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Abstract—In the manifold learning problem, one seeks to dis-
cover a smooth low dimensional surface, i.e., a manifold embedded
in a higher dimensional linear vector space, based on a set of
measured sample points on the surface. In this paper, we consider
the closely related problem of estimating the manifold’s intrinsic
dimension and the intrinsic entropy of the sample points. Specif-
ically, we view the sample points as realizations of an unknown
multivariate density supported on an unknown smooth manifold.
We introduce a novel geometric approach based on entropic graph
methods. Although the theory presented applies to this general
class of graphs, we focus on the geodesic-minimal-spanning-tree
(GMST) to obtaining asymptotically consistent estimates of the
manifold dimension and the Rényi -entropy of the sample
density on the manifold. The GMST approach is striking in its
simplicity and does not require reconstruction of the manifold
or estimation of the multivariate density of the samples. The
GMST method simply constructs a minimal spanning tree (MST)
sequence using a geodesic edge matrix and uses the overall lengths
of the MSTs to simultaneously estimate manifold dimension and
entropy. We illustrate the GMST approach on standard synthetic
manifolds as well as on real data sets consisting of images of faces.

Index Terms—Conformal embedding, intrinsic dimension,
intrinsic entropy, manifold learning, minimal spanning tree,
nonlinear dimensionality reduction.

I. INTRODUCTION

CONSIDER a class of natural occurring signals, e.g.,
recorded speech, audio, images, or videos. Such signals

typically have high extrinsic dimension, e.g., as characterized
by the number of pixels in an image or the number of time
samples in an audio waveform. However, most natural signals
have smooth and regular structure, e.g., piecewise smoothness,
that permits substantial dimension reduction with little or no
loss of content information.To support this fact, one needs only
consider the success of image, video, and audio compression
algorithms, e.g., MP3, JPEG, and MPEG, or the widespread
use of efficient computational geometry methods for rendering
smooth three-dimensional (3-D) shapes.

A useful representation of a regular signal class is to model it
as a set of vectors that are constrained to a smooth low-dimen-
sional manifold embedded in a high-dimensional vector space.
This manifold may in some cases be a linear, i.e., Euclidean,
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subspace, but in general, it is a nonlinear curved surface. A
problem of substantial recent interest in machine learning, com-
puter vision, signal processing, and statistics is the determina-
tion of the so-called intrinsic dimension of the manifold and the
reconstruction of the manifold from a set of samples from the
signal class [1]–[7]. This problem falls in the area of manifold
learning, which is concerned with discovering low-dimensional
structure in high-dimensional data.

When the samples are drawn from a large population of sig-
nals, one can interpret them as realizations from a multivariate
distribution supported on the manifold. As this distribution is
singular in the higher dimensional embedding space, it has zero
entropy, as defined by the standard Lebesgue integral over the
embedding space. However, when defined as a Lebesgue inte-
gral restricted to the lower dimensional manifold, the entropy
can be finite. This finite intrinsic entropy can be useful for ex-
ploring data compression over the manifold or, as suggested in
[8], clustering of multiple subpopulations on the manifold. The
question that we address in this paper is the following: How do
we simultaneously estimate the intrinsic dimension and intrinsic
entropy on the manifold given a set of random sample points?
We present a novel geometric probability approach to this ques-
tion, which is based on entropic graph methods developed by us
and reported in [8]–[10].

Techniques for manifold learning can be classified into three
categories: linear methods, local methods, and global methods.
Linear methods include principal components analysis (PCA)
[11] and classical multidimensional scaling (MDS) [12].
They are based on analyzing the eigenstructure of empirical
covariance matrices and can be reliably applied only when the
manifold is a linear subspace. Local methods include linear
local imbedding (LLE) [2], locally linear projections (LLP)
[13], Laplacian eigenmaps [14], and Hessian eigenmaps [3].
They are based on local approximation of the geometry of the
manifold and are computationally simple to implement. Global
approaches include isometric feature mapping (ISOMAP) [1]
and coformal ISOMAP (C-ISOMAP) [15]. They preserve the
manifold geometry at all scales and have better stability than
local methods when the number of manifold samples is limited.

