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Abstract—A method for variable-rate data sampling is pro-
posed for the purpose of low-power data acquisition in a small
footprint microsystem. The procedure enables energy saving by
utilizing dynamic power management techniques and is based on
the Adams—Bashforth and Adams—Moulton multistep predictor-
corrector methods for ordinary differential equations. Newton— >
Gregory backward difference interpolation formulae and past
value substitution are used to facilitate sample rate changes. It
is necessary to store onl\2m + 1 equispaced past values ot
and the corresponding values ofy, wherey = g(t), and m is
the number of steps in the Adams methods. For the purposes of
demonstrating the technique, fourth-order methods are used, but N T
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it is possible to use higher orders to improve accuracy if required. time ()
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Index Terms—Adams methods, dynamic power management

. . - ! ' Fig. 1. Fixed-rate sampling where all readings are equispaced with respect to
interpolation, low-power, variable-rate sampling.

t, and the sampling rate i/ i.

|. INTRODUCTION this problem, but, ify begins to change rapidly, readings of in-

OW-power technigues have become increasingly impaerest may be missed. Variable-rate sampling (VRS) attempts to
tant in recent years due to the burgeoning number of comvercome these problems by alteringepending on the rate of
sumer, military, and medical remote sensing devices requirinbgange of values being observed in the data at a given time.
long battery life combined with good performance. Some of In this paper, we demonstrate a VRS controller for a battery-
these techniques employ dynamic power management (DPdferated, limited-bandwidth sensor microsystem with wireless
methods by, for instance, altering supply voltages or reducitri@nsmission to a base station. In the systems we are studying,
clock speeds [1], [2]. the maximum sampling frequency is typically 1 Hz, and the
In the simplest microsystems with digital signal processingpntroller takes advantage of instances whes large to op-
(DSP) capability, the user will configure the device to operatanize the use of DPM. The data received at the base station
at a fixed sample rate appropriate to the maximum frequencyrofly be time stamped and rebuilt using conventional techniques,
interest expected in the data. An example of fixed-rate sampliramd, because the receiver need not be a low-power device, pow-
wheret,, represents the time of theh sample ang,, = ¢g(¢,) erful computing capability may be employed. Data transmission
the corresponding value, is shown in Fig. 1. Here, the samplelay is not considered significant in these systems as it is neg-
rate is1/h, whereh is the fixed sampling interval or step size. ligible compared with the average sampling interval.
While fixed-rate sampling methods enable simplicity of de-
sign, it is observed that in many applications, such as some Il. BACKGROUND

piomedical and environment_monitoring systgms, the freq.uencySOme VRS controllers altérdepending on the rate of change
is often low for extended periods [3], [4]. During such perlod%f y. One such method is the level-crossing technique [5], [6],

wheny remains constant or varies slowly, many readings aqre the time taken farto reach fixed thresholds is measured.
taken having the same or similar value, producing a great deakgfe jternative method we demonstrate here relies on the ability
redundant information. Reducing the sampling rate would solyg nredict, within a user-determined accuracy, the next value in

a series of samples.
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prediction again becomes (1). This provides a more accurate es-
timate of the slope between,(vy,) and ¢,+1, yn+1) than the
simplest single-point methods [7].
v Two such methods are the Adams—Bashforth and

1 Adams—Moulton predictor and corrector [10], [11] which
\—' Vo ST provide a simple, computationally efficient technique of
R S ¢ . similar accuracy to RK methods [7]. They require a number of
equispaced previous data values of known time interval, but
. once these values are known, the algorithm for predicting the
nexty value is straightforward.
time () " Only a few @m + 1) past values need to be stored, and since

past values are used more than once and computation per step

Fig. 2.y, predicted by multiplying: by the estimated slope betwegn s |ow, these methods lend themselves to low-power data sam-
andyr. pling. Polynomial predictors are typically used in FIR filtering

t 12]-[15
Since this is the case, the prediction is an example of an i rsfys ems [12}-[15].

tial value ordinary differential equation (ODE), and, depending
on the error in the predicted value, the step size may be altered
to attempt to maintain prediction accuracy within a given toler- As demonstrated in [16], it is possible to use evenly spaced
ance (ol). Various numerical methods exist for the calculatiofamples to generate a differential equation that represents a
of solutions of ODESs, and these methods may be separated i bandwidth signal. The sampling system presented here

y'=1e,, v,)

