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Polynomial Spline-Approximation of Clarke’s Model
Yuriy V. Zakharov, Member, IEEE, Tim C. Tozer, Member, IEEE, and Jonathan F. Adlard

Abstract—We investigate polynomial spline approximation of
stationary random processes on a uniform grid applied to Clarke’s
model of time variations of path amplitudes in multipath fading
channels with Doppler scattering. The integral mean square error
(MSE) for optimal and interpolation splines is presented as a se-
ries of spectral moments. The optimal splines outperform the in-
terpolation splines; however, as the sampling factor increases, the
optimal and interpolation splines of even order tend to provide the
same accuracy. To build such splines, the process to be approxi-
mated needs to be known for all time, which is impractical. Local
splines, on the other hand, may be used where the process is known
only over a finite interval. We first consider local splines with qua-
sioptimal spline coefficients. Then, we derive optimal spline coef-
ficients and investigate the error for different sets of samples used
for calculating the spline coefficients. In practice, approximation
with a low processing delay is of interest; we investigate local spline
extrapolation with a zero-processing delay. The results of our in-
vestigation show that local spline approximation is attractive for
implementation from viewpoints of both low processing delay and
small approximation error; the error can be very close to the min-
imum error provided by optimal splines. Thus, local splines can
be effectively used for channel estimation in multipath fast fading
channels.

Index Terms—Multipath fading channel, random process, spec-
tral moments, spline-approximation.

I. INTRODUCTION

I
N many applications of signal processing, polynomial

spline approximation is attractive in terms of both low

approximation error and simple implementation [1]. The ap-

plication of splines for signal processing has been popularized

by [2]–[4]. In particular, splines have been used for speech

processing [5], [6], image processing [4], imitation of and

compensation for Doppler distortion [7], identification of

frequency-selective channels [8], estimation of time-varying

communication channels [9], and other applications. In many

cases, signals can be considered to be realizations of random

processes; therefore, the investigation of spline approximation

of random processes is of interest.

In [10], optimal splines were proposed, providing a minimum

of the integral mean square error (MSE)

(1)
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Fig. 1. Prefilter-sampling-postfilter scheme describing spline approximation
of the process x(t).

where is a spline, approximating a wide-sense stationary

random process with zero mean and variance , is the

sampling interval, and denotes statistical expectation. The

optimal splines are built on the basis of the “prefilter-sampling-

postfilter” scheme shown in Fig. 1, where and are

transfer functions of the prefilter and postfilter, respectively, and

is the Dirac delta function [2], [11], [12]. If the impulse

response of the postfilter is a B-spline, then the impulse response

of the optimal prefilter is, in general, nonzero for all time

, which is impractical for many real-time applications

because of an infinite processing delay.

In [13], the error was derived for spline interpolation, i.e.,

when and ( is an integer) are sampling

instants. In the interpolation problem, the prefilter impulse re-

sponse is the Dirac delta function, whereas the postfilter im-

pulse response is a fundamental spline [14] (also called a car-

dinal spline [3]); if the spline order , then the postfilter

impulse response is nonzero for all time . It means

that all the samples (past and future) will be involved in

approximating the process on the interval , which is

also impractical due to the high processing delay.

In practice, local splines are of interest. The term “local”

means that the spline on the interval depends only on

over a relatively short interval . Here, is the

processing delay, meaning that in order to represent the process

at the moment , we need to know this process up to the mo-

ment . In real-time systems, the processing delay should

be as small as possible. Optimal local splines, minimizing the

error (1) under the constraint on the processing delay and based

on discrete samples , were obtained in [15].

In mobile communications, the Doppler effect causes time-

varying fading of multipath components. This fading is well de-

scribed by Clarke’s model [16]–[18] (which is also known as

Jakes’s or the “classical” model [18]–[20]). A path amplitude is

a stationary random process with the correlation function

(2)

where is the Doppler spread, the variance, and the

zero-order Bessel function of the first kind. Harmonic and poly-

nomial approximations of path amplitudes are used to estimate

and model fast fading channels [8], [20]–[22]. However, such

1053-587X/04$20.00 © 2004 IEEE
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approximations require the process to be known at every

instant within the approximation interval , . In many

communication scenarios, for example in the UMTS downlink

[23], [24], a short periodically transmitted pilot signal is used

for channel estimation. At a high signal-to-noise ratio, the path

amplitude estimate over the pilot interval can be approximately

considered to be a sample , where is the period of trans-

mitting the pilots; as a result, we have regular sampling of the

channel with the step . In such scenarios, splines can be effec-

tively used for channel approximation [9].

