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An Information Theoretic Approach to Source
Enumeration in Array Signal Processing
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Abstract—In this paper, a new information theoretic algorithm
is proposed for signal enumeration in array processing. The ap-
proach is based on predictive description length (PDL) that is de-
fined as the length of a predictive code for the set of observations.
We assume that several models, with each model representing a
certain number of sources, will compete. The PDL criterion is com-
puted for the candidate models and is minimized over all models
to select the best model and to determine the number of signals. In
the proposed method, the correlation matrix is decomposed into
two orthogonal components in the signal and noise subspaces. The
maximum likelihood (ML) estimates of the angles-of-arrival are
used to find the projection of the sample correlation matrix onto
the signal and noise subspaces. The summation of the ML esti-
mates of these matrices is the ML estimate of the correlation ma-
trix. This method can detect both coherent and noncoherent sig-
nals. The proposed method can be used online and can be applied
to time-varying systems and target tracking.

Index Terms—Adaptive signal detection, array signal pro-
cessing, information theoretic signal resolution, information
theory, maximum likelihood detection, minimum description
length, modeling, predictive description length, signal detection,
signal resolution, stochastic complexity, time-varying systems.

1. INTRODUCTION

RRAY signal processing involves signal enumeration and

source localization. Array processing can be applied to
many applications ranging from radar and sonar to mobile com-
munications. In various applications, the objective might be to
determine the number of sources. This process is often called
enumeration. An enumerator uses a set of hypotheses to esti-
mate the number of signals. Each hypothesis represents a fixed
number of signals, and the best hypothesis is selected by opti-
mizing an appropriate cost function.

There exist a number of different approaches to signal enu-
meration [1]. Recently, much attention has been given to infor-
mation theoretic criteria; see, for instance, [2]-[9]. Two such
criteria are the Akaike information criterion (AIC) [10] and the
minimum description length (MDL) [11]. These methods min-
imize the Kullback—Leibler distance between the hypothesized
model and the observed data. The number of sources is deter-
mined by computing any one of these criteria for all candidate
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models and choosing the model with the smallest description.
A general class of information theoretic criteria, evolving from
MDL, has been discussed in [4].

The MDL criterion is based on minimizing the length of the
code required to describe data. Codelength minimization is ap-
propriate for model selection since the model that best fits the
data is the one that gives the most information about it; having
more information results in a smaller codelength. Coding of data
in the MDL criterion is performed in two steps. First, the data is
encodedusingauniquely decodable prefix code. Then, the param-
eter vector is encoded and added as a preamble to the codeword of
data. The overparameterization term in the MDL criterion repre-
sents the number of digits required to encode the parameter vector
toanoptimal precision [12]. The MDL principle can take different
forms [13], [14]. Here, we speak of MDL as a two-step coding
scheme. This definition of MDL coincides with the Baysian in-
formation criterion (BIC) [15], which is a model selection crite-
rion thatis widely used in statistical community. In the sequel, we
will refer to the “two-step MDL” simply as MDL since this term
has frequently been used in array processing.

By coherent (fully correlated) sources, we refer to a setting
in which the signals emitted by two or more sources are iden-
tical, except possibly for a multiplicative constant factor. Non-
coherent signals are the ones that are not coherent. For coherent
signals, the rank of the signal cross-correlation matrix is smaller
than the number of signal [16]. The signal enumerator tech-
niques that use the multiplicity of the noise eigenvalue cannot
resolve the true number of coherent signals.

The application of information theoretic approach to signal
enumeration in array signal processing was first proposed in [2].
Wax and Kailath [2] propose two enumerators using the AIC and
MDL methods. However, their methods cannot resolve coherent
sources. In [3], a signal enumerator has been proposed that can
resolve coherent sources. The method uses the MDL principle
and decomposes data into signal and noise components. The
MDL descriptor is then computed for signal and noise compo-
nents separately, and the results are added to obtain the total
MDL cost. In this paper, we will use a similar approach, de-
compose data into signal and noise components, and apply our
technique to these components. In [5], the performance of the
information theoretic criteria has been studied, and the proba-
bility of error for the AIC and MDL techniques has been derived
using the asymptotic distribution of the sample eigenvalues.

