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Abstract—it is well known that suboptimal detection schemes schemes fail to exploit all of the available diversity. One ex-
for multiple-input multiple-output (MIMO) spatial multiplexing  planation is that suboptimal detection “uses up” the degrees of

systems (equalization-based schemes as well as nuIIing-and-canﬁ,eedOm that would otherwise offer diversity (e.g., [5]). Here
celling schemes) are unable to exploit all of the available diver- ey : '

sity, and thus, their performance is inferior to ML detection. Mo- W€ €xplain the inferior performance of suboptimal detection
tivated by experimental evidence that this inferior performance is schemes by comparing the decision regions of these schemes
primarily caused by the inability of suboptimal schemes to deal to the decision regions of the ML detector. The “improper”
with “bad” (i.e., poorly conditioned) channel realizations, we study flecision regions of suboptimal schemes are no problem for
the decision regions of suboptimal schemes for bad channels. Base o . .

on a simplified model for bad channels, we then develop two com- channel reaI!z'atlons with & Condltlon. number .nea'r to 1. (Note
putationally efficient detection algorithms that are robust to bad  that for condition number 1, zero-forcing equalization followed
channels. In particular, the novelsphere-projection algorithn{SPA) by componentwise quantization is equivalent to ML detection.)
isf‘]Simme add-on to fstandard SUbé’ptim‘? detelcmrs that i; "éme 0 However, for channel realizations with a large condition
achieve near-ML performance and significantly increased diver- L .

sity gains. The SPA's computational complexity is comparable with numper, they cause a S|gnlfllf:ant”performance' de.gradatl'on. In
that of nulling-and-cancelling detectors and only a fraction of that  fact, it turns out that these “bad"channel realizations with

of the Fincke—Phost sphere-decoding algorithm for ML detection. large condition number are to a great extent responsible for the
Index Terms—Equalization, maximum likelihood detection, inferior average performance of suboptimal detection.

MIMO channels, nulling and cancelling, spatial multiplexing, Motivated by this insight, we introduce an idealized model
sphere decoding, V-BLAST. for bad channels that allows a substantially simplified imple-
mentation of ML detection. This efficient detection algorithm

I. INTRODUCTION is then extended to nonidealized channels. A final modification

) ) and simplification yields the novephere-projection algorithm

ULTIPLE-INPUT multiple-output (MIMO) fading (spa). The SPA is an efficient nonlinear add-on to standard sub-

channels offer not only the potential of high data ratestimal detection schemes that makes these schemes robust to
but also the promise of high reliability due to their inherently 54 channels. For spatial multiplexing systems of pratical in-
available diversity (€.9., [1]). Itis well known that this availablge et (e.g., six transmit antennas and six receive antennas), the
diversity cannot be fully exploited by suboptimal equalizatioryetection schemes obtained by this approach are demonstrated
based detection schemes (e.g., [2]), including nulling-angyield excellent performance atlow computational complexity.
cancelling schemes [3]. Maximum-likelihood (ML) detection oy paper is organized as follows. In the remainder of this
can exploit all of the available diversity but tends to be COM¥action, we describe the system model and give an overview
putationally intensive. This is also true for the Finke-Phogf existing detection schemes for spatial multiplexing systems.
sphe_re-decodmg ML algorlthm [4], as will be |IIustrat(_ed Nn Section II, the effects of bad channels on equalization-based
Section VII. Thus, there is a strong demand for computationaigtection schemes are discussed. An idealized model for bad
efficient suboptimal detection algorithms that can exploit ghannels is introduced in Section 11, and an efficient ML detec-
large part of the available diversity. _ _tion algorithm for this model is developed in Section IV. In Sec-

In th'? paper, we dgvelop such improved detection algorithmg, \/ this detection algorithm is extended to arbitrary MIMO

for spatial multiplexing systems such as V-BLAST [2]. OUghannels (for which it will no longer be ML). In Section VI, a
starting point is to examine why the suboptimal detectiogmpiification of this latter detection algorithm yields the SPA.

Finally, simulation results presented in Section VII show that
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) = assumed thal/g > Mt and thatH has full rank.) Thus, the
08 result of ZF equalization (before quantization) is

2 05 yzr = H#r = (HYH) 'HYr =d + w

i B ZF 03
1071 I;‘;-ﬁéﬁﬁm 02 which is the transmitted data vectat corrupted by the
g 5 e % 0 , transformed noisew = H#w. The minimum mean-
(;" (b)“ square error (MMSE) equalizer is given by [8]G =
(HTH + (62 /o2)I)~*HH , which minimizes the mean-square
Fig. 1. Detector performance and channel condition number for a (4,4), RITOrE{|ly — d||?}. Thus, the result of MMSE equalization is

Gaussian channel. (a) SER performance of various detection schemes versus

condition number of the respective channel realization for QPSK modulation o2 -1

and an SNR of 15 dB. (ZF is ZF equalization based detection, MMSE is MMSE YMMSE = (HHH + —1;1> HYr.

equalization based detection, NC-MMSE is nulling and cancelling using MMSE 04

equalization, and ML is ML detection.) (b) Cumulative distribution function of

the condition number. Nulling and Cancelling: In contrast to linear data detection,

where all layers are detected jointly, nulling and cancelling (NC)
A. System Model uses a serial decision-feedback approach to detect each Iaygr
] ) ) separately (e.g., [2]). When a layer has been detected, an esti-
We consider a MIMO channel witli/y transmit antennas mate of the corresponding contribution to the received vactor
and Mr > My receive antennas [this will be briefly termeds sybtracted fronr; the result is then used to detect the next
an (My, Mg) channel]. This channel is part of a spatigjayer, etc. In the absence of detection errors, NC progressively
multiplexing system such as V-BLAST [2], where theth  cleansr from the interference corresponding to the layers al-
data stream (olyer) d,[n] is directly transmitted on theith  ready detected. To detect a specific layer, the layers that have
transmit antenna. This leads to the well-known baseband mogg} peen detected yet are “nulled out” (equalized) according to
the ZF or MMSE approach described above. Error propagation

r[n] = Hd[n] + w[n] (1) canbea problem because incorrect data decisions actually in-
A crease the interference when detecting subsequent layers. Thus,
with the My x 1 transmit vectord[n] = (di[n] da2[n] --- the order in which the layers are detected strongly influences
darp[n])T, the Mg x My channel matrixH, the Mg x 1 re- the performance of NC.
ceived vector|[n] 2 (r1[n] ra[n] - ram [n])T, and theMy x 1 ML Detection: ML detection is optimal in the sense of min-
noise vectorw/n] A (wi[n] waln] -+ war,[n])T. The data imum error probability when all data vectors are equally likely.

streamsl,,, [n] are assumed zero-mean, uncorrelated, stationdr@)r our system model (1) and our assumptions, the ML detector
white random processes with varianeg. The channeH is S given by
considered constant over a block of consecutive time instants
and perfectly known at the receiver. The noise processgs|
are statistically independent, zero-mean, circularly symmetric
complex-valued, Gaussian, stationary, white random proces's'l%
with variancer? . For simplicity, we will hereafter omit the time dav ,
indexn and, thus, write (1) a8 = Hd + w. ementary symbol alphabet, and th{| = [A|*"*. In general,
the computational complexity of ML detection grows expo-
nentially with Mr. Using the Finke—Phost sphere-decoding
algorithm [4], ML detection can be achieved at awerage
) ] ] ) . complexity that increases with/r roughly asO(M?3), as
The major detection approaches for spatial multiplexing sygms shown in [9]. However, for bad channel realizations,
tems are linear equalization followed by quantization (e.g., [2}he complexity of sphere-decoding can be very high (see
nulling and cancelling (or decision-feedback) [2], and ML deggction VII-C).
tection [4], [6]. The first two approaches are suboptimal buthave; can be shown [4] that the ML decision rule (2) can be
significantly lower computational complexity than ML detecygyritten as
tion. We will briefly review these three detection schemes.
Linear Equalization Based Detectiorin linear equaliza- dyr, = arg min {(d — yZF)HHHH(d — yzp)} .
tion-based detection, an estimate of the transmitted data vector deP
d is calculated ay = Gr, whereG is an equalization matrix. This can be interpreted as the ML detector for identity
The detected data vector is then obtaineddas= Q{y}, channel corrupted by zero-mean Gaussian néise- H#w

where Q{-} denotes componentwise quantization accordinghe noise contained inzr = d + W) with covariance matrix
to the symbol alphabet used. (Componentwise quantization is
—1

suboptimal in general because the multiplication@yintro- Ry = o2 (H'H) . (4)
duces correlations of the noise components.) Zére-forcing

