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Analysis of Stability and Performance of Adaptation
Algorithms With Time-Invariant Gains
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Abstract—Adaptation laws that track parameters of linear
regression models are investigated. The considered class of algo-
rithms apply linear time-invariant filtering on the instantaneous
gradient vector and includes least mean squares (LMS) as its
simplest member. The asymptotic stability and steady-state
tracking performance for prediction and smoothing estimators
is analyzed for parameter variations described by stochastic
processes with time-invariant statistics. The analysis is based
on a novel technique that decomposes the inherent feedback
of adaptation algorithms into one time-invariant loop and one
time-varying loop. The impact of the time-varying feedback on
the tracking error covariance can be neglected under certain
conditions, and the performance analysis then becomes straight-
forward. Performance analysis in the presence of a non-negligible
time-varying feedback is performed for algorithms that use scalar
measurements. Convergence in mean square error (MSE) and the
MSE tracking performance is investigated, assuming independent
consecutive regression vectors. Closed-form expressions for the
tracking MSE are thereafter derived without this independence
assumption for a subclass of algorithms applied to finite impulse
response (FIR) models with white inputs. This class includes
Wiener LMS adaptation.

Index Terms—Adaptive filtering, adaptive signal processing,
least mean squares method, tracking.

I. INTRODUCTION

ACOMMON adaptation task is to estimate the parameter
vector in a linear regression

(1)

from measurements of the discrete-time signal and a possibly
complex-valued regression matrix that is known at time .
We may obtain an estimate via the LMS algorithm

(2)

(3)

where is the instantaneous negative gradient of at
the estimate . When tracking time-varying parameters, a
too-small gain leads to a large average estimation error (lag
error), whereas a too-high gain results in high sensitivity to the
noise in (1).

It may sometimes be hard to obtain adequate tracking perfor-
mance with LMS, mainly because it implicitly assumes random
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walk parameter variations: an assumption that is frequently in-
valid. This paper considers a larger class of adaptation laws with
constant gains, which allow prior information on the dynamics
of to be utilized to introduce an appropriate amount of cou-
pling and inertia in the estimates. We may also obtain filtering

, prediction , or fixed-lag smoothing es-
timates for arbitrary horizons . This class of algorithms
can be expressed as

(4)

(5)

where is a matrix of transfer operators in the back-
ward shift operator . Thus, the estimate
is formed by linear time-invariant filtering of the instantaneous
gradient. For the special case of LMS (3), in which , the
filter is

(6)

while higher order filters correspond to so-called multistep
algorithms [1]–[3]. The momentum LMS algorithm [4] and
the lead-lag LMS scheme of [5] are examples of multistep
algorithms with diagonal . In general, need
not be diagonal. Wiener methods that for arbitrary optimize

in MSE are presented in [6] and [7]. Such Wiener
designed estimators with constant gains may attain steady-state
performance close to that of the optimal Kalman estimator
at much lower complexity [7]. A subclass that is suitable for
tracking mobile radio channels is represented by the Wiener
LMS structure discussed in [6], for which

(7)

where and are polynomials, and

(8)

The analysis of stability and performance of (4) and (5) is the
topic of the present paper. This task is, in general, far from
trivial. By using a state-space realization of a one-step predic-
tion filter of arbitrary structure, the expressions (1),
(4), and (5) could be iterated to obtain explicit, but very in-
volved, expressions for the one-step prediction error. Similar
expressions form the basis of many works; see, e.g., [8]–[13].
Even for the LMS case, a strict analysis becomes very difficult.

Adaptation laws do inherently have a feedback structure;
therefore, analysis of the feedback, primarily to ascertain
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stability, has been an important theme in the literature. For
example, in [14], the usefulness of exploiting the under-
lying feedback structure of adaptive algorithms is addressed
thoroughly, and stability conditions are derived for both the
deterministic and the stochastic case. A feedback analysis
somewhat related to our approach can be found in [15] for
LMS assuming independent regressors. The work presented in
[16] and [17] exploits the inherent feedback structure of such
algorithms even further by the use of the small gain theorem,
and [16] also highlights connections to results in theory.
Although the small gain theorem is a powerful tool, it may, for
certain feedback structures, give conservative stability bounds,
as will be evident from Example 3. On the other hand, the
energy conservation approach of [17], relying on this theorem,
requires no assumptions on the regressor distributions. See also
[18].

As outlined in Section II-B, the inherent feedback loop may
be partitioned into an inner loop with linear time invariant dy-
namics and an outer loop with time-varying gain. This decom-
position is of use not only for design [6], [7] but also for analysis.
We here utilize it as a new tool for understanding the feedback
path (4).

The MSE tracking performance of adaptation laws described
by (4) and (5) can easily be obtained when the time-varying
outer feedback loop is insignificant. This will be the case ei-
ther when the parameter variations are slow or when the vari-
ance of the noise in (1) is large. Expressions for the spectra
of lag errors and noise induced errors are derived under this as-
sumption in Section III. We connect the property of a negligible
time-varying loop with the concepts of the degree of nonstation-
arity and “slow time variations,” as defined by Macchi in [19].
However, it is emphasized that the impact of the time-varying
loop on the tracking performance depends on the algorithm. The
impact will be smaller on algorithms with superior tracking per-
formance.