All information theoretic techniques discussed so far use
eigenvalue decomposition. Wu and Fuhrmann [6] propose
an alternative approach. They use “differential residues” to
formulate an information theoretic algorithm. The differential
residues are defined by a recursion of the noise eigenvalues.
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The authors show that using differential residues instead of
eigenvalues decreases the resolution signal-to-noise ratio
(SNR) threshold and increases the computational complexity.

In [7], the MDL principle has been formulated for cyclosta-
tionary signals. It has been shown that the number of cyclosta-
tionary signals might be larger than the number of sensors. In
fact, the specific structure of cyclostationary signals allows the
number of signals grow beyond what is usually dictated by the
number of sensors. The techniques discussed above assume that
noise is spatially uncorrelated. In [8], a signal enumerator for
spatially correlated noise has been proposed.

Green and Taylor [9] summarize the enumeration methods
based on AIC, MDL, and the modified rank sequence method
of [17] and then propose a stopping criterion to estimate the
number of signals. The authors also assume that a variable
number of antennas is available. Then, they use their algorithm
to minimize the required number of antennas with respect to the
number of signals. We will show in Section V that the method
of [9] does not perform better than MDL for small SNR.

Restricting the coding method to a two-step scheme in the
MDL approach increases the codelength. It has been shown that
the MDL is consistent [4]. Both the AIC and MDL methods can
only be applied to a batch of data; they cannot be used in a recur-
sive manner. In this paper, we develop an algorithm based on the
predictive description length (PDL) [12], [18]. The PDL crite-
rion is the cumulative log-likelihood function of the observation
vectors such that at each time instant, the maximum likelihood
(ML) estimate of the parameter vector, based on the past data, is
used in the probability distribution function. It has been shown
that the PDL achieves the shortest codelength for data relative
to the generating model class [18]. The algorithm is recursive,
and its structure makes it suitable for online use.

The proposed technique exploits the unique structure of the
signal and noise subspaces and can resolve coherent and nonco-
herent signals. We use the alternating projection algorithm [19]
for the ML estimation. We choose to use alternating projection
for its simplicity. Our simulation studies show that the proposed
technique is very effective in detecting the number of incident
signals and outperforms the MDL [3] and G&T [9] algorithms.

II. INFORMATION THEORETIC CRITERIA

Suppose that an array of p sensors is exposed to ¢ < p
far-field sources. The signals from the sources can be partially
or fully correlated. The fully correlated case (also called the co-
herent case) arises from multipath propagation or smart jam-
ming and is of practical importance in signal processing. We as-
sume narrowband signals with known center frequency. If the
size of the array is much smaller than the distance between
the array and the sources, the sources are assumed to be in the
far-field of the array of sensors. With this modeling, the arriving
wavefronts at the array are planar and do not carry any infor-
mation about the range of the sources. It is also frequently as-
sumed that the sources and the sensors are in the same plane.
In such a case, the only information about the position of a
source is in the direction-of-arrival (DOA) vector. Assume that
the signals arrive at the array from distinct directions 1, . . . , 0.
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The objective is to find the number of sources ¢ and their DOA
07 = [61,...,0,].

The complex envelope representation of the ¢th snapshot of
the array output is

x; = A(6%)s; + n; (D

where x; is the p X 1 observation vector, s; is the
q X 1 signal vector, n; is the p x 1 noise vector, and
A(87) = [a(6y)...a(8,)] is the p X ¢ location matrix. The
array manifold is defined by A = {a(f)|# € O}, where O is
the region of search. It is assumed that the array manifold is
known and that any p location vectors a(f,), £ = 1,...,p with
distinct 0;’s are linearly independent. The methods that we
present in this paper can be applied to general array manifold.
However, for simplicity, we have used linear arrays in our
simulations. For uniform linear arrays, the /th location vector
is represented by a(,) = [1l pe p? =T with
pe = exp(—jwodsinfy/c), where d is the distance between
two adjacent sensors, c¢ is the wave speed, and wy is the center
frequency of the source signal.

