loop Capacity

Assuming that the channel response estimate is available to the receiver, only, we determine the

lower bound for the open loop ergodic capacity as follows.

C ≥ R =
K − LM

K
E

Ĥ

[
log2 det

(
IM×M + ĤĤHΥ−1

)]
. (22)

The term (K − LM)/K is introduced because L temporal signature per each transmit antenna

are allocated to the pilot. Also, the random process Ĥ has to be stationary and ergodic (this

is a common requirement for fading channel and ergodic capacity [5, 29]). We assume that the

channel coding will span across great number of channel blocks (i.e., we use the well known

infinite channel coding time horizon, required to achieve error-free data transmission with rates

approaching capacity [30]).

In the above expression, equality holds if the effective noise (given in (19)) is AWGN with

respect to the transmitted signal. If the effective noise is not AWGN, then the above rates

represent the worst-case scenario, i.e., the lower bound [22, 31]. In achieving the above rates, the

receiver assumes that the effective noise is interference (which is independent of the transmitted

data) with a Gaussian distribution and spatial covariance matrix Υ. In addition, in the above

expression R represents an achievable rate for reliable transmission (error-free) for the specific

estimation procedure assumed. Knowing the channel response perfectly or using a better channel

estimation scheme (e.g., decision driven schemes) may result in higher achievable rates.
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Note that the capacity lower bounds for MIMO channel estimation independently derived

in [22] assume the time multiplexing of data and pilot (i.e., training) symbols. The authors also

present analytical results on the optimal properties required of the training sequences, their dura-

tion and power. The signal model presented here is more general than that and the distinguishing

feature of this paper is the mismatched closed loop transmission analysis presented in the next

section.

In the following we compare the above result in equation (22) to an information theoretical

result presented in [5] (page 2641, expression (3.3.55)). The result is presented for the conventional

SISO case, introducing a capacity lower bound for mismatched decoding as

C ≥ R∗ = Eĥ


log2


1 +

ĥ2P

Eh|ĥ(|h − ĥ|2)P + N0




 (23)

where h and ĥ are the SISO channel response and its estimate, respectively. The above result is

quite general, not specifying the channel response estimation procedure. The bound in (22) is an

extension of the information theoretical bound in (23), capturing the more practical pilot assisted

channel response estimation scheme and generalizing it to the MIMO case. Consequently,

Proposition 1 For the SISO case (M = 1, N = 1), the rate R in (22) and R∗ in (23), are related

as

R =
K − L

K
R∗, for P =

K

(K − L) + α2L
Pav (24)

where ĥ is obtained using the pilot assisted estimation.

5 Estimates Available to Transmitter and Receiver:

Closed Loop Capacity

In MIMO systems, when the channel state H is perfectly known at the transmitter, to maximize

the capacity (under constrained transmit power), the transmitter performs optimization known as

the water pouring on eigen modes. For SISO systems the water pouring algorithm is given in [2].

In practical communication systems, the channel state H has to be estimated at the receiver,
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and then fed to the transmitter. In the case of a time varying channel, this practical procedure

results in noisy and delayed (temporally mismatched) estimates being available to the transmitter

to perform the optimization.

As said earlier, the MIMO channel is time varying. Let Hi−1 and Hi correspond to consecutive

block faded channel responses. In the following, the subscripts i and i−1 on different variables will

indicate values corresponding to the block channel periods i and i− 1, respectively. The temporal

characteristic of the channel is described using the correlation

E
[
h(i−1)nm h∗

inm

]
/Γ = κ, (25)

where Γ = E[hinmh∗
inm], and hinm is a stationary random process (for m = 1, · · · , M and n =

1, · · · , N , denoting transmit and receive antenna indices, respectively). We assume that the knowl-

edge of the correlation κ is not known at the receiver and the transmitter. Note that the above

channel is modeled as a first order discrete Markov process2.

Adopting a practical scenario, we assume that the receiver feeds back the estimate Ĥi−1.

