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On Convergence of the NIC Algorithm
for Subspace Computation

Yingbo Hua and Tianping Chen

Abstract—The “novel information criterion” (NIC) algorithm was de-
veloped by Miao and Hua in 1998 for fast adaptive computation of the
principal subspace of a vector sequence. The NIC algorithm is as efficient
computationally as the PAST method, which was devised by Yang in 1995,
and also has an attractive orthonormal property. Although all available evi-
dence suggests that the NIC algorithm converges to the desired solution for
any fixed leakage factor between zero and one, a complete proof (or dis-
proof) has not been found, except for an arbitrarily small leakage factor.
This paper presents this long-standing open problem with a discussion of
what is known so far. The results shown in this paper provide a new insight
into the orthonormal property of the NIC algorithm at convergence.

I. INTRODUCTION

Subspace computation is a fundamental tool for data compression,
feature extraction, parameter estimation, model detection, and mul-
tiuser communications (e.g., see [4], [5], [9]-[11]). A key objective of
subspace computation is to compute the principal subspace spanned
by a sequence of vectors. Namely, given a n X m complex matrix
Y = [y(1) y(2) --- y(m)], one needs to compute a p-column basis
matrix W such that the range of W is the rank-p principal subspace
of Y. A systematic treatment of a class of power-based algorithms is
available in [2]. These algorithms are recursive and globally convergent
(under a weak condition) to a desired principal subspace. They are well
suited for adaptive subspace computations (or subspace tracking). As a
very brief description, the power-based algorithms update the estimate
of a principal subspace by multiplying the previous estimate by some
forms of the original data. Besides the power-based algorithms, there
are nonpower-based algorithms as well. Examples of nonpower-based
algorithms are available in [8] and the references therein. Among the
power-based algorithms is the “novel information criterion” (NIC) al-
gorithm [1]. The NIC algorithm is a generalization of an earlier algo-
rithm called “projection approximation for subspace tracking” (PAST)
[3]. Although fast in convergence to a desired principal subspace, the
PAST algorithm does not generally yield an orthonormal basis matrix.
Simulations have shown that the NIC algorithm not only converges as
fast as the PAST algorithm in subspace tracking but also always yields
an orthonormal basis matrix at convergence [2].

In this correspondence, we first review the NIC algorithm and then
present a long-standing conjecture that the NIC algorithm (with a fixed
leakage factor between zero and one) converges to an orthonormal basis
matrix of the desired principal subspace. This conjecture has been ob-
served in all examples known today. We will also present a new under-
standing of this conjecture, which explains the orthonormal property
of the NIC method at convergence.
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II. NIC ALGORITHM AND AN OPEN PROBLEM

The NIC algorithm was based on the maximization of the following
NIC criterion [1]:

Inie (W)= %tr (log(WH CW)) — %f,,(WH W)
1 1 \

where C = YY*# € C™*", and the superscript  denotes the com-
plex conjugate transpose. The identity tr(log(A)) = log(det(A))
holds for any positive definite matrix A. This follows from the defi-
nition log(A) £ Ediag(log A1, logXa, -++, logA,)E’, where
A = Ediag(A1, Ao, :, /\,,)EH is the eigenvalue decomposition
of A. In [1], only real matrices are considered. For complex matrices,
we need a slightly different treatment, as described below. Following
the gradient ascent principle to maximize the NIC criterion, we have
the following algorithm:

W(k+1)=W(k)+ (I'LJNIC (W (k))

0 (1b)

where « is a step size, and W (k) € C"*? (n > p) is the estimate of
the basis matrix of the principal subspace spanned by the columns of
Y (or equivalently, by the columns of C) after the kth iteration. The
complex matrix gradient in (1b) is defined as!