The signal snapshots form an independent identically dis-
tributed (i.i.d.) sequence of complex circular Gaussian random
vectors with an unknown covariance matrix S¢. As we will dis-
cuss later, this is not a restrictive assumption. Indeed, similar
to [3], we can use the proposed algorithm with the signal sam-
ples modeled as unknown constants. The noise snapshots form
an i.i.d. sequence of complex circular Gaussian random vectors
with unknown covariance matrix o2I, independent of the signal
samples where prewhitening can be used to accommodate non-
white noise. With these assumptions, the observation vectors
will be samples of a complex circular Gaussian process with
zero mean and the correlation matrix

R = E[xx"|q,07, 0%, S9] )
=A(01)S7A" (87) + o1. (3)
The correlation matrix R? is a function of the parameter set

¢ = [q,07, 02, S7]. The conditional probability density function
of the observation vector is given by

1
f(X|¢) - 7rT’|R‘1|

exp {—XH[Rq]_lx} (4)

where |.| represents the determinant of a matrix.

The objective in an enumeration and localization problem
is to estimate the number of sources ¢ and their DOAs #7. It
might be thought that the unknown parameters of R? can be esti-
mated by jointly maximizing the likelihood function. However,
the maximum value of the likelihood function is an increasing
function of the order of the system. In other words, direct ML
estimation always gives the maximum allowable value for the
number of sources ¢. For this reason, the MDL algorithm in-
cludes a second term that is added to the log-likelihood function
to penalize overparameterization.

Mathematically, the MDL criterion is represented by

MDL(N) = ~log /(X¥[é) + SlogN ()

where X is the p x N matrix of observations up to time N,
@ is the ML estimate of the parameter vector based on N snap-
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shots, k is the number of free elements of the parameter vector,
and f is the generating model class (probability density func-
tion). In (5), the first term is the log-likelihood function of the
observation vectors, and the second term is the overparameteri-
zation factor.

The PDL of the observation vectors x;, 7 = 1,..., N, is
defined as [18]

.
PDL(N) = — ) " log f(xil$;_1) ©)

=1

where &i_l is the ML estimate of the parameter vector with
respect to the observations up to time (¢ — 1). The PDL prin-
ciple is based on the predictive encoding of data. At each time
instant, the parameter vector is estimated using the past obser-
vation. Therefore, the ith term — log f(x;|¢;_;) is indeed the
codelength of the prediction error [18].

The initial point in the recursion (6) is chosen arbitrarily. In
practice, f(x1|@,) is obtained by selecting a ¢, from the uni-
form distribution 1/(¢y — ¢;) in [@;, @] for some ¢, and ¢,
[20]. In this paper, we take an alternative approach. We col-
lect p snapshots and form the sample correlation matrix using
these snapshots. This sample correlation matrix is then used
to estimate the parameter vector. The PDL is computed for all
1=p+1,p+2,..., N and added to find the total code length.

III. SUBSPACE DECOMPOSITION

In order to handle coherent sources, we will make use of the
subspace decomposition. Let us assume that the p-dimensional
complex observation vector space is represented by CP. In the
subspace decomposition approach, this vector space is decom-
posed into two orthogonal subspaces called the signal and the
noise subspaces. The signal subspace is the subspace spanned
by the column vectors of the location matrix A (#?). For non-
coherent sources, the column span of A (87) coincides with the
span of the eigenvectors of R corresponding to the ¢ largest
eigenvalues [16]. Assuming a one-to-one relationship between
A(#7) and 67, an estimate of the signal subspace can be ob-
tained by estimating the DOAs. The ML estimate of the signal
subspace for a model of order k at time instant 7 is represented
by the column span of the matrix A (%), where #¥ is the ML
estimate of the DOAs. The dimension of signal subspace is k.
The noise subspace is the orthogonal complement of the signal
subspace. The dimension of the noise subspace for a model with
k signals is (p — k). It is well known that the subspace decom-
position is uniquely defined by the DOA angles, and vice versa
[16]. We will use this fact in the sequel to devise a signal enu-
meration technique.

