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Variable-Rate Data Sampling for Low-Power
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Abstract—A method for variable-rate data sampling is pro-
posed for the purpose of low-power data acquisition in a small
footprint microsystem. The procedure enables energy saving by
utilizing dynamic power management techniques and is based on
the Adams–Bashforth and Adams–Moulton multistep predictor-
corrector methods for ordinary differential equations. Newton–
Gregory backward difference interpolation formulae and past
value substitution are used to facilitate sample rate changes. It
is necessary to store only2 + 1 equispaced past values of
and the corresponding values of , where = ( ), and is
the number of steps in the Adams methods. For the purposes of
demonstrating the technique, fourth-order methods are used, but
it is possible to use higher orders to improve accuracy if required.

Index Terms—Adams methods, dynamic power management,
interpolation, low-power, variable-rate sampling.

I. INTRODUCTION

L OW-power techniques have become increasingly impor-
tant in recent years due to the burgeoning number of con-

sumer, military, and medical remote sensing devices requiring
long battery life combined with good performance. Some of
these techniques employ dynamic power management (DPM)
methods by, for instance, altering supply voltages or reducing
clock speeds [1], [2].

In the simplest microsystems with digital signal processing
(DSP) capability, the user will configure the device to operate
at a fixed sample rate appropriate to the maximum frequency of
interest expected in the data. An example of fixed-rate sampling,
where represents the time of theth sample and
the corresponding value, is shown in Fig. 1. Here, the sample
rate is , where is the fixed sampling interval or step size.

While fixed-rate sampling methods enable simplicity of de-
sign, it is observed that in many applications, such as some
biomedical and environment monitoring systems, the frequency
is often low for extended periods [3], [4]. During such periods,
when remains constant or varies slowly, many readings are
taken having the same or similar value, producing a great deal of
redundant information. Reducing the sampling rate would solve
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Fig. 1. Fixed-rate sampling where all readings are equispaced with respect to
t, and the sampling rate is1=h.

this problem, but, if begins to change rapidly, readings of in-
terest may be missed. Variable-rate sampling (VRS) attempts to
overcome these problems by alteringdepending on the rate of
change of values being observed in the data at a given time.

In this paper, we demonstrate a VRS controller for a battery-
operated, limited-bandwidth sensor microsystem with wireless
transmission to a base station. In the systems we are studying,
the maximum sampling frequency is typically , and the
controller takes advantage of instances whenis large to op-
timize the use of DPM. The data received at the base station
may be time stamped and rebuilt using conventional techniques,
and, because the receiver need not be a low-power device, pow-
erful computing capability may be employed. Data transmission
delay is not considered significant in these systems as it is neg-
ligible compared with the average sampling interval.

II. BACKGROUND

Some VRS controllers alterdepending on the rate of change
of . One such method is the level-crossing technique [5], [6],
where the time taken forto reach fixed thresholds is measured.
The alternative method we demonstrate here relies on the ability
to predict, within a user-determined accuracy, the next value in
a series of samples.

If, at time , the value is predicted and subsequently,
at time , compared with the true value , the prediction
error is a function of and . This follows since the pre-
diction is of the form

(1)

where is the predicted value of the next reading, and
is an estimated slope between ( ) and ( ),

as shown in Fig. 2.
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Fig. 2. y predicted by multiplyingh by the estimated slope betweeny
andy .

Since this is the case, the prediction is an example of an ini-
tial value ordinary differential equation (ODE), and, depending
on the error in the predicted value, the step size may be altered
to attempt to maintain prediction accuracy within a given toler-
ance ( ). Various numerical methods exist for the calculation
of solutions of ODEs, and these methods may be separated into
two groups: single step and multistep.

A. Single Step ODE Methods

To calculate , single-step ODE solvers use first deriva-
tive information either at point ( ), as with the explicit Euler
method [7], or at multiple points within a single step, e.g., in the
range to , as is the case with Runge–Kutta (RK) methods
[8], [9].