- N W s O N @& ©
T T T T T T T T

Il. V ARIABLE SAMPLE RATE CONTROL

two groups: single step and multistep. employs Adams methods that are modified to ysardinates
rather than derivative values for predictipg,; together with
A. Single Step ODE Methods Newton—-Gregory interpolation techniques [17] to vary the

To calculatef(t, y), single-step ODE solvers use first derivaSample rate.
tive information either at pointy,, ¥, ), as with the explicit Euler A Modified Adams Methods
method [7], or at multiple points within a single step, e.g., in the
range{- tOfn+11 as is the case with Runge Kutta (RK) methods The Adams—Bashforth method can be of order 2 or h|gher
18], [9]. and is typically based on a Newton—-Gregory (N-G) backward
These methods vary in accuracy. For example, the expliéifferencing or Lagrange interpolating polynomial fitted at base
Euler method is empirically less accurate than the widely usB@int¢. [18]. In this case, a fourth-order method is used as it
fourth-order Runge—Kutta method (RK4). RK4 uses estimatéjaccurate enough for the purposes of this application, and the
slopes at,,, t,, + (1/2)h andt,, + h, requiring numerous cal- N-G polynomial integration [17] is shown in the following:

culations to predict,,1, as follows [7]: 1 35242
P " 7 Yk =Y /(fn+ fit=; S S35 sf’”)hds.

4 1 Tt 3!
YUni1 = Yo+ g (k1 + 2k + 2ks + ka) 2 4)
Here, s represents the fraction &f for which an extrapolation

where the various slope calculations are . .
is being performed.

k1 =hf(tn, yn) (3a) Using (N-G) backward differencing approximations [17] to
o it (¢ 1} 1 " 3b calculate the derivatives gives
2—Lf<n+§b-/yn+§ 1) (3b) . = far 3 //an_Z.fn—1+.fn—2 -
1 1 ~ h n =~ h?
ks =hf (tn + §h7yn + §k2> (3¢) etc., and substituting (5) into the integrated form of (4) gen-
ky =hf (tn + hyyn + k3) (3d) erates the standard fourth-order Adams—Bashforth (AB4) pre-
4 @)isth hod 1 / ol o dictor formula [7]
and (2) is the RK4 method for calculating (1 . .
55 fn — 59 fn_1+ 37 2 — fn_
In a DSP systemf is unknown and must be derived from y%,, =y, + h (OOf 59fn-1 —12—4 frn2 = 9F 3) (6)

previous points, adding to the computational complexity of the
algorithm. In a low-power system, it is desirable to minimizevhereys?, , is the result of the AB4 method of calculating (1).
the overhead incurred by the VRS system to save processing\dams—Moulton is a corrector method that utilizes the value
time and lower hardware or software requirements. We hawggdicted by AB4, and, with ODEs, improves on this estimate
therefore, used multistep methods that require less computat@iving a more accurate estimationgf, ;. Again, it is based on

to achieve a prediction of similar accuracy. a N-G or Lagrange polynomial, but, since the predicted value of
Yn+1 IS NOW known, the polynomial is fitted at base paipg 1,
B. Multistep ODE Methods and the derivative approximations are
Multistep predictor methods utilize past valuesfgfto con- f Jnr1 = fn fn a1 = 2fut faa %
struct a polynomial approximation of the derivative function of nt1 ¥ h "+1 - h2

y and extrapolate the polynomial into the next step so that thtc.
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Substituting these formulae into the differencing polynomial, Sampled Data Points

we have the standard fourth-order Adams—Moulton (AM4) cor- or IR Y y=g(ty
rector formula [7] 8 ;
7r '
9fb 4+ 19fn — 5fn1+ fu_ :
) IR '
5 4
wherey;"?; is the result of the AM4 method of calculating (1). ar 1
From (6) at 1
2r 4
ab _ Ynr1 = Yn \ : :
Jn - T t 3 n-1
1 h’ i time (t)
giving Fig. 3. Variable-rate data sampling where readings are not equispaced with
ab 55fn =959 fn_1+37fn_2 —9fn_s respect to time.
n+l — . (9)
24
- . . TABLE |
Substituting (9) into (8) now gives DOUBLING THE STEP SIZE
b 317fn — 217 freq1 + 119fn_o — 27 fr_:
Yndt = yn + h< 1192 : - Replace i Yn—8 | ‘ Yn—a | Yn-3 | Yn—2 I Yn-1 I Yn
(10) with I | I Yn—8 | Yn—6 | Yn—4 | Yn—2 | Yn