The projection matrices onto the signal and noise subspaces
are denoted as

P.(67) = A(6") (A" (67)A(6") " A% (67) @)
P.(87) =1 - P,(8%). ®)

Using these matrices, the observation vector can be decomposed
into two orthogonal components

x =P, (0)x + P, (87)x 9)

=X, + Xp. (10)
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Note that the projection of the observation vector onto the noise
subspace x,, is due to the additive noise only and is indepen-
dent of the signal and the noise component in the signal sub-
space. Thus, the correlation matrix of the array output can be
represented by

R? = RY + RY (1)
where
RI =P,(A")RIP(89)
=P,(6")STP.(8") + o°P (") (12)
and
R =P,(81)RP,,(07)
— 2P, (6") (13)

are the projections of the correlation matrix onto the signal and
the noise subspaces, respectively. Using this formulation, the
ML estimate of the correlation matrix can be formed by adding
the ML estimates of R and RY.

Note that R? and R are orthogonal Hermitian matrices. The
following lemma represents the determinant of a Hermitian ma-
trix in terms of its orthogonal components.

Lemma 1: Let A, B be n x n Hermitian matrices orthogonal
to each other such that AfB = B A = 0. If the matrix C is
given by

C=A+B (14)
where C is full rank, then
((C) = ((A)((B) (15)

where ((.) represents the multiplication of the nonzero eigen-
values. Additionally, if C is full rank, then |C| = {(C), where
|C| is the determinant of C.

Proof: Let A, and Ay be the diagonal matrices of nonzero
eigenvalues of A and B, and let V, and V, denote the matrices
of corresponding eigenvectors. Write C as

C=A+B
=V, AVE L vAVE

Aa 0 H
=V { 0 AJ v
where V = [V, V,]. Since A”B = 0 implies VEV, =0,V
is unitary (i.e. VHV = I). Therefore, (16) is an eigendecom-
position of C, and the Lemma follows. O
Lemma 1 will be used in the following section to represent
the determinant of the sample correlation matrix as the multi-
plication of nonzero eigenvalues of two orthogonal matrices.

(16)

IV. SOURCE ENUMERATION

An enumerator optimizes a certain cost function over a set of
competing models. We represent each model by a number & se-
lected from the set K = {0,1,...,p—1}, where p is the number
of sensors. The number associated with each model indicates the
number of sources in that model. Therefore, by restraining & into
the set K, it is implicitly assumed that the maximum number of
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sources is smaller than the total number of sensors. All vectors
and matrices that belong to a model k& will be represented by the
corresponding superscript. Therefore, the DOA vector of model
k will be denoted by 6%, the location matrix will be represented
by A(#"), and the source correlation matrix will be shown as
S*. In the sequel, we will minimize an appropriate cost func-
tion—derived from the concept of stochastic complexity—over
all tentative models and choose the one with the smallest cost.
In fact

Gn = arg irélg PDL(n) 17
where ¢, is the estimated number of signals at time n, and
PDL (n) is the predictive stochastic complexity of the data over
the window [1,n].

We start by observing that for a full-rank matrix S* (nonco-
herent sources), the column span of A(8") is the same as the
span of the eigenvectors of the correlation matrix that corre-
spond to the k largest eigenvalues. This is an important fact that
begets the effectiveness of the subspace decomposition method.
We use this concept to develop a PDL algorithm that can also
detect coherent sources.