With regard to estimation of the intrinsic dimension ,
several methods have been proposed [11], [16]. Most of these
methods are based on linear projection techniques: A linear
map is explicitly constructed, and dimension is estimated by
applying principal component analysis (PCA), factor analysis,
or MDS to analyze the eigenstructure of the data. These
methods rely on the assumption that only a small number
of the eigenvalues of the (processed) data covariance will be
significant. Linear methods tend to overestimate as they do
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not account for nonlinearities in the data. Both nonlinear PCA
[4] methods and the ISOMAP circumvent this problem, but
they still rely on possibly unreliable and costly eigenstructure
estimates. Other methods have been proposed based on local
geometric techniques, e.g., estimation of local neighborhoods
[6] or fractal dimension [17] and estimating packing numbers
[5] of the manifold.

We propose a geodesic-minimal-spanning-tree (GMST)
method that jointly estimates both the intrinsic dimension and
intrinsic entropy on the manifold. The method is implemented
as follows. First, a complete geodesic graph between all pairs of
data samples is constructed, as in ISOMAP or C-ISOMAP. Then,
a minimal spanning graph (the GMST) is obtained by pruning the
complete geodesic graph down to a subgraph that still connects
all points but has minimum total geodesic length. The intrinsic
dimension and intrinsic entropy are then estimated from the
GMST length functional using a simple linear least squares
(LLS) and method-of-moments (MOM) procedure.

The GMST method falls in the category of global approaches
to manifold learning, but it differs significantly from the afore-
mentioned methods. First, it has a different scope. Indeed, un-
like ISOMAP and C-ISOMAP, the GMST method provides a
statistically consistent estimate of the intrinsic entropy in addi-
tion to the intrinsic dimension of the manifold. To the best of
our knowledge, no other such technique has been proposed for
learning manifold dimension. Second, unlike local methods that
work on chunks of data in local neighborhoods, GMST works
on resampled data distributed over the global data set. Third, the
GMST method is simple and elegant: It estimates intrinsic en-
tropy and dimension by detecting the rate of increase of a graph
as a function of the number of its resampled vertices.

The aims of this paper are limited to introducing GMST as a
novel method for estimating manifold dimension and entropy of
the samples. As in work of others on dimension estimation [5],
[17], here, we do not consider the issue of reconstruction of the
complete manifold. Similarly to these authors, we believe that
dimension estimation and entropy estimation for nonlinear data
are of interest in their own right. We also do not consider the ef-
fect of additive noise or outliers on the performance of GMST.
Finally, the consistency results of GMST reported here are lim-
ited to domain manifolds defined by some smooth unknownmap-
ping.TheextensionofGMSTmethodologytogeneral targetman-
ifolds, e.g., those defined by implicit level set embeddings [18],
[19], is a worthwhile topic for future investigation.

What follows is a brief outline of the paper. We review some
necessary background on the mathematics of domain manifolds
in Section II. In Section III, we review the asymptotic theory
of entropic graphs and obtain several new results required for
their extension to embedded manifolds. In Section IV, we define
the general GMST algorithm. Finally, in Section V, we test the
GMST algorithm on standard synthetic manifolds and on a real
data set consisting of human faces from different subjects.

II. GEOMETRIC BACKGROUND

A. Three-Dimensional Example

To illustrate ideas, consider a two-dimensional (2-D) surface
embedded in 3-D Euclidean space called the embedding space.

Let be a set of points (samples) in
a subset of the plane. Naturally, the shortest path between
any pair of these points is given by the straight line in

connecting them, with corresponding distance given by its
Euclidean length . Now, let be used as a pa-
rameterization space to describe a curved surface in via a
mapping . Surfaces defined in this
explicit manner are called domain or parameterized manifolds,
and they inherit the topological dimension, which is equal to
2 in this case, of the parameterization space. When is non-
linear, the shortest path on between points and

is a curve on the surface called the geodesic curve.
In this paper, we will primarily consider domain manifolds de-
fined by conformal mappings . Such conformal embeddings
have the property that the angles between tangent vectors to the
surface are identical to angles between corresponding vectors in
the parameterization space, possibly up to a smoothly varying
local scale factor. This property guarantees that regardless of
how the mapping “deforms” onto , the geodesic dis-
tances in are closely related to the Euclidean distances in

. When this smooth surface representation holds, there exist
algorithms, e.g., ISOMAP and C-ISOMAP [1], [15], which can
be used to estimate the Euclidean distances between points in
from estimates of the geodesic distances between points in .
If a certain type of minimal spanning graph is constructed using
these estimates, well-established results in geometrical proba-
bility [8], [20] allow us to develop simple estimates of both en-
tropy and dimension of the points distributed on the surface.

