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Adaptive Array Beamforming with Robust Capabilities
Under Random Phase Perturbations

Ju-Hong Lee and Kuang-Peng Cheng

Abstract—The problem of adaptive array beamforming with multiple-
beam constraints in the presence of steering error caused by random phase
perturbations is considered. We first construct a cost function consisting of
terms that utilize a posteriori information due to the received array data
and a priori information due to the probabilistic distribution of phase per-
turbation, respectively. Then, an appropriate estimate of the actual phase
angle vector associated with each of the desired signals can be obtained by
performing a nonlinear optimization problem based on the cost function.
An implementation algorithm is further presented to iteratively solve the
problem. Theoretical analysis regarding the convergence property of the it-
erative procedure is also investigated. Finally, several computer simulation
examples are provided for illustration.

Index Terms—Adaptive array beamforming, random phase perturba-
tions, steering error.

I. INTRODUCTION

An adaptive array beamformer is designed for automatically pre-
serving the desired signals while canceling the interference and noise.
The only a priori knowledge for a main-beam or a multiple-beam con-
strained beamformer is the actual direction vectors of the desired sig-
nals. A direction vector of a desired signal can be obtained from the
information of the array sensor locations, signal impinging directions,
and the propagation characteristics. However, the information may not
be perfectly known in practice. This results in a mismatch between the
presumed steering vectors and the actual direction vectors. The perfor-
mance of a steered beam adaptive array beamformer is very sensitive
to the mismatch [1]–[5].

To cure the problem due to the above mismatch, most robust tech-
niques propose to impose additional constraints such as multiple linear
constraints, derivative constraints, and norm constraints on the array
weight vector [5]–[15]. However, imposing additional constraints de-
teriorates the array capability in suppressing interference and noise. In
contrast, Shahbazpanahi et al. [16] present a robust approach based
on the worst-case performance optimization for curing the problem
of array performance degradation due to the signal covariance matrix
with some fixed error. Li et al. [17] propose a diagonal loading ap-
proach for the beamforming problem of the desired signal with non-
random steering vector error. Recently, based on the assumption that
the steering vector error is an additive Gaussian random vector, two
methods have been presented in [18] to find two appropriate closed-
form solutions for estimating the optimal steering constraint vector.
All of the above-mentioned techniques [5]–[18] are developed under
the situation of adaptive beamforming with main-beam constraint. In
many applications, such as satellite communications [19], an antenna
array must possess beamforming capability to receive more than one
signal with specified gain requirements while suppressing all jammers.
This purpose can be effectively achieved by using an antenna array
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with multiple-beam pattern [19], [20]. Recently, a technique for adap-
tive beamforming with the capability of providing multiple-beam con-
straints (MBCs) has been presented in [21].

In this correspondence, we consider the problem of adaptive beam-
forming with MBC in the presence of random phase perturbations. A
robust method in conjunction with an iterative procedure is presented
for solving the considered problem. To find the optimal phase angle
vector, we construct a cost function consisting of the squared norm
of the projection of the steering vector on the noise subspace and a
constraint related to a likelihood function associated with the random
phase error vector. Minimizing the squared norm of the projection of
the steering vector on the noise subspace is equivalent to maximizing
the squared norm of the projection of the steering vector on the signal
plus interference subspace. The constraint related to a likelihood func-
tion associated with the random phase error vector is utilized to prevent
the obtained optimal phase angle vector for each desired signal frombe-
coming one of the interference phase angle vectors. Since the resulting
minimization problem is highly nonlinear, we use a gradient method
to iteratively search for the solution. It is shown that using the con-
straint related to a likelihood function of the random phase error vector
provides the advantage of properly adjusting the step size during the
gradient search procedure. The analysis of the convergence property
of the proposed method is also presented. Several computer simulation
examples show the effectiveness of the proposed method.