For situations where the time-varying feedback is not negli-
gible, Section IV-A proposes an analysis based on the assump-
tion that consecutive regressor vectors are in-
dependent, with Gaussian regressors and scalar . Stability in
MSE is then guaranteed by the asymptotic stability of a linear
scalar transfer function, and the tracking MSE is derived. The
results are novel in that they hold for of arbitrary
structure and complexity for parameter variations with arbitrary
power spectral density.

Independent regressors is a commonly used simplifying as-
sumption [3], [20]–[22], [24]–[26]. While this assumption is
quite restrictive and does not apply to the modeling of dynamic
systems, useful approximative results can be obtained in situa-
tions where it is not true.

Section IV-B then discusses FIR systems with uncorrelated
(white) zero mean regressors. Important examples are fading
baseband channels in wireless transmission. The transmitted
data are then regressors (elements of ), and they are, in
general, uncorrelated due to coding and interleaving. A novel
analysis is presented for this case, without assuming the
time-varying loop to be vanishing and without assuming inde-
pendent . Performance results are derived for algorithms with

diagonal under approximations that hold exactly for
FIR systems with two parameters and zero mean inputs with
constant modulus. Stability and convergence in MSE can here
be ascertained by checking the asymptotic stability of a transfer
function.

II. PRELIMINARIES

Notation: The identity matrix is denoted . A superscript as-
terisk represents conjugation and transposition. Polynomial ma-
trix fractions [27] are used to represent transfer functions/ra-
tional matrices. For polynomial matrices and rational
matrices , conjugate matrices or are ob-
tained by conjugating coefficients, transposing and substituting
the forward shift operator for the backward shift operator .
The arguments or are sometimes omitted. Scalar polyno-
mials are represented by nonboldface capitals.

Square polynomial matrices will be called stable if
all zeros of are located in and marginally
stable if these zeros are located in . A transfer operator

is denoted stable if is
a stable polynomial matrix. The linear dynamic system

is then asymptotically stable and -stable for all
[28].

“White” denotes sequences that are uncorrelated but not nec-
essarily independent.

A. Basic Assumptions

The following assumptions on the signals in (1) are used
throughout the paper.

Assumption 1: The parameter vector has spectral density
and the additive noise is stationary and zero mean,

whereas , with known dimension, is stationary with zero
mean and finite second- and higher order moments. The re-
gressor correlation matrix is nonsingular and time-invariant.
Moreover, , , and are mutually independent processes.

Remark 1: The parameter vector does not necessarily
have zero mean. The assumption that is independent of
and of excludes models that use (filtered) measurements

for as regressors, such as AR or ARX regression
models.

B. Learning Filter

The algorithm (4) and (5) can be expressed as a causal
and time-invariant filter, which is denoted the learning filter

, that operates on a signal vector

(9)

The introduction of the learning filter enables the use of Wiener
theory for the design of in (5); see [7]. This leads
to a decomposition of the inherent feedback structure that is
also useful for analyzing the tracking behavior of the algorithm
(4) and (5). The reformulation of the algorithm (4) and (5) to a
learning filter is central in this paper, and it is outlined below. If
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Fig. 1. Adaptive algorithm (5) (k = 1) reformulated as a time-invariant filter
operating on the signal f . The learning filter LLL (q ) represents the inner
time-invariant loop. The time-varying feedback loop around LLL (q ), via the
feedback noise Z ~h , may cause instability even if the learning filter is
stable.

from (5) with is used in (9), then we obtain

The estimator (5) can thus, for arbitrary , be expressed as

(10)

in which

(11)

We now investigate the signal . Denote the -step estimation
error . By (4) and (1)

(12)

Adding and subtracting in (12) gives

(13)

Define

(14)

(15)

where we denote and as the autocorrelation matrix noise
and the gradient noise, respectively. By inserting (13) into (9),

may now be expressed as

(16)

The point of expressions (9)–(11) and (16) is to decompose
the feedback loop into two parts; see Fig. 1: an inner time-in-
variant loop via , which is absorbed into the definition of

by (11), and an outer time-varying feedback repre-
sented by , which we call the feedback noise.

The inherent feedback of adaptation algorithms can, of
course, be expressed in various ways. For example, use of the
gradient expression (12) in (5) results in a single loop with a
time-varying feedback gain matrix, as illustrated by Fig. 2. The
filter operating on to produce will be time-varying
(except for cases with scalar with constant modulus). It
can be noted that an approximation of by its average
in Fig. 2, i.e., using the direct averaging method described by
Kushner [29], would correspond to setting in
Fig. 1.

Fig. 2. Algorithm (5) for k = 1, expressed as a time-varying filter operating
on the signal ' y .

The one-step prediction learning filter is part of the
loop for all , and its properties are crucial for the algorithm
stability. A necessary, but not sufficient, condition for asymp-
totic stability is internal stability of the learning filter
(representing the inner loop in Fig. 1). Wiener design, which
is described in Section II-D, guarantees asymptotic stability of

. For algorithms obtained by other means, stability
of the learning filter will have to be verified separately.

The stability requirement on has an interesting in-
terpretation for LMS, where

(17)

which is obtained by inserting (6) into (11). Asymptotic stability
of (17) coincides with the classical LMS condition for stability
in the mean [24], , where is the largest
eigenvalue of .