In this paper, we compare optimal, interpolation, and local

splines of orders in application to approximation

of Clarke’s model. In Section II, we describe optimal splines and

present the minimum integral MSE for spline approximation of

Clarke’s model. Section III presents interpolation splines. Algo-

rithms of local spline approximation are presented in Section IV;

here, we consider Schoenberg’s splines, local splines with qua-

sioptimal and optimal spline coefficients, and local extrapola-

tion splines. Finally, Section V contains conclusions.

II. OPTIMAL SPLINE APPROXIMATION

An optimal spline of order , approximating the random

process , is a spline providing a minimum to the integral

MSE (1). A spline of order can be represented as

(3)

where is the B-spline of order , and are spline co-

efficients. B-spline is a -fold convolution of the

B-spline of zero order [11]:

otherwise.

(4)

B-splines are conveniently described by the Fourier trans-

form

(5)

For the optimal splines, the spline coefficients are linear com-

binations

(6)

of integral samples

(7)

The weight coefficients are defined by an infinite system of

linear equations; for example, for linear splines , we have

[2], [12].

It is convenient to describe the optimal spline approximation

in terms of the “prefilter-sampling-postfilter” scheme shown in

Fig. 1. The postfilter transfer function is the Fourier transform

of the B-spline , , whereas the prefilter has

the transfer function (see Appendix)

(8)

Let the random process have spectral moments

(9)

where

(10)

is the normalized spectral density, and

is the normalized correlation func-

tion of the process . For Clarke’s model, we have

otherwise

(11)

and

if is even

if is odd.
(12)

For a differentiable random process , the approximation

error (1) for optimal splines can be represented as a series of the

spectral moments (see Appendix):

(13)

where are Bernoulli numbers [25]; the second sum and the

product are taken over all solutions in positive integers ,

, to the equation

; is even, ; and .

From (13), we obtain the following approximate formula for the

error in a case of :

(14)

For , the first term in (14) gives an accurate result.

Note that Clarke’s random process is differentiable. There-

fore, we can use (14) and (12) to calculate the error of approxi-
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mation of Clarke’s model by the optimal splines of an arbitrary

order , and we obtain

(15)

where the sampling factor . The expression (15)

will be used below as a lower bound for comparison with errors

of spline interpolation and local spline approximation.

III. SPLINE INTERPOLATION

We now consider the spline interpolation problem where the

spline goes through the data points exactly, i.e.,

[11]. A spline, interpolating the process ,

can be represented as [14]

(16)

where is the fundamental spline (or the cardinal spline [3])

of order . In any interval ,

the function is a polynomial of order , it has continuous

derivatives up to order , and its derivative has a

discontinuity at points ; the interpolation

spline obviously has the same properties. In addition, the

fundamental spline has the property

is integer and .
(17)

This property makes fundamental splines convenient for de-

scribing the spline interpolation.

In terms of the “prefilter-sampling-postfilter” scheme, for

spline interpolation, we have the postfilter transfer function

, where the Fourier transform of the funda-

mental spline is [14]

(18)

Note that by using formula (36) in the Appendix, we can find

an optimal prefilter; it is easy to show that the optimal pre-

filter transfer function is . Such a

prefilter provides a minimum approximation error when fun-

damental splines are used for spline approximation. This min-

imum error is exactly the same as when B-splines are used; this

follows from comparison (40) with (37) after the substitution

. However, we are now interested in spline in-

terpolation according to (16); therefore, we consider the prefilter

transfer function . Obviously, the interpolation error

should be higher than the error due to the optimal spline approx-

imation.