B. Differential Geometry Setting

In the following, we recall some facts from differential geom-
etry needed to formalize and generalize the ideas just described.
We will consider smooth manifolds embedded in . For the
general theory, we refer the reader to any standard book in dif-
ferential geometry (for example, [21]–[23]). An -dimensional
smooth manifold is a set such that each of its points
has a neighborhood that can be parameterized by an open set
of through a local change of coordinates. Intuitively, this
means that although is a (hyper) surface in , it can be lo-
cally identified with .

Let be a mapping between two manifolds ,
. Let be a curve in . The tangent map assigns each

tangent vector to at point and the tangent vector to
at point such that if is the initial velocity of in ,

then is the initial velocity of the curve in . For
example, if , where is an open set of ,
then , where , ,

is the Jacobian matrix associated with at point
.

The length of a smooth curve is defined
as . The geodesic distance between
points , is the length of the shortest (piecewise)
smooth curve between the two points

We can now define the following types of embeddings.
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Definition 1: is called a conformal mapping
if is a diffeomorphism (i.e., is differentiable, bijective with
differentiable inverse ) and, at each point , pre-
serves the angles between tangent vectors, i.e.,

(1)

for all vectors and that are tangent to at , and
is a scaling factor that varies smoothly with . If for all ,

, then is said to be a (global) isometry. In this case,
the length of tangent vectors is also preserved in addition to the
angles between them.

If there is an open set [21], then the diffeomor-
phism is a conformal mapping iff ,
where is the identity matrix. In this case, the geodesic
distance in can be computed as follows. Any smooth curve

can be represented as , where
is a smooth curve in . Then, the length

of the curve is given by

As in , the shortest path between any two points is given by
the straight line that connects them, and
minimizes over all smooth curves with start and end
points at and , respectively. Therefore, if is constant,
i.e., for all , the geodesic distance between

and is

(2)

When , i.e., is an isometry, the geodesic distance in
and the Euclidean distance in the parameterization space
are the same. If , there is a global expansion
(contraction) in the distances between points.

It is evident from the above discussion that geodesic distances
carry strong information about a nonlinear domain manifold
such as . However, their computation requires the knowledge
of the analytical form of via and its Jacobian. Our goal is
to learn the entropy of nonlinear data on a domain manifold to-
gether with its intrinsic dimension, given only the data set of

samples in the embedding space , and without knowledge
of its embedding function .

III. ENTROPIC GRAPH ESTIMATORS ON EMBEDDED MANIFOLDS

Let be independent identically dis-
tributed (i.i.d.) random vectors in a compact subset of , with
multivariate Lebesgue density , which we will also call random
vertices. Define the distance matrix as the matrix of
edge weights (w.r.t. a specified metric). A spanning graph
over is defined as the pair , where , and
is a subset of all graph edges connecting pairs of vertices in ,
with weights given by . When is computed from pairwise
Euclidean distances, is called a Euclidean spanning graph.

It has long been known [24] that, when suitably normalized,
the sum of the edge weights of certain minimal Euclidean span-

ning graphs over converges with probability 1 (w.p. 1)
to the limit , where the integral is interpreted in
the sense of Lebesgue, and . This a.s. limit is
the integral factor in what we will call the extrinsic Rényi

-entropy of the multivariate Lebesgue density :

(3)

In the limit, when , we obtain the usual Shannon entropy
. Graph constructions that converge to

the integral in the limit (3) were called continuous quasiadditive
(Euclidean) graphs in [20] and entropic (Euclidean) graphs
in [8]. See the monographs by Steele [25] and Yukich [20]
for an excellent introduction to the theory of such random
Euclidean graphs. Relevant details for these results are given
in Section III-A.

The -entropy has proved to be an important quantity in
signal processing, where its applications range from vector
quantization [26], [27] to pattern matching [28] and image
registration [8], [29]. The -entropy parameterizes the Chernoff
exponent governing the minimum probability of error [30],
making it an important quantity in detection and classification
problems. Like the Shannon entropy, the -entropy also has an
operational characterization in terms of source coding rates. In
[31], it was shown that the -entropy of a source determines
the achievable block-code rates in the sense that the probability
of block decoding error converges to zero at an exponential rate
with rate constant .