0 d . 0
WJNIC (W)= mvl\nc (W)+j WVV)JNIU (W) (1o

where j = /—1. It can be shown (after a straightforward but slightly
tedious procedure) that

8 . _ 1 H —1\*
+CW(WHeW) ™ - w* - W}
and
6 . . _l . H —1\*

_jew(wcw)”' - jw* —|—jW}

where * denotes complex conjugation. Note that both of the above ex-
pressions are real valued (as they should be). Using these two expres-
sions in (1c) yields
9 (W) =CW(W'CW) ' - W
W e .
Applying (1d) to (1b), we have the NIC algorithm in its batch form:

(1d)

W(k+1) = (1—a)W(k)+aCW(k) (W(k)”CW(k))il )

The range of W (%) is used as an estimate of the principal subspace of
the range of Y at iteration k. W (k) is also referred to as the weight
matrix in a context of linear neural networks [10]. When o« = 1, (1)
becomes the batch form of the PAST algorithm [3]. When 0 < o < 1,
the old estimate W (k) “leaks” through the term (1 — )W (k) to yield
the new estimate W (k + 1). Hence, « is also referred to as a leakage

IThis is a natural definition of complex matrix gradient although complex
(vector or matrix) gradients are not commonly addressed in text books. For real
matrix gradients, see [4, p. 275].
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factor. An adaptive version of (2) follows if C is replaced by the recur-
sive equation C(k+1) = C(k)+y(k+1)y" (k+1), where y(k+1)
is the new data vector at time k + 1. One can also add some standard
forgetting factor (e.g., see [2] and [7, p. 354]) to the above recursion of
C(k) to achieve faster adaptation. Following the principle of “projec-
tion approximation” [3] (i.e., replacing C (k)W (k) by C(k)W (k—1)
in a propagation term), an adaptive version of (2) can be implemented
such that its computational order at each iteration is linearly propor-
tional to n. This linear complexity is the key computational advantage
of both the NIC and PAST algorithms in comparison to many other
methods [2]. To conduct a convergence analysis of (2), however, one
needs to assume a constant C.2

The open problem here is either a proof or a disproof of the following
conjecture.

Conjecture: 1f a) the pth and (p + 1)th largest eigenvalues of C are
distinct, and b) W (0) has a nonsingular (full rank?) projection onto the
span S of the first p eigenvectors (principal subspace) of C, then the
limit W (oo) of the recursive (1) with 0 < « < 1 is an orthonormal
matrix (i.e., W(o0)?W(co) = I) with its column span equal to S.
Note that the conditions a) and b) are weak and almost always satisfied
in practice.

This conjecture is proven to be true when « is arbitrarily small [1],
where the convergence is established via a Lyapunov function. When «
is arbitrarily small, there is a corresponding differential NIC flow equa-
tion, whose convergence is further established in a more recent paper
[6]. The conjecture, however, does not cover the case when o = 1.
For this case, W (o) spans S but is not necessarily an orthonormal
matrix [2]. A simple examination of (2) confirms the intuition that
the dynamics of (2) is only slowed down when « is decreased from
1. However, the conjecture suggests that by choosing a fixed « satis-
fying 0 < o < 1, W(o0) not only spans S but is also an orthogonal
matrix. The property range(W (o)) = S seems obvious since it is
proven to be true for both arbitrarily small o and for & = 1. However,
this property is not yet proven today. On the other hand, the property
W (o) = orthonormal for any « satisfying 0 < a < 1 is not at all
obvious, especially considering the fact that W (o) is not necessarily
orthonormal if & = 1. We show next a new understanding of the con-
jecture with a focus on the property W (o) = orthonormal.

III. NEw UNDERSTANDING

Equation (2) can be transformed into the following:
-1
X(k+1) = (1 - a)X(k) + aAX(k) (X(k)HAX(k)) (2a)

where X (k) = UYW(k), U € C"*" is the eigenvector matrix
of C, and A € R"™™ is the (corresponding) diagonal matrix of
the eigenvalues that are in descending order. Let X(k) = [§1£f;],
where X1(k) € CP*P and Xa(k) € C™P)*P_ 1t follows from
X (k) = UTW (k) that W(oc) is orthonormal and spans S if and
only if X2(oc) = 0 and X;(cc) is unitary. Condition b) in the
conjecture simply means that X;(0) is nonsingular.