The integral MSE (1) for the interpolation of differentiable

random processes can also be calculated as a series of spectral

moments by using the approach applied in Appendix to the op-

timal spline approximation. As a result, we obtain the following

equation [13]:

(19)

where are even; the sum is taken over all solutions in

positive integers with even indices to the equation

; ; the sum is taken over

all solutions in positive integers with even indices to

the equation ; ;

for odd and for even ; . From

(19), we obtain the following approximate formulae.

a) For splines of order

(20)

b) For splines of even order

(21)

c) For splines of odd order

(22)

We can use (20)–(22) to calculate the error of interpolation

of an arbitrary differentiable random process by polynomial

splines of an arbitrary order . Taking (12) into account, after

some algebra, we obtain, for Clarke’s model, the following.

a) For splines of order

(23)
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Fig. 2. Optimal (Opt) and interpolation (Int) splines.

b) For splines of even order

(24)

c) For splines of odd order

(25)

Fig. 2 shows dependencies of the error for optimal and in-

terpolation splines of , 1, 2, and 3 orders on the sampling

factor for Clarke’s model. Note that the sampling

factor corresponds to Nyquist sampling. In principle,

there are techniques leading to a zero error for ; however,

this requires an infinite spline order [2]. In practice, the spline

order is often chosen less than or equal to . For a fixed

, the optimal splines outperform the interpolation splines. For

an even , these errors asymptotically coincide as ; this

can be seen by comparing the first terms in formulae (14) and

(21). For an odd , as , the ratio of the errors is between

3 (for ) and 6 (for ) [13]. As increases, the error

is reduced, and the dependence tends to a vertical line ,

corresponding to Nyquist sampling.

For the zero-order approximation, an error of 40 dB is

achievable only at ; this shows that in many cases, such

an approximation is not of practical interest. Linear interpola-

tion is most often used in practice [1]. We see from Fig. 2 that

for an error of 40 dB, linear interpolation requires a sampling

factor of . The optimal linear spline, compared with

the linear interpolation spline, allows the sampling rate to be

decreased as much as a factor of 1.5 . To achieve

this error when using the optimal splines, the sampling factors

, 5, and 3.5 are required for , 2, and 3, respectively,

which means that the increase of the spline order from

to allows a decrease in the sampling rate by a factor of

about three. This means that in a communication system with

a periodic pilot signal used to estimate a time-varying channel,

the use of optimal cubic splines instead of linear interpolation

allows the period between pilot signals to be increased by a

factor of 4.5, which leads to a higher spectral efficiency of the

communication system.

IV. LOCAL SPLINE APPROXIMATION

A local spline of an order is represented as

(26)

where the spline coefficients are linear combinations of a fi-

nite number of instant samples :

(27)

In terms of the “prefilter-sampling-postfilter” scheme in Fig. 1,

we have the postfilter transfer function as ,

whereas the prefilter transfer function is

Substituting (26) and (27) in (1), we get the expression

(28)

where

(29)

(30)

Formula (28) holds for any weight coefficients . To find the

optimal coefficients , which minimize the error , we dif-

ferentiate the right side of (28) with respect to and make it

equal to zero. As a result, we obtain a linear system of equations

(31)

The solution to the system (31) is a vector of optimal weight

coefficients. Substituting (31) in (28) gives a minimum error for

the local splines with the optimal coefficients

(32)

This is similar to the result in [15], with the only difference being

that now, we can use , in particular, , so that
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Fig. 3. Optimal (Opt) and Schoenberg’s (Local) splines.

. This allows us to derive algorithms with different

processing delays, in particular, with a zero processing delay,

i.e., spline extrapolation algorithms.

A. Schoenberg’s Splines

The case of and corresponds to Schoen-

berg’s splines [26]. The error calculated by using (28)–(30) for

Clarke’s model for different is shown in Fig. 3 for 1, 2,

and 3. It can be seen that for Schoenberg’s splines, a minimum

error is provided by the linear spline (which, in this case,

is also the linear interpolation spline), whereas, as the spline

order increases, the error is also increased. This is in accor-

dance with the known result that for Schoenberg’s splines, the

error is minimum for linear splines [26]. The error can be de-

creased if is [as follows from (31)]

(33)

where is defined in (29). We will call such splines optimal

Schoenberg’s splines.