wherey2""t is a combined Adams—Bashforth-Moulton method

using a single equation rather than the conventional two.  y,_2 etc. from N-G backward differencing. Setting= 1
To convert the above calculation to a DSP process wfigse Yields the following equation:

unknown, we use the secant method [17] to replace the deriva- g4 -

. o . = — 10y,— 10yp—2 — OYp— _ 15

tive values with knowry ordinates as follows: Ynt1 = OYn Yn—1+10Yn—2 = 5Yn—3 + Yn—a  (15)

fn% 7fn—1 ~

n

wherey, ., is the result of extrapolating the N-G interpolation
(11) polynomial.
This formula, which is the same as that obtained by extrap-
olating a Lagrange interpolation polynomial 4941 [17] of
the same order, is computationally simpler than the modified
Adams equations, and the respective merits of the two methods

Yn — Yn-1
h

Yn—1 — Yn-2
h
etc.
Substituting these values into (1@)is eliminated to produce
a novel, Adams-type formula containing only knowrvalues

such that are discussed in Section V.
mam _ 909Yn — 534yn—1 + 336yn—2 — 146y,—3 + 27yn—4
Unt1 = 192 (12) B. Varying the Sampling Rate
where ymem is a prediction using the modified combined In a system with a constant sampling rate, the data points
Adams method. are equispaced with respect to time. In a system with a variable

It is also possible to substitute the secant approximationsSAMPling rate, this is not the case, as the time between samples

(11) into (6), resulting in a method that uses only a predictor, sdecided by an algorithm. An example of a variable sampling
follows: rate is shown in Fig. 3.

Many methods have been examined for step-size alteration

ymab = Pyn = Hyn—1 + %ZZ_Z yn—s + 91 ¢ ODES [21]. In this application, it is desirable that the method

(13) employed can be implemented as simply as possible, and we

The modified Adams methods are akin to those in [19] argither halve or double the step size, depending on whether the
[20] to solve differential algebraic equations. However, unlikB10st recent sample was outside or inside a given tolerarice
these methods, we calculagg, , using past actuaj values compared with the Adams prediction. Thatiss doubled if the
rather than storing their derivative approximations, these apediction is sufficiently accurate and halved if the prediction is
proximations having been incorporated into (12) and (13). inaccurate.

Other similar prediction algorithms can be implemented. For 1) Step Size DoublingThe system requires that nine suc-
example, itis possible to fit a standard interpolation polynomigpssive equispaced data values are stored in a first-in-first-out
to pasty values and extrapolate this 9. The fourth-order (fifo) structure. A calculation foy;,, , is performed using (12).

N-G backward differencing polynomial is as follows [17]: At the next sample timey,, .1 becomesy,, and so on, and the
2 previous value ofy,_g is discarded from the fifo. If the new
S S

Yntsh = Yn + %Vlyn + o Viy,+ value foryn is within tol /2 for the predicted value, the sample
3 2, 4 4 3 5 steph is doubled.
wv‘{% + s +4s” +11s” +6s Viy, (14) To ensure that the fifo can be refilled in the minimum number
3t 4! of samples, every second value is discarded and the next value

wheres is again the fraction of. to which the polynomial is down moved up. This is illustrated in Table I. Once the process
being extrapolated, ard' = v,, — v, 1, V2 =y, — 2y»_1+ ofdoublingh is complete, only four more samples must be taken



IRVINE et al: VARIABLE-RATE DATA SAMPLING FOR LOW-POWER MICROSYSTEMS 3185

TABLE I is emulated using input from a disk file, each input data value
HALVING THE STEP SiZE corresponding to a point at the maximum sample rate. When the
sample rate is halved (= 2), every second data point in the file
Replace l Yn—8 I Yn—17 ’ - | Yn-3 [ Yn-2 | Yn-1 | Yn is neglected. The VRS system is implemented as follows:
with | Yn—4 , Yn-1 | - | Yn-3 | Yn-1 | Yn-i | Un Set fo]
Set  hmax

beforeh can be doubled again. Howevérgcan be halved onthe set 4,
next sample if required because only five readings are requirggt / = h,;,
2) Step Size HalvingTo halveh, the interpolated values of Read first nine y values and store in