(ZF) equalizer is given by the pseudo-inverse [7]Hf i.e., Thatis, after ZF equalization the noise is generatiyrelated

G = H# = (HFH)"'HH. (For the last expression, weWe may view (3) as “ML detection after ZF equalization” or

dyr, = arggnei% {||r - Hd||2} : @

e,D denotes the set of all possible transmitted data vectors
vi=1,..., |D|. We note thaD = AMr, whereA is the el-

’ )

B. Review of Detection Schemes for Spatial Multiplexing
Systems
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“ML detection in the ZF-equalized domain,” as opposed to “d  |cu = 1.3 i
rect ML detection” according to (2). Note, however, that (2) an
(3) are strictly equivalent.

YzF 2

~
<9
N
=

Il. “B AD CHANNEL" EFFECT

In this section, we will demonstrate that the inferior perfor
mance of suboptimal detection compared with ML detection i
mainly caused by the occurrence of bad channel realizations

A. Detector Performance and Bad Channels

In what follows, we will use the singular value decompositiolj]ig-ZZI-: Prokl)_abgigl den_sit?/ functioln r;flzp g?zd 2Z)F :;\]nd MII- degigigg}iegiogslin_
_ H ; ; the ZF-equalized domain for a real-valued (2,2) channel an modulation.
($VD) H = UXVY, where the dlagon_al matri contains Fhe (a) “Good” channel realization with condition number 1.3. (b) “Bad” channel
singular valuesr,,, of H and the matrice¥J and'V contain, realization with condition number 7.1. The ZF decision regions are the four
respectively, the left and right singular vectordbfas columns quadrants; the ML decision regions are indicated by dash-dotted lines.
[7]. We assume that the,,, are indexed in nonincreasing order.

The condition numbeky = o1/0a, > 1 is the ratio of the

H
largest to smallest singular value. For a bad (poorly conditione\ﬁj haveH %I o I #Here, (4) shows that the components of the
channel,cy is large. noise vectow = H#*w are uncorrelated; furthermore, the ML

Experiments suggest that the performance of suboptinfgiector in (3) simplifies talyy, = arg mingen{lld — yzr|*}
detection schemes strongly depends on the channel's condif}fl thus becomes equal to the ZF detector solufigh =
number. In Fig. 1(a), we show the symbol error rate (SER) QEJYZF.}- Of‘ the_ other hand, fo.r a poorly qondltloned channel,
various detection schemes versus the condition number of fle H is quite different from being proportional Io Thus, the
channel realization. In this simulation, we used a (4,4) chanfg@mponents ofv are generally correlated, and the ZF solution
with independent and identically distributed (iid) Gaussiafizr = @{yzr} must be expected to be far away from the op-
channel matrix entries, QPSK modulation, and an SNR of final ML solutior? dyy..
dB. It can be seen that there is a significant performance gag O & geometrical analysis, we consider the probability den-
between linear (i.e., ZF or MMSE) detection and ML detectiofity function (pdf) of the ZF-filtered Gaussian noise vectar
for i about 4 or larger and between NC and ML detection forhe contour surfaces of this pdf are hyperellipsoids [12]. Using
crz about 20 or larger. H = UX V¥ the covariance matriRy = o2 (H”H)~! can

The impact of this behavior on tleverageSER performance be written as
of suboptimal detection of course depends on the probability ) oo n
with which bad channels occur. In Fig. 1(b), we show the cumu- Ry =0, VET7VT,
lative distribution function (cdf) oty estimated in the course L . S .
of the simulation described above. It is seen that the probabilépe "_“h |_or|n_(:|pal axis of the_ hyperellipsoids is such ‘h‘f’“ Its

rection is given by thenth eigenvectow,, of Ry, which is

thatcy exceeds a value of 10, 15, and 20 is 32%, 15%, and 9%

respectively. This suggests that bad channels occur frequer‘?twJal to themth column of V, and its length is proportional

enough to cause a significant degradation of the average |ot8r'5he square root of theuth eigenvalue oR+; [12], which is

formance of suboptimal detection schemes. Theoretical inv&gual to
tigations show that for an increasing number of transmit and . Ow 5
receive antennas, the cdf is essentially scaled (expanded) in the Tioym = ) ©)

Om
cu direction [10]. We can thus expect the bad channel effect to L - . :
become even worse for an increasing number of antennas. 1 US: ZF equalization results indistortion of the noise pdf

While the performance of ML detection is fairly robust td/vit_h respect to the spherical geometry of the pdf of the original
bad channel realizations, it is noteworthy that the computatiorff!S€ Vectomw. _ _
complexity of the Finke—Phost sphere-decoding algorithm for FOr illustration, Fig. 2 shows the pdf of the received vector
ML detection significantly increases for bad channels [4], [11fifter ZF equalizatioryzr for two different realizations of a
Thus, there is a strong demand for computationally efficiefgal-valued (2,2) channel with condition numbers 1.3 and 7.1.
suboptimal detectors that are able to achieve near-ML perfdi?e modulation format is BPSK. This figure also shows the ZF
mance. The detection methods presented in this paper are @Rcision regions (the four quadrants) and the ML decision re-

signed to satisfy this demand. gions (indicated by dash-dotted lines). Whereas the ZF and ML
decision regions are similar for the “good” channel with con-
B. Geometrical Analysis dition number 1.3, they are dramatically different for the “bad”

The starting point for developing these improved detectiowannel with condition number 7.1. Indeed, in the latter case,

methods is a geometrical analysis of the decision regions of sut®note that even where; > 1, it is possible thaH has orthogonal columns
optimal detection methods in the case of bad channels. but with different norms. In this cas#l # H is diagonal, which means that the
ZF Detection: We first ider li detection b d Zlgomponents ofv are still uncorrelated, and ZF detection will still be optimal.
etection: Ve first consider linear aetection based on However, simulations show that for poorly conditioned channel realizations, a
equalization. For a perfectly conditioned channel, :g5.= 1, situation close to this case is very unlikely.
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_ _ ) o ) Fig. 4. Ratio of noise variances. /o2, ., in the direction of consecutive

Fig. 3. Same as Fig. 2(b) but with (a) MMSE decision regions and (b) Zkprincipal axes in the ZF-equalized domain and channel condition nuaper
based NC decision regions instead of ML decision regions. The boundarieq&)f Average ratiosE{o2, /02 ,} versus the condition numbet; of the

m

the MMSE and NC decision regions are indicated by dash-dotted lines.  respective channel realization for a (4,4) iid Gaussian channel. (b) cdf of the
ratiose? /o7 ., for ey = 70.

m ™

the ML decision regions are nicely matched to the distorted
noise pdf, but the ZF decision regions are not because they cor- lll. 1 DEALIZED BAD CHANNEL MODEL

respond to simple componentwise quantization. In particular,.l.he previous results suggest that the average performance
the boundary lines of the ML decision regions differ mainly by)f suboptimal detection schemes can be improved by making
offsets that are orthogonal to the dominant principal 4. {hese schemes robust to bad channels. Specifically, the decision
(corresponding to the dominant eigenvalte,;, of R and, yegions should be made approximately invariant to a shift in
thus, to the dominant noise component). This is intuitive, Singge direction of the dominant noise axis. As a basis for such a
any shiftin the received vector in the direction of the dominangification, we will first formulate an idealized model for bad
noise component is very likely caused by noise. For bad chaffrannels. In Section IV, this will allow us to derive an efficient
nels, it is thus desirable that the decision regions be approgkar-ML detection algorithm for bad channels.