A. Beardwood–Halton–Hammersley Theorem in

Let be a set of points in . A minimal
Euclidean graph spanning is defined as the graph spanning

having minimal overall length

(4)

Here, the sum is over all edges (e.g., , ) in
the graph , is the Euclidean length of , and is
called the edge exponent or power-weighting constant. For ex-
ample, when is the set of spanning trees over , one obtains
the MST. A minimal Euclidean graph is continuous quasiaddi-
tive when it satisfies several technical conditions specified in
[20] (also see [9]). Continuous quasiadditive Euclidean graphs
include the minimal spanning tree (MST), the -nearest neigh-
bors graph ( -NNG), the minimal matching graph (MMG), the
traveling salesman problem (TSP), and their power-weighted
variants. While all of the results in this paper apply to this larger
class of minimal graphs, we specialize to the MST for concrete-
ness.

A remarkable result in geometric probability was established
by Beardwood, Halton, and Hammersley (BHH) [24].

BHH Theorem [20], [25]: Let be an i.i.d. set of random
variables taking values in a compact subset of having
common probability distribution . Let this distribution have
the decomposition , where is the Lebesgue
continuous component, and is the singular component. The
Lebesgue continuous component has a Lebesgue density (no



COSTA AND HERO: GEODESIC ENTROPIC GRAPHS FOR DIMENSION AND ENTROPY ESTIMATION 2213

singular component) denoted , . Let be
the length of the MST spanning , and assume that and
that . Then, w.p. 1

(5)

where , and is a constant not depending on the
distribution . Furthermore, the mean length
converges to the same limit.

The limit on the right side of (5) in the BHH theorem is zero
when the distribution has no Lebesgue continuous compo-
nent, i.e., when . On the other hand, when has no
singular component, i.e., , a consequence of the BHH
Theorem is that

(6)

is an asymptotically unbiased and strongly consistent estimator
of the extrinsic -entropy defined in (3). For a discus-
sion about the role of the constant in the proposed estimators,
see Section IV.

B. Generalization of BHH Theorem to Embedded Manifolds

If the vertices are constrained to lie on a smooth compact
-dimensional manifold , the distribution of is

singular with respect to Lebesgue measure and, as pre-
viously mentioned, the limit (5) in the BHH Theorem is zero.
However, as shown below, if is defined by an isometric em-
bedding from the parameterization space , if has a den-
sity on , and if the geodesic estimation step of ISOMAP
is used to approximate geodesic distances, then the length of an
MST constructed from the geodesic edge lengths can be made
to converge, after suitable normalization and transformation, to
the intrinsic -entropy on , which is defined by

(7)

where denotes the differential volume element over
.
More generally, assume that is embedded in through

the diffeomorphism . As lives in , let
be the Euclidean minimal graph spanning and having length
function according to (4). We
have the following extension of the BHH Theorem.

Theorem 1: Let be a smooth compact -dimensional
manifold embedded in through the diffeomorphism

, . Assume and . Sup-
pose that are i.i.d. random vectors on having
common density with respect to Lebesgue measure on

. Then, the length functional of the MST

spanning satisfies (8), shown at the bottom of the
page, w.p. 1, where . Furthermore, the mean

converges to the same limit.
Proof: This theorem is a simple consequence of (5) in the

BHH Theorem and properties of integrals over manifolds. By
the BHH Theorem, w.p. 1

(9)

where is the density of . Therefore, the limits
claimed in (8) for and are obvious. For ,
(9) implies

(10)

and it remains to be shown that this limit is identical to the limit
asserted in (8).

For an integrable function defined on a domain manifold
defined by the diffeomorphism , the integral

of over satisfies the relation [22]

(11)

where is the Riemannian metric associ-
ated with . Specializing to the indicator function of a small
volume centered at a point , (11) implies the following relation
between volume elements in and : .
Furthermore, specializing to , it is clear from (11)
that . Therefore

which, after the change of variable , is equivalent to
the integral in the limit (8).

C. Estimating Geodesic Distances

If is an isometric or conformal embedding, then it has
been shown that for sufficiently dense sampling over ,
i.e., for large , the ISOMAP or the C-ISOMAP algorithm
summarized in Table I will approximate the matrix of pairwise
Euclidean distances between points in the
domain space without explicit knowledge of . This
estimate is computed from an Euclidean graph connecting
all local neighborhoods of data points in . Specifically,
in the isometric case, ISOMAP proceeds as follows. Two
methods, called the -rule and the -rule [1], are available
for constructing . The first method connects each point to
all points within some fixed radius , and the other connects

.
(8)
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TABLE I
DISTANCE ESTIMATION STEPS OF ISOMAP/C-ISOMAP ALGORITHMS TO RECONSTRUCT EUCLIDEAN DISTANCES BETWEEN X ON THE EMBEDDING

PARAMETERIZATION SPACE FROM POINTS Y OVER THE EMBEDDED MANIFOLD

each point to all its -nearest neighbors. The graph defining
the connectivity of these local neighborhoods is then used to
approximate the geodesic distance between any pair of points
as the shortest path through that connects them. Finally, this
results in a distance matrix whose entry is the geodesic
distance estimate for the th pair of points. The geodesic
distance estimation algorithm just described is motivated by
the fact that locally, a smooth manifold is well “approximated”
by a linear hyperplane, and so, geodesic distances between
neighboring points are close to their Euclidean distances. For
faraway points, the geodesic distance is estimated by summing
the sequence of such local approximations over the shortest
path through the graph .