Y —
Yn—1/2+ Yn—3/2> Yn—5/2, andy,_7,> must be calculated to re-to 4, s
fill the fifo with values at the new sample rate. Again, this cagntil data sampling ends
be achieved using the N-G fourth-order backward differencinga|culate P
polynomial in (14). Read y,4+1
Settings to —1/2, —3/2, —5/2 and —7/2 yields the fol- Set Yn_s = Ynemr Yne7 = Yne6---Yne1 = Yn, Yn =

lowing equations: Yns1

I . If | .712-1-1 — Yn+1 |> tol then
yn—1/2=ES(3oyn+140yn—1—70yn—2+28yn_3—0yn—4) (16) ¥ A > h,, then halve &k

1 else if |42, — yny1 |< tol/2 then
yn—3/2:@(_5yn"|'6Oyn71+90yn72_20yn73+3yn4) 17 If h< hmaxﬂfhen

1 - If four readings since last doubling
yn75/2:@(3yn_2Oyn—1+90yn—2—|'60yn—3_oyn—4) (18) then double K

1 else do not change h
Yn—7/2= @(—5yn+28yn—1—70yn_2+140yn_3+35yH)- Loop 9
(19)

The values of are then substituted as shown in Table Il, giving 11€ Systém has also been designed in prototype form in
?ﬁ L that is targeted to an FPGA (Xilinx) to assess circuit

nine equispaced readings at half the previous step size. Note X ' - ,
nctionality and to a CMOS process from Austria Mikro

the step size can be halved at any time, unlike the process for dférh ) - ] -
bling 2, which is conditional on the fifo being full. Systeme (AMS) to obtain estimates of power consumption using

Alternative methods for halving are possible. For example, 2 Synthesis tool (Synopsis). Ultimately, the intended implemen-
calculating onlyy,, _; /» andy,,_s,» will enable ABM sampling tation is a system-on-a-chip (SoC) with a high-speed VHDL

to resume. However, a further four readings are required bef&@Sign to maximize the bandwidth of the system, but, for many
step size doubling may be performed. Another method is to redPlications, a slower software implementation is adequate.
subsequent values at the halved sample rate until the fifo is filled!n t€ Systems we are studying, the data is rebuilt to the orig-
with equispaced data with respectitdhereby enabling a sim- m_al numbe_r of s_amples after_transmls_smn to a base station run-
pler system to be implemented. With this method, a further follf9 & cubic spline interpolation algorithm.
samples must be taken before ABM prediction can resume and
another four samples taken before the step size may be doubled. V. REsuLTs

The minimum possible step size is determined by the rate Prediction Methods

at which data can be read from a given device. The algorlthm.l_O compare the accuracy of the Adams and N—G polynomial

SZITJ gse;?éecvgggfau;ﬂg?a;rsnuusrpaisr;[sg S'éﬁbgomzvg’elf tgiiedigtgediction methods described in Section IlI-A, data from the test
e . P ! P st 2t sets shown in Fig. 4 is passed through the algorithms at var-
rapidly increase to the point that an important change in the

value trend can be missed. To eliminate this possibility, the al iQus fixed step sizes, i.e., the step size changing part of the VRS

: . o . ! gsoystem is disabled. These data sets represent a sine wave (the
rithm is modified to have both minimunkf,;,) and maximum f ) i . . )
. undamental), a sine wave with added noise, a sine wave with
(hmax) Step sizes. dh ic introduced, a sine wave with second harmonic
Together, the ABM formula and the step size changinsﬁeCOn armonic in C : . X
method form the VRS system I troduc_ed with added noise, and, finally, with second ar_ld_ third
’ harmonics and added noise. All the waveforms are originally
sampled at 0.0139-rad intervals at the fundamental. The noise
is in the range-0.072 to 0.072 (i.e.£7.2% of the fundamental
The system is designed to operate at a maximum sample sitgal’s peak value). The results showing average errors in pre-
that is at least twice the Nyquist rate [22], [23] appropriate to thiiction in terms ofy amplitude are shown in Table 111
maximum frequency of interest in the data, thereby avoiding theThe N-G polynomial performs best out of the three algo-
possibility of being prone to undesired aliasing effects leadinighms on the simplest data sets, i.e., those with no harmonic or
to unacceptable data loss [24]. noise content. However, as the waveforms become more com-
To obtain a behavioral analysis of the VRS system, the modgilex, the algorithm performs less well, becoming unstable at
fied Adams and N-G polynomial prediction methods and the stejgher step sizes, as can be seen from the rapid decrease in pre-
size changing algorithm are implemented in C. The data strediotion accuracy.