In general, the outer feedback will also have to be
taken into account. A sufficient but conservative deterministic
condition for stability is then provided by the small gain the-
orem; see, e.g., [28]. Consider the mapping from to
in Fig. 1 without external inputs, i.e., for , . If

is causal and asymptotically stable, -stability will
be assured if

(18)

Condition (18) is of general use, but less conservative conditions
for special cases will be derived below.

C. Tracking Error

By (10) and (16), the tracking error can be expressed as

(19)
The three error contributions are the lag error

, a noise term , and a
feedback noise term caused by old param-
eter tracking errors.

By Assumption 1, and are independent. The steady-
state tracking error covariance matrix (after the initial transient)
can thus be expressed as

(20)

(21)
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where

(22)

(23)

(24)

with denoting the impulse response matrices of ;
see (10). The last terms are

(25)

(26)

We analyze the convergence properties in MSE of (19) and pro-
vide conditions under which the feedback noise does not cause
instability. Furthermore, expressions are derived for the error
covariance matrix (20) and (21). In Section III, only the first two
terms and are used, whereas in Section IV, the term

is added and estimated by taking feedback effects into
account. The two last terms in (21) will be significantly smaller
than the terms (22)–(24); see Table III in Section IV for an il-
lustration. These contributions are either zero or are neglected
in the present analysis.

D. Wiener Design

When the term in (16) is regarded as a zero mean stationary
additive noise, then stable Wiener-based learning filters can be
designed to minimize the steady-state tracking error covariance
matrix. The Wiener design presented in [7] will be used in Sec-
tion III, and it is for that purpose summarized here with slightly
modified notation.

Assumption 2: Let the signals representing the gradient noise
, and the parameter vector , be described by ARMA pro-

cesses with common denominator polynomials

(27)

where is required to be stable, whereas may
be marginally stable. Furthermore, let and be
stably invertible with full rank on . Here, and are
zero mean white noises, which are the innovation sequences of

and , respectively, with covariance matrices

(28)

where is nonsingular. The white sequence is assumed
uncorrelated with and with

Remark 2: Uncorrelatedness between and
is a key assumption for Wiener design. It will in general not

hold exactly
Remark 3: In (28), both and represent scalar scaling

factors. In the modeling of the signals and , these scalings
are normally set to unity. The statistical properties of and
are then solely determined by (27) and the covariance matrices

and , respectively. In order to investigate slowly varying
parameters, we will regard and as scalings that affect all
signal components of and equally, while leaving the cor-
relation properties of and unaffected.

Under Assumption 2, the spectral densities of and are
readily found to be

(29)

and

(30)

respectively. A Wiener design of is now obtained as
follows.

Lemma 1: Under Assumption 2 and assuming a nonsingular
, the MSE-optimal learning filter (10) is asymptotically stable

and is given by

(31)

Here, is the stably and causally invertible solution to the
left polynomial matrix spectral factorization

(32)

whereas , together with a polynomial matrix ,
is the unique solution to the Diophantine equation

(33)

Proof: The proof is obtained by Theorem 1 in [7] and
modified to an ARMA model structure for with common
scalar denominator polynomial.

Integrating design models, i.e., models (27) with as
factors in , can be used to obtain unbiased estimators
of vectors that are not really random walks but have nonzero
means. An example is Rician fading mobile radio channels. The
general condition for unbiased estimation of nonzero mean vec-
tors is . Wiener design based on in-
tegrating design models assures this property. The LMS algo-
rithm (17) will always satisfy this condition since it is based on
a random walk model; see [7, ex. 1].

The Wiener LMS or WLMS algorithm (4), (5), and (7) as-
sumes to be white and all components of to have the same
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dynamics, i.e., . It has a learning filter given
by

(34)

As outlined in [6], scalar versions of (32) and (33) provide op-
timized polynomials and .

E. Example for AR (2) Variations

For the purpose of illustrating results presented in Section III
and in Section IV-B, we consider tracking of the coefficients of
a scalar -tap time-varying FIR system (1), in which

(35)

The regressors are white with zero mean and unit variance,
yielding . The parameter dynamics are governed by a
second-order oscillatory vector AR process (27) with

and

We select and , or

(36)

and use and . The spectrum of then
follows readily from (30) as

with . In the illustrations,
the number of regressors and the frequency will be varied.
The variance of the noise is set to 0.01, and is adjusted to
give an output SNR of 20 dB, with having Euclidean norm

for all values of and .

III. NEGLECTING THE TIME-VARYING FEEDBACK

We begin with a simplified analysis that neglects the feedback
noise and the outer time-varying loop in Fig. 1. It thus
considers only the first two steady-state covariance matrices in
(21).

Theorem 1: Let the contribution of the feedback noise
to the error covariance matrix (20) be neglected. If
is stable, then (20) will under Assumption 1 be given

by

(37)

where

(38)

(39)

and where is the spectral density of .
Proof: The proof is immediate from (22) and (23).