In the preceding section, we showed that the true correlation
matrix of the array output can be represented as the sum of two
orthogonal matrices R? and R{. Since it is assumed that R is
full rank, we can use Lemma 1 to prove that the determinant of
R is equal to the multiplication of the nonzero eigenvalues of
R? and RY, that is

[RY| = C(RY) C(RY).- (18)

In practice, the true correlation matrix is unknown and is es-
timated by the sample correlation matrix. In the sequel, we will
represent sample estimates by a “bar” (7) placed on top of the
character and the ML estimates by a “hat” (7). In this paper, the
sample correlation matrix is obtained by the recursion

R;=aR;_; + (1 — a)x;x (19)

where o < 1 is a real smoothing factor. In (19), the factor
1/(1—«) is the effective length of the exponential window [21].
Similar to the true correlation matrix, we can project the sample
correlation matrix R;_; onto the signal and noise subspaces.
The projected correlation matrices for the kth model are repre-

sented by
ok kb k
R; _, =P,(6")R; P, (6")

RE | =P, (6")RiiP,(6")

(20)
21

where, like before, Ps(ﬂk) and P, (0") are, respectively, the
projection matrices onto the signal and noise subspaces; here,
the signal subspace is generated by the DOA vector 6". We use
these matrices to find the ML estimate of the correlation matrix
for the kth model.

The ML estimate of the correlation matrix for the k£th model
and the (7 — 1)th snapshot can be represented by

Rf, =Rf +RE (22)
where R’;’Fl and Rﬁi,l are the ML estimates of the projection

of the correlation matrix onto the signal and noise subspaces,
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respectively. If 0221 is the ML estimator of DOAs, we have [22],
(23]
=RF

Si—1"

Rk

Si—1

(23)

Using a similar method, it is possible to show that bei_l has
the same eigenvectors as R* ._, and a single nonzero eigenvalue
with multiplicity (p — k) that can be found from

- 1
~ ( gk
lo 9,_ ) frd
( i—k p— k
where tr stands for the trace of a matrix. Note that f{ﬁFl is

obtained by applying a linear transformation T¥ to Rﬁkl, that
is

trR”

Mni—1

(24)

Ry, =T Ry, (25)
k 3 o (éf‘l) o H
P )\j (anil) P
where \;(Ry,,_,),j = 1,...,p—k are the nonzero eigenvalues

of R,,, ,,and V,, ,_ is the p x (p— k) matrix of corresponding
eigenvectors; diag[.] denotes a diagonal matrix formed by the
elements in the brackets.

The ML estimate for the determinant of the correlation ma-
trix is obtained by multiplying the nonzero eigenvalues of its
projected components

R = (R )¢ (RL) )
where from (23) and (24)

¢(RE) =c(RE) (28)

¢(RE)= (o (éf_li))pfk. (29)

Using these results, the PDL criterion is expressed as

PDL,(N) :i [logC(Rfiil)—l—(p—k)

1 _
xlog(—trRZ 1)
p—k "

+x!(RE_ +TE,RE ) x} .(30)

1=

The computation of PDL depends on the estimation of the
angles-of-arrival éf_l. In the conventional version of the PDL
algorithm, the ML estimate of the parameter vector is used. The
ML estimator of the DOAs—with the signal samples modeled
as unknown constants—has been derived in [3] as

0, = arg min {log (6'(1/)'“)) }

= arg nj;intr [Pn(,/,k)f{i_l} .

€1y

This is a multivariate nonlinear optimization problem. To reduce
the computational complexity of the PDL algorithm, we use the
alternating projection method [19].

In the alternating projection method, the optimization is
performed in each step of the algorithm to determine the best
value for one parameter element while keeping the rest of
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the elements fixed. The ML estimation is hence decomposed
into several one-variable nonlinear optimization problems.
Let ¥ = (¥1,...,9%), and for 1 < m < k, define

Vi) = (W1s-o Ymo1, Y1, .-, 9i) in which the mth
parameter 1),, has been removed. The alternating projection
algorithm uses the fact that

P (4") = P (¥, ) + Pr (vl )

where Pn(’lﬁm|¢](cm)) is the projection onto the space spanned
by the residual of a(t),,) when projected onto the space
A(,)). that is

P ()

_ (1= (¥h) ) atm)a” () (1P (91, . (33)