II. PROBLEM FORMULATION

Consider a uniform linear array (ULA) with M sensors and in-
terelement spacing equal to half of the smallest wavelength of the
signals with specified gain/null arrangements. Let K narrowband
and far-field signals be impinging on the array from direction angles
�i; i = 1; 2; . . . ; K , off broadside. The signal received at the m th
array sensor can be expressed as

xm(t) =

K

i=1

si(t)am(�i) + nm(t); m = 1; 2; . . .M (1)

where am(�i) = exp(j(2�dm sin �i)=�i); �i is the wavelength of the
i th signal, and dm is the distance between the mth and the first array
sensors, si(t) is the complex waveform of the ith signal, and nm(t)
is the spatially white noise with mean zero and variance �2n received
at the mth array sensor. In matrix form, we can write the data vector
received by the ULA as follows:

xxx(t) = BBBsss(t) + nnn(t) (2)

where the matrix BBB = [aaa(�1) aaa(�2) . . . aaa(�K)]
with the direction vector of the ith signal given by
aaa(�i) = [a1(�i) a2(�i) . . . aM (�i)]

T, the signal source
vector is sss(t) = [s1(t) s2(t) . . . sK(t)]T, and the noise vector
is nnn(t) = [n1(t) n2(t) . . . nM (t)]T. The superscript T denotes
transpose operation. Under the assumption that sss(t) and nnn(t) are
uncorrelated, the M � M ensemble correlation matrix of xxx(t) is
Toeplitz–Hermitian and given by

RRRx = [Rkl] = [R(k � l)] = Efxxx(t)xxx(t)Hg = BBBRRRsBBB
H + �2nIII (3)

where the superscript H denotes the complex conjugate transpose.
RRRs = Efsss(t)sss(t)Hg has rankK if theK signals are uncorrelated. Let
the ULA use a weight vector www = [w1 w2 . . . wM ] for processing
the received data vector xxx(t) to produce the array output signal
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y(t) = wwwHxxx(t). Assume that the selective gain/null requirements
are specified by assigning a gain cp at the direction vector aaa(�p) for
p = 1; 2; . . . ; P , whereP denotes the number of signals with gain/null
constraint. Then, the optimal weight vector for the adaptive array can
be found from the following constrained optimization problem [19]:

Minimize Efjy(t)j2g = wwwHRRRxwww Subject toGGGHwww = ccc (4)

where thematrixGGG = [aaa(�1) aaa(�2) . . . aaa(�P )] denotes the constraint
matrix, and ccc = [c1 c2 . . . cP ] denotes the gain vector. Accordingly,
the optimal weight vector is given by

wwwo = RRR�1x GGG GGGHRRR�1x GGG
�1

ccc: (5)

Substituting (5) into Efjy(t)j2g = wwwHRRRxwww yields the corresponding
array output power equal to

Efjy(t)j2g = wwwHRRRxwww = cccH GGGHRRR�1x GGG
�1

ccc: (6)

In the presence of random phase perturbation, we consider that the
phase angle error vector for the signal with gain cp due to an additive
perturbation is given by

�ep = �p ��dp (7)

where�p and�dp denote the phase angle vectors associated with ac-
tual direction vector aaa(�p) and the presumed direction vector aaad(�p),
respectively. Without loss of generality, let the mth entry of the
direction vector aaa(�p) be expressed as am(�p) = exp(j�pm)
and the corresponding phase angle vector be constructed as
�p = [�p1 �p2 . . . �pM ]T. Similarly, let themth entry of the direc-
tion vector aaad(�p) be expressed as adm(�p) = exp(j�dpm) and the
phase angle vector be constructed as�dp = [�dp1 �dp2 . . . �dpM ]T.
According to the discussion of [5], the phase angle error vector �ep

shown by (7) can be assumed to be a real Gaussian random vector
with mean zero and covariance matrix DDDp. Based on this discussion,
we consider the case of Gaussian random phase perturbation. Hence,
the probability density function (PDF) for�ep is given by

PDF(�ep) = [(2�)M det(DDDp)]
�1=2 exp � �

T
epDDD

�1
p �ep =2 :

(8)