mately invariant to shifts in the direction of the dominant prin-

cipal axisvz, . In general, the decision regions of linear detegx. Formulation of the Idealized Bad Channel Model

tion schemes cannot have this property because their boundarésur idealized bad channel model can be motivated as fol-

lines always go through the origin, Jows. According to (5), i.eq? ,, = os /0%, the ratios of the

MMSE Detection:Fig. 3(a) shows the decision regions 0noise variances in the directions of consecutive principal axes
MMSE equalization-based detection in the ZF equalized d§— P P
i

. o » re given byo? , . /0% = o2, /o2 .. Fig. 4(a) shows es-
mairg for the bad channel realization (condition number 7.1 @,m+ 1/~ %,m ml e
The angles of the boundary lines of the MMSE decision regio mat__es O-f theaverageranos_E{am/amH} for a (4,4) ghannel_
4 ) With iid, circularly symmetric complex-valued, Gaussian entries
are better matched to the distorted noise pdf than those of the rsuscu = 02/02 (i.e., theE{o2 /o2, |} were estimated by
decision regions; however, the boundary lines still go throug Liyia o ml ot

veragings2, /o2, ., over an ensemble of channels with a given

the origin and, thus, cannot implement the offsets that wouglj{)_ It can be seen that for a bad channel (i.e., lasgk on av-

allow them tq br-_jco_me S|m_|lar to the ML demsmn_rc_aglons._ erage,o2/o? is much larger than the other ratiog/o2 and
NC Detection: Finally, Fig. 3(b) shows the decision régions;2 /2 Thus, on averager? is much smalletthan the other
(again represented in the ZF equalized domain) for ZF-basg gular valuess2, o2, o2, or equivalently, the largest prin-
NC detection. Because the first symbol is simply ZF detecteglpg|-axis noise variance?, , = o2 /o3 ismuch largetthan the
one boundary of the corresponding decision region is fixed ¢@her principal-axis noise \/arianceg 1,02 5, ando? . Sim-
the ordinate, whichis again quite different from the ML decisiopjations show that a similar behavior is also exhibited by higher
regions. For successive symbols, offsets can be realized onlytgensional channels. To demonstrate that the rafipbr2, .1
a certain extent. As a consequence, ZF-based NC detection pg&well concentrated about their m@{v}’n/g%H}, Fig. 4(b)
forms better than ZF or MMSE detection but is still significantighows the cdf o&}ﬂ/aan for cg = 70.
poorer than ML detection. For MMSE-based NC detection, a This suggests that for a bad channel, the largest noise vari-
similar argument applies. Fig. 1(a) shows that for growiffg ance (corresponding to the smallest singular valye of H
the performance gap betwen MMSE-based NC detection asmaed the associated principal axig;, ) dominates all the other
ML detection increases more slowly than that of ZF or MMSIRoise variances and, hence, causes the main part of the bad
detection but eventually becomes just as wide as that of MM$&BRannel effects that plague suboptimal detection. Therefore,
detection. we approximate a bad chanridl by anidealized bad channel
Furthermore, it can be shown that the diversity gain achievetbdel IBCM) H that is constructed by setting the smallest
by NC (both ZF- and MMSE-based) is given bz — M+ 1 singular value equal to zero and the remaining singular values
[3]. Thus, forM ~ Mg, the diversity gain is small. equal to the largest singular value:

3We represent and compare the decision regions of all detectors in a common
domain, namely, the domain obtained after ZF equalization. Note that ZF equgf- A UiVH. with .. =0
ization by itself does not imply any loss of optimality, and it has the advantage ’ T
that the symbols are at the correct positions. and 61 =62 ="---=0pp—1 = 01. (6)
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channel realizatiodH—and thus the principal axis directions

of the ZF-domain nois&v as well—are maintained, the prin-

cipal-axis noise variances are modified because we use-an g /

finite dominant noise variance; ,,. = 0./, = o and = g/

equalremaining noise variances, , = 02 /52, = 02 /0% = '/,
sa1form=1,...,Mr -1 (Actually, we will see presently /

that the values of these remaining noise variances do not ma /

as long as they are finite and equal.) Indeed, approximating YzF1 YzF,1

channeH with the IBCM H is equivalent to approximating the (a) )

hyperellipsoids constituting the contour surfaces of the peif of

by hypercylinders of nfinite length whose axis is the dominaff,. usatorcf Ml detecton o e valed (22 chamel and 2P

noise axisv s, . This approximation is motivated by our desires Figs. 2 and 3 and IML decision regions indicated by dash-dotted lines. (b)

to make the decision regions invariant to a shift in the directidteference-line geometry of IML detection according to (10).

of vy, as described in Section II-B.

Note that whereas the singular vectoers of the respective ML /(
Yyzr

YZF,2

I

the distance ofl from £ is given by||d — y . (d)||, and this dis-
B. ML Detection for the Idealized Bad Channel Model tance can easily be shown to be equg|Ry;,, (d — yzr)||:

Although the IBCMH is onlyacrU(te apprOX|mat|on toabad o ld - ye(@) = ||d Vet (VﬁT (d - yZF)) ||
channeH, it does capture an essential part of the “bad channel _1ld H (g
effects that plague suboptimal detection. We now consider ML = [l = vii( H_ yze)Var = yzr |
detection for the IBCM (termetML detection); this will later = || I - VJ\[TVJ\IT) (d- YZF)H
serve as a basis for developing an efficient near-ML detector for _ HPVMT (d— YZF)H _

bad channels. According to (3), the IML decision rule is
Thus, as claimedylL detection for the IBCM is equivalent to

. R finding the data vectod € D that minimizes the distandjel —
— RN HyyH
diyr = argmin {(d —yzr) H"H(d — YZF)} - (D y,(a)] from the reference lin¢:

dn, = arg min {|ld -y (@)} (10)

| This formulation will be essential for developing an efficient
ML detection algorithm in Section IV.

To continue the example of Figs. 2 and 3, Fig. 5(a) depicts
the pdf ofyzr for the IBCM associated with the bad channel

Using (6), we havéﬁHf{ VEIVH = 2(I - Vi Vi) =
o?PL  withPL = 21— v, vir. denoting the orthogona

VMg VM

prOJector onto the space orthogonahtgy,. . Thus, (7) becomes

divr, = arg mm {(d yZF)HP‘fM (d - yzp)} realization withcyg = 7.1. The IML decision regions are also
shown. The geometry of the reference-line formulation of IML
= arg (Iinelg{HPéMT (d - yZF)H } (8) detection (10) is illustrated in Fig. 5(b).
IV. EFFICIENT ML DETECTOR FOR THE
where we have usdél‘iMT =P, Py, .Because of the pro- IDEALIZED BAD CHANNEL MODEL

jector Py, oceurring in (8), the norm of the component of | this section, we develop an efficient ML detection algo-
d — yzr perpendicular tary,,. is minimized, whereas the com-rithm with complexity®(M3,) for the IBCM. We first show that
ponent ofd — yzr in the direction ofv,,,. (the dominant noise the reference-line formulation of the IML detector derived in the
direction) is suppressed in this minimization. Thus, as desirgstevious subsection allows a significant reduction of the search
the IML decision regions are invariant to this latter componergetD.