(=P ()
We now use (32) in (31) to get

éf_l = arg miAn tr [Pn (iblgm)) R+ Pn(,pk)f{i,l} .
oy
(34)
Note that the first term in (34) is independent of the angle 1),,.
Therefore, the ML estimator (31) can be decomposed into &
one-dimensional optimization problems

(32)

éf_hm = arg 127151 tr [Pn (d}m|¢€m)) Rz’—1] (35)
where P, (4, [9(,,,)) is given by (33). If we define
1P, (%)) ) alm)
b(thm) = ( (91 (36)
| (X=Pu () atvm)|
then
éf_l’m = argmin tr [b" (¢, )Ri_1b(¢m)] . (37)

Ym

The mth subproblem is solved by fixing 1/;’(“m) and varying 9.,
to get the smallest cost. This procedure is continued for all pa-
rameters. The alternating projection algorithm converges to a
local minimum [19].

Since the information theoretic criteria are sensitive to the
estimate of the parameter vector, asymptotic bias in the DOA
estimation degrades the performance of the detector. The alter-
nating projection algorithm might converge to a local minimum
[19]. If this method is applied to a cost function that is deter-
mined by the data collected in a batch of snapshots, such as in
the MDL algorithm, a local minimum is found. If this local min-
imum is significantly far from the global minimum, the perfor-
mance of the detector is degraded. In an iterative method of es-
timation such as PDL, since the location of the local minimum
changes with every new sample of data, it is possible for the
estimator to move out of the local minimum with the sample
correlation matrix updates. For all the trials in our simulations,
the recursive estimator converged to the true DO’s within a few
sample times.

The computational complexity of the PDL algorithm grows
with the size of the observation window. The computational cost
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TABLE 1
NUMBER OF UNCORRELATED SOURCES DETECTED BY THE MDL, (38), PDL,
(30), AND G&T [9] ALGORITHMS FOR 100 INDEPENDENT RUNS

detection SNR (dB)

method |k [ =10 -5 0 5 10
1 92 10 0 0 0

MDL 2 8 8 98 100 100
3 0 4 2 0 0

1 89 8 0 0 0

PDL 2 11 92 100 100 100
3 0 0 0 0 0

1 82 100 100 36 0

G&T 2 8 0 0 64 100
3 10 0 0 0 0

of the technique is due to the eigenvalue decomposition of the
sample correlation matrix at each snapshot. It is important to
note that the PDL technique does not require the actual eigen-
values and eigenvectors of the sample correlation matrix. In-
deed, approximate values for the eigenvalues and eigenvectors
suffice to apply the algorithm. Using subspace tracking algo-
rithms [21] substantially reduces the computational complexity
of the PDL algorithm. Since the main objective of this paper is
to introduce the PDL method, we will not discuss further the
computational cost reduction techniques.

V. SIMULATION RESULTS

Consider a linear array of eight sensors exposed to two planar
narrowband wavefronts arriving from 10° and 20°. The spacing
between two consecutive sensors is half the wave length. In the
first example, we study uncorrelated sources. The total number
of snapshots is 100. To compute the sample correlation ma-
trix, we use the recursion (19) with « = 0.9. We compute the
MDL [3], G&T [9], and PDL criteria and use them to detect
the number of signals. We run 100 independent trials for each
SNR = —10,—-5,0, 5,10 dB and find the number of times that
MDL, G&T, and PDL enumerate the signals. The SNR is de-
fined as the ratio of the variance of signal to the variance of
noise. We have assumed that all signals have the same power.
In the following experiments, we have set the signal variance to
one and altered the variance of noise accordingly. For the MDL
algorithm, we have used the method suggested in [3], that is

MDL(N) = Nlog¢ (RE,)

+N(p — k) log ( terLN> + kk+1)

log N. (38)

p—k

Table I shows the number of estimated sources using the
MDL, G&T, and PDL algorithms. In this table and in the sequel,
we use (38) for the MDL and (30) for the PDL algorithms. As
shown in the table, the PDL algorithm outperforms both MDL
and G&T for small SNR. In this example, for SNR = —10 dB,
G&T randomly selects the number of signals, and the reported
results do not precisely reflect the resolution capability of this
algorithm.