Accordingly, the likelihood function (LF) regarding the phase angle
error vector can be defined as

LF = exp � �
T
epDDD

�1
p �ep =2

= exp � (�p ��dp)
TDDD�1p (�p ��dp) =2 : (9)

Next, consider the case that the P signals with gain/null con-
straint are uncorrelated and the P phase angle error vectors
�ep; p = 1; 2; . . . ; P are also uncorrelated. We construct an
M � P phase angle error matrix 	 and its vectorized version
� with size PM � 1 for the P uncorrelated signals as follows.
	 = [�e1 �e2 . . . �eP ] and � = [�T

e1 �
T
e2 . . . �T

eP ]
T. The

joint PDF for 	 can be expressed as

PDF(	) =

P

p=1

[(2�)M det(DDDp)]
�1=2 expf�(�T
�1�)=2g

(10)

where
 is a PM�PM block diagonal matrix with the pthM�M diag-
onal block matrix given byDDDp. The corresponding likelihood function
regarding the phase angle error vector � is given by

LFP = expf�(�T
�1�)=2g

= exp �

P

p=1

(�p ��dp)
TDDD�1p (�p ��dp) 2 :(11)

To deal with the problem of array beamforming with MBC in the pres-
ence of phase angle errors, as described above, we present a robust
method based on the likelihood function given by (11).

III. ROBUST METHOD

From the property of a gain constrained array beamformer,
it is well known that the output power of the beamformer will
achieve its maximum when each presumed direction vector aaad(�p)
of the constraint matrix GGG coincides with the actual direction
vector aaa(�p); p = 1; 2; . . . ; P . Moreover, from the eigendecom-
position of RRRx [22], we can express RRRx = M

i=1 �ieeeieee
H
i , where

�1 �2 � � � �J+P �J+P+1 = . . . = �M = �2n are the
eigenvalues ofRRRx in the descending order, and eeei are the corresponding
eigenvectors. J is the number of interferers. The eigenvectors associ-
ated with the minimum eigenvalue �2n are orthogonal to the direction
vectors of the signals with specified gain/null constraints and inter-
ferers. Therefore, the subspaces spanned byEEEn = feeeJ+P+1; . . . ; eeeMg
(called the noise subspace) and EEEs = feee1; eee2; . . . ; eeeJ+P g (called the
signal plus interference subspace) are orthogonal. We can rewrite RRRx

as follows:

RRRx =

M

i=1

�ieeeieee
H
i = EEEs�sEEE

H
s +EEEn�nEEE

H
n (12)

where �s = diagf�1; �2; . . . ; �J+P g, and �n = �2nIII , where III de-
notes the identity matrix with appropriate size. Based on (6), (11), and
(12), an appropriate cost function regarding the phase angle errors is
defined as

J(�) =

P

p=1

(sssp)
HEEEnEEE

H
n (sssp)� �

� exp �

P

p=1

(�sp ��dp)
TDDD�1p (�sp ��dp) 2 (13)

where sssp = [sp1 sp2 . . . spM ]T = [exp(j�p1) exp(j�p2)
. . . exp(j�pM)]T;�sp = [�p1 �p2 . . . �pM ]T, and � =
[�T

s1 �
T
s2 . . . �T

sP]
T. The first term of (13) represents the squared

norm of the projection of the constraint vectors sssp; p = 1; 2; . . . ; P on
the noise subspace spanned by EEEn. The second term is the likelihood
function related constraint. � denotes a positive weighting parameter
providing the relative weight between these terms. As a result, the
optimal solution�o of minimizing (13) can then be used as an appro-
priate estimate of �P = [�T

1 �
T
2 . . . �T

P ]
T formed by the actual

phase angle vectors �p; p = 1; 2; . . . ; P for array beamforming.
However, the cost function of (13) is a highly nonlinear function of
the phase angle vectors �sp; p = 1; 2; . . . ; P . Thus, a closed-form
solution for the optimal solution cannot exist. We resort to an iterative
procedure to solve this problem, as follows. First, we rewrite (13) as
follows:

J(�) = (S)HW(S)� �

� exp �

P

p=1

(�sp ��dp)
TDDD�1p (�sp ��dp) 2 (14)
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where theMP�1 vectorS = [sssT1 sssT2 . . . sssTP ]
T, andW is a PM�PM

block diagonal matrix with the pthM�M diagonal blockmatrix given
by EEEnEEEH

n . Then, the gradient vector of J(�) is computed according
to

�J(�) = �2Re j EEEnEEE
H
nsss1 � sss�1

� 2Re j EEEnEEE
H
nsss2 � sss�2 . . .

� 2Re j EEEnEEE
H
nsssP � sss�P

T

+ � exp �

P

p=1

(�sp ��dp)
TDDD�1

p

� (�sp ��dp) 2 

�1(���d) (15)

where Refxg denotes the real part of x, the superscript � the complex
conjugate, and � the Hadamard (or elementwise) product [23]. �d =
[�T

d1 �
T
d2 . . . �T

dP]
T. Then, we update the phase angle vector� and

the corresponding steering constraint vector sssp as follows:

�
k+1 = �

k+1
s1

T

�
k+1
s2

T

. . . �
k+1
sP

T
T

= �k � " �J(�
k) (16)

sk+1pm = exp j�k+1pm ; p = 1; 2; . . . ; P

m = 1; 2; . . . ;M (17)

where the superscript k denotes the kth iteration and " the preset pos-
itive step size. From (16), we note that the second term includes the
factor of likelihood function related to each of the phase angle vector
errors �sp � �dp; p = 1; 2; . . . ; P at the kth iteration. Hence, it
would be expected that the resulting gradient approach for finding the
optimal solution of � can provide a more appropriate estimate of �
since the resulting step size becomes variable according to the expo-
nential term, as shown in (15). In the literature, Smith [24] uses a con-
jugate gradient and Newton’s method to maximize the array output
signal-to-interference plus noise ratio (SINR) by adjusting the phase
terms of the so-called phase-only weights for achieving the optimal
phase-only adaptive nulling.

Next, we present an appropriate scheme for choosing the initial guess
for the MP � 1 vector S = [sssT1 sssT2 . . . sssTP ]

T in order to initiate
the iterative process of the proposed robust method. According to the
optimal weight vector given by (5) under the assumption of P = 1
and the desired signal with direction vector aaa(�p), the output of the
adaptive array is approximately given by

yp(t) = wwwHopxxx(t) � sp(t)gp +wwwH
opnnn(t) (18)

based on the assumptions thatM > K and the interference signals are
suppressed enough, where gp � wwwH

opaaa(�p) denotes the array gain for
the specified signal, where subscript p represents the results obtained by
using the desired signal with direction vector aaa(�p); p = 1; 2; . . . ; P .
Equation (18) reveals that the output of the adaptive array can be used
as a reference signal to find the actual phase angle vector�p. Consider
the cross-correlation between xxx(t) and yp(t). We have

Efxxx(t)yp(t)
�g = Efxxx(t)xxx(t)Hgwwwop

= RRRxwwwop � �pg
�

paaa(�p) + �2nwwwop (19)

where �p denotes the power associated with the specified signal. In
practice, the noise power �2n is unknown. However, it can be obtained
by setting the smallest eigenvalue of the autocorrelation matrix as the

estimate of �2n. From (19), we can therefore adopt the following vector
as the initial guess for each of sssp:

vvvp = RRRxwwwop � �2nwwwop: (20)

Based on (20), it is clear that the direction vector aaa(�p) is approxi-
mately proportional to vvvp with a proportional constant �pg�p . Hence,
an appropriate initial guess sssop for sssp can be constructed as follows:

uuup = [up1; up2; . . . ; upM ]T = (vp1)
�1vvvp

s0pm = jupmj
�1upm; m = 1; 2; . . . ;M (21)

sssop = [s0p1; s
0
p2; . . . ; s

0
pM ]T (22)

for p = 1; 2; . . . ; P , where vp1 denotes the first entry of vvvp and vvvp the
result given by (20). The superscript “o” represents the initial guess. In
other words, we keep only the phase portion of vvvp and then take the
phase referencing to the first element of vvvp to form the initial guess sssop.
Finally, we construct an initial guessSo = [(ssso1)