For an alternative formulation and geometrical interpretation
of the IML decision rule (8), let us define theference lineC as  A. Reduced Search Sat
the straight line that is parallel to the dominant noise axis. Let Z; be the ZF decision region (in the ZF-equalized do-
and whose offset from the origin ig;r: main) corresponding to a data vec) € D. That is, for
anyy € Z;, the ZF decision islzr = d(. Because, in the
ZF-equalized domain, the ZF decision is a simple component-
wise quantization, every € Z; is closer tod( than to any
other data vectod) € D. We will also say thatl”) is “the
We maintain that the norrﬁPVMT (d — yzr)|| minimized in data vector corresponding ;."
(8) is equal to the distance ef from L. Indeed, lety.(d) Theorem 1: The ML detector for the IBCM in (8) is equiva-
denote the point of closest to a given data vectdr, i.e., lentto

A .
yve(d) = yret(ko) for kg = argmingec{||d — yrer(k)||*}= “ H2
. d = Pt d —
arg mingec{||d — (kvar: +yzr)|*} = vi,. (d—yzr). Then, it = argmin g [Py, (d—yzr)

L: yret(k) 2 kvar, +yzr, keC. 9

(11)
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where the reduced search et- D is given by all data vectors
d € D that correspond to ZF decision regions pierced by the :
reference lineCin(®. L k
Proof: As before, lety - (d) denote the point of closest

to d so that||d — y.(d)|| expresses the distancedfrom L.
Assume (proof by contradiction) thdtML doesnotcorrespond
to a ZF decision region pierced I i.e., no point ofZ lies in
the ZF decision region o:imL Hence, in parUcuIayL(dIML)
does not lie in the ZF decision reglond)fML, and thus, it must E Y
lie in the ZF decision region of some other data vedtét ¢ D. -
That is YL(dIML) is closer tod¥) than todpyy, i.e., ||d@) —
yg(dIML)H < ||d1ML — YL(dIML)” For this other data vector L
d0), we also havéld) — y(d@)|| < [[d9 — v (dr)| .
becausey - (d (1)) is the point of £ closest tod?), and thus, Fig- 6. Boundary lines3(™») in the real reference plar® for an (8,8)
YL(dIML) cannot be closer td(?) Comblnlng the above two g?zr}g?éfgglst():)AM modulation. (The boldface line segment will be addressed
|nequallt|es yleldSHdO) yﬁ(d(J))H < ||dIML - yﬁ(dIML)H
which means thatl?) is closer toC thandpy, but we know boundary lines in the 2-D real symbol domain, and letjitte
from (10) thatdIML is the data vector closest . Thus, we real boundary line be given by
have a contradiction, and the proof is complete. O

It will be advantageous to represent the complex reference b® (k) = kyu® + 0@ p=1,... P (13)

ine £z yrer(k) = kvar +yzr, k € € asan gquwalgnt with &, € R, where the 2x 1 vectorsu® ando® define
realreference pAIané?—the 2-D p!ane”ref (kr, k1) With kr = g0ne and offset, respectively. For example, the 4-QAM alphabet
Re{k} andk; = Im{k}. Replacing complex scalars by 2-D4 = {1 + j, -1+ j,—1 — j,1 — j} hasP = 2 orthogonal
vectors composed of the real and imaginary partsyttiescalar poundary lines defined by = (017, u® = (10)7, and
component of the reference line equation, givenyRy ., = o1 = o = (0 0)T.
kvnty m + YzF,m, CaN be written as We now consider the partitioning of the reference pldhe
. . induced by the ZF decision regions. The ZF decision regions
Yretm(K) = Vi mK +yzpm, m=1,....Mr (12) o 0 ded by Pth hyperplanes. Thex,p) hyperplane is

specific cell

i

with obtained by setting thesth component of a vectgr equal to

N2 N . the pth boundary line (13). To calculate the partitioning7af

Yref,m = ( Jref,m R) Ve m = < Mr,m,R Mr,m I> we must thus calculate the intersectiorfvith all boundary
’ Yref,m,1 ’ UMt,m,I UMt mR

hyperplanes. The intersection Bfwith the (n, p)th boundary

(kR ) R <UZF ;m,R > . hyperplane yields a straight boundary liB&"*) c P that can
kr )’ YZF,m,1 be calculated by equating (13) and (12), igot.m = b®),

This givesV iz, mk + yzr.m = kyu® 4 o?) or, equivalently

P2

k

The reduced search $Btthen consists of all data vectaise
D whose ZF decision regions are sliced by the real reference g(m») .k = k(m?)(,) = ka(™?) + BglmP) (14)
plane (since slicing byP is equivalent to piercing by).

To characterizeD, it is sufficient to specify for eacd € D With
an arbitrary poinyy of the decision region correspondingdo
sinced can easily be recovered fropnasd = Q{y}. The idea
behind the algorithm proposed next is that these points can be (mp) A 1 )
found in the reference plarfe, and thus, the search f@ can B P ~—Vitem (0 - YZFm)
be restricted tcP. "

amn 2 Lyt o
Pm o

wherep,, = v?MT mR + V3 m (nOtethatVy, Vi, ., =
pmI). BecauséVMTm is an orthogonal matrix up to a factor,
The intersection of the ZF decision regions with the referentiee angles between thié boundary lines corresponding to the
plane? induces a partitioning oP. We will now show that mth component are equal to the angles between the boundary
for a wide class of symbol alphabets, this partitioning can bi@esb® in the symbol alphabet domain.
calculated very easily. Subsequently, this will serve as a basisThe My P boundary linesB"?), m = 1,..., My, p =
for an efficient determination of the reduced searchixet 1,..., P partition the reference plarfé into elementary cells
We assume a “line-structured” symbol alphaldetvhich, by C C P. In Fig. 6, this cell partitioning ofP is illustrated for
definition, is such that the boundaries of the quantization ran (8,8) channel and 4-QAM modulation; hefdy = 8 and
gions in the 2-D real symbol domain (i.e., the ML decision reP = 2 so that we obtail/t P = 16 boundary lines. Each cell
gions for transmission of singlesymbol over an additive white C is the intersection of a ZF decision region with Thus, all
Gaussian noise SISO channel) are given by straight lines. Exgmints of a giverC will lead to the same quantized data vector.
ples of line-structured alphabets are ASK, QAM, and PSK bMore specifically, recall that each point &f is parameterized
not, e.g., a hexagonal constellation. Ii2tlenote the number of by k = (kg k1) or, equivalently, byk = kg + jk, and

B. Partitioning of the Reference Plane
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the corresponding vector i8M7 is y..¢(k) = kvar. + yzr Bm.p)
in (9). Any pointy of a given cellC corresponds to a vector
yret(k) for which ZF decision (quantization) leads to the same
dyp, i.e.,dzr = Q{y} forally € C. This dzr belongs to

the reduced search sBtbecause it corresponds to a ZF deci-
sion region sliced byP. Therefore any collection of arbitrary 1

cell points—one point for each cell—defines the reduced search kr
setD. Note that the ZF estimatg;r = H#r is obtained for