Because the ideal channel state Hi is not available at the transmitter, we assume that Ĥi−1 is

used instead to perform the water pouring transmitter optimization for the i-th block. In other

words the transmitter is ignoring the fact that Hi 6= Ĥi−1.

The water pouring optimization is performed as follows. First, the estimate is decomposed

using singular value decomposition (SVD) as Ĥi−1 = Ûi−1Σ̂i−1V̂
H
i−1 [32]. Then, if the data vector

d(k) is to be transmitted (in equation (4)), the following linear transformation is performed at

the transmitter

d̄(k) = V̂i−1Sid(k), (26)

where the matrix Si is a diagonal matrix whose elements sijj (j = 1, · · ·M) are determined by the

water pouring algorithm per singular value of Ĥi−1, i.e., the diagonal element of Σ̂i−1 (denoted as

2Note that in the case of Jake’s model, κ = J0(2πfdτ), where fd is the maximum Doppler frequency and τ is

the time difference between h(i−1)nm and hinm.
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σ̂(i−1)jj , j = 1, · · ·M). The diagonal element of Si is defined as

s2
ijj =





1
γ0

− N0

|σ̂(i−1)jj |2A2 for |σ̂(i−1)jj|
2A2/N0 ≥ γ0

0 otherwise
(27)

γ0 is a cut-off value, and it depends on the channel fading statistics. It is selected such that the

average transmit power stays the same Pav [2]. Consequently, at the time instant k the received

spatial vector is

y(k) = HiV̂i−1Sid(k) + Hip(k) + n(k) = Gd(k) + Hip(k) + n(k) (28)

and

G = HiV̂i−1Si. (29)

The water pouring optimization is applied on the data bearing portion of the signal d(k), while

the pilot p(k) is not changed. The receiver knows that the transformation in (26) is performed

at the transmitter. The receiver performs estimation of the channel response matrix as given in

section 3, resulting in Ĝ = ĤiV̂i−1Si and the error matrix Ge = HeiV̂i−1Si. In this case, the

effective noise in (19) and its covariance matrix in (20) are modified accordingly resulting in

ΥWP = ΥWP (A) =
N0

A2
I + E

Ge|Ĝ
[GeGe

H]. (30)

In the above and following expressions the superscript ”WP” denotes water pouring. Note that

the above application of the water pouring algorithm per eigen mode is suboptimal, i.e., it is

mismatched (because Ĥi−1 is used instead of Hi). Consequently, the closed loop system capacity

is bounded as,

CWP ≥ RWP =
K − LM

K
E

Ĝ

[
log2 det

(
IM×M + ĜĜH(ΥWP )−1

)]
. (31)

Similar to the comments related to the result in (22), the random process Ĝ has to be stationary

and ergodic. Also, the channel coding will span across infinite number of channel blocks to achieve

error-free data transmission approaching the above rates. Again, the equality holds if the effective

noise is AWGN with respect to the transmitted signal and if not, then the above rates represent the
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worst-case scenario, i.e., the lower bound [31]. In achieving the above rates, the receiver assumes

that the effective noise is interference which is independent of the transmitted data with Gaussian

distribution and spatial covariance matrix ΥWP . Knowing the channel response perfectly or using

a better channel estimation, or prediction scheme may result in higher achievable rates. There has

also been some recent work in [33] on closed loop MIMO OFDM transmission over a parametric

frequency selective channel model.

6 Examples and Numerical Results

6.1 SISO Systems

To illustrate the above analysis we start with SISO systems. In the SISO case, all previously

defined spatial vectors and related matrices are now single dimensional (e.g., di, H, Ĥ and Υ

are now scalars di, h, ĥ and υ, respectively). In Figure 1, we present the rate R in (22) as a

function of the power allocated to the pilot (equation (10)). In this example, a pilot period K is

10 and coincides with the coherence time. A frequency-flat Rayleigh fading channel is assumed.

The results are shown for the pilot arrangements corresponding to both case 1 and case 2. For

the ideal knowledge of the channel response we apply the ergodic capacity formula [5]. Regarding

the achievable rates, from the above results we observe that case 1 is less sensitive to the pilot

power allocation than case 2 (i.e., in case 2, R is dropping faster if the allocated power is different

than the one that results in the maximum value). Further, case 1 is achieving higher maximum

achievable rates than case 2.