T (ssso2)
T . . . (sssoP )

T]T

of S for carrying out the proposed iterative process.
For practical implementation, we compute the sample data correla-

tion matrix RRRx(i) using i data snapshots as follows: RRRx(i) = (1 �
1=i)RRRx(i � 1) + (1=i)xxx(i)xxx(i)H, which is used as the estimate of
the required RRRx, where xxx(i) denotes the ith data snapshot sampled
from xxx(t). The required computational complexity is O(M2). Using
the approach of [22] to perform the eigendecomposition ofRRRx(i) pro-
vides the basis matrixEEEn(i) and needsO(M2). To construct thematrix
EEEn(i)EEEn(i)

H requiresO(M3). Therefore, the required computational
complexity is aboutO(M3)+O(M2)+PM2+PM in order to obtain
the first term of the right-hand side of (15). Moreover, the computa-
tional complexity for obtaining the second term of the right-hand side
of (15) is about 3MP+M . As a result, the computational complexity
required for computing the gradient of J(�) when receiving i data
snapshots is about O(M3) + O(M2) + PM2 + 4MP+M .

IV. CONVERGENCE OF THE PROPOSED METHOD

To ensure the convergence of the proposed method, we have
to show that the cost function to be minimized as given by (14)
possesses the property of J(�k+1) < J(�k). Let the vector
AAAk represent the second term of (16), i.e., AAAk = �" �J(�

k) =
[(AAAk1)

T (AAAk
2)
T . . . (AAAk

P )
T]T andAAAk

p = [Ak
p1 A

k
p2 . . . Ak

pM ]T; p =
1; 2; . . . ; P . Assume that AAAk is a nonzero real vector with a norm
small enough. Then, (AAAk)TAAAk > 0, i.e.,

(AAAk)Tf2"Refj[W(Sk)]� (Sk)�g � "�

� expf�[(�k ��d)
T


�1(�k ��d)]=2g

�
�1(�k ��d)g > 0:

Hence

(AAAk)Tf2Refj[W(Sk)]� (Sk)�gg > �

� expf�[(�k ��d)
T


�1(�k ��d)]=2g

� (AAAk)T
�1(�k ��d) (23)

and the objective function after the (k + 1)th iteration is given by

J(�k+1) = (Sk+1)HW(Sk+1)� �

� expf�[(�k+1 ��d)
T


�1(�k+1 ��d)]=2g: (24)

According to the above definition, (16), and (17), we have

sk+1pm = exp j�k+1pm = exp j �kpm +Ak
pm

� 1 + jAk
pm exp j�kpm

p = 1; 2; . . . ; P; m = 1; 2; . . . ;M

hence; Sk+1 � Sk + (jAAAk)� Sk: (25)
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(a) (b)

(c) (d)

Fig. 1(a). Array beampattern with respect to the desired signal of (a) 17 , (b)�51 , (c) output SINR versus the number of snapshots, and (d) array output SINR
versus the SOIs’ power, for Example 1.

Substituting (25) into (24) and performing the necessary algebraic ma-
nipulations yields

J(�k+1)

� [Sk + (jAAAk)� Sk]HW[Sk + (jAAAk)� Sk]� �

� expf�[(�k +AAAk ��d)
T


�1

� (�k +AAAk ��d)]=2g

� (Sk)HW(Sk)� �

� expf�[(�k ��d)
T


�1(�k ��d)]=2g

+ (Sk)H � [�jAAAk]W(Sk) + (Sk)HW[jAAAk] � (Sk)

+ (Sk)H � [�jAAAk]W[jAAAk] � (Sk)

+ f(�k ��d)
T


�1AAAk + (AAAk)T
�1AAAk=2g�

� expf�[(�k ��d)
T


�1(�k ��d)]=2g

� J(�k) + 2Ref(Sk)HW[jAAAk]� (Sk)g

+ (�k ��d)
T


�1AAAk�

� expf�[(�k ��d)
T


�1(�k ��d)]=2g (26)

since the norm of AAAk is small enough, and we neglect the terms
(AAAk)T
�1AAAk and (Sk)H � [�jAAAk]W[jAAAk] � (Sk).