_ —_ - 3 _ Fig. 7. Algorithm for determining the data vectat$’) e D corresponding
kr = k1 = 0; See~(9)- Thusdzr = Q{yzr} belongs to the to all cells bounded by thes{,p)th boundary ling3(™-?) (cf. the boldface line

reduced search sét. in Fig. 6). Based on the first intersection pokr‘l,f‘ Pim1P1) the first cell point
From the above, it follows that the s|¢@| of the reduced k..... and the associated first data vectt) are calculated. Al remaining

search set equals fhe number of el find an upper bound SSecrsl” © B sssoote s e ey detemineny e
on |D|, recall that the cell partitioning is defined bMtP  arrows.
boundary lines. Assuming that- 1 boundary lines are given,
it is easy to verify that each additional boundary line yields - i .
at mosti new cells (it will yieldi new cells if and only if it Wherez represc;nts the first row of tf;e inverse of the«22
intersects at different points with all- 1 previous lines). Thus Matrix ((1/pm) Vi, | u®, —~(1/pu) Vi, a®)). .
VP As we move a!ongs(m P), the intersection points with the
g Z MTP n My P Tl other boundary lines (calculated previously) tell us when we
2 ‘ cross the border from one cell to the néxtVe can sort these
~ intersection points according to, e.g., monotonically increasing
For example|D| = D[, for 4-QAM since there are no par-real part coordinates. L& "™ **) pe the intersection point
allel boundary lines, and only two boundary lines intersect inith the smallest real part coordinate. Fig. 7 sh@{/&-?) (this
a given intersection point. If there are parallel boundary ling®uld be the boldface line depicted in Fig. 6) and the intersection
(e.g., 16-QAM) and/or if more than two boundary lines interpointk{ ™ **)_ To move fromk " ?™ ") into the first cell,
sect in the same point (e.g., 8-PSK), th&h < |D|nax- we add a small offsét,g... and obtain the new poitt.;a,; =
Comparing|D|max With [D| = |A|MT, we see that for rea- k(mpimee) 4 o asillustrated in Fig. 7. The vector @
sonably high data ratefD| < |D|. For example, for an (8,8) correspondmg t&Kstare i given byy) = kgarevVar, + yzr-

channel and 4-QAM modulation, we obtdiP| = [D|max =  We then obtain our first data vectdf?) € D associated with
137 pierced decision regions out of a total8f = 4® = 65536  g(m.») agd(1) — Q{y™M}.

decision regions. This illustrates the significant reduction of The remaining data vectotk” € D alongB(™») are now

complexity achieved by the reduced searchizet determined by alternately “hopping” ov™?) and an inter-
We will next present an efficient algorithm for ML detectionsecting boundary line, as illustrated in Fig. 7. At each intersec-
that is based on the reduced Searcﬁahd the InSIghtS ga|ned uon we perform Onstepcons|st|ng Of twd]ops The f|rst hop
so far. This algorithm consists of two parts: i) efficient determhndmated by the dotted arrow) is ovBf™?), i.e., the current
nation of D and ii) efficient calculation of the distance of evengearch line; this corresponds to an update Ofﬁ]ﬂedata vector
d € D to the reference plari@. component across theh boundary. The second hop (indicated
by the dashed arrow) is ov8(™1-1) j.e., our first intersecting
boundary line; this corresponds to an update ofrthéh data
According to the previous subsection, the reduced search@ettor component across theth boundary.
D can be determined by finding an arbitrary pdimif each cell  These data vector component updates can be performed
C C P since the corresponding..;(k) defines the data vector without calculating nevk ory vectors (i.e., no hops are actually
d € D associated witl by d = Q{y..t(k)}. To find a point implemented). Suppose we just obtained a spedific € D
k of each cell in an efficient manner, we suggest a systematand wish to determine the neit'*") € D corresponding to the
search of the reference plane along each boundary line. cell we would reach by hopping over the intersecting boundary
To search along thém, p)th boundary lineB?), we line B(™'»"). Now, by definition, 3(™" ") corresponds to the
calculate the intersection poimg(:;m;m’,p’) of B(m») with m'th component ofd(? and thep’th boundalry’ line in the
all B™'#) | (m/,p') # (m,p) that are not parallel t(™»), symbol alphabet domain. By hopping ovf™ »"), we thus
Equatingk(™®) (ky) = k(™) 4+ B with k(') (/) = move fromd to
kb2 4+ B and solving fork, yields

. kst;art

(m,p,m1,p1)
Kini step 2

v
step 1

D] < |D|

max

C. Efficient Determination ob

d0+D — 4@ 4 Aq®)
m',p
I (P m'.p') _ kgm,p;m’,p’)a(m,p) + ﬂ(mm) (15)

nt
4For simplicity of exposition, we assume that the intersection points of any

with two boundary lines are different. This holds for arbitrary QAM constellations;
1 however, it does not hold for PSK constellations withl > 4 because there,
k(mm;mﬁp’) — 7 v, (O(p’) - ,) all the P boundary lines in the symbol plane intersect at the origin, and this ge-
b Pm Mr,m e ometry is maintained i?. For example, for 8-PSK, we obtaivt intersection

points, each of which is the intersection Bf = 4 boundary lines. However,
V ( (») _ N ) these points are knowan priori, and the following algorithm can easily be ex-
Mm,m m tended to this situation.
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where the vectoﬂdffl),m, is zero except for then'th com-
ponent. That component is given by an update vahméi),m,
that depends on the'th component ofd(” and on thep'th

boundary. For example, for 4-QAM, we have

{—z.f m{(a®), ),

—2Re{(d®) 1},

Thus, here, the update simply amounts to flipping the imaginary

Initialization: calculation of d(), 2

For each point of inter-

ifp' =1 section with B(m:P:)

AdY )
‘ if p/ =2.

Y

Update d and ? to hop over Bm:»:)

part (forp’ = 1) or the real part (fop’ = 2) of the m/th data
vector component.

Update d and 1?2 to hop over B™P) E

D. Efficient Calculation of Distances

___________________________________________

According to Theorem 1, we have to minimize the distance
P 2 |PL. (dD — ygup)| overalld® € D. In the previous

VM N
subsection, we have shown how to determiinefficiently. We
now present an efficient recursive algorithm for calculating the
squared distances?.

Again, we move alon@("™?), Suppose thap? has already

Update d and 9?2 to hop over B™?)

Fig. 8. Processing associated with the, p)th boundary line3(™-»).

been determined and that the next data vedi6r') corre-
sponds to a hop over the intersecting boundaryfie »"). As
was shown in the previous subsectiaft? is a neighbor of
d® that differs fromd(® only in them’th component, namely,
by Ad() .. Thus, the distance fat(+!) is

need not be calculated anew.) For example, for an (8,8) channel
and a 4-QAM alphabet, we have a maximum of 448 checked
data vectors, of which maximally 137 are different. Note,

however, that most of the multiply checked data vectors are
obtained through efficient single symbol updates as described

above.

Y2y = Hpi (d(i) L AdD - YZF> H2 The principal steps of our algorithm can finally be summa-
’ e " o, rized as follows.
= HPiMT (d(i) - YZF) H + HP&MT Adffl),w, « Determine allM P boundary line$8(™») in P [see (14)].
‘ I 4 « Calculate all intersection points (15) and order them for
+ 2Re{ (d“) - yZF) PiffT PiMT Adf;),,p, eachB(™?) e.g., according to increasing real part coor-
) dinates.
=i + A (16) « For eachB(™7), determine the associated data vectors
with d® e D and their distances?, as discussed in Sec-
) tions IV-C and D. The processing associated viaH»)
A; = (1 B |UMT7m,|2) Adx)/m, is summarized in Fig. 8.
+2 Re{ (Jg;) - v}‘;,Tm,&(i)HvMT) Adffl),m,} (17) V. EXTENSION TOARBITRARY CHANNELS

The algorithm presented in the last section performs ML de-
tection for the IBCM. Because actual channel realizations will
not conform to the IBCM, we will now extend our algorithm to
an arbitrary MIMO channeH. Specifically, we propose to use
an IBCM approximation oH to find the reduced search sBt
and then to minimizéir — Hd|| overD, i.e.,

wherevy, ' is them'th component ok, and Jf;), is the
m’th component ofl() 2 d) — y,r. This recursion is initial-
ized by calculatingsf = [Py, (d™) — yzr)||* in a straight-
forward manner.

E. Summary of the ML Detection Algorithm .
d—~

A .
o = argénelg {||r — Hd||2} .