For the given SNR, we define the capacity efficiency ratio η as the ratio between the maximum

rate R (with respect to the pilot power) and the ergodic capacity Cm×n in the case of the ideal

knowledge of the channel response, i.e.,

ηm×n =
maxµ R

Cm×n

. (32)

The index m and n correspond to number of transmit and receive antennas, respectively. In Figure

2, we show that the capacity efficiency ratio η1×1 increases with the channel coherence time. From
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the above results we conclude that case 1 is a more efficient scheme than case 2.

6.2 MIMO Systems

In Figure 3, we present the rate R in (22) as a function of the power allocated to the pilot (equation

(10)), for different number of transmit and receive antennas. In this and the following numerical

examples we consider only the pilot arrangement case 1 (treating case 2 impractical for MIMO

systems). We observe the rates for the Rayleigh channel, SNR = 12dB and the channel coherence

time length K = 40. Solid lines correspond to a system with the channel response estimation, and

dashed lines to a system with the ideal knowledge of the channel response. Further, in Figure 4

we show the capacity efficiency ratio η for different number of transmit and receive antennas vs.

different channel coherence time lengths. We observe that as the number of transmit antennas

increase, the sensitivity to the channel response estimation error is more pronounced (while keeping

the same number of receive antennas). For example, for the same channel coherence time length,

the capacity efficiency ratio of the 4× 4 system is lower than that in the case of the 3× 4 system.

In Figure 5(a) we present open loop (solid lines) and closed loop (dashed lines) ergodic capaci-

ties. Idealized conditions are assumed, i.e., the ideal knowledge of the channel response is available

to the transmitter and receiver and perfect temporal match Hi−1 = Hi (for the water pouring

optimization) is assumed. Comparing the closed loop and open loop capacity, we observe that the

gains are more pronounced for lower SNR (e.g, for 4 × 4 system at 0dB, the gain of the closed

loop system is approximately 2dB, while at 12dB, it drops below 0.5dB). Further, we note that in

the case of 2× 4 ond 1× 4 systems, the gain practically disappears. This is explained as an effect

of multiple receive antennas (greater than the number of transmit antennas) providing already

sufficient degree of diversity, eliminating any need for transmitter optimization. Instead of the

ergodic capacities, when observing the cumulative distribution function (cdf) of the capacity, the

difference is more pronounced (Figure 5(b), for SNR = 4dB) (see more on the ”capacity versus

outage” approach in [5]).

From the results in Figure 6, we observe how the temporal mismatch between successive
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channel responses (Hi−1 6= Hi) affects the achievable rates RWP in (31). As said earlier, the

temporal mismatch is characterized by the correlation E
[
h(i−1)nm h∗

inm

]
/Γ = κ (for m = 1, · · · , M

and n = 1, · · · , N). We observe the cases when the ideal channel response (dashed lines) and

channel response estimates (solid lines) are available at the transmitter and the receiver. Solid

lines correspond to the channel response estimation where the pilot power is selected to maximize

the achievable rate RWP . We observe the rates for the Rayleigh channel, SNR = 4dB and the

coherence time length K = 40. Note that for κ = 0 (i.e., when the successive channel responses

are uncorrelated), the achievable rate is lower than in the case of κ = 1 (i.e., when the successive

channel responses are fully correlated). The drop in the achievable rates is not substantial, even

though the water pouring algorithm is fully mismatched for κ = 0. We explain this behavior in

the following. In the case of a Rayleigh channel, the matrix V̂i−1Si usually has M degrees of

freedom, and a small condition number of the corresponding covariance matrix. Consequently,

even in the mismatched case, multiplying Hi with V̂i−1Si preserves the degrees of freedom of

the matrix Hi resulting in a high capacity of the composite channel G in (29). We expect the

detrimental effects of the mismatch to be amplified in the case of Rician channels, especially those

with large K-factor. This is because Rician channels result in the matrix V̂i−1Si having a few

dominant degrees of freedom there by making accurate feedback beneficial.