These methods vary in accuracy. For example, the explicit
Euler method is empirically less accurate than the widely used
fourth-order Runge–Kutta method (RK4). RK4 uses estimated
slopes at , and , requiring numerous cal-
culations to predict , as follows [7]:

(2)

where the various slope calculations are

(3a)

(3b)

(3c)

(3d)

and (2) is the RK4 method for calculating (1).
In a DSP system, is unknown and must be derived from

previous points, adding to the computational complexity of the
algorithm. In a low-power system, it is desirable to minimize
the overhead incurred by the VRS system to save processing
time and lower hardware or software requirements. We have,
therefore, used multistep methods that require less computation
to achieve a prediction of similar accuracy.

B. Multistep ODE Methods

Multistep predictor methods utilize past values ofto con-
struct a polynomial approximation of the derivative function of

and extrapolate the polynomial into the next step so that the

prediction again becomes (1). This provides a more accurate es-
timate of the slope between ( ) and ( ) than the
simplest single-point methods [7].

Two such methods are the Adams–Bashforth and
Adams–Moulton predictor and corrector [10], [11] which
provide a simple, computationally efficient technique of
similar accuracy to RK methods [7]. They require a number of
equispaced previous data values of known time interval, but
once these values are known, the algorithm for predicting the
next value is straightforward.

Only a few ( ) past values need to be stored, and since
past values are used more than once and computation per step
is low, these methods lend themselves to low-power data sam-
pling. Polynomial predictors are typically used in FIR filtering
systems [12]–[15].

III. V ARIABLE SAMPLE RATE CONTROL

As demonstrated in [16], it is possible to use evenly spaced
samples to generate a differential equation that represents a
low bandwidth signal. The sampling system presented here
employs Adams methods that are modified to useordinates
rather than derivative values for predicting together with
Newton–Gregory interpolation techniques [17] to vary the
sample rate.

A. Modified Adams Methods

The Adams–Bashforth method can be of order 2 or higher
and is typically based on a Newton–Gregory (N–G) backward
differencing or Lagrange interpolating polynomial fitted at base
point [18]. In this case, a fourth-order method is used as it
is accurate enough for the purposes of this application, and the
N–G polynomial integration [17] is shown in the following:

(4)
Here, represents the fraction of for which an extrapolation
is being performed.

Using (N–G) backward differencing approximations [17] to
calculate the derivatives gives

(5)

etc., and substituting (5) into the integrated form of (4) gen-
erates the standard fourth-order Adams–Bashforth (AB4) pre-
dictor formula [7]

(6)

where is the result of the AB4 method of calculating (1).
Adams–Moulton is a corrector method that utilizes the value

predicted by AB4, and, with ODEs, improves on this estimate
giving a more accurate estimation of . Again, it is based on
a N–G or Lagrange polynomial, but, since the predicted value of

is now known, the polynomial is fitted at base point ,
and the derivative approximations are

(7)

etc.
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Substituting these formulae into the differencing polynomial,
we have the standard fourth-order Adams–Moulton (AM4) cor-
rector formula [7]

(8)

where is the result of the AM4 method of calculating (1).
From (6)

giving

(9)

Substituting (9) into (8) now gives

(10)

where is a combined Adams–Bashforth–Moulton method
using a single equation rather than the conventional two.

To convert the above calculation to a DSP process whereis
unknown, we use the secant method [17] to replace the deriva-
tive values with known ordinates as follows:

(11)

etc.
Substituting these values into (10),is eliminated to produce

a novel, Adams-type formula containing only knownvalues
such that

(12)
where is a prediction using the modified combined
Adams method.

It is also possible to substitute the secant approximations in
(11) into (6), resulting in a method that uses only a predictor, as
follows:

(13)
The modified Adams methods are akin to those in [19] and

[20] to solve differential algebraic equations. However, unlike
these methods, we calculate using past actual values
rather than storing their derivative approximations, these ap-
proximations having been incorporated into (12) and (13).

Other similar prediction algorithms can be implemented. For
example, it is possible to fit a standard interpolation polynomial
to past values and extrapolate this to . The fourth-order
N–G backward differencing polynomial is as follows [17]:

(14)

where is again the fraction of to which the polynomial is
being extrapolated, and ,

Fig. 3. Variable-rate data sampling where readings are not equispaced with
respect to time.

TABLE I
DOUBLING THE STEP SIZE

etc. from N–G backward differencing. Setting
yields the following equation:

(15)

where is the result of extrapolating the N–G interpolation
polynomial.