Fig. 4 shows the weight from (33) for optimal Schoen-

berg’s splines as a function of the sampling factor . For small

, the weight exceeds 1 and increases as the spline order in-

creases. As the sampling factor increases, the weight approaches

1. The error for the optimal Schoenberg’s splines is shown in

Fig. 5. The optimal choice of the coefficient minimizes the

error. However, this performance improvement is not large; for

linear splines and an error of 40 dB, the optimal coefficient

allows a reduction of the sampling factor from 15 to 12 (com-

pare Figs. 3 and 5).

In order to decrease the approximation error further, we need

to increase the number of samples and used to calculate

the spline coefficients.

B. Local Splines With Quasi-Optimal Spline Coefficients

In the case of , ,

and for , the local splines provide a

Fig. 4. Weight coefficients for optimal Schoenberg’s splines; L = 0.

Fig. 5. Optimal splines (Opt) and optimal Schoenberg’s splines (Local).

zero approximation error for polynomials of an order less

than or equal to [27]. We will call the corresponding spline

coefficients quasioptimal. For , 2, and 3, we have

, , and

, respectively.

Fig.6shows theapproximationerror for local splineswithqua-

sioptimal spline coefficients. It can be seen that the local spline of

the first order provides nearly the same accuracy as the optimal

spline; a small difference is seen only at low sampling factors. Al-

though for and we obtain a lower error than for

, this error is significantly higher than that of the optimal

splines. Thus, local splines with quasioptimal spline coefficients

provide an error that is close to the corresponding minimum error

only for and significantly higher for .

We can also see that the increase of the spline order from

to results in an increasing approximation error.

This is similar to the result for Schoenberg’s splines in Fig. 3,

where the increase of the spline order from to

and, further , also results in an increasing error. The

use of additional instant samples (a “better” prefiltering) by the

local splines with quasioptimal spline coefficients has allowed

us to obtain a lower error with respect to Schoenberg’s splines.

Additional improvement of the approximation accuracy can be

achieved by local splines with optimal spline coefficients.



ZAKHAROV et al.: POLYNOMIAL SPLINE-APPROXIMATION OF CLARKE’S MODEL 1203

Fig. 6. Optimal splines (Opt) and local splines with quasioptimal spline
coefficients (Quasi).

Fig. 7. Weight coefficients for optimal local splines; L = 1. (a) a . (b) a
and a .

C. Local Splines with Optimal Spline Coefficients

Fig. 7 shows the weight coefficients and from

(31) required for calculating the optimal spline coefficients in

the case of . As the sampling factor increases,

the optimal weights become close to the quasioptimal weights

considered in the previous subsection. For small , the optimal

weights significantly differ from the quasioptimal weights.

Fig. 8 shows the approximation error for local splines with

Fig. 8. Optimal splines (Opt) and local splines with optimal spline coefficients
(Local).

optimal spline coefficients shown in Fig. 7. The local linear

spline demonstrates nearly optimal performance. The local par-

abolic spline also provides an error close to that of the optimal

parabolic spline, i.e., the accuracy of the local parabolic spline

with optimal spline coefficients is significantly better than that

of the local parabolic spline with quasioptimal coefficients

(see Fig. 6). However, for , there is still a significant

difference between the errors. If we take , the

errors for the optimal cubic spline and the local cubic spline

with optimal spline coefficients nearly coincide. Thus, local

splines with optimal spline coefficients, calculated according

to (31), provide near minimum errors for ,

and for , . Fig. 9 shows optimal weights

for the case of . Again, we see that the weights

approach steady-state values as the sampling factor increases,

whereas for low , the weights differ for different . In practice,

small are of interest; therefore, optimal weight coefficients

calculated for specific values of are preferable in practice.

The processing delay for local splines is defined as

; for example, we have

1) for , , zero order spline;

2) for , , linear interpolation

spline;

3) for , , local linear splines

with quasioptimal or optimal spline coefficients;

4) for , , local parabolic

splines with quasioptimal or optimal spline coefficients;

5) for , , local cubic spline

with optimal spline coefficients.

The first case corresponds to a zero-order spline approxima-

tion, which provides a small processing delay but results in

a large approximation error. The second case corresponds to

the linear interpolation with a processing delay of . For ex-

ample, if a receiver estimates a channel impulse response with

the pilot period , the receiver has to store the received signal

in a memory for a time and delay the data demodulation by

s. For the cases 3)–5), we have to further increase the memory
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Fig. 9. Weight coefficients for optimal local splines; L = 2. (a) a . (b) a
and a . (c) a and a .

and the demodulation delay up to , , and , which can

be unacceptable for real-time systems.