Thus, if one uses these distances to construct an MST, its
length function will approximate , and we can
invoke Theorem 1 to characterize its asymptotic convergence
properties. As the estimated distances will use information
about the geodesic distances between pairs of points ,
this graph will be called a geodesic MST (GMST).

More specifically, denote by the matrix of estimated
pairwise distances between points and
in and by the estimated length of the corre-
sponding edge . Define the GMST

as the minimal graph over whose length is

(12)

The following is the principal theoretical result of this paper
and is a simple consequence of Theorem 1.

Corollary 1: Let be a smooth compact -dimen-
sional manifold embedded in through the diffeomorphism

. Let and . Suppose
that are i.i.d. random vectors on with common

density w.r.t. Lebesgue measure on . If the entries
of matrix satisfy

as (13)

w.p. 1, then the length functional of the GMST satisfies equa-
tion (14), shown at the bottom of the page w.p. 1, where

and . Furthermore, the mean

converges to the same limit.
The sufficient condition (13) of Corollary 1 simply states

that the pairwise Euclidean distances between points in
should be uniformly well approximated by the entries

of matrix . Constructions of that satisfy (13) will be
discussed in Section III-C1

Proof of Corollary 1: Write as

The uniform convergence expressed by (13) implies that

Applying Theorem 1 and identifying ,
, and provides the desired

result.
If , as the parameter is increased from 2 to , the

limit (14) in Corollary 1 transitions from infinity to a finite limit
and finally to zero over three consecutive steps ,

, and . As indexes the rate constant of
the length functional , this abrupt transition suggests
that the intrinsic dimension and the intrinsic entropy might be
easily estimated by investigating the growth rate of the GMSTs
length functional. This observation is the basis for the estimation
algorithm introduced in Section IV.

(14)
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We now specialize Corollary 1 to the following cases of in-
terest.

1) Isometric Embeddings: In the case that defines an iso-
metric embedding, the geodesic estimation step of ISOMAP is
asymptotically able to recover the true Euclidean distances be-
tween the points in , and satisfies (13) [32].
Furthermore, . Thus, using ISOMAP to construct

, limit (14) holds with the limit replaced by

Furthermore, con-
verges w.p. 1 to the intrinsic entropy (7).

If defines an isometric embedding with contraction or ex-
pansion, the geodesic estimation step of the ISOMAP algorithm
is able to recover the true Euclidean distances between points
in only up to an unknown scaling constant [cf. (2)]. As

, limit (14) holds with the limit replaced
by

Now, the entropy estimator defined above converges w.p. 1 up
to an unknown additive constant to the intrinsic
entropy (7). We point out that in many signal processing appli-
cations (e.g., image registration), a constant bias on the entropy
estimate does not pose a problem since an estimate of the rela-
tive magnitude of the entropy functional is all that is required.

2) Nonisometric Embeddings Defined by Conformal
Mappings: In the case that is a general (nonisometric)
conformal mapping, it was stated in [33], without proof, that
the C-ISOMAP algorithm is once again able to recover the
true Euclidean distances between points in . Furthermore,

. Thus, when is the length of the
geodesic MST constructed on the distance matrix generated
by the C-ISOMAP algorithm, we expect the limit (14) to hold
with the limit replaced by

In this case, would
converge a.s. to the weighted intrinsic entropy

The weighted -entropy is a “version” of the standard
unweighted -entropy , which is “tilted” by the
space-varying volume element of . This unknown weighting
makes it impossible to estimate the intrinsic unweighted

-entropy. However, as can be seen from the discussion in
Section IV, as the growth rate exponent of the GMST length
depends on , we can still perform dimension estimation in
this case.