This formula, which is the same as that obtained by extrap-
olating a Lagrange interpolation polynomial to [17] of
the same order, is computationally simpler than the modified
Adams equations, and the respective merits of the two methods
are discussed in Section V.

B. Varying the Sampling Rate

In a system with a constant sampling rate, the data points
are equispaced with respect to time. In a system with a variable
sampling rate, this is not the case, as the time between samples
is decided by an algorithm. An example of a variable sampling
rate is shown in Fig. 3.

Many methods have been examined for step-size alteration
for ODEs [21]. In this application, it is desirable that the method
employed can be implemented as simply as possible, and we
either halve or double the step size, depending on whether the
most recent sample was outside or inside a given tolerance,
compared with the Adams prediction. That is,is doubled if the
prediction is sufficiently accurate and halved if the prediction is
inaccurate.

1) Step Size Doubling:The system requires that nine suc-
cessive equispaced data values are stored in a first-in-first-out
(fifo) structure. A calculation for is performed using (12).
At the next sample time, becomes and so on, and the
previous value of is discarded from the fifo. If the new
value for is within for the predicted value, the sample
step is doubled.

To ensure that the fifo can be refilled in the minimum number
of samples, every second value is discarded and the next value
down moved up. This is illustrated in Table I. Once the process
of doubling is complete, only four more samples must be taken
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TABLE II
HALVING THE STEP SIZE

before can be doubled again. However,can be halved on the
next sample if required because only five readings are required.

2) Step Size Halving:To halve , the interpolated values of
, , , and must be calculated to re-

fill the fifo with values at the new sample rate. Again, this can
be achieved using the N–G fourth-order backward differencing
polynomial in (14).

Setting to , , and yields the fol-
lowing equations:

(16)

(17)

(18)

(19)

The valuesof are then substitutedasshown inTable II, giving
nine equispaced readings at half the previous step size. Note that
the step size can be halved at any time, unlike the process for dou-
bling , which is conditional on the fifo being full.

Alternative methods for halving are possible. For example,
calculating only and will enable ABM sampling
to resume. However, a further four readings are required before
step size doubling may be performed. Another method is to read
subsequent values at the halved sample rate until the fifo is filled
with equispaced data with respect to, thereby enabling a sim-
pler system to be implemented. With this method, a further four
samples must be taken before ABM prediction can resume and
another four samples taken before the step size may be doubled.

The minimum possible step size is determined by the rate
at which data can be read from a given device. The algorithm
can operate without a maximum step size. However, if the data
values are constant for a sustained period, the step size can
rapidly increase to the point that an important change in the
value trend can be missed. To eliminate this possibility, the algo-
rithm is modified to have both minimum ( ) and maximum
( ) step sizes.

Together, the ABM formula and the step size changing
method form the VRS system.

IV. I MPLEMENTATION

The system is designed to operate at a maximum sample rate
that is at least twice the Nyquist rate [22], [23] appropriate to the
maximum frequency of interest in the data, thereby avoiding the
possibility of being prone to undesired aliasing effects leading
to unacceptable data loss [24].

To obtain a behavioral analysis of the VRS system, the modi-
fiedAdamsandN–Gpolynomialpredictionmethodsand thestep
size changing algorithm are implemented in C. The data stream

is emulated using input from a disk file, each input data value
corresponding to a point at the maximum sample rate. When the
sample rate is halved ( ), every second data point in the file
is neglected. The VRS system is implemented as follows:

Set
Set
Set
Set
Read first nine values and store in
to
Until data sampling ends
Calculate
Read

Set , ,

If then
If then halve

else if then
If then
If four readings since last doubling

then double
else do not change

Loop

The system has also been designed in prototype form in
VHDL that is targeted to an FPGA (Xilinx) to assess circuit
functionality and to a CMOS process from Austria Mikro
Systeme (AMS) to obtain estimates of power consumption using
a synthesis tool (Synopsis). Ultimately, the intended implemen-
tation is a system-on-a-chip (SoC) with a high-speed VHDL
design to maximize the bandwidth of the system, but, for many
applications, a slower software implementation is adequate.

In the systems we are studying, the data is rebuilt to the orig-
inal number of samples after transmission to a base station run-
ning a cubic spline interpolation algorithm.