D. Local Extrapolation Splines

In order to obtain a lower processing delay, we need to de-

crease the parameter . For a zero-processing delay, the pa-

rameter should take on values , , and

, or less, for 1, 2, and 3, respectively. Fig. 10 com-

pares errors for optimal splines and extrapolation splines, pro-

viding a zero processing delay, with different values of the pa-

rameter . The linear extrapolation spline provides a near-op-

timal accuracy at by processing, for each spline coef-

ficient, samples of the function . For

quasioptimal (see Fig. 6) and optimal (see Fig. 8) local splines,

three samples are sufficient. The increase

in the number of samples processed is a penalty for the zero

Fig. 10. Optimal splines (Opt) and local extrapolation splines (Local).

Fig. 11. Weight coefficients for local extrapolation cubic splines: L = �2,
L = 9. (a) 
 = 3. (b) 
 = 10.

processing delay. We also note that the error for local extrapo-

lation splines of higher orders and approaches that

of optimal splines only at very high sampling factors , and at

low sampling factors, the linear spline outperforms the splines

of higher orders. Another disadvantage of extrapolation splines

is that the weight coefficients become large, which can lead to

an unstable approximation. Fig. 11 demonstrates this for cubic

splines with parameters and for two values of
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TABLE I
APPROXIMATION ERROR FOR THE UMTS SCENARIO WITH A DOPPLER SPREAD OF f = 220 HZ

Fig. 12. Optimal splines (Opt) and local extrapolation splines with weight
coefficients that are optimal for 
 = 7 (Local).

: and ; we see that the growth of the weight coef-

ficients is significant at high sampling factors, where the cubic

spline outperforms the linear and parabolic splines.

Local splines with optimal spline coefficients require the

Doppler spread to be known or estimated; this is an addi-

tional disadvantage of optimal local splines. However, we can

avoid estimating by precalculating the weight coefficients

for the lowest possible and using these weights for the

other . For example, in UMTS, the Doppler spread

220 Hz corresponds to a maximum mobile speed of 120 km/h,

and the pilot period is 1/1500 s [23]; this gives a maximum

sampling factor . Fig. 12 shows the approxi-

mation error for extrapolation splines with weight coefficients

that are optimal for . It is interesting that for , the

error is approximately constant for and . We see

that in this scenario, the linear spline outperforms splines of the

higher orders (excluding a range of for ).

Table I summarizes results of calculation of the approxima-

tion error for the UMTS scenario with a Doppler spread of

Hz (the sampling factor ). It can be seen that

the linear optimal splines allow the error to be reduced by 7 dB

with respect to the linear interpolation most often used in prac-

tice. Moreover, this improvement can be achieved by the ex-

trapolation splines possessing a zero processing delay. For par-

abolic and cubic splines, the accuracy depends

heavily on the approximation algorithm. For 2 and 3, the

local splines with optimal spline coefficients allow us to obtain

the accuracy that is close to that of the optimal splines. For par-

abolic splines, the extrapolation algorithm demonstrates a rel-

atively low performance; the error is even higher than for the

linear extrapolation splines and close to the error of the linear

interpolation. For cubic splines, the extrapolation algorithm re-

sults in an error as small as 42 dB; however, this is higher by

26 dB, compared with the optimal cubic splines and local cubic

splines with optimal spline coefficients.

V. CONCLUSIONS

We have investigated the integral MSE of polynomial spline

approximation of random processes in application to Clarke’s

model used for modeling time variations of path amplitudes

in multipath fading channels with Doppler scattering. We have

been concerned mainly with splines of order as these are

simple for implementation and most frequently used in prac-

tice. The errors for optimal and interpolation splines have been

presented as a series of spectral moments. The optimal splines

outperform the interpolation splines; however, as the sampling

factor increases, the error of spline interpolation of even order

approaches the minimum error. To build optimal and interpola-

tion splines, the function to be approximated needs to be known

over an infinite time interval, which is impractical. Local splines

may be used when the function is known over only a finite in-

terval.