IV. | MPLEMENTATION
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-0.6f 1
-0.8f h
T 3n 4;

2n n )
t : angle (radians) t : angle (radians)

@ (b)

1.5

0 n 2n 3n 4n 0 n 2n 3n 4n
t : angle (radians) : angle (radians)

© (d)

—-

2 . L s
0 n 2n 3n 4n
t : angle (radians)

(e)

Fig. 4. Various data sets for prediction algorithm performance comparison with samples taken at 0.0139 radian intervals at the fundamentaNisguenc
added with a random number generator. (a) Test data getlsin(¢). (b) Test data set 21 = sin(¢) + noise. (c) Test data set 8:= sin(¢) + 0.67(sin(2¢)).
(d) Test data set 41 = sin(t) + 0.67(sin(2¢)) 4+ noise. (e) Test data set §:= sin(t) + 0.67(sin(2¢)) + 0.67(sin(3¢)) + noise.

Similarly, the Adams predictor method outperforms thB. VRS Sampling
predictor-corrector at lower step sizes over the simple data sets. )
This may be attributed to the error introduced into the methodsT0 85Sess the performance of the VRS system using the ABM
by using the secant method, with the predictor-corrector ha\;irl;éed'cu_)rv a data set containing actual sensor data is used, as
that error introduced twice. However, the predictor perfornf§10wn in Fig. 5.
less well over more complex waveforms, also becoming This data represents 48 h of equispaced temperature readings
unstable. taken at 2.5-min intervals, the total range of the measuring in-
The predictor-corrector shows the greatest stability of all tisérument being-26 to+25°C, and the resolution 0.Z. In this
algorithms over more complex data sets. Over the sets with nofkda set, the temperature varies between approximately 2.5 and
present, as may well be the case in a sensor system, the ABRC in a very similar way over the two 24-h periods, hence the
algorithm consistently produces the most accurate predictiorepparent periodicity.
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TABLE I TABLE IV
AVERAGE PREDICTION ERRORWITH AN ADAMS PREDICTOR (MAB), STEP SIZE CHANGING
PREDICTORCORRECTOR(MAM), AND A N—G INTERPOLATING

PoLYNOMIAL (N-G) . | Unsampled | War | Ynt1 | Nexth
Dataset | h MAB MAM N-G 796 26 2826041 | 2.6 4
1 1 | 0.000606 | 0.000833 | 0.000000 797 2.8
2 | 0.002423 | 0.003332 | 0.000003 798 2.8
4 | 0.009648 | 0.013278 | 0.000102 799 2.8
8 | 0.037508 | 0.052375 | 0.003194 800 2.8 2476041 | 2.8 4
16 | 0.118421 | 0.196300 | 0.095825 801 2.8
2 1 | 0.115286 | 0.0069085 | 0.248936 802 3.0
2 | 0.114157 | 0.0068422 | 0.246560 803 3.0
4 | 0.114759 | 0.069490 | 0.247139 804 3.2 3.158334 | 32 8
8 | 0.117517 | 0.082758 . 0.243152 805 32
16 | 0.155537 | 0.204696 | 0.254795 806 32
3 1 | 0.001672 | 0.002300 | 0.000002 807 3.0
2 | 0.006669 | 0.009176 | 0.000068 808 3.0
4 | 0.026001 | 0.036106 | 0.002138 809 3.0
8 | 0.082667 | 0.132837 | 0.063800 810 3.0
16 | 0.390779 | 0.436323 | 1.473082 811 3.0
4 1 | 0.112807 | 0.067534 | 0.243527 812 2.8 3.422917 | 2.8 4
2 | 0.117125 | 0.070504 | 0.252236 813 2.8
4 | 0.117699 | 0.076545 | 0.249271 814 2.8
8 | 0.142629 | 0.148726 | 0.264517 815 2.6
16 | 0.408103 | 0.446665 | 1.489782 816 2.6 2.013151 | 26 2
5 1 | 0.115195 | 0.069036 | 0.248741 817 2.8
2 | 0.114273 | 0.070616 | 0.245043 818 2.8 2794210 | 2.8 2
4 | 0.128696 | 0.104622 | 0.254566
8 | 0.154262 | 0.276271 | 0.470468 bl ‘ :
16 | 2.771274 | 1.783413 | 6.897779 I 2 '