From (26), it is clear that we have to show

2Ref(Sk)HW[jAAAk] � (Sk)g+ �[(�k ��d)
T


�1AAAk]

expf�[(�k ��d)
T


�1(�k ��d)]=2g 0 (27)

for any k to ensure the convergence. Based on (23), the condition of
(27) can be reformulated as follows:

2Ref(Sk)HW[jAAAk] � (Sk)g

+(AAAk)T2Refj[WSk] � (Sk)�g 0 (28)

which can be repressed as the following condition:

P

p=1

2Re S
k
p

H

EEEnEEE
H
n jAAAkp � S

k
p

+

P

p=1

AAAkp
T

2Re jEEEnEEE
H
nS

k
p � S

k
p

�

0: (29)
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(a) (b)

(c)

(d) (e)

Fig. 2. Array beampattern with respect to the desired signal of (a) 25 , (b)�25 , (c) 50 , (d) output SINR versus the number of snapshots, and (e) array output
SINR versus the SOIs’ power for Example 2.
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Next, the left-hand side of (29) is equal to

P

p=1

2Re S
k
p

H

EEEnEEE
H
n jAAAkp � S

k
p

+ AAAkp
T

j EEEnEEE
H
nS

k
p � S

k
p

�

=

P

p=1

2Re S
k
p

H

EEEnEEE
H
n jAAAkp � S

k
p

+ EEEnEEE
H
nS

k
p

T

jAAAkp � S
k
p

�

=

P

p=1

2Re S
k
p

H

EEEnEEE
H
n jAAAkp � S

k
p

� S
k
p

H

EEEnEEE
H
n

H

jAAAkp � S
k
p

�

=

P

p=1

2Re 2j Im S
k
p

H

EEEnEEE
H
n jAAAkp � S

k
p = 0: (30)

Hence, the result given by the left-hand side of (28) is always equal to
zero, i.e.,

2Ref(Sk)HW[jAAAk]� (Sk)g

+(AAAk)T2Refj[WSk] � (Sk)�g = 0: (31)

Consequently, we obtain

2Ref(Sk)HW[jAAAk] � (Sk)g+ (�k ��d)
T


�1AAAk�

� expf�[(�k ��d)
T


�1(�k ��d)]=2g < 0: (32)

It follows from (26) and (32) that J(�k+1) < J(�k). This ensures
the convergence property under suitably small selections of ".

V. COMPUTER SIMULATION RESULTS

A ULA with interelement spacing equal to half of the minimum
wavelength of the signals with specified gain/null requirements is used.
All results presented are obtained by averaging L independent runs
with independent noise samples for each run. The noise power level
for each of the simulation example is set to 1. The array beampattern
with respect to the desired signal of �� represents a beampattern ob-
tained by using the searching vector sss with phase angle equal to the
presumed phase angle plus the phase angle error associated with the
desired signal of �� for finding the power gain jwwwHsssj2.