We have now developed the main elements of our efficient
ML detection algorithm for the IBCM. In an actual imple- . o
mentation of this algorithm, the recursive procedure describB@te thatdg; is notguaranteed to be equal to the ML decision
in Sections IV-C and D has to be performed for allp P  d Since we minimizé{r — Hd||* not over the whole data set
boundary lines except for the last one (whose data vectors ha&vef size|.A|** (which would have a computational complexity
all been processed before) so that all data vealors D are that is exponential in/) but over the reduced sét. On the
taken into account and the ML solution according to (11) @ther hand, the complexity of our algorithm is ot} M3 ), as
obtained. For each boundary line, at md&fr P different data will be shown presently. The algorithm consists of the following
vectors are considered, which results in a total maximum 8feps.
2MrP(MrP —1) ~ 2M2P? checked data vectors. Compared « Calculate H?H)~! andy,r = (H¥H) 'Hr.
with |l3|max = (MtP)?/2+ MrP/2 + 1, we see that most of Determine the dominant eigenvectoy;,. of (H7H)~!.
the data vectord € D are checked several times. (Of course, « Using an IBCM approximation oH, find the reduced
the distances for data vectors that have been checked before search seb as explained in Section IV-C.
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« SearchD for the data vector minimizingr — Hd||. The that are potentially better thah,,;, in the sense of smallejr —
squared distanceg? = ||r — Hd(V||> can again be cal- Hd||?. We then minimize|r — Hd||* over the search s@sp
culated recursively; the update ter in (17) is replaced that consists ofl.,,;, and all data vectors i®_ :

by dspSarg min {[|[r—Hd|?}, with Dsp= {dan} UD,.
deDsp
19)
" ' The SPA is an add-on to the given suboptimal detector because
-2 Re{ (r — Hd(i)> hmAdffl),_p,} (18) d..;, is calculated and included in the total searchRet.
' To keep our discussion simple, we consider only alphabets
whereh,,, denotes thenth column ofH. Here, the term with constant modulus,; (i.e., arbitrary PSK constellations,
(r — Hd")" can be calculated recursively as well, angvhich includes 4-QAM and binary antipodal signaling). Here,
the||h,,||* can be precalculated. all data vectorsl are located on aMr-dimensional “data hy-
Two cases wherd — does coincide withly;;, are i) an or-  persphere’ about the origin, with radiug® = o4v/Mr. This
thogonal channel (herélyr, = dzp and&iﬁi = dyr because geometry will allow a simple construction @, that uses a
dzr € D) and i) an IBCM (here&ﬁ = dpr, = dyr). We  Projection onto the data hypersphéte(this explains the name
can thus expect near-ML performance for very good chann&i§A)- The SPA can be extended to symbol alphabets that do not
and for bad channels with a single dominant noise axis. ~ Safisfy the constant-modulus property by using several hyper-
For Mt = Mg, we now study how the algorithm’s com-SPheres; however, this results in increased complexity.
plexity depends on the parametér and Mt that determine . .
the transmission rate. We first Iisﬁ'ﬁe preparatory steps that héAV.eCOnstructmn of the Additional Search Sf
to be performed once for each data block over which the channel'he additional search sét; has to be constructed such that

_ 2 Ay |
A = ll? [AdS),

is assumed constant, together with their complexity: it improves the detector performance in the bad channel case.
« calculation of H'H)~! andG = (HYH)~'H¥: com- Therefore, Igt us cqnsidgr a bad ghannel whose domipant noise
plexity O(M3); _component in the direction @fMT (i.e., of the referer_me ling)
« calculation ofvy,: complexity O(M2) if the power is m_uch Iargerthf_;ln all other noise components. This channel can
method [7] is used: again be approximated by an IBCM. Begause_ t_he ML qletector
« calculation of||h,,||? for m = 1,---, Mr: complexity for the IBCM choloses the (_jata vector with minimum distance
O(M2). from L (see Section IlI-B), it makes sense to constiligt as

Thus, the dominant complexity of the preparatory steps ?Sset of data vectors that are closetoOn the other hand, we

O(M2) per data block. Additionally, the following steps havenow that all data vectors are located on the data hypersphere

to be performed at each time instant (i.e., for each transmitt@ﬁ With the S'_DA' for reasons of alg_orlthm|c S|m_pI|C|ty, we at-
data vector): tempt to combine these two properties by choosingfardata

determinati f allZe P boundarv i i and thei vectors that are close to the intersectiom . However, this
determination of affizix = boun ary2 m;as I and thelr intersection does not always exist. Therefore, two cases will be
intersection points: complexit§(M:P?);

calculation of M+ P initial data vectors and their associ distinguished.
T » Case 1If £ intersectsH, we chooseD, to consist of

ated distances: complexit9(M3i P);
« calculation of roughlg M+ P(Mr P —1) distance updates ﬁl?tea:s\éi%tgr:ﬁ € 7 located at or at least close to the

according to (18): complexit®( M3 P?). _ .
Hence the)ve?allcg)m) lexit 2ourg(orﬁhm)is(9(M3P2) or + Case 2If £ does notinterseéi, we choosé . to consist
' P P 9 T P of data vectorsl € H that are close t@.

transmitted data vector. This is cubic in the number of transmit

antennasMr and, since usually? « |.A|, quadratic in the n gwe folllc?glng, WeeZV{IIteIabortatSﬁ OS k_Jotht;]:asdes. i
symbol alphabet sizeA|. ase 1: SupposeL intersectsH. Using the decomposition

YZF = Yvu, + y‘%MT , wherey,,, = (VAL YzF)Vas, iS col-

i H i i H
VI. SPHEREPROJECTIONALGORITHM inear W|thv]\,1,,‘.andvav[‘ = Py, yzr is orthogonal tovy,
. . ) ) _ L can be rewritten as
In this section, we will achieve another substantial reduction -

of computational complexity through a further reduction of theYref(k) = k"M'r‘FYéM,[w with & = k+viy, yzr € C. (20)
data search set. The resulting sphere projection algorithm (SBMe intersection £ N H corresponds to the equation
can be viewed as a simple nonlinear add-on to an existing sub@p; ¢ (k)||2 = R? or, equivalently

timal scheme such as ZF, MMSE, or NC detection. This add-on

~ 2
improves the error-rate and diversity-gain performance of the |k|? + ’ yiMT ’ = R% (21)
suboptimal detector by making it robust to the bad channel ef- .
fects discussed in Section 1. In the real reference plari®, & is represented by the 2-D real
The add-on construction of the SPA is as follows. fe, Vectork, and|k|* = |[k||*. We can then write (21) as
denote the result of the suboptimal detector. This result can be |k||? = R? (22)

expected to be reasonably good for a good channel. In order A ) Lo
to improve the performance for bad channels, we additionaWyjth radiusk = | /R? — |lyg,, [|* (note that?® — ||y, [|* >
consider a suitably chosen sBt, C D of valid data vectors 0 because we assumed that an interseafior exists). Equa-



ARTESet al: EFFICIENT DETECTION ALGORITHMS FOR MIMO CHANNELS 2817

7 (may not exist) kb

Fig. 9. Geometry underlying the SPA. (a) Some boundary lines intersect the intersectiod dodlly possible for Case 1). (b) No boundary line intersécts
(possible for Case 1 and Case 2). The shaded regions indicate (some of) the cells corresponding to data®ectors in

tion (22) defines aintersection circleZ that represent§ N1 B. Discussion of the Sphere-Projection Algorithm

i j H . . . . o

in the reference pILanE. Becausd: = k + vy, yzr, the center  javing explained the efficient construction of the additional

of Tisatk = —vy, yzr. _ search seD,., we now discuss the use of the SRi#s an add-on
Next, we find all cellsC C 7P that are pierced by the i, 5 suboptimal detector.

intersection circleZ. We first calculate allAM/rP boundary Algorithm Summary and Complexitythe principal steps of
lines B(™7). We then calculate the intersection points—if,e SPA can be summarized as follows.

ist— (m.p) i i "

th(ey E;X'St of e;;\cm 9 [Se~e2 (14)] W'th(I [§ee (2.2)]’. €., * Calculateds,;, (the result of the given suboptimal de-
|[E\™P) (k) + vig. yzr|® = R*, wherek!™P)(k;) is given ; : 4 B

Iy . ; . Y tector) and the associated distafiee- Hd,||°.
by (14). These intersection points are illustrated in Fig. 9(a). Her -1 Hres—1ar

Lo » Calculate(H”H) * andyzr = (H"H) *H"r.
(Here, we assume that at least one boundary line intersects . ; Hirv—1
Z. If no such intersection exists althoughintersectsH—cf * Calculate the dominant eigenvectoy;, of (H*H) ™.
) ' + Calculate all boundary line8("») in P.