We now show two lemmas. The first lemma shows that the weight
matrix in the NIC algorithm does not diverge to infinity nor degenerate
into a reduced-rank matrix. The second lemma shows the orthonormal
property of the NIC method at convergence.

Lemma 1: If X;(0) is nonsingular and 0 < « < 1, then for all
k > 0, X(k) has a full column rank and a finite norm.

2It is also a convention of convergence analyzes in adaptive filter theory [7].
3This will be explained later.
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Proof: Let the ith singular value of a matrix A be denoted by
a;{A}. Assuming that X (%) has a full column rank for a fixed %, it
follows from (2a) that

X(k+1)"X(k+1)
=(1—a)*X()TX(k) 4+ 20(1 = )T
—1
o (X(k)”AX(k))
. —1

x X (k)" A2X (k) (X(L:)HAX(k))
which implies that ¢, {X (k+1)"X(k+1)} > 2a(1—«). Therefore,
under condition b), o, {X(k)} > ¢z > 0 for all & > 0, which means

that X (%) has a full column rank. Now, from (2a), we have

o {X(k+1)}
< (I =a)a {X(k)}

Tou {m\% } - {A%X(k) (X(k)HAX(’f))_l}
1

= (1—a)oy {X(k)} + 0y {aA

[N

oy {AEX(0) }

Note that A is nonsingular, and hence, there is a constant ¢z > 0 such
that 0, {AY/2X(k)} > c3 for all k > 0. Therefore, there is a constant
¢4 < oo such that forall & > 0

o1 {X(k+ 1)} < (1 —a)or {X(k)} + ca.

This expression implies that for all £ > 0

k
o1 {X(k)} < (1= a)o {X(0)}+ca Z(l —a) <o <o

(=0

i.e., X(k) has a finite norm. [ |
The next lemma provides an important statement, and the proof that
follows is even more insightful.
Lemma 2: 1f X,(0) is nonsingular, 0 < a < 1, and X2(o0) = 0,
then X1 (o0) is unitary.
Proof: Let ¥ be the p X p top left submatrix of A. Then, taking
the top p rows of (2a), we have

Xi(k+1)
— (1= )Xy (k) +aSXy (k) (Xl(k)HEXl(k:))71+E(k)
=(1—a)Xy (k)4+aX, (k) H+EF)

where E(k) is a matrix of small norm for large ¥, and E(co) = 0. This
property of E(k) follows from X2 (co) = 0. Note that the above equa-
tion requires X1 (k) to be nonsingular. This is guaranteed by Lemma 1
and the assumption that X (%) is arbitrarily small for large k. Substi-
tuting the singular value decomposition of X (%) into the above matrix
equation leads to the following singular value equation:

1
di(k)

where 1 < i < p,d;(k)istheithsingular value of X1 (k),i.e.,d;(k) =
a:{X(k)}, e; (k) is a small perturbation for large %, and ¢, (c0) = 0.
Note that e; (k) is not necessarily a singular value of E(%). The validity
of the singular value (3) holds despite the fact that the left and/or right
subspaces of X (k) are generally different (unless E(k) = 0) from
those of X;(k + 1). It follows from Lemma 1 and the assumption
X2 (o0) = 0 that for large enough k and all 7, 0 < ¢o < d;(k) <
c1 < oC.

di(k+1)=(1—a)di(k)+ + ei(k) 3)
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d(k+1)
A
Region of Convergence
(Outside the shaded region)
1+7
-
I-n
»
0 > k)
Fig. 1. Region of convergence where [d(k), d(k + 1)] is attracted toward

[1, 11. As max{|e(k)|, |d(k)e(k)|, |(e(k)/d(k))|} < & becomes arbitrarily
small, so does 1. The index k denotes the iteration index of the NIC algorithm.