We have derived optimal spline coefficients for local splines

when a fixed number of samples is used for approximation and

investigated the error for different sets of the samples. We have

considered Schoenberg’s splines and found that these splines

are not attractive for implementation (even when optimal weight

coefficients are used) because of a relatively high approximation

error. We have also considered local splines with quasioptimal

spline coefficients calculated on a basis of three samples and

guaranteeing a zero approximation error for polynomials of an

order less than or equal to the spline order; such splines provide

an error that is close to the corresponding minimum only for

and is significantly higher for . Local splines with

optimal spline coefficients provide nearly optimal performance

for when three samples are used for calculating the spline
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coefficients, whereas requires five samples for nearly

optimal performance.

Approximation with low processing delay is of interest, al-

lowing a decrease of demodulation delay in data transmission

with a periodic pilot used for channel estimation. We have in-

vestigated spline extrapolation algorithms possessing zero pro-

cessing delay. The results show that even for a zero processing

delay, we can build linear splines providing an error that is close

to that of the optimal linear spline. Extrapolation splines of

second and third order allow reduction of the error with respect

to linear extrapolation splines at high sampling factors . For

the extrapolation algorithms considered, the reduction is seen

at for and for . For lower sam-

pling factors, the linear extrapolation spline outperforms the

extrapolation splines of higher orders. At large sampling fac-

tors, weight coefficients of local extrapolation splines increase,

which can result in unstable implementation of spline approxi-

mation. Optimal weights depend on the sampling factor; in ap-

plication to channel estimation, this requires the Doppler spread

to be known or estimated. For scenarios where such an estima-

tion is not possible, we have proposed calculating the optimal

weights for a lowest possible and retaining them for the other

sampling factors. We have shown that in such extrapolation al-

gorithms, the error remains approximately constant for higher

sampling factors.

The results of our investigation have shown that local spline

approximation is attractive for implementation from viewpoints

of complexity, a low processing delay, and a small approxima-

tion error and, thus, can be used effectively for channel estima-

tion in multipath fast-fading channels. The results presented in

this paper may readily be applied to other random processes,

for example, to random processes describing the “flat” fading

channel model [18].

APPENDIX

ERROR OF OPTIMAL SPLINE APPROXIMATION

In this Appendix, we show the derivation of the error (1) for

optimal spline approximation of random processes. This deriva-

tion is based on [10] and [12].

Consider the “prefilter-sampling-postfilter” scheme shown in

Fig. 1. Let be a transfer function of the prefilter and

be a transfer function of the postfilter. The error (1) can be

written in terms of and as

(34)

where is the normalized spectral density

(35)

For the postfilter transfer function , the error (34) is mini-

mized if the prefilter transfer function is (see also [1])

(36)

where denotes complex conjugate. The minimum error cor-

responding to such a prefilter is

(37)

For spline approximation of order , it is convenient to rep-

resent as a B-spline the impulse response of the post-

filter. Note that we can chose another postfilter impulse response

whose time shifts form basis functions for representation of

-order splines (for example, it can be the fundamental spline

[14]); the choice of basis functions does not affect the final re-

sult. For B-splines, the transfer function is the Fourier

transform

(38)

where ; the optimal prefilter transfer function is

(39)

By using (38), the minimum error (37) can be written as

(40)

where

, and

It is easy to see that when increases, we have

(41)

and the error approaches the value

(42)

corresponding to the ideal lowpass prefilter and postfilter with

cutoff frequencies . The error (42) is equal to zero if the

spectral density is zero at frequencies .



ZAKHAROV et al.: POLYNOMIAL SPLINE-APPROXIMATION OF CLARKE’S MODEL 1207

Now, we derive the error as a series of spectral moments

(43)

of the random process by expanding the function

in the Taylor series with respect to the frequency :

(44)

Herein, we use the notation

We assume that the spectral moments are limited, which

means that the random process is differentiable. For

Clarke’s random processes, in which we are interested in this

paper, this assumption is fulfilled. Derivatives of the function

are found through derivatives of the composite

function (see [25, equation 0.430] for derivatives of a

composite function):

(45)

where the summation is performed over all solutions in non-

negative integers of the equation

(46)

and . It is easy to find that

(47)

In [13], it has been shown that

is odd or

otherwise
(48)

where is the zeta function [25], and

is the binomial coefficient.