3) Nonconformal Diffeomorphic Embeddings: When de-
fines a general diffeomorphic embedding, an extension of the
C-ISOMAP algorithm that can probably learn the Euclidean dis-
tances between the points in the parametrization space is

needed in order to apply Corollary 1. To the best of our knowl-
edge, such an extension of C-ISOMAP does not yet exist.

IV. GMST ALGORITHM

Now that we have characterized the asymptotic limit (14) of
the length functional of the GMST, we here apply this theory to
jointly estimate entropy and dimension. The key is to notice that
the growth rate of the length functional is strongly dependent on
the intrinsic dimension , whereas the constant in the conver-
gent limit is equal to the intrinsic -entropy. We use this strong
growth dependence as a motivation for a simple estimator of .
Throughout, we assume that the geodesic minimal graph length

is determined from a distance matrix that satisfies
the assumption of Corollary 1, e.g., obtained using ISOMAP or
C-ISOMAP. We also assume that . This guarantees that

has a nonzero finite convergent limit for
. Next, define . According to (14),

has the following approximation:

(15)

where

(16)

, and is an error residual that goes to zero
w.p. 1 as .

The additive model (15) could be the basis for many different
methods for estimation of and . For example, we could
invoke a central limit theorem on the MST length functional
[34] to motivate a Gaussian approximate to and apply max-
imum likelihood principles. However, in this paper, we adopt
a simpler nonparametric least squares strategy that is based on
resampling from the population of available points in .
The proposed algorithm is summarized in Table II. Specifically,
let , , and be inte-
gers, and let be an integer that satisfies for some
fixed . For each value of , randomly
draw bootstrap data sets , with replace-
ment, where the data points within each are chosen from
the entire data set independently. From these samples, com-
pute the empirical mean of the GMST length functionals

. Defining
and motivated by (15), we write down the linear model

(17)

where

Expressing and explicitly as functions of and via (16),
the dimension and entropy quantities could be estimated using a
combination of nonlinear least squares (NLLS) and integer pro-
gramming. Instead, we take a simpler MOM approach in which
we use (17) to solve for the linear least squares (LLS) estimates
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TABLE II
GMST RESAMPLING ALGORITHM FOR ESTIMATING INTRINSIC DIMENSION m AND INTRINSIC ENTROPY H

, of , followed by inversion of (16). After making a simple
large approximation, this approach yields the following esti-
mates:

round

(18)

It is easily shown that the law of large numbers and Theorem
1 imply that these estimators are consistent as , . We
omit the details.

By running the algorithm times independently over the
population , one obtains estimates that can
be averaged to obtain final regularized dimension and entropy
estimators and . The role of pa-
rameter , together with parameter , is to provide a tradeoff
between the bias and variance performance of the estimators for
finite . The two cases of interest (considered in Section V) are

and . In the first case,
the smoothing is performed on the GMST length functional
values before dimension and entropy are estimated, resulting
in low variance but possibly high bias. In the second case, the
smoothing is performed directly on the dimension and entropy
estimates, resulting in higher variance but less bias.

Fig.1showsagraphical illustrationof thesmoothingstepof the
algorithm.Theleftpanelshows resampledGMSTlengths,
labeled “ ” and “ ,” along with their average, labeled “ ” for
GMSTs built on randomly chosen vertices. For

, a linear least squares fit to the average GMST
trajectory is used to compute the dimension
estimate . For , dimension estimates

Fig. 1. Computing the dimension estimators by averaging over the length
functional values, i.e., (M;N) = (1; N) (dashed line) or by averaging over
the dimension estimates, i.e., (M;N) = (M; 1) (solid lines).

and are computed from subtrajectories and , forming a
histogram from which a final estimate can be computed.

A word about determination of the sequence of constants
is in order. First of all, in the large regime for which the

above estimates were derived, is not required for the dimen-
sion estimator. is the limit of the normalized length functional
of the Euclidean MST for a uniform distribution on the unit cube

. Closed-form expressions are not available, but several
approximations and bounds can be used in various regimes of
[20], [35]. For example, one could use the large approximation
of Bertsimas and van Ryzin [36]: .
Another strategy, which is adopted in this paper, is to determine

by simulation of the Euclidean MST length on the -dimen-
sional cube for uniform random samples.

Before turning to applications, we briefly discuss compu-
tational issues. For samples, computing the MST scales as

, for which we have implemented Kruskal’s algo-
rithm [29]. On the other hand, the geodesic distances needed to
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Fig. 2. S-shaped surface manifold and corresponding GMST (k = 7) graph
on 400 sample points.

compute the GMST require operations using Dijk-
stra’s algorithm multiple times. Thus, like ISOMAP, the GMST
has overall computational complexity.