The integrands of (38) and (39) describe the spectral densi-
ties of the lag error and the noise-induced error, respectively.
They describe situations that include arbitrary spectral densities

of the parameters as well as colored measurement noise
and correlated regressor matrices .
Remark 4: By Assumption 1, the noise term is bounded

if is stable. The parameter estimation errors
must have bounded variance even for drifting parameters, e.g.,
due to in (27) having zeros on . This is guar-
anteed if and only if is stable and marginally stable
factors of in (27) are canceled by all elements of the
lag error matrix

(40)

This is guaranteed by the Wiener design of [6] and [7].
A natural question is now if and when the feedback noise can

be neglected. This will depend on the structure and the tuning
of the adaptation algorithm. A general guideline for Wiener-de-
signed constant gain algorithms is given by Lemma 2. It con-
siders the situation when a sequence of Wiener designs is per-
formed based on the (not necessarily good) approximation

for a sequence of problems in which the noise- and param-
eter spectral densities (29) and (30) differ only by the scaling
factor . Introduce the following relative mean square approx-
imation error:

(41)

where

(42)

is an approximation of the tracking error (19) that neglects the
feedback noise. While the resulting estimation error is , it
would be if the design assumption was true.

Lemma 2: Assume a zero mean parameter vector de-
scribed by (30), with stable. Let a Wiener design of
the learning filter be performed, based on the assumption that

, with the spectrum of described by (29), with
stable and nonsingular on and nonsingular.

Under Assumptions 1, and with bounded regressors , the
relative approximation error (41) will then tend to zero as

.
Proof: See Appendix A

Thus, for optimally adjusted Wiener designed adaptation
laws, the feedback noise becomes negligible when .
This can be interpreted as a situation with either slowly varying
parameters or with a high variance of . In other words,
we have a small parameter-drift-to-noise ratio. We may then
substitute by its average in Fig. 2, and the resulting
performance analysis via Theorem 1 will provide a small
relative error (41). For misadjusted algorithms or algorithms
with inappropriate structure, it may very well be the case that
the estimation error is so large that the feedback noise in (15)
cannot be neglected in situations where it would be negligible
for a well-adjusted Wiener design. This is illustrated in Ex-
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ample 1. The degree of approximation will thus be algorithm
dependent.

A small parameter-drift-to-noise ratio is a situation some-
times referred to as slow variations, measured by various indi-
cators of “the degree of nonstationarity” (DNS) [12], [19], [22],
[30]. In the book [19] by Macchi (see also [8] and [12] for a
similar definition), the DNS is for the purpose of LMS analysis
characterized by the quantity

(43)

Parameter variations are considered slow if this quantity is
always small. For vanishing parameter-drift-to-noise ratios

, the variations will be slow according to (43).1

A low DNS by (43) is thus related, but not identical, to the
algorithm dependent property that the feedback noise can
be neglected in the performance analysis. This relation is
illustrated below.

Example 1: The validity of expression (37) as an approxi-
mation of and the applicability of (43) will be investigated
for the FIR system presented in Section II-E and for regressors

. We first consider a system with
taps. One-step prediction estimates are obtained by a
WLMS law (34), tuned to the dynamics (36). The design equa-
tions are given by (67)–(69) in Example 2. We compare this with
LMS (17), with step-size tuned to optimize the simulated per-
formance.

In these designs with and , the
integrands of (38) and (39) will become diagonal 2 2 matrices,
with equal spectral densities along the diagonals. Fig. 3 displays
these spectral densities for in (36). Note the peak

1More precisely, (43) will become small when � =� ! 0 if the system
generating h in (27) is stable, except for at most one integrator in 1=D(q ).
(Integrators are, however, not covered by Lemma 2.)

TABLE I
ASYMPTOTIC TRACKING ERROR WHEN SECOND-ORDER FIR MODELS (35),

(36) WITH VARIOUS ! ARE TRACKED BY LMS AND WLMS. THEORETICAL

PREDICTIONS tr(P ) FROM (37) (BOLD) ARE COMPARED WITH

SIMULATIONS OF tr(P ) (ITALICS). THE LARGEST NEGLECTED TERM tr(V )
OBTAINED FROM (24) IS ESTIMATED BY SIMULATION

TABLE II
ASYMPTOTIC TRACKING ERROR tr(P ) WHEN FIR MODELS (35) AND

(36) WITH ! = 0:005 OF VARIOUS ORDERS M ARE TRACKED BY

WLMS. THEORETICAL PREDICTIONS FROM (37) (BOLD) ARE COMPARED

WITH SIMULATIONS (ITALICS). THE LARGEST NEGLECTED TERM

tr(V ) IS ALSO SHOWN

of the LMS lag error around and the contribution of high-
frequency noise to the LMS error spectrum.

We now vary in (36). Table I compares tr from
(37) (bold figures) with corresponding estimates of tr ob-
tained by simulation over 100 000 data (italic figures). Note the
much lower tracking error of the Wiener design as compared
with LMS.

The term tr tr , which is the largest
term due to the feedback noise in (21) is also measured. This
term essentially explains the difference between the expression
(37), which neglects the feedback noise, and the measured
performance. Let 10% represent a significant deviation of
tr relative to the true tracking error tr . For LMS,
(37) then predicts the performance reasonably well for up
to 0.005. For the Wiener design, with better tracking ability
and thus less feedback noise, the performance is well predicted
up to . A tuning based on neglecting feedback
effects will here provide adequate performance in a wider set
of circumstances. These differences are not captured by the
DNS (43).