Now, we will show that for odd , . First, we

prove that for odd , in every solution of the (46), there exists

at least one nonzero element with odd index . If the latter is

not true, then all terms with odd indices in the left side of

the (46) are zero, and we have a sum of even numbers, i.e., the

sum is also even. However, due to our assumption, the right side

is odd . Hence, in every solution of (46), there exists at least

one nonzero element with odd index . Then, due to (48), in

every component of the sum in (45), there exists a zero-factor

, i.e., all components of the sum are zero. The latter results

in for odd .

For even , due to (48), solutions of (46) with elements ,

having odd indices or indeces , contribute zero

components in the sum in (45). Then, (46) can be rewritten as

(49)

where is even. Taking (47) and (48) into account, for even ,

we obtain

(50)

Substituting (44) into (40), taking (43) and (50) into account,

and using that and , where

are Bernoulli numbers [25], we can formulate the following

Theorem: A minimum integral MSE of spline approxima-

tion of a random process with spectral moments can be

represented as

(51)

where the second sum and the product are taken over all solu-

tions in positive integers , to the equation

; is even, ,

and .

REFERENCES

[1] M. Unser, “Sampling—50 years after Shannon,” Proc. IEEE, vol. 88,
pp. 569–587, Apr. 2000.

[2] M. Unser, A. Aldroubi, and M. Eden, “Polynomial spline signal approx-
imations: filter design and asymptotic equivalence with Shannon’s sam-
pling theorem,” IEEE Trans. Inform. Theory, vol. 38, pp. 95–103, Jan.
1992.

[3] , “B-spline signal processing: part I—theory,” IEEE Trans. Signal

Processing, vol. 41, pp. 821–833, Feb. 1993.
[4] , “B-spline signal processing: part II—efficient design and applica-

tions,” IEEE Trans. Signal Processing, vol. 41, pp. 834–848, Feb. 1993.
[5] Y. V. Zakharov, “Cubic spline-approximation of spectral charac-

teristics of speech signals” (in Russian), in Collection of Research

Papers. Moscow, Russia: Moscow Power Eng. Inst., 1987.
[6] M. J. Flaherty, “Application of polynomial splines to a time-varying au-

toregressive model of speech,” in Proc. ICASSP, 1988, pp. 2220–2223.
[7] Y. V. Zakharov and V. P. Kodanev, “Imitation of the Doppler effect

for processing pseudo-noise signals by using spline-approximation” (in
Russian), in Signal Processing in Control and Data Transmission Sys-

tems. Voronezh, Russia: Voronezh State Univ., 1987, pp. 27–31.
[8] , “Multipath-Doppler diversity of OFDM signals in an underwater

acoustic channel,” in Proc. IEEE ICASSP, vol. 5, June 5–9, 2000, pp.
2941–2944.

[9] N. Sugita, “Method and System for Demodulating Receive Signal In-
cluding Pilot Signal,” Patent EP0 961 427, Dec. 1999.

[10] Y. V. Zakharov and E. A. Sidorov, “Limiting spline approximation
of random functions” (in Russian), Avtometriya, no. 5, pp. 22–26,
Sept.–Oct. 1982.

[11] M. Unser, “Splines: a perfect fit for signal and image processing,” IEEE

Signal Processing Mag., vol. 16, no. 6, pp. 22–38, Nov. 1999.
[12] Y. V. Zakharov and E. A. Sidorov, “Optimum prefiltering of analog

signals in PCM systems” (in Russian), Avtometriya, no. 4, pp. 88–93,
July–Aug. 1979.

[13] Y. V. Zakharov, “Polynomial spline interpolation of differentiable
random functions,” Comput. Maths. Math. Phys., vol. 35, no. 4, pp.
471–476, 1995.

[14] S. L. Lee, “Fourier transforms of B-splines and fundamental splines for
cardinal Hermite interpolations,” Proc. AMS, vol. 57, no. 2, pp. 291–296,
1976.

[15] Y. V. Zakharov, “Optimum approximation of samples of random pro-
cesses by local splines,” Telecommun. Radio Eng., pt. 2 (Radio Eng.),
vol. 46, no. 5, pp. 57–61, May 1991.