Fig. 9(b)—the processing fo_r Case 2 descr_lbed further below | Determine the additional search &t and calculate the
has to be performed.) The intersection points are sorted ac- . ;
. . . . ) corresponding distances
cording to their angle. Starting with angle= 0, the first data o
X . X ) ~ — by considering all data vectors whose cells are
vectorinD, is obtained ad") = Q{y..t(R)}. Now, we move . . C
. . h . pierced by the intersection circle
alongZ from one intersection point to the next one. In this ; ; . o
— or, if Z does not exist or if no boundary line inter-

process, we apply the data component update procedure from (1) n .
Section IV-C to obtain the remaining data vectdf® € D, sects7, by consideringl = Q{yVMT} and its next

) . neighbors.
a_nd we ”§e the recur(§)|09_(18) to efficiently calculate the | Find the minimal distance (including the distance obtained
distances)? = ||r — Hd"||* in (19). for duyy)
sub/-

The size of the resultin@_, is bounded a$D, | < 2M1P
because each one of thér P boundary lineg3("-») has zero or
two intersection points wit. The worst cas¢D, | = 2M1 P
occurs if and only if all boundary lines intersett

Here,d,,;, may be the result of ZF detection, MMSE detec-
tion, ZF-based NC detection, or MMSE-based NC detection; the
resulting SPA variants will be referred to as ZF/SP, MMSE/SP,
Case 2: If R? < |ly&, |I% thent and™ do not intersect NC-ZF/SP, and NC—MMSE/SP Qetecuon, respectively.

) T ) The computational complexity of the SPA add-on (not
[see Fig. 9(b)]. It can here b? shown tWMT [which, ac- counting calculation ofd.,,) can be estimated as follows.
cording to (20), corresponds fo = 0] is the point ofC with  Among the preparatory steps that have to be performed once
minimum distance fronk. We thus takel™") = Q{yy,, } as for each transmitted data block during which the channel
the first data vector irD_.. Simulation results indicate that it iSis constant, calculation ofH”H)~'H" has the dominant
advantageous to include also the nearest neighbod$'ofin  complexity of O(M32). Additionally, at each time instant, we
D... These additional data vectors can easily be found by siave to compute two distances with complexidyM2) and,
stituting the nearest-neighbor symbols for the individual coni the worst case2 M1 P — 1 efficient distance updates with
ponents ofd(!). For PSK constellations, we obtain two nearesbtal complexity O(M2P). An experimental assessment of

neighbors for each data vector component, yieldiPg| =  complexity will be provided in Section VII-C.
2Mr + 1. The distanceg? = ||r — Hd®||? in (19) can again
be calculated recursively according to (18). 5In both Case 1 and Case 2, an important aspect of the SPA is that we look

The same procedure is useddf and H intersect but no for the point(s) on the data hypersphétethat is/are closest to the reference

. . . . . line £. In a certain sense, this corresponds to a projection onto the hypersphere
boundary line intersects the intersection cirde (cf. the 3 \wnich explains the name “sphere-projection algorithm.” In Case 1, where

discussion of Case 1 above). and™ intersect, the projection points are given by the intersection cicle
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SPA Variants: To use the SPA as an add-on to ZF detection 10
we choosel,, = Q{yzr}. The resultingZF/SP algorithmis
the most efficient SPA variant because calculatioly gf is a 10*1-: _
part of the SPA. :
To use the SPA as an add-on to MMSE detection, w 10_%_

l-'-' ZF __ ©-ZF/SP
- -~ MMSE % - - MMSE/.

[6,6)]

choosedsu, = Q{ymmse}, whereyyuse = (HTH + %
(02 /0)I)"*H ¢ is the result of MMSE equalization. Fur- < )
thermore, we propose to replace the reference Aine (20) 10 =

by the “MMSE-based reference lin&”: y..¢(k) = kvas, + o
P\%MTYMMSE- L’ is again parallel to the dominant principal 1074 ..
axis vy, but its offset is the component ¢fvise (rather
than ofyzr) perpendicular tov,,.. The resultingMMSE/SP ; . , , , ; ; ; ;
algorithm can be obtained simply by replacing in the ZF/SF 0 2 4 6 8 10
algorithm (HZH)~! with (HfH + (02 /02)I)~L. The ratio- fi 10, SER " ver of od teratintor a (6.6
na‘le for the MMSE/SP aIg_onthm is that on averageise crl%.nne.l and 4-5iﬁu§10dilgtlijg; aetra% gl?lvF\éec;frggdg.:l grgorrgsproﬁd(s ‘to)a
will be closer to the transmitted data vecthy thanyzr. Note  randomly chosen axis ...

that applying the power method {#H”H + (02, /02)I)~*
instead of(H# H)~! requires a few more iterations to obtain 10" &=
accurate results fov,... This is because the “regularization
term” (02, /02)1 decreases the ratio of the largest to secon 101 ............
largest singular value gH”H + (02, /02)I)~!, as compared
with (H#H)~!, which slows down the convergence of the |
power method [7]. a5
Finally, to combine the SPA with NC detection (either®? e :
ZF-based or MMSE-based), we propose to execute the ZF/i 107 i
or MMSE/SP algorithm, respectively, except for the use c -

the NC detection result fod.,,. As we will demonstrate 10-% ©-- NC-MMSE |
in Section VII, the NC-MMSE/SP algorithm is able to yield ©-- ZF/SP [l N
very-near-to-ML performance at a fraction of the computation: #— ML, ML, MMSE/SP, NC-MMSE/SP}
cost of Fincke and Phost’s sphere-decoding algorithm. 0 5 10 15 0 25
P 949 SNR [dB]
VIl. SIMULATION RESULTS (@)

Finally, we present simulation results in order to asse:
the error-rate performance and computational complexity _
the proposed detection algorithms in comparison to the Z 107!} o
MMSE, NC, and ML schemes. In our simulations, we use o N
4-QAM modulation and MIMO channels with iid Gaussian o '

entries. The dominant noise axig;, was computed by means E'S
p]

of the power method [7]. _3i #-= NC-ZF . 3 2SN
107°F @ -- NC-MMSE
. -~ 7F/SP
A. SER versus Number of Power Method Iterations | e MMSE/SP

i 107 4 -+ ML
First, we study the dependence of the symbol error rate (SE | 3 NCMMSE/SP

on the number of power method iterations, which is denoted t | — ML Y : o
K. Fig. 10 shows the SER versis for ZF/SP and MMSE/SP 0 5 0 T
detection for a (6,6) channel at an SNBf 20 dB. For com- SNR [dB]

parison, the SER achieved with ZF and MMSE detection is in-
dicated by horizontal lines. It is seen that flir > 1, the SPA _

add-on yields significant performance improvements.Foe 9 1% Essgvf_rngsn':sdﬂg%rT?2;&?;;%;ﬁ;g??bs’r(%?gfgﬁamiftandard
0, we used a randomly chosen,..; as can be expected, in this

case, the performance improvements yielded by the SPA add@nseR versus SNR

are negligible. For both ZF/SP and MMSE/SP, increaginige-
yond 4 does not yield any additional performance improveme
Thus, we chosé& = 4 in all simulations presented below.