We now fix to 0.0050 and increase the number of esti-
mated parameters , whereas is adjusted so that the output
SNR remains at 20 dB, with a DNS by (43) remaining fixed at
the small value 0.0510. However, the result for one-step pre-
diction with WLMS in Table II shows that the feedback noise
grows in significance with an increasing and can no longer
be considered negligible for .
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IV. TIME-VARYING FEEDBACK

Our aim will now be to obtain closed-form expressions that
include the impact of the outer time-varying feedback loop and
derive conditions for convergence in MSE. The analysis is re-
stricted to scalar measurements .

A. Independent Gaussian Regression Vectors

We first use an assumption common in LMS analysis (see,
e.g., [24] and [25]) and apply it to the more general algorithm
structure (5).

Assumption 3: Consecutive regression vectors are in-
dependent, with circular Gaussian elements, and is a Toeplitz
matrix with as the element .

We then obtain the following properties.
Lemma 3: By Assumptions 1 and 3, and are inde-

pendent. Then, the feedback noise is white with zero
mean, and it is uncorrelated with and for all .

Proof: See Appendix B
Let the parameter vector be tracked by an estimator (10)

with asymptotically stable , resulting in stationary lag
errors with zero mean. Then, the error

given by (19) will have zero mean since and have
zero mean by Assumption 1, and has zero mean by
Lemma 3. Furthermore, the two last terms in (21) are zero.
Thus, the asymptotic covariance matrix, if it exists, is

(44)

and since is uncorrelated with zero mean

(45)

where

In (44), and are here assumed bounded and asymp-
totically time-invariant. The conditions for this were discussed
in Remark 4 in Section III. Using (37), we may then express
(44) as

(46)

By Assumptions 1 and 3, and are independent; there-
fore

tr (47)

where the second last equality follows from direct use of (14)
and the last from [23, Sec. 9.6].

The main result of this section can now be presented.
Theorem 2: Consider a scalar linear regression (1), and let
be estimated by (9) and (10) with asymptotically stable

, resulting in stationary lag errors

with zero mean and finite second-order moments. Under As-
sumptions 1 and 3, the tracking error and the feedback
noise will then have bounded covariance matrices
and be asymptotically stationary if and only if the linear
time-invariant scalar system

tr
(48)

is asymptotically stable, where are impulse response
coefficient matrices of the one-step prediction learning filter

. The steady-state tracking error covariance matrix is
given by (46), with

tr (49)

Proof: See Appendix C.
The expressions in Theorem 2 can be used for the adaptive

algorithm (4) and (5) with arbitrary , and it holds for
arbitrary lags . The stability condition involving (48) will limit
the gain of . Stability of the scalar transfer function

can be verified, for example, via the Nyquist criterion.

B. FIR Systems With White Inputs

Consider now (1) being an FIR system with scalar and
regressor vector (35) of length . We will assume the input data

to be uncorrelated (white) so that for and to
have zero mean, with variance . Hence, .
The learning filter will in this subsection be constrained to be
diagonal

(50)

where are scalars. Such learning filters appear, for example,
in the LMS algorithm in (17) and the WLMS algorithm in (34)
with white regressors .

We here also specialize to

tr (51)

which is the sum of mean square FIR-tap estimation errors, as
the criterion to be evaluated.

The feedback noise will be correlated for . However,
its trace remains uncorrelated under certain circumstances. This
simplified an analysis of the properties of tr considerably.
Expressions will be derived for tr under the following ap-
proximations.

Approximation 1:

tr tr
(52)

Approximation 2: The feedback noise is uncorre-
lated with and .

Under Approximation 2, the cross terms (25) and (26) in (21)
are neglected. Approximations 1 and 2 make it possible to base
the analytical expressions on fourth-order moment properties.
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As shown by Lemma 4 in Appendix D, they hold exactly for FIR
systems of order when the regressors have constant
modulus. Those conditions coincide with the channel properties
in the North American Digital Cellular system IS-136 [31].2

They also hold when tracking each RAKE finger separately in,
e.g., the WCDMA system, with 4-QAM modulated data.

Approximations 1 and 2 do not hold exactly for , but
they are also good approximations for FIR systems of high order
with white zero mean regressors.

An assumption of independent regression vectors would
imply (52), but such an assumption is not equivalent to (52); it
would place unnecessarily strong restrictions on the statistics.
Independence will furthermore not apply in some cases when
Approximations 1–2 hold exactly, such as under the conditions
of Lemma 4 in Appendix D.

Explicit expressions for are now derived.
Lemma 5: Consider the FIR system (1) and (35) of order ,

having as input stationary white data with zero mean and
variance . Then, we have the following.

• For circular complex valued regressors, the covariance
function of is given by

(53)

where is the Kronecker delta, and is the Pearson
kurtosis of , which is defined for zero mean variables
as3

(54)

• For real-valued regressors

(55)

and for

(56)

where denotes the th element of .
Proof: See Appendix E

Thus, is a white sequence if is white and circular com-
plex. This is, however, not true for real-valued regressors unless

, as illustrated by (56). When is white, the trace of
the feedback noise correlation will be “white” under Approxi-
mation 1, i.e., (52) will be zero for .

The main result of the section can now be presented.
Theorem 3: Under Assumption 1, consider the FIR system

(1) and (35) with white input data that are either circular

2Coherently demodulated signals and fractionally spaced equalization, with
two samples per symbol period, will provide good detection performance, al-
though the optimal sampling phase may vary with time over a TDMA slot.
The fractionally spaced method can here be regarded as providing two symbol
spaced sequences, each separated by a half symbol period and each modeled by
a two-tap channel. Two trackers, operating on each data sequence, can be used
to track the taps.