All we need to show now is that d;(k) converges to one for all i.
For convenience, we will drop the subscript ; from (3) and write an
alternative form of (3), which is easy to verify, as follows:

d(k)—1

dk+1)—1=((1—-a)d(k)—a) i

+e(k). @

We define a positive number ¢ and an integer ko such that for all
k > ko, max{le(k)|, |[d(k)e(k)|,|(e(k)/d(k))|} < <. It follows from
Xs(o0) = 0 that for any arbitrarily small =, there exists such ko.
Since (4) is a nonlinear (difference) equation, it is no surprise that
we need to examine its convergence property in separate regions. In
our treatment of (4), we use d(k) and d(k + 1) as two coordinates,
as shown in Fig. 1. We now analyze the convergence property of
(4) in four separate cases of d(k) and d(k + 1), which constitute
all possible cases of interest.* We will show that for each case, the
distance between d(k + 1) and 1 is upper bounded by an arbitrarily
small number O(g) plus a down-scaled distance between d(k) and 1.
The distance between d(k) and 1 is measured by d(k) — 1 if d(k) > 1
and by (1/d(k)) — 1if d(k) < 1. A similar rule applies to d(k + 1).
Case 1) d(k) > 1,and d(k + 1) > 1 4 #. In this case, (4) implies
that for any given 7, there is a small enough (but finite)
¢ such that (1 — a)d(k) — « > 0. We also know that

(1 —a)d(k) — a < (1 — a)d(k). Then, (4) implies

dk+1)—1< (1—a)(dk)—1)+e. )

Case2) d(k) < 1,and d(k + 1) > 1 + 7. In this case, (4) implies
that for any given 7, there is a small enough (but finite) ¢
such that & — (1 — «)d(k) > 0. Then, (4) also implies

dk+1)—1=(a—(1—a)d(k)) <(1—L) - 1>

+e(k) < « <d(k) 1> + =. (6)

Case 3) d(k) > 1,and d(k + 1) < 1 — 7. In this case, (4) implies
that for any given 7, there is a small enough (but finite) ¢

4Other cases such as d(k) = 1orl+n > d(k+ 1) > 1 — 5 are of no
value in establishing the convergence property as they are already confined in
an arbitrarily small region around 1.
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Fig. 2. Curves of d(k + 1) versus d(k) for varied « according to (3) with
e; (k) = 0. Each point on these curves satisfies (9). The statement in footnote
6 is verified here.

such that o — (1 — a)d(k) > 0. We can use (3) and (4) to

write
1 _l—dk+1)
d(k+1) ik + 1)
_ (a = (1 —a)d(k)) (d(k) — d(k)e(k)
(1 — a)d(k)* +a+f1 L) ()
_M i .
(1—a)d(k)® + (d(k) = 1)+ O(e) (7a)

where O(z) denotes a term of the order of . Furthermore,
since « — (1 — a)d(k) > 0,0 < a < 1,and d(k) > 1,
we have’

a— (1 —a)d(k)
—— < 2a—1 .
(1—a)d(k)2—|—a< « <«

Hence, (7a) implies

0<

1

ST 1< a(dk)—1)+ 0O(e).

(7b)
Case4) d(k) < 1,and d(k + 1) < 1 — 5. In this case, (4) implies
that for any given 7, there is a small enough (but finite) ¢
such that® (1 — a)d(k) — o > 0. We now use (3) and (4)

to write
1 B _1l—d(k+1)
dk+1) Tod(k+1)

(1= a)d(k) — a) (ﬁ - 1) — e(k)

(1 —a)d(k) + “d(1_1.~) + e(k)

(o) o 1)
(I-a) +”d2(k) + ;EZ;

_ U= 1
_m<m—1)+()(v). (8a)

e(k)
d(k)

5The following inequality implies that & > 1/2. This simply means that Case
3 is possible only if & > 1/2.