In Table II, we show the detected number of sources in a co-
herent experiment. In this example, both sources emit the same
signal. Note that all techniques can detect coherent signals when
the operating SNR is high. The superiority of PDL is again evi-
dent in the table.
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TABLE 1I
NUMBER OF COHERENT SOURCES DETECTED BY THE MDL, (38), PDL, (30),
AND G&T [9] ALGORITHMS FOR 100 INDEPENDENT RUNS

detection SNR (dB)

method | k| -10 -5 0 5 10
1 58 1 0 0 0

MDL 2 40 8 93 93 9
3 2 11 7 7 5

1 57 0 0 0 0

PDL 2 43 100 100 100 100

3 0 0 0 0 0

1 68 95 10 0 0

G&T 2 11 5 90 100 100
3 21 0 0 0 0

—%— PDL True DOA
-© MDL True DOA H
-8 PDL Estimated DOA

- MDL Estimated DOA
1 T T

2 3 4 5

SNR

Fig. 1. Probability of resolution for the PDL and MDL algorithms using
an array of eight sensors exposed to two uncorrelated far-field signals. The
probability of resolution is obtained for two cases: using the estimated DOAs
for the model of order 2 and the true DOAs used for that model.

The probability of resolution is defined as the ratio of the
number of trials at which the true number of sources has been
resolved to the total number of trials. In the second example,
we assume two sources located at 10° and 15°. We compute
the probability of resolution for this example using 100 inde-
pendent trials. In this example, since the two sources are close,
G&T cannot resolve the number of signals. The probability of
resolution for this example has been illustrated in Fig. 1 as a
function of SNR. In this figure, we have studied two cases of
interest. In the first setting, we have used the alternating pro-
jection algorithm to estimate the DOAs. The estimated DOAs
are then used in the MDL and PDL enumerators. In the second
setting, we have used the true value of the DOAS in the enumer-
ator. In this case, the estimation and the detection problems are
separated; the DOA uncertainty of the estimator does not affect
the performance of the enumerator, and a fair comparison of the
MDL and PDL algorithms is obtained. As shown in Fig. 1, in
both cases, PDL outperforms MDL.

The recursive structure of the PDL algorithm can be very
useful in nonstationary environment. We assume that the source
at 10° is absent at the beginning and is added at the 41st snap-
shot. The SNR for this experiment is 10 dB. PDL is evaluated
on a variable length window, where the size of the window
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N
n
.

N

Estimated number of sources
—
- o

o
n
.

007™™0 20 30 40 50 60 70 80 90

Time (snapshots)

100

Fig.2. Estimated number of sources as a function of the observation window.
The source at 10° is added at the 41st snapshot.

200 T T T T T . T T T

—200 |

-400 t

-600 |

Difference in PDL

-800

-1000

-1200 : 2 . . - . - v
0O 10 20 30 40 50 60 70 80 90 100
Time (snapshots)

Fig. 3. Difference between the PDL terms of a model of order £ and the
corresponding terms of the model of order k — 1. The source at 10° is added at
the 41st snapshot.

grows with the number of observations. The number of esti-
mated sources has been illustrated in Fig. 2 as a function of time.
In this example, PDL can resolve the true number of signals and
can locate the change point.

For the same example, Fig. 3 illustrates the difference be-
tween the PDL terms of a model of order k£ and the corre-
sponding terms of the model of order £ — 1. Note that there
exists a large difference between the PDL terms of the models
of order 2 and 1 and that the difference between the two terms
has a knee-point in the vicinity of the 40th snapshot. The sudden
change in the rate suggests that a source appears at the 41st snap-
shot. This property of PDL can be used to locate the time instant
at which the underlying model changes substantially.