3For constant modulus data, � = 1 for circular complex Gaussian data
� = 2, and for real-valued Gaussian regressors, � = 3. For real-valued
stochastic variables, � � 3 is also known as the Fisher kurtosis, or normalized
kurtosis.

complex for arbitrary FIR degree or real-valued, for .
Let the parameter vector be estimated by (9) and (10) with a
stable having the structure (50), resulting in stationary
lag errors with zero mean and finite second-
order moments. Under Approximations 1 and 2, a finite steady-
state mean square parameter error (51) then exists if and only if

(57)

is stable, where

(58)

The -step estimation error is given by

tr tr tr tr (59)

where

tr (60)

tr (61)

tr tr (62)

in which

(63)

tr
tr tr

(64)

Here, is defined as in (54), whereas and
.

Proof: See Appendix F
Note the presence of the FIR order in (58). As a conse-

quence, the allowed gain of , which is determined by
(57), decreases as increases. In addition, note the dependence
of on the kurtosis . The impact of and of the distribu-
tion of the regressors on adaptation performance has been noted
by Gardner in [21] and [22].

In the particular case of considering WLMS tracking with the
learning filter (34), the terms (60) and (63) can be expressed as

tr (65)

(66)

Wiener design of constant-gain adaptation laws will in gen-
eral have to be performed iteratively, since it depends on the
variance and color of the gradient noise (29), which, by (15),
will depend on the properties of the estimation error [7]. The-
orem 3 can be utilized to simplify the iterative Wiener design of
WLMS algorithms. The contribution of the feedback noise to
the gradient noise variance can be computed analytically; there-
fore, an estimation by Monte Carlo simulation can be avoided.
Performance and robustness for various mismatched designs
can also be investigated by Theorem 3; see [31] and [32].



AHLÉN et al.: ANALYSIS OF STABILITY AND PERFORMANCE OF ADAPTATION ALGORITHMS 111

C. Illustration of Theorem 3

Example 2—Wiener LMS Performance: The parameters of
the FIR system discussed in Section II-E, with regressors

, are estimated. We here select , which
corresponds to a case where the feedback noise is significant,
see Table I. The degree of nonstationarity as measured by (43) is
0.9996. The one-step prediction learning filter of the WLMS law
(34) for is tuned to the dynamics of (36). Since ,

, and can be expressed as

(67)

Here, and (cf. [6,
(34), (48), and (C.4)]) are given by

(68)

(69)

where and are obtained for second-order AR statistics (36)
as . A scalar step-size parameter ,
which should be [6], is tuned to minimize tr in
(64).

Table III displays terms contributing to the minimal crite-
rion value obtained from Theorem 3 (bold). Feedback noise-re-
lated terms are also estimated by simulation over 100 000 data
(italics). The two cross-terms (25) and (26), which are neglected
by Theorem 3 are seen to indeed be small as compared with
tr . The validity of Approximation 1 is also investigated.
The relative difference between right- and left-hand sides in
(52), called the error in (52) in Table II, is below 7%. The de-
viation between the theoretical and the measured performance
peaks around .

Fig. 4 displays the tracking performance tr for different
lags from Theorem 3 and by simulations . The step-size

is tuned to minimize tr , and the polynomials are
obtained from [6, Cor. 1]. (The performance for can be
found in Table III.) It is evident that the simulated results are
in agreement with the theory of Theorem 3 for and
that (59) is a good approximation of tr , even for higher
order FIR systems like . It is also evident from Fig. 4
that fixed-lag smoothing ( negative) substantially improves the
tracking performance and should therefore be used in applica-
tions where the use of a delay is acceptable.

The bottom line is that Table III and Fig. 4 indicate a good
agreement between the theory and measurements, with The-
orem 3 giving a small overestimate of tr for in
this example.

Example 3—Wiener LMS Stability: We increased the Wiener
LMS gain in (68) and (69), until instability occurred. In Fig. 5,
the FIR system (1), (35), and (36) with and

is considered, and the adaptation gain is varied. Two types
of real-valued inputs are used: Binary data and Gaussian
signals with variance 1. The tracking MSE tr obtained

TABLE III
CONTRIBUTIONS TO THE ASYMPTOTIC ONE-STEP PARAMETER PREDICTION

ERROR tr(P ) WHEN FIR MODELS WITH ! = 0:1 OF ORDER M ARE

TRACKED BY WLMS IN EXAMPLE 2. THEORETICAL PREDICTIONS FROM

RELEVANT EXPRESSIONS IN THEOREM 3 (BOLD) ARE COMPARED WITH

SIMULATIONS (ITALICS)

-5 -4 -3 -2 -1 0 1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

k

tr
(P

k )

M=10 

M=2 

Fig. 4. Tracking performance tr(P ) of WLMS for different lags k from
Theorem 3 (�) and by simulations (�) for FIR systems with M = 2 and
M = 10 taps.

from Theorem 3 is plotted as a function of and compared
with measured values from simulation . The dashed curve
is the theoretical result obtained from (37) by neglecting the
feedback noise. It results in large errors and predicts stability
for all admissible , instead of the correct stability
limits and . Evidently, the
results obtained by simulation are in agreement with the theory
of Theorem 3, but a simplified analysis based on Theorem 1
(neglecting the feedback noise) would be unsatisfactory in this
example.