7
6.5}
6F
©
e 55
g
i 5+
2
§ a5 ‘ ‘
ab ‘o 200 400 600 800 1000 1200
t
3'5- . . . . .
Fig. 6. Data sets with no high-frequency component result in increased step
3 sizes. (a) Algorithm commences using a high sample rate, but (b) takes fewer
2.5; 200 200 500 800 7000 1200 samples when the Frend is predictable. (c) Sample rate is increased as the data
t (minutes) becomes less predictable.

Fig. 5. Test data set for VRS algorithm representing 48 h of temperature . .
readings taken at 2.5-min intervals. 1, 32, and 0.4, respectively), and the test data set is passed

through the algorithm. The step-size changes as expected, and
The minimum and maximum step sizes and the toleranttee results for data stream positions {96 to 818 are shown in
are set to values consistent with the desired results (in this caghle IV.



3188 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

2'A?oo 500 600 760 tu‘»o 900 2'ioo 560 séo 760 300 900
t t
(@) (b)

Fig. 7. Whentol is low, there is good correlation between the original and rebuilt data sets. This data sampled with).4, /. = 32, andhmin, = 1.
(a) Original data. (b) Reconstructed data.

7 ' ' ! ' ’ TABLE V
6.5¢ 1 CORRELATION COEFFICIENTS FORfol WITH h, . FIXED AT oo
6.
5.5} tol | r Samples | Sample Ratio | Highest h
- 0.4 | 0.9982 516 1:2.23 8
4.5
a 0.6 | 0.9918 219 1:526 16
35 0.8 [ 0.9918 159 1:7.25 32
il 1.0 | 0.9867 105 1:10.97 2
2.5 L - - v
0 o 40 e 800 000 100 1.2 | 0.9860 86 1:13.40 32
Fig. 8. Higher values ofol andhmax result in lower correlation but fewer 1.4 | 0.9847 74 1:15.57 64
readings being taken. The system also acts as a lowpass filter. This data was
sampled withtol = 1.6, hpax = 64, andhy,;, = 1. 1.6 | 0.9505 54 1:21.33 64
1.8 | 0.9497 52 1:22.15 64
This section of data illustrates the technique quite clearly. At
- . . . . R 1221 64
position 804 in the simulated data stream, the predicted value 20 | 0.9497 52 ! >
was withintol /2 of the actual value measured, resultinghin 2.2 | 0.9552 58 1:19.86 64
doubling for the next step. At first sight, it might be expected
. . ! . 2.4 | 0.9552 58 1:19.86 64
that at position 81& should again be doubled; however, this
cannot happen as only two readings have been taken since the 2.6 | 0.9475 55 1:20.95 64
previous doubling. At position 812, the error in the prediction 28 | 0.9484 51 1:22.59 64
was greater thatvl, resulting inh being halved. Over the entire
data set, the maximum step size obtained using the atadye 3.0 | 0.9484 51 1:22.59 64
hmax, andhin is 8. The reduction in the number of readings 3.2 | 0.9484 51 1:2259 64
taken over the whole data set is 60%.
Data sets with no high-frequency component result in in- 3.4 | 0.9061 4 1:26.18 128

creased step sizes, thereby reducing the number of readings

taken. For example, the data set shown in Fig. 6 withlaof data loss would be acceptable only in instruments where a level
0.2, hmax Of 32, andh,;, of 1 resulted in a maximum step sizeof undersampling is tolerable because high frequencies are not
of 32 and an overall reading reduction of over 80%. of interest to the user.

Plotting the rebuilt data, as shown in Fig. 7, illustrates that the Since we are examining analytic data, it is appropriate to as-
integrity of the data is maintained, where the lowpass filterirgess the similarity between the original and rebuilt data sets in
effect that is inherent in the VRS algorithm is largely restrictetrms of the linear correlation coefficien(25]. An r value of
to the quantization noise [24] introduced by the analog-to-dig-represents complete positive correlatieri, complete nega-
ital converter. tive correlation, and 0 no correlationl < r < 1.