(b)

¢ Figs. 11(a) and (b) show the SER versus SNR performance of
the various proposed and standard detectors for a (4,4) channel
and a (6,6) channel, respectively. As in SectionV. denotes
the extension of the IML algorithm to arbitrary channels. For the
6The SNR is defined a&{||Hd|[2}/E{||w|[2} = Mro3/02,. NC algorithms, we used the layer ordering maximizing the post-
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TABLE |
MEASURED COMPLEXITY IN KFLOPS FOR(a) FREPARATORY (OVERHEAD) OPERATIONS PERFORMED ONCE PERDATA BLOCK AND
(b) DATA DETECTION OPERATIONS PERFORMEDONCE PERDATA VECTOR

measured kflops — vector operations

measured kflops — block operations

channel [ FPSD] ML | hin. | NC [lin/SP|NC/SP  channel || TS0 3L | lin, | NG [ i2/5P | NC/SP

av. |max. av.|max. av.lmax.

oo e [ le el ae 150" <ot e [fomfoalial 24 [1s] 25

w5 | 13 TosMazlm il 168 | a7 (6,6) || 68 ] 300 | 41 [0.37|1.1[25] 4.7 [36] 5.7

: (8,8) ||122] 671 [ 93 [0.62]1.93.7] 7.6 |5.6] 9.5
(a) (b)

detection signal-to-noise ratio at each detection step as propoaed Phost’s sphere-decoding (FPSD) algorithm [4]. The com-
in [2]. The following conclusions can be drawn from the resultslexity of FPSD was measured at an SNR of 10 dB. The com-

shown in Fig. 11.

plexity of the other schemes is independent of the SNR.

« All proposed detectors perform substantially better than Table I(a) shows the complexity of the operations that have
the standard suboptimal detectors. In particular, even titebe performed once for an entire data block during which the
simplest of the proposed detectors (ZF/SP) outperformbannel is constant (i.e., “overhead” operations like calculation

the best standard suboptimal detector (NC-MMSE withf H# = (H#H)~*H# andv,;,). Table I(b) shows the com-

optimal layer ordering).

plexity of the operations that have to be performed once for

All proposed detectors achieve higher diversity orde@ach time instant or data vector (i.e., data detection operations

than the standard suboptimal detectors.

like determination ofD, and+?, not including the overhead

For the (4,4) channel, the MMSE/SP and NC-MMSE/SPomputations considered in Table I(a)). Each table presents only
detectors perform practically as well as the ML detect@ne value for both linear detectors (ZF and MMSE; denoted as
[the corresponding SER curves in Fig. 11(a) are indistifiin.”) and only one value for both linear detectors combined
guishable], and the ZF/SP detector achieves near-ML p&ith the SPA (ZF/SP and MMSE/SP; denoted as “lin./SP”") be-

formance.

cause there is virtually no difference in complexity. Note that

Forthe (6,6) channel, the NC-MMSE/SP detector achievis Table I(a), the values for FPSD and lin. are equal since both
near-ML performance, and the performance of the othalgorithms have the same overhead complexity (computation of
proposed detectors is intermediate between that of the NiL#). Similarly, in addition, the values fdviL and lin./SP are
detector and that of the best standard suboptimal detectgual (same overhead of calculatiHg” andv s, ).

(NC-MMSE with optimal layer ordering).

The complexity of FPSD strongly depends on the channel

For the (6,6) channel, the performance of the ZF/SP anehlization and the SNR; for a bad channel realization, it exceeds
MMSE/SP detectors is close to that of thH. detector. the average complexity by a large amount. Thus, in addition to

This shows that our strategy for constructiflg works
well.

the average FPSD complexity, Table 1(b) shows the maximum
FPSD complexity obtained during 10 000 simulation runs at an

A comparison of the results obtained for the (4,4) and (6,&NR of 10 dB. A maximum complexity is also provided for
channels suggests that for increasing channel size, the per/SP and NC/SP; it refers to the case where all boundary lines
formance of the proposed algorithms degrades (compatatersect the intersection circle(cf. Case 1 in Section VI-A).

with ML performance). This is due to the IBCM approx-
imation underlying our algorithms. Specifically, for in-
creasing channel size, the probability that two or more
principal axes are dominant (rather than just one as as-
sumed in the IBCM) increases so that the IBCM approxi-
mation becomes less accurate.

C. Computational Complexity

A rough picture of the computational complexity of the var-
ious detectors is provided in Table | for three different chan-
nels [(4,4), (6,6), and (8,8)] and 4-QAM modulation. The kflop
estimates displayed in Table | were measured using MATLAB
V5.3. Even though these complexity measurements depend on
the specific algorithm implementations used, they provide more
insight than the asymtoti©(-) results presented in earlier sec-
tions. The ML detector was implemented by means of Fincke

L]

From Table I, the following conclusions can be drawn.

The maximum complexity of FPSD is much larger than
its average complexity. For practical system design, a lim-
itation of the maximum complexity is desirable. However,
FPSD with limited maximum complexity is no longer an
exact implementation of ML decoding.

In contrast to FPSD, the complexity ML detection is
independent of the channel realization and the SNR. Ac-
cording to Table I(b), the complexity &L detection is
smaller than the average complexity of FPSD and only a
fraction of the maximum complexity of FPSD.

For both FPSD anWiL, the complexity of the operations
to be performed in each time instant is much larger than
for the other algorithms.

For the lin./SP detectors, the complexity of the computa-
tions performed once per data block is lower than for the
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NC detectors but slightly higher than for the linear detec- [3]
tors and FPSD (due to the additional calculatiow gf..).

« For the lin./SP detectors, the average complexity of the 4
computations performed once per data vector is about
twice that of the NC detectors but significantly lower (by [5]
a factor of about 25 .33) than that of FPSD.

« The overall complexity of the SPA detectors is higher than
that of the standard suboptimal detectors but much lower!®
than that of FPSD andIL. In particular, the complexity  [7]
of NC-MMSE/SP is just a fraction of the complexity of ]
both FPSD and1L, even though NC-MMSE/SP achieves
near-ML performance, as shown in Section VII-B. [

VIIl. SUMMARY AND CONCLUSIONS [10]

The starting point of this paper was an analysis of the effectfi1]
of bad (poorly conditioned) channels on suboptimal detectors
for a MIMO spatial multiplexing system. The performance of all [12]
standard suboptimal detection schemes severely degrades com-
pared to the performance of the maximum-likelihood (ML) de-
tector when bad channel realizations occur. We found that this
inferior performance is due to the inability of linear detector
to properly adapt their decision regions to the noise statisti
In addition, bad channels lead to a high computational cor
plexity of Fincke and Phost’s sphere-decoding algorithm for M
detection.

Based on an idealized approximate model for bad chann
that captures the bad channel effects in a simplified form, v

. N\
then presented new detection methods that are robust to bad
g?tion and equalization of time-varying channels, and multiuser techniques.

channels. The initial form of the new detection approach w
an efficient ML detector for the idealized bad channel model.
Subsequently, we extended this detector to be suitable for
arbitrary (nonidealized) channels. Finally, we developed tl
sphere-projection algorithrfSPA) that is a computationally ef-
ficient, nonlinear add-on to standard suboptimal detectors. Tl
add-on improves the error-rate and diversity-gain performan
of suboptimal detectors by making them robust to bad chani
realizations.

Simulations showed that the SPA outperforms ZF-bas
and MMSE-based nulling and cancelling with optimal layer
ordering by achieving higher diversity gains at a comparable
computational complexity. The performance of the SPA is bews
for systems of moderate size (which are of greatest practif'
interest), whereas for increasing system size, it degrades cc
pared with the performance of ML detection. For example, f
a spatial multiplexing system with six transmit antennas and ¢
receive antennas, the SPA is able to yield near-ML performar,
at just a fraction of the computational complexity of Fincke a
Phost’s sphere-decoding algorithm for ML detection.
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