1208 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 5, MAY 2004

[16] R. H. Clarke, “A statistical theory of mobile radio reception,” Bell

System Tech. J., vol. 47, pp. 957–1000, 1968.
[17] G. L. Stuber, Principles of Mobile Communication. Boston, MA:

Kluwer, 1997.
[18] Recommendation ITU-R M.1225. Guidelines for Evaluation of Radio

Transmission Technologies for IMT-2000, Jan. 1997.
[19] W. C. Jakes, Microwave Mobile Communications. New York: Wiley,

1974.
[20] M. Patzold, U. Killat, F. Laue, and Y. Li, “On the statistical properties

of deterministic simulation models for mobile fading channel,” IEEE

Trans. Veh. Technol., vol. 47, pp. 254–269, Feb. 1998.
[21] A. Sayeed and B. Aazhang, “Joint multipath-Doppler diversity in mobile

wireless communications,” IEEE Trans. Commun., vol. 47, pp. 123–132,
Jan. 1999.

[22] D. K. Borah and B. D. Hart, “Frequency-selective fading channel es-
timation with a polynomial time-varying channel model,” IEEE Trans.

Commun., vol. 47, pp. 862–873, June 1999.
[23] H. Holma and A. Toskala, WCDMA for UMTS Radio Access for Third

Generation Mobile Communications. New York: Wiley, 2000.
[24] S. Fukumoto, M. Sawahashi, and F. Adachi, “Performance comparison

of forward link transmit diversity techniques for W-CDMA mobile
radio,” in Proc. 10th IEEE Int. Symp. Personal Indoor Mobile Radio

Commun., Sept. 1999.
[25] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Prod-

ucts, Sixth ed. New York: Academic, 2000.
[26] V. A. Zheludev, “Local spline-approximation on a uniform grid,”

Comput. Maths. Math. Phys., vol. 27, no. 9, pp. 1296–1310, 1987.
[27] , “Asymptotic formulae for local spline-approximation on a uni-

form grid” (in Russian), Doclady Academii Nauk, vol. 269, no. 4, pp.
797–802, 1983.

Yuriy V. Zakharov (M’01) received the M.Sc.
and Ph.D. degrees in electrical engineering from
the Moscow Power Engineering Institute, Moscow,
Russia, in 1977 and 1983, respectively.

From 1977 to 1983, he was an Engineer with the
Special Design Agency of the Institute. From 1983
to 1999, he was a Head of Laboratory with the N. N.
Andreev Acoustics Institute, Moscow. From 1994 to
1999, he was with Nortel, Moscow, as a DSP Group
Leader. Since 1999, he has been with the University
of York, York, U.K., as a Senior Research Fellow.

His research activity is in signal processing and communications, including un-
derwater acoustic systems, mobile communications, multimedia algorithms for
telephone networks, and speech processing.

Tim C. Tozer (M’81) was born in 1947 and received
the degree in engineering from the University of
Cambridge, Cambridge, U.K., in 1969.

After a few years as a Microwave Systems En-
gineer with Philips Research Laboratories, Redhill,
U.K., he joined the University of Kent, Kent, U.K.,
where he developed an interest in spread-spec-
trum techniques. In 1979, he moved to the Royal
Signals and Radar Establishment, Malvern, U.K.,
developing military satellite communications. He
has worked closely with industry and has served

on several international committees. Since 1987, he has been Head of the
Communications Research Group at the University of York, York, U.K., where
his current interests include wireless communications systems and small-dish
satellite communications (VSATs). He is responsible for numerous research
contracts from industry and other agencies and is the named author of over
100 publications. He is active internationally in presenting short courses and
workshops on satellite communications and on communications from High
Altitude Platforms (HAPs). He is also a Director of SkyLARC Technologies
Ltd., a company developing wireless broadband solutions with emphasis on
HAPs.

Jonathan F. Adlard received the degrees in
astrophysics from the University of Edinburgh,
Edinburgh, U.K., and microelectronics from the
University of Liverpool, Liverpool, U.K, and the
D.Phil. degree in cyclostationary signal processing
from the University of York, York, U.K.

After several years of research at York, he worked
on UMTS handset development with Infineon Tech-
nologies, Sophia Antipolis, France. He is now with
NewLogic Technologies, Sophia Antipolis, where he
works on on wireless LAN modem development.