In the binary case , , which is given by (D.1), will have
singular values bounded by unity. The use of the small gain the-
orem (18) then gives the condition . For
(67)–(69), the largest magnitude of the spectral density of
should thus be . This is fulfilled for . Hence,
the small gain theorem applied to the outer loop of Fig. 1 is a
too-conservative tool in this example. For Gaussian regressors,
the magnitude of the elements of will not be bounded, and
(18) cannot be used directly.
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Fig. 5. Performance tr(P ) as a function of � in the WLMS algorithm (67)
in Example 3 when tracking a second-order FIR system (1), (35), and (36) with
! = 0:1. Results by theory from Theorem 3 (solid) and by simulation (�) for
white real-valued binary (B) and Gaussian (G) regressors. The dashed curve
neglects the feedback noise. The vertical line at � = 0:05 is the stability bound
obtained from the small gain theorem (18) for binary regressors.

The plots clearly show that input data with larger kurtosis
(Gaussian data) result in larger tracking errors and in perfor-
mance curves that are more sensitive to the choice of gain .
However, one should note from (58) that the relative impact of
the regressor distribution (via ) diminishes with an increasing
FIR order .

V. CONCLUDING REMARKS

We have proposed a novel formalism for analysis of adaptive
algorithms that perform tracking of linear regression models.
The formalism was applied on general linear algorithms with
constant gains.

The considered decomposition of the feedback loop can also
be used as powerful tools for analyzing the tracking perfor-
mance for slow time-variations of RLS algorithms with slow
adaptation and of Kalman predictors. See [33] for such results.

Theorem 1 can be used for vector-valued measurements
and parameter variations described by general spectral densi-
ties, but it provides reasonable approximations only when the
variance of the feedback noise is small relative to the
variance of . The assumption of independent regressor vec-
tors used in Theorem 2 is restrictive, but it is approximately ful-
filled for the antenna array application discussed by Horowitz
in [25].

An interesting insight resulting from the present work is that
tracking of FIR systems with white regressors can be analyzed
under approximations that are milder than an assumption of in-
dependent regression vectors, which would evidently be wrong
in such situations. This analysis, which is presented in Sec-
tion IV-B, was here limited to algorithms with diagonal learning
filters. Theorem 3 can be generalized to the criterion (20) and
to general algorithms (11), but the feedback noise will then not
be uncorrelated.

A further generalization of Theorem 3 to FIR systems with
colored regressors would be interesting but appears problem-

atic since whiteness of the regressors is a key assumption in
Lemma 5. An exact tracking analysis for fast variations with col-
ored regressors might require considerably more complicated
tools, perhaps along the lines explored by Douglas and Pan in
[34] or by using the energy conserving approach of [18].

APPENDIX A
PROOF OF LEMMA 2

We will investigate how the relative approximation error (41)
behaves as . In the sequel, we set to unity and let

tend to zero. The design of is based on (31)–(33).
Under the stated assumptions, the right-hand side of the spectral
factorization (32) is nonsingular on the unit circle. Therefore, a
causally and stably invertible polynomial matrix exists.
Thus, has all zeros in , whereas
has all zeros in . Furthermore, from (32)

(A.1)
which are nonsingular on since is assumed
nonsingular and is nonsingular. Note that is here
assumed to have all zeros in so that will have all
zeros outside .

Equation (33) is a unilateral Diophantine equation for a scalar
. It will have a unique solution since with all

zeros in and with zeros in are coprime;
see [7, App. A]. By equating for different powers of and
in (33) and transposing, a linear system of equations (A.2) is
obtained, where contains the corresponding coefficient
matrices of

. . .
...

. . .
...

...
. . .

...
. . .

...

...

...

(A.2)

Previously, and have denoted the degrees of the
polynomial and the polynomial matrices and ,
respectively. Since the polynomial matrix Diophantine (33) is
uniquely solvable for all , the corresponding block-Sylvester
coefficient matrix is nonsingular for all [35]. By (A.1),
it converges to a constant nonsingular matrix (involving the co-
efficients of ) as . Denote this limiting
matrix . Thus, the solution pair tends
to zero proportional to since

(A.3)

where as . By (31) and (A.1), the impulse
response coefficients of the optimal learning filter will also tend
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to zero proportional to when is sufficiently small so that
is close to its limiting expression.

The matrix will have bounded elements since is as-
sumed to have bounded elements. Therefore, the small gain the-
orem applies. Since by the above reasoning
when , we can conclude that the feedback loop via

will be stable for Wiener-optimized learning filters de-
signed for sufficiently small parameter drift-to-noise ratios.

With a stable filter generating in (27) and a stable feedback
loop, both and will be stationary processes with finite
variance so that is stationary with finite variance.

Thus, since is guaranteed to have finite power when
is sufficiently small and since the impulse response coeffi-

cients of the optimized learning filter will, by (A.3), tend to zero
proportional to , there will exist a constant such that
the numerator of (41) is bounded by

tr (A.4)

where the spectral density of the feedback noise is denoted by
.

The spectral densities of and (with ) used
in the design are and , which are given by (30) and
(29), respectively. Then

tr

tr (A.5)

Therefore, the relative approximation error vanishes as tends
to zero due to the factor in (A.4).