V. RESULTS

A. Prediction Methods

To compare the accuracy of the Adams and N–G polynomial
prediction methods described in Section III-A, data from the test
data sets shown in Fig. 4 is passed through the algorithms at var-
ious fixed step sizes, i.e., the step size changing part of the VRS
system is disabled. These data sets represent a sine wave (the
fundamental), a sine wave with added noise, a sine wave with
second harmonic introduced, a sine wave with second harmonic
introduced with added noise, and, finally, with second and third
harmonics and added noise. All the waveforms are originally
sampled at 0.0139-rad intervals at the fundamental. The noise
is in the range to 0.072 (i.e., of the fundamental
signal’s peak value). The results showing average errors in pre-
diction in terms of amplitude are shown in Table III.

The N–G polynomial performs best out of the three algo-
rithms on the simplest data sets, i.e., those with no harmonic or
noise content. However, as the waveforms become more com-
plex, the algorithm performs less well, becoming unstable at
higher step sizes, as can be seen from the rapid decrease in pre-
diction accuracy.



3186 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

(a) (b)

(c) (d)

(e)

Fig. 4. Various data sets for prediction algorithm performance comparison with samples taken at 0.0139 radian intervals at the fundamental frequency. Noise is
added with a random number generator. (a) Test data set 1:y = sin(t). (b) Test data set 2:y = sin(t) + noise. (c) Test data set 3:y = sin(t) + 0:67(sin(2t)).
(d) Test data set 4:y = sin(t) + 0:67(sin(2t)) + noise. (e) Test data set 5:y = sin(t) + 0:67(sin(2t)) + 0:67(sin(3t)) + noise.

Similarly, the Adams predictor method outperforms the
predictor-corrector at lower step sizes over the simple data sets.
This may be attributed to the error introduced into the methods
by using the secant method, with the predictor-corrector having
that error introduced twice. However, the predictor performs
less well over more complex waveforms, also becoming
unstable.

The predictor-corrector shows the greatest stability of all the
algorithms over more complex data sets. Over the sets with noise
present, as may well be the case in a sensor system, the ABM
algorithm consistently produces the most accurate predictions.

B. VRS Sampling

To assess the performance of the VRS system using the ABM
predictor, a data set containing actual sensor data is used, as
shown in Fig. 5.

This data represents 48 h of equispaced temperature readings
taken at 2.5-min intervals, the total range of the measuring in-
strument being 26 to 25 C, and the resolution 0.2C. In this
data set, the temperature varies between approximately 2.5 and
7 C in a very similar way over the two 24-h periods, hence the
apparent periodicity.
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TABLE III
AVERAGE PREDICTION ERRORWITH AN ADAMS PREDICTOR (MAB),

PREDICTOR-CORRECTOR(MAM), AND A N–G INTERPOLATING

POLYNOMIAL (N–G)

Fig. 5. Test data set for VRS algorithm representing 48 h of temperature
readings taken at 2.5–min intervals.

The minimum and maximum step sizes and the tolerance
are set to values consistent with the desired results (in this case,

TABLE IV
STEP SIZE CHANGING

Fig. 6. Data sets with no high-frequency component result in increased step
sizes. (a) Algorithm commences using a high sample rate, but (b) takes fewer
samples when the trend is predictable. (c) Sample rate is increased as the data
becomes less predictable.

1, 32, and 0.4, respectively), and the test data set is passed
through the algorithm. The step-size changes as expected, and
the results for data stream positions () 796 to 818 are shown in
Table IV.
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(a) (b)

Fig. 7. Whentol is low, there is good correlation between the original and rebuilt data sets. This data sampled withtol = 0:4, h = 32, andh = 1.
(a) Original data. (b) Reconstructed data.

Fig. 8. Higher values oftol andh result in lower correlation but fewer
readings being taken. The system also acts as a lowpass filter. This data was
sampled withtol = 1:6, h = 64, andh = 1.

This section of data illustrates the technique quite clearly. At
position 804 in the simulated data stream, the predicted value
was within of the actual value measured, resulting in
doubling for the next step. At first sight, it might be expected
that at position 818 should again be doubled; however, this
cannot happen as only two readings have been taken since the
previous doubling. At position 812, the error in the prediction
was greater than , resulting in being halved. Over the entire
data set, the maximum step size obtained using the above,

, and is 8. The reduction in the number of readings
taken over the whole data set is 60%.