In Figure 7 we compare the open loop scheme to the closed loop scheme under temporal

mismatch. It is observed that when the channel coherence is low (i.e., low correlation κ), it is

better to not use a closed loop scheme. In the observed case (4 × 4, SNR = 4dB and coherence

time K = 40), for the correlation coefficient κ < 0.7 the achievable rates for the closed loop scheme

are lower than in the open loop case.

7 Conclusion

In this paper we have studied how the estimation error of the frequency-flat time-varying channel

response affects the performance of a MIMO communication system. Using a block-fading channel

model, we have connected results of information theory with practical pilot estimation for such
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systems. The presented analysis may be viewed as a study of mismatched receiver and transmitter

algorithms in MIMO systems. We have considered two pilot based schemes for the estimation. The

first scheme uses a single pilot symbol per block with different power than the data symbol power.

The second scheme uses more than one pilot symbol per block, whose power is the same as the

data symbol power. We have presented how the achievable data rates depend on the percentage

of the total power allocated to the pilot, background noise level and the channel coherence time

length. Our results have shown that the first pilot-based approach is less sensitive to the fraction

of power allocated to the pilot. Furthermore, we have observed that as the number of transmit

antennas increase, the sensitivity to the channel response estimation error is more pronounced

(while keeping the same number of receive antennas). The effects of the estimation error are

evaluated in the case of the estimates being available at the receiver only (open loop), and in

the case when the estimates are fed back to the transmitter (closed loop) allowing water pouring

transmitter optimization. In the case of water pouring transmitter optimization and corresponding

rates, we have not observed significant gains versus the open loop rates for the channel models

considered here. Further, we observe in certain cases, it is better to use the open loop scheme

as opposed to the closed loop scheme. The analysis presented here can be used to optimally

allocate pilot power for various system and channel operating conditions, and to also determine

the effectiveness of closed loop feedback.
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Figure 1: Achievable open loop rates vs. power allocated to the pilot, SISO system, SNR =

4, 12, 20dB, coherence time K = 10, Rayleigh channel.
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Figure 2: Capacity efficiency ratio vs. channel coherence time (K = 10, 20, 40, 100), SISO system,

SNR = 4, 20dB, Rayleigh channel.
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Figure 3: Achievable open loop rates vs. power allocated to the pilot, MIMO system, SNR =

12dB, coherence time K = 40, Rayleigh channel, solid line corresponds to a system with the

channel response estimation, and dashed line to the case of the ideal channel response knowledge.
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Figure 4: Capacity efficiency ratio vs. channel coherence time (K = 10, 20, 40, 100), MIMO

system, SNR = 12dB, Rayleigh channel.
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(a) Ergodic capacity vs. SNR, MIMO system, ideal knowledge of the channel response, Rayleigh channel,

solid line corresponds to open loop capacity, and dashed line to closed loop capacity (perfect temporal

match Hi−1 = Hi is assumed).
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Figure 5: (b) CDF of capacity, MIMO system, SNR = 4dB, ideal knowledge of the channel response,

Rayleigh channel, solid line corresponds to open loop capacity, and dashed line to closed loop capacity

(perfect temporal match Hi−1 = Hi is assumed).
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Figure 6: Achievable closed loop rates vs. correlation between successive channel responses, MIMO

system, SNR = 4dB, coherence time K = 40, Rayleigh channel, solid line corresponds to a system

with the channel response estimation, and dashed line to the case of the ideal channel response

available at the transmitter and the receiver (but with the temporal mismatched Hi−1 6= Hi).
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Figure 7: Achievable closed loop and open loop rates vs. correlation between successive channel

responses, MIMO system 4 × 4, SNR = 4dB, coherence time K = 40, Rayleigh channel, solid

line corresponds to a system with the channel response estimation, and dashed line to the case of

the ideal channel response available at the transmitter and the receiver (but with the temporal

mismatched Hi−1 6= Hi).
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