APPENDIX B
PROOF OF LEMMA 3

The estimation error depends only on data up
to time , whereas , due to the independence as-
sumption on , will not depend on data older than .
Thus, and are independent. As a consequence,

. Whiteness follows since

for since will be independent of all other factors, and
. For , will be independent of all other

factors. Since depends neither on (by Assumption 1) nor
on

Now, consider , which is zero for since
is then independent of all other factors. For , and

are independent of the regressors; therefore

The outer expectation over first- and third-order moments of the
Gaussian regressors is zero. Thus

APPENDIX C
PROOF OF THEOREM 2

Consider (44) for , without letting , as a recur-
sion in . This recursion must converge (convergence in MSE).
The use of (47) in (45) gives

tr

Premultiply by and take the trace to obtain

tr tr tr

tr tr (C.1)

Replacing by in (C.1) yields

tr tr

tr tr

or

tr tr tr (C.2)

where the transfer operator (48) is in the limit

tr
(C.3)

and it determines stability. By using the static gain, i.e., substi-
tuting for in (C.3) and using the limits and by
(37) in (C.2), we obtain

tr tr tr

(C.4)
The expression (C.4) gives the excess MSE due to model mis-
adjustment. The -step covariance matrix is then given by (46),
with

(C.5)

Here, . For stable and bounded
, by (C.5) is bounded. By (47) and (C.4)

tr tr
(C.6)

The use of (C.6) in (C.5) then gives (49).
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APPENDIX D
PROOF OF LEMMA 4

For and independent inputs with constant modulus,
, (8) and (14) give as

(D.1)

Denote the elements of by . The mean
value of becomes

since , with zero mean, will be independent of and of
.

Let . The correlation function of the feedback
noise now follows as

(D.2)

If , then in (or in )
will be independent of all other factors of each product, and if

, then is independent of all other factors. Thus, the
feedback noise is white. In addition, note that for without
constant modulus, each element of (D.2) would have four terms,
all of which would not be zero when . The feedback noise
would then not be white.

For , the -related factors in (D.2) are either
, due to the constant modulus, or zero. In the case of real-

valued input data and models, the covariance matrix of the feed-
back noise becomes

For circular complex data, factors in (D.2) for contain
, which is independent of all other factors. Since

in the circular case, off-diagonal elements of (D.2) are
zero.

That is uncorrelated with follows since in
in (D.1) is independent of as well as of . Uncorrelat-
edness between and is true for due to
whiteness and zero mean of and its independence of all other
terms. For

vanishes since is zero mean and independent of all other
terms.

APPENDIX E
PROOF OF LEMMA 5

For FIR systems having stationary and white inputs with zero
mean and variance

(E.1)

Let the th element of be denoted by . Then,
with , this element can be expressed
as

(E.2)

for . For equally distributed zero mean variables
, fourth-order moments are expressed by

(E.3)

see, e.g., [36, p. 549]. Here, is defined in
(54), whereas is the kurtosis of Gaussian variables.
is defined for circular complex variables, whereas is
defined for real variables. The second right-hand term is zero for
white circular variables, where . The last term
vanishes for Gaussian data where . It contributes only
when and is constructed so that the right-hand
side of (E.3) then equals .

Applying (E.3) on (E.2) for white circular data (for which
) yields, with

(E.4)
We notice that the third term within the parenthesis of (E.4)
contributes to the sum only for and , whereas
the first contributes when and the second contributes
for when . Thus

.

This observation and the use of (E.1), which subtracts , com-
pletes the first part of the proof. Applying the formula (E.3) on
(E.2) to real-valued data yields

(E.5)

Since we have real-valued input data, the second right-hand term
of (E.3) also contributes. The second term within the parenthesis
in (E.5) contributes to the sum whenever ,
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whereas the first, the third, and the fourth terms contribute as
for the previous case of circular data. Thus

(E.6)

and

.

(E.7)

The use of (E.1) then completes the proof.

APPENDIX F
PROOF OF THEOREM 3

For colored , Assumption 1 and white regressors imply

tr (F.1)

since for and equals
for . Therefore

tr tr

tr

(F.2)

where Approximations 1 and 2 were used in the second equality.
Under the stated assumptions, is white due to Lemma 5.
Using (53), (55), (56), (F.1), and (F.2)

tr tr

tr (F.3)

where we introduced in the last equality. Since
the two last terms in (21) are neglected under Approximation 2,
we obtain

tr tr tr tr (F.4)

where, from

(F.5)

the asymptotic lag error is given by

tr tr
(F.6)

By using (63) and (F.1) in (23)

tr tr (F.7)

Note that (50) is assumed to have scalar impulse response coef-
ficients . By using (F.3) and the whiteness of the feedback
noise in (24)

tr tr (F.8)

The use of (F.8) in (F.4) gives a scalar linear time-invariant re-
cursion

tr tr tr (F.9)

where is given by (57) in the limit . Under
the stated assumptions, tr will converge to a finite sta-
tionary limit tr if and only if the filter is stable.
The steady-state error tr tr is obtained
by using the steady-state gain (substituting for )
of and using the steady-state values (F.6) and (F.7) for

in (F.9). This gives (64). Expression (62) is obtained by
replacing tr by tr in (F.8) and using (63). With
(60) obtained from (F.6) and (61) from (F.7), we have (59) for
tr .
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