Data sets with no high-frequency component result in in-
creased step sizes, thereby reducing the number of readings
taken. For example, the data set shown in Fig. 6 with aof
0.2, of 32, and of 1 resulted in a maximum step size
of 32 and an overall reading reduction of over 80%.

Plotting the rebuilt data, as shown in Fig. 7, illustrates that the
integrity of the data is maintained, where the lowpass filtering
effect that is inherent in the VRS algorithm is largely restricted
to the quantization noise [24] introduced by the analog-to-dig-
ital converter.

Increasing has the expected result of reducing the number
of readings taken but lowering the correlation between the orig-
inal and rebuilt data sets due to the increased level of filtering.
The result of setting to 1.6 and the maximum to 64 can
be seen in the rebuilt data shown in Fig. 8. Clearly, this level of

TABLE V
CORRELATION COEFFICIENTS FORtol WITH h FIXED AT 1

data loss would be acceptable only in instruments where a level
of undersampling is tolerable because high frequencies are not
of interest to the user.

Since we are examining analytic data, it is appropriate to as-
sess the similarity between the original and rebuilt data sets in
terms of the linear correlation coefficient () [25]. An value of
1 represents complete positive correlation, complete nega-
tive correlation, and 0 no correlation .

By setting to and passing the data through the algo-
rithm with various values, the effect onis obtained. Values
for various tolerances are shown in Table V. Avalue of 3.4 re-
sults in doubling at the maximum possible rate, and increasing

further would have no effect on this data set.
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TABLE VI
CORRELATION COEFFICIENTS FORh WITH tol FIXED AT 1.4 (2.7%OF

THE TOTAL RANGE OF�26 �C TO+25 �C)

Fig. 9. Example system from [4].

Similarly, fixing to an arbitrary figure and passing the data
through the algorithm with various values, the effect of

on is obtained. Values for various maximum step sizes
at a fixed of 1.4 (or 2.7% of the instrument’s total range of

26 C to 25 C) are shown in Table VI. At this tolerance,
it can be seen that ceases to have an effect on the data
sampling at a value of 64.

C. Energy Saving

Consider the system shown in Fig. 9, which is comprised of
sensors with associated electronics, a radio transmitter, a timer,
and the VRS sample controller. The power consumption data
for the components in this typical microsystem [4], as shown
in Table VII, are obtained by targeting the design, through syn-
thesis, onto a 0.6-m CMOS process. In this system, the timer
interacts with the VRS controller to obtain a sample interval for
the next reading and powers off all the remaining components,
including the controller, during this interval. The timer is ac-
tive continuously and therefore represents the 0.1-mW constant
power overhead of the system. The other components represent
the 29.48-mW variable power overhead. The samples are trans-
mitted in triplicate, and the total transmission time for the four
measured parameters is 192 ms. Since the sampling intervals
with VRS enabled are relatively long, the energy saved during
power-down periods more than outweighs that consumed during
the powering up process.

The efficiency/energy saving is calculated as

energy consumption of system with VRS
energy consumption of system only

(20)

TABLE VII
POWER CONSUMPTION OFCOMPONENTS

Fig. 10. Energy savings. The power labels represent the constant power
overhead for each curve on the graph. The higher this overhead, the lower the
power savings gained with VRS. Note that there is potential for an energy loss
if the average step size is close to 1.

As can be seen in Fig. 10, the higher the constant power over-
head of the system, the lower the overall power savings gained
by the variable-rate sampling algorithm. Power savings rapidly
reach a plateau when the average step size is relatively low, and
it is clear that even with modest increases in the average sample
step and a large constant power overhead, power savings of 15%
can be readily achieved.

VI. CONCLUSIONS

We have developed a new real-time sample rate controller
based on modified Adams ODE numerical methods. The ef-
fectiveness of the VRS technique is dependent on the high-fre-
quency content of the data being sampled. Modified Adams for-
mulae of higher or lower order than those used here are easily
implemented to alter prediction accuracy as required. An ad-
vantage of the system is that real data is stored or transmitted,
as opposed to signal function coefficients [26].

The simplicity of the algorithms enable them to be imple-
mented with a small hardware or software overhead, making
them attractive for small footprint systems requiring low-power
consumption, low memory usage, and minimum hardware size.
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