Increasingol has the expected result of reducing the number By settinghmax t0 co and passing the data through the algo-
of readings taken but lowering the correlation between the origthm with varioustol values, the effect onis obtained. Values
inal and rebuilt data sets due to the increased level of filterinigr various tolerances are shown in Table \tcAvalue of 3.4 re-

The result of settingol to 1.6 and the maximum to 64 can sults ink doubling at the maximum possible rate, and increasing
be seen in the rebuilt data shown in Fig. 8. Clearly, this level 6l further would have no effect on this data set.
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TABLE VI TABLE VII
CORRELATION COEFFICIENTS FORh WITH tol FIXED AT 1.4 (2.7%O0F POWER CONSUMPTION OFCOMPONENTS
THE TOTAL RANGE OF —26 °C T0 +25°C)
Component Power mW
hmaz r Samples | Sample Ratio | Highest h
Timer 0.10
2 | 0.9985 585 1:1.97 2
Temperature Meter 0.36
41 0.9971 302 1:3.82 4
pH Meter 0.24
8 | 0.9954 163 1:7.07 8
O, Meter 1.36
16 | 0.9919 96 1:12.00 16
- Conductivity Meter 0.22
. 76 1:15.16 32
32 | 09877 Radio Transmitter 24.00
64 | 0.9847 74 1:15.57 64
Sample Controller 3.30
128 | 0.9847 74 1:15.57 64
Sample Instrument
Controller » T ure | ‘ T
Meter a;'
PH Meter 3 0.4mW
0, Meter S 0.8mwW
Conductivity &
Meter
Timer Radio
Transmitter ~10 . A H " i i
(1] 10 20 30 40 50 60 70

Average Step Size

Fig. 9. Example system from [4] Fig. 10. Energy savings. The power labels represent the constant power

overhead for each curve on the graph. The higher this overhead, the lower the
Similarly fixing tolto an arbitrary figure and passing the dataower savings gained with VRS. Note that there is potential for an energy loss
’ . . . It the average step size is close to 1.

through the algorithm with variouk,,,.. values, the effect of
hmax ON7 is obtained. Values for various maximum step sizes
at a fixedtol of 1.4 (or 2.7% of the instrument’s total range ofAs can be seen in Fig. 10, the higher the constant power over-
—26 °C to +25 °C) are shown in Table VI. At this tolerance,head of the system, the lower the overall power savings gained
it can be seen thdi,.. ceases to have an effect on the datdy the variable-rate sampling algorithm. Power savings rapidly

sampling at a value of 64. reach a plateau when the average step size is relatively low, and
it is clear that even with modest increases in the average sample
C. Energy Saving step and a large constant power overhead, power savings of 15%

Consider the system shown in Fig. 9, which is comprised 6&n be readily achieved.
sensors with associated electronics, a radio transmitter, a timer,
and the VRS sample controller. The power consumption data VI. CONCLUSIONS
for the components in this typical microsystem [4], as shown

. . , i We have developed a new real-time sample rate controller
in Table VII, are obtained by targeting the design, through syp- o .
thesis, onto a 0.¢:m CMOS process. In this system, the timefased on modified Adams ODE numerical methods. The ef-

interacts with the VRS controller to obtain a sample interval f (Iactlveness of the VRS technique is dependent on the high-fre-

the next reading and powers off all the remaining componen ency content of the data being sampled. Modified Adams for-
mulae of higher or lower order than those used here are easily

including the controller, during this interval. The timer is ac: lemented to alter prediction accuracy as required. An ad
tive continuously and therefore represents the 0.1-mW constanP P y q '

power overhead of the system. The other components represvglﬂtage of the s_ystem Is that real qa.ta is stored or transmitted,
the 29.48-mW variable power overhead. The samples are trafh _oppo;ed FO. signal functloq coefficients [26]. .
he simplicity of the algorithms enable them to be imple-

mitted in triplicate, and the total transmission time for the fourrn nted with mall hardware or software overhead. makin
measured parameters is 192 ms. Since the sampling inter € a smalfl hardware or software overnead, maxing

with VRS enabled are relatively long, the energy saved duri:ﬁ e attra_ctive for small footprint systems Teq“i””g Iow-pow_er
power-down periods more than outweighs that consumed duri® sumption, low memory usage, and minimum hardware size.
the powering up process.

The efficiency/energy saving is calculated as ACKNOWLEDGMENT

energy consumption of system with VRXSmO(y 20) The authors wish to thank the reviewers for their valuable
energy consumption of system only - comments and suggestions.
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