V. APPLICATIONS

We illustrate the performance of the GMST algorithm on
manifolds of known dimension as well as on a real data set con-
sisting of face images. In all the simulations, we fixed the pa-
rameters and . We also used
the -rule method, as described in Table I, to estimate geodesic
lengths. With regard to intrinsic dimension estimation, we com-
pare our algorithm to ISOMAP. In ISOMAP, similarly to PCA,
intrinsic dimension is usually estimated by detecting changes in
the residual fitting errors as a function of subspace dimension.

A. -Shaped Surface

The first manifold considered is the standard 2-D -shaped
surface [2] embedded in (see Fig. 2). Fig. 3 shows the evolu-
tion of the average GMST length as a function of the number

Fig. 3. GMST dimension estimation for (M;N) = (1; N). (a) Plot of the
average GMST length �L for theS-shaped manifold as a function of the number
of samples. (b) Log-log plot of (a). (c) Blowup of the last ten points in (b) and
its linear least squares fit. The estimated slope is â = 0:4976, which implies
m̂ = 2. (k = 7, M = 1, N = 5).

of samples for a random set of i.i.d. points uniformly distributed
on the surface.

To compare the dimension estimation performance of the
GMST method to ISOMAP, we ran a Monte Carlo simulation.
For each of several sample sizes, 30 independent sets of i.i.d.
random vectors uniformly distributed on the surface were
generated. We then counted the number of times that the
intrinsic dimension was correctly estimated. To automatically
estimate dimension with ISOMAP, we follow a standard PCA
order estimation procedure. Specifically, we graph the residual
variance of the MDS fit as a function of the PCA dimension and
try to detect the “elbow” at which residuals cease to decrease
“significantly” as estimated dimension increases [1]. The elbow
detector is implemented by a simple minimum angle threshold
rule. Table III shows the results of this experiment. As it can
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TABLE III
NUMBER OF CORRECT ISOMAP AND GMST DIMENSION ESTIMATES

OVER 30 TRIALS AS A FUNCTION OF THE NUMBER OF SAMPLES FOR THE

S-SHAPED MANIFOLD (k = 7)

Fig. 4. Histogram of GMST entropy estimates over 30 trials of 600 samples
uniformly distributed on the S-shaped manifold (k = 7, M = 1, N = 5,
Q = 10). True entropy (“true”) was computed analytically from the area of the
S curve supporting the uniform distribution of manifold samples.

be observed, the GMST algorithm outperforms ISOMAP in
terms of dimension estimation error rates for small sample
sizes. Fig. 4 shows the histogram of the entropy estimates for
the same experiment.

B. Hyperplanes

Next, we investigated linear -dimensional hyperplanes
in for which PCA methods are designed. We consider
hyperplanes of the form . Table IV shows
the results of running a Monte Carlo simulation under the
same conditions as in Section V-B. When (i.e., least
squares applied to the average length functional values), the
GMST method showed a tendency to underestimate the correct
dimension at smaller sample sizes. However, by taking
instead (i.e., averaging of least squares dimension estimates),
this negative bias was eliminated, and the GMST performed as
well as the ISOMAP, which was observed to correctly predict
the dimension for all sample sizes investigated.

Of course, as expected, the number of samples required to
achieve the same level of accuracy increases with the manifold
dimension. This is the usual curse of dimensionality phenom-
enon: As the dimension increases, more samples are needed for
the asymptotic regime in (14) to settle in and validate the limit
in Corollary 1.

TABLE IV
NUMBER OF CORRECT GMST DIMENSION ESTIMATES OVER 30 TRIALS AS A

FUNCTION OF THE NUMBER OF SAMPLES FOR HYPERPLANES (k = 5)

Fig. 5. Samples from ISOMAP face database [1].

C. ISOMAP Face Database

We applied our method to a high-dimensional synthetic image
data set. For this purpose, we used the ISOMAP face database
[1]. This set consists of 698 images of the same face generated
by varying three different parameters: vertical and horizontal
pose and lighting direction. Each image has 64 64 pixels with
256 gray levels, normalized between 0 and 1 (Fig. 5). For pro-
cessing, we embedded each image in the 4096-dimensional Eu-
clidean space using the common lexicographic order. We ap-
plied the algorithm 30 times over the data set with the histogram
of the dimension estimates displayed in Fig. 6. The estimated
intrinsic dimension oscillates between 3 and 4, which, as in
[5], deviates from the “informal” intrinsic dimension of 3 es-
timated by ISOMAP with thresholding. The estimated entropy
was 21.8 bits, with a standard deviation of 0.5. Note that as

is close to one for the estimated values of ,
the estimate of -entropy is expected to be close to the Shannon
entropy. This estimate suggests that one could, in theory, com-
press the ISOMAP face database with little loss, using at most

bits/pixel.