OThis inequality implies that & < 1/2 and, hence, that Case 4 is possible
only if @ < 1/2 (see Fig. 2).
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Since (1 — a)d(k) —a > 0and 0 < ¢z < d(k) < 1, we
know

(1—a) = 75

(1 bl (}') + OUCIQLW

(1-a)

<1-—ou.
(1—0)-’-(}%

0<

<

Then, (8a) implies
_t
d(k+1)

We now combine the above results (5)—(8) for all four cases. We
obtain that for |[d(k+ 1) — 1| > 5 and some small enough (but finite) ¢

1
d(k+1)

—1<(1-a) (d%k)q) +0(e). (8b)

max (d(k +1)-1, 1) < max(a, 1-—a)

L 1) +O(2). ©)

X max (d(k) -1, )

Note that as £ becomes arbitrarily small, so does 7. Since max(c, 1—
) < 1, (9), together with e(oo) = 0, implies that

ie., d(oo) = 1. [ ]

max <d(oo) -1, (10)

IV. CONCLUSIONS

We have reviewed the NIC algorithm for subspace computation and
provided a complex data version of the algorithm. Despite its excellent
performance as demonstrated by all existing theories and numerical ex-
periments, the NIC algorithm still poses a long standing question about
its convergence property. This question demands a complete proof (or
disproof) of the conjecture that the NIC algorithm (under a weak con-
dition) converges to an orthonormal basis matrix of the desired prin-
cipal subspace. In this correspondence, we have provided a new under-
standing of this conjecture with regard to its orthonormal property at
convergence. A full proof (or disproof) of the conjecture remains open.
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Analysis of the Power Spectral Deviation
of the General Transfer Function GSC

Sharon Gannot, David Burshtein, and Ehud Weinstein

Abstract—In recent work, we considered a microphone array located
in a reverberated room, where general transfer functions (TFs) relate the
source signal and the microphones, for enhancing a speech signal contam-
inated by interference. It was shown that it is sufficient to use the ratio
between the different TFs rather than the TFs themselves in order to im-
plement the suggested algorithm. An unbiased estimate of the TFs ratios
was obtained by exploiting the nonstationarity of the speech signal.

In this correspondence, we present an analysis of a distortion indicator,
namely power spectral density (PSD) deviation, imposed on the desired
signal by our newly suggested transfer function generalized sidelobe
canceller (TF-GSC) algorithm. It is well known that for speech signals,
PSD deviation between the reconstructed signal and the original one is
the main contribution for speech quality degradation. As we are mainly
dealing with speech signals, we analyze the PSD deviation rather than the
regular waveform distortion. The resulting expression depends on the TFs
involved, the noise field, and the quality of estimation of the TF’s ratios.
For the latter dependency, we provide an approximated analysis of esti-
mation procedure that is based on the signal’s nanstationarity and explore
its dependency on the actual speech signal and on the signal-to-noise ratio
(SNR) level. The theoretical expression is then used to establish empirical
evaluation of the PSD deviation for several TFs of interest, various noise
fields, and a wide range of SNR levels. It is shown that only a minor
amount of PSD deviation is imposed on the beamformer output. The
analysis presented in this correspondence is in good agreement with the
actual performance presented in the former TF-GSC paper.

Index Terms—Beamforming, nonstationarity, speech enhancement.

1. INTRODUCTION

Adaptive microphone arrays are widely used for speech enhance-
ment. Most of the methods are based on the generalized sidelobe can-
celler (GSC) proposed by Griffiths and Jim [1]. Since this structure is
usually based on the assumption that the different sensors receive a de-
layed version of the desired signal, we refer to it as the delayed-GSC
(D-GSC). In more complex environments such as the reverberating

Manuscript received November 27, 2002; revised May 21, 2003. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Dr. Olivier Besson.

S. Gannot is with the School of Engineering, Bar-Ilan University, Ramat-Gan,
Israel (e-mail: gannot@eng.biu.ac.il).

D. Burshtein and E. Weinstein are with the Department of Electrical Engi-
neering—Systems, Tel-Aviv University, Tel-Aviv, Israel.

Digital Object Identifier 10.1109/TSP.2004.823487

1053-587X/04$20.00 © 2004 IEEE