Example 1: Three signal sources with signal-to-noise (SNR) equal
to 5, 4, and 2 dB, respectively, are impinging on the array with size
M = 8 from direction angels 17�;�51�, and 67�, respectively. The
specified signals are the first two signals with c1 = c2 = 1, and the
third one is the jammer. Let the random phase angle error vector for
each of the specified signals have zero mean and covariance matrix
DDDp = 0:3III; p = 1; 2, where III is the 8� 8 identity matrix. Fig. 1
plots the simulation results in terms of the array beampatterns using
15 000 data snapshots and the corresponding array output SINR with
and without utilizing the proposed method. The values of L; ", and �
used are 50, 0.05, and 0.001, respectively. The results without random
phase angle errors and of using the method of [17] with loading value
equal to 2000 are also shown. The output SINRs obtained by utilizing
15 000 data snapshots for the result of using the proposed method, the
result without random phase angle errors, and the result of using the di-
agonal loading [17] are 13.06 dB, 13.58 dB, and 10.92 dB, respectively.
We observe from this figure that the proposed method can effectively
cope with the performance degradation due to the random phase angle
errors.

Fig. 3. Output SINR and number of iterations versus the relative weight for
Example 1.

Fig. 4. Output SINR and number of iterations versus the step size for Example
1.

Example 2: Four signals with SNR equal to 5, 6, 7, and 5 dB,
respectively, are impinging on the array with size M = 15 from
direction angels 25�;�25�, 50�, and 0�, respectively. The specified
signals are the first three signals with c1 = c2 = c3 = 1, and the
fourth one is the jammer. Let the random phase angle error vector
for each of the specified signals have zero mean and covariance
matrix DDDp = 0:5III; p = 1; 2; 3, where III is the 15� 15 identity
matrix. Fig. 2 depicts the simulation results in terms of the array
beampatterns using 15 000 data snapshots and the corresponding
array output SINR with and without utilizing the proposed method.
The values of L; ", and � used are 50, 0.05, and 0.001, respectively.
The results without random phase angle errors and of using the
method of [17] with loading value equal to 2000 are also shown.
The output SINRs obtained by utilizing 15 000 data snapshots for
the result of using the proposed method, the result without random
phase angle errors, and the result of using the diagonal loading [17]
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are 17.48, 17.75, and 14.11 dB, respectively. Again, we observe
from this figure that the proposed method can effectively cure the
performance degradation due to the random phase angle errors.

Finally, Figs. 3 and 4 show the array output SINRs and the numbers
of iterations versus � and ", respectively, for Example 1, after using
15 000 data snapshots and taking the average of 20 independent runs.
The proposed method provides array performance with robust capabil-
ities not very sensitive to the choice of � and " in the ranges shown by
the figures. However, the number of iterations for obtaining the con-
vergent results is sensitive to the choice of � and " and decreases in
general as the value of " increases.

VI. CONCLUSION

We have illustrated that the performance degradation of an adaptive
beamformer with multiple-beam constraints due to random phase
angle errors is significant and presented an efficient method for
solving the problem. A new cost function for curing the problem
has been developed. The resulting minimization problem is highly
nonlinear but can be solved through the use of an iterative procedure.
In conjunction with a steepest-descent algorithm, the estimates for
all of the signals with specified gain constraints can be obtained
simultaneously. The convergence property regarding the proposed
method has been investigated. Simulation examples have shown the
effectiveness of the proposed method.
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Online Bayesian Activity Detection in DS/CDMA Networks

Thanh Ngoc Bui, Vikram Krishnamurthy, and H. Vincent Poor

Abstract—An on-line Bayesian based multiple hypotheses Shiryayev
Sequential Probability Ratio Test (SSPRT) for the detection/isolation of
new active users in a multiuser code division multiple access (CDMA)
environment is presented. This SSPRT algorithm makes use of a priori
knowledge of the user activity parameter. Comparison by simulation
between this SSPRT algorithm and the non-Bayesian Matrix cumulative
sum (CUSUM) shows that when such information is available, the SSPRT
algorithm that uses this information can achieve better performance than
the non-Bayesian approach.

Index Terms—Activity detection, CDMA,multiuser detection, sequential
probability ratio test.

I. INTRODUCTION

Multiuser detection (MUD) has been shown to be an important
demodulation technique for use in direct sequence code division
multiple access (DS/CDMA) systems. Though many MUD schemes
have been proposed, their performance depends significantly on the
assumptions made about the interference parameters (for example,
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