D. Yale Face Database B

Finally, we applied the GMST method to a real data set and,
consequently, of unknown manifold structure, intrinsic dimen-
sion, and intrinsic entropy. We chose the set of 256 gray-level
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Fig. 6. GMST intrinsic dimension estimate histogram for the ISOMAP face
database. (Left) k = 6,M = 1,N = 10,Q = 15. (Right) k = 6,M = 10,
N = 1, Q = 15.

Fig. 7. Samples from Yale face database B [37].

images of several individuals taken from the Yale Face Data-
base B [37]. This is a publicly available database1 containing a
number of portfolios of face images under 585 different viewing
conditions for each subject (see Fig. 7). Each portfolio consists
of nine poses and 65 illumination conditions (including ambient
lighting) for each subject. The images were taken against a fixed
background, which we did not bother to segment out. This is jus-
tified since any fixed structures throughout the images would
not change the intrinsic dimension or the intrinsic entropy of
the dataset. We randomly selected four individuals from this
data base and subsampled each person’s face images down to
a 64 64 pixel image. Similarly to the ISOMAP face data set,
we normalized the pixel values between 0 and 1.

1http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

Fig. 8. GMST real-valued intrinsic dimension estimates and histogram for
face 2 in the Yale face database B (k = 7,M = 1N = 10,Q = 20).

Fig. 9. ISOMAP (k = 7) residual variance for face 2 in the Yale face database
B.

Fig. 8 displays the results of running 30 trials of the algo-
rithm using face 2. The first panel shows the real-valued es-
timates of the intrinsic dimension, i.e., estimates obtained be-
fore the rounding operation in (18). Any value that falls in be-
tween the dashed lines will then be rounded to the integer at
the midpoint. The second panel of Fig. 8 shows the histogram
for these rounded estimates over the 30 generated trials. The in-
trinsic dimension estimate is between 5 and 6. Fig. 9 shows the
corresponding residual variance plots used by ISOMAP to es-
timate intrinsic dimension. From these plots, it is not obvious
how to determine the “elbow” at which the residuals cease to
decrease “significantly” with added dimensions. This illustrates
one of the major drawbacks of ISOMAP (and other spectral-
based methods like PCA) as an intrinsic dimension estimator,
as it relies on a specific eigenstructure that may not exist in real
data. The simple minimum angle threshold rule on ISOMAP
produced estimates between 3 and 6. Table V summarizes the
results of the GMST method for the four faces. The intrinsic en-
tropy estimates expressed in log base 2 were between 24.9 and
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TABLE V
GMST DIMENSION ESTIMATES m̂ AND ENTROPY ESTIMATES ^H FOR

FOUR FACES IN THE YALE FACE DATABASE B

28 bits. Similarly to the ISOMAP face database, as is close
to one, these values suggest that the portfolio of a person’s face
image could be accurately compressed using at most

bits/pixel.

VI. CONCLUSION

We have introduced a novel method for intrinsic dimension
and entropy estimation based on the growth rate of the geodesic
total edge length functional of entropic graphs. The proposed
method has two main advantages. First, it is global in the sense
that the MST is constructed over the entire set and thus avoids
local linearizations. Second, it does not require reconstructing
the manifold or estimating the multivariate density of the sam-
ples. We validated the new method by testing it on synthetic
manifolds of known dimension and on high dimensional real
data sets.

One drawback of GMST, or any other dimension estimator
based on ISOMAP geodesic fitting to data, is the restriction to
isometric embeddings. We are currently working on extending
Theorem 1 and Corollary 1 to general (nonisometric) Riemann
manifolds, thus avoiding any assumptions about global embed-
dings and eliminating the effect of the Jacobian on the intrinsic
entropy. We are also studying the use of entropic graphs that
bypass the complex step of geodesic estimation. In particular,
in [38], we consider -nearest neighbor graphs due to their low
complexity and local properties. Future work includes the char-
acterization of the statistics in the linear model (15), optimiza-
tion of the bias/variance tradeoff parameters of the GMST algo-
rithm, and the study of the effect of additive noise on the mani-
fold samples.
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