We have also studied the case at which both sources are
present at the time origin and the source at 10° vanishes at the
40th time instant. The result obtained by the PDL enumerator,
with SNR = 10 dB, is illustrated in Fig. 4. Notice that PDL
cannot resolve the true number of sources. PDL fails to detect
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Fig. 4. Estimated number of sources as a function of the observation window.
The source at 10° disappears at the 41st snapshot.
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Fig. 5. Difference between the PDL terms of a model of order k and the
corresponding terms of the model of order k — 1. The source at 10° disappears
at the 41st snapshot.

the correct number of sources since it has a cumulative struc-
ture. Indeed, the aggregated PDL over 1,...,40 becomes a
dominant factor, and the PDL components over the window
41, ...,100 cannot nullify the effect of having two sources in
1,...,40. To resolve this problem, we study the variation of
the PDL cost for different models. The difference between the
PDL criteria for the models £ = 1,...,4 has been illustrated
in Fig. 5. Note that the slope of the curve PDLy(¢) — PDL; (¢)
changes in the vicinity of the 40th snapshot. Due to the win-
dowing effect of the sample correlation matrix with o« = 0.9,
the location of the change point is slightly shifted. For smaller
values of «, the change point will be detected faster. The
change in the slope indicates that the underlying model may no
longer be valid. Therefore, the PDL cost should be reset and
should be re-evaluated over the new observation window. This
approach allows a change on the number of sources be detected
during the window of observation.

Table III illustrates the resolution capability of the MDL,
PDL, and G&T algorithms for a case at which the source at 20°
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TABLE III
NUMBER OF NONCOHERENT SOURCES DETECTED BY THE MDL, PDL, AND
G&T ALGORITHMS FOR 100 INDEPENDENT RUNS. THE SOURCE AT 20° MOVES
TOWARD THE OTHER SOURCE IN A CONSTANT SPEED

detection SNR (dB)

method |k | —-10 -5 0 5 10
1 52 26 2 0 0

MDL 2 14 29 43 49 45
3 34 45 55 51 55

1 76 8 i} 0 0

PDL 2 24 92 100 100 100
3 0 0 0 0 0

1 97 100 100 37 1

G&T 2 2 0 0 63 99
3 1 0 0 0 0

moves toward the other source in a constant speed. We have as-
sumed that the speed of movement is 0.05° per snapshot interval,
and the total number of snapshots is 100. Therefore, at the end
of the observation window, the sources are located at 10° and
15°. As seen in the table, MDL cannot resolve the sources. Since
MDL assumes that the sources are stationary over the window
of observation, the technique cannot work properly in nonsta-
tionary environment. G&T only uses the rank of the correlation
matrix; it does not incorporate the location of the sources in the
detection algorithm. Therefore, for large SNR, G&T can resolve
the sources. Unlike MDL, PDL has a recursive structure, and
therefore, it can handle the variation of the model in a more ef-
fective way and results in a better performance.

‘We should note that there exist various techniques for target
tracking of maneuvering sources; see, for instance, [24] and
[25]. The authors in these two papers are looking for methods to
estimate the number of signals for their far-field DOA tracking
algorithms. Similar to the technique we have proposed in this
paper, they also consider a nonstationary array correlation
matrix (corresponding to a batch period) caused by a rapidly
moving target.

VI. CONCLUSION

In this paper, we have introduced a new information theoretic
method for signal enumeration. Our approach is based on the
predictive description length. The PDL is the length of a pre-
dictive code of data. The proposed technique exploits the spe-
cific structure of the correlation matrix by decomposing it into
two components in the signal and noise subspaces. Each com-
ponent is encoded separately, and the results are added to obtain
the total codelength. This process is performed for all candidate
models, and the one with the smallest codelength is selected as
the best model. It has been shown that the proposed technique
enumerates coherent as well as noncoherent sources. To reduce
the computational complexity of the ML estimator of the param-
eter vector, we have used the alternating projection method. The
simulation results show that the performance of the PDL algo-
rithm is better than that of the MDL [3] and G&T [9] methods.
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