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Abstract

We derive methods for asymptotic maximum likelihood (ML) estimation of Jakes’ Doppler power spectrum
parameters from complex noisy estimates of the fading channel. We consider both single-input single-output (SISO)
and smart-antenna scenarios and utilize the Whittle approximation to the likelihood to estimate the Doppler spread,
noise variance, and channel covariance parameters. Asymptotic Cramér-Rao bounds for the unknown parameters are
derived. We also discuss the initialization of the proposed methods and their generalization to the Ricean-fading
scenario. Numerical simulations demonstrate the performance of the proposed methods.
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I. INTRODUCTION

DOPPLER spread and signal-to-noise ratio (SNR) are important parameters for assessing the quality and rate

of change of wireless communication channels [1]–[10]. The Doppler spread determines the rate of channel

variation and fading type1, and can be used for adaptive modulation, coding, and interleaving, channel tracker step-

size selection (at the receiver), and for network control algorithms, such as handoff and channel allocation in cellular

systems [1]–[10]. Similarly, the SNR information is instrumental for adaptive modulation, handoff, channel access,

and power control [1]–[7]. In smart-antenna systems, modeling spatial fading correlations, analyzing their effects

on capacity and error-probability performance, and the use of fading correlations in the design of noncoherent ML

space-time receivers and transmit precoding schemes have recently attracted considerable attention, see e.g. [12]–[17]

and references therein.

Most existing methods for estimating statistical properties of fading channels are based on signal-amplitude or

power measurements and do not explicitly account for noise effects, see e.g. [1, Ch. 12], [2], [4]–[6], [18], and [19].

Also, the Doppler spread and signal strength were estimated separately [1], [2]. In [20], an approximate average

maximum likelihood method was proposed for estimating the Doppler spread from noisy channel estimates under

a single-input single-output (SISO) Rayleigh fading scenario. In [9], an exact ML estimator of the Doppler spread

was derived for this scenario, assuming that the SNR is known and multiple independent data slots are available. In

1See e.g. [11, Ch. 5.5.2] for slow- and fast-fading channel characterization.
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[17], we derived methods for estimating the mean and covariance parameters of multi-input multi-output (MIMO)

block-fading channels. In this paper (see also [21]), we develop asymptotic ML methods for the joint estimation of the

Doppler spread, noise variance, and channel covariance parameters from complex noisy channel estimates [containing

both the in-phase and quadrature-phase (I/Q) components of the fading channel] under Jakes’ SISO and single-input

multi-output (SIMO) smart-antenna scenarios.

In Section II, we utilize the Whittle approximation to develop asymptotic ML methods for Jakes’ Doppler power

spectrum estimation in SISO systems and derive asymptotic Cramér-Rao bounds (CRBs) for the unknown parameters

(Section II-A). A generalization of the proposed method to the Ricean fading scenario is derived in Section II-B.

The smart-antenna scenario is considered in Section III, where we present iterative algorithms for asymptotic ML

estimation for unstructured and independent fading (Sections III-A and III-B) and corresponding asymptotic CRBs

(Section III-C). In Section IV, we evaluate the accuracy of the proposed methods via numerical simulations. The

asymptotic ML estimates of the Doppler spread are compared with the sample-covariance-based and approximate

ML methods in [6], [10], and [20] and their multivariate extensions. Concluding remarks are given in Section V.

II. ESTIMATING JAKES’ POWER SPECTRUM PARAMETERS IN SISO SYSTEMS

Assume that we have obtained N noisy channel estimates y(1), y(2), . . . , y(N) from a Rayleigh fading channel with

Jakes’ Doppler power spectrum2 [1], [22], [23]. For example, if we transmit an unmodulated carrier, then the real

and imaginary parts of y(t) are the I/Q components of the received baseband signal at time t ∈ {1, 2, . . . , N}. We

assume that the channel estimates are corrupted by additive white circularly symmetric complex Gaussian noise with

an unknown variance σ2 and that the noise is independent from the fading process. The real and imaginary parts of

the fading process are assumed to be independent, which follows from [23, App. A] and [1, Ch. 2.1.1]. Define the

indicator function:

iA(f) =

{
1, f ∈ A,
0, otherwise

. (2.1)

Then, the noisy power spectral density (PSD) of y(t) can be written as3

Pyy(f ;θ) = σ2 · g(f ;ρ) = σ2 ·
[ s · i[0,fD)(f)
(f2

D
− f2)1/2

+
s · i(1−fD,1](f)

[f2
D
− (1− f)2]1/2

+ 1
]
, (2.2)

where f ∈ [0, 1] is the discrete-time frequency,

θ = [σ2,ρT ]T (2.3)

is the vector of unknown parameters,

ρ = [fD, s]
T , (2.4)

2This model implies isotropic scattering, i.e. the multipath components are assumed to arrive at the receiver array uniformly from all
directions, see [1], [22], [23].

3We define the PSD of a stationary zero-mean random process y(t) as Pyy(f) =
∑∞

n=−∞ E [y(t)y(t + n)∗] · exp(−j2πfn), where “∗”
denotes complex conjugation.
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and “T ” denotes a transpose. Here,

• fD ∈ (0, 1/2] is the unknown maximum Doppler frequency (corresponding to the Doppler spread of 2fD);

• s is the unknown signal-to-noise ratio, defined as the ratio between the scattering power of the fading channel

and the noise variance σ2.

The maximum Doppler frequency is proportional to the speed of the mobile v: fD = vfc/c, where fc is the carrier

frequency and c is the speed of light, see e.g. [1], [11], [22], [23]. The first two terms in (2.2) model the Jakes’

spectrum [1], [22], [23], whereas the third term is attributed to additive white Gaussian noise. For large N , we can

apply the Whittle approximation to the log-likelihood of the measurements y = [y(1), y(2), . . . , y(N)]T (see [24,

Chs. 7.9 and 15.9] and [25]):

l(y;θ) = −N lnπ −
N−1∑
k=0

{
ln[Pyy(fk;θ)] +

Cy,N (fk)

Pyy(fk;θ)

}
(2.5a)

= −N lnπ −
N−1∑
k=0

{
ln
[
σ2 · g(fk;ρ)

]
+

Cy,N (fk)

σ2 · g(fk;ρ)

}
, (2.5b)

where

fk = k/N, k = 0, 1, . . . , N − 1 (2.6)

and

Cy,N (f) =
1

N

∣∣∣ N∑
t=1

y(t)e−j2πft
∣∣∣2 = |yDTFT(f)|2,

yDTFT(f) =
1√
N

N∑
t=1

y(t)e−j2πft (2.7)

are the the periodogram and normalized discrete-time Fourier transform (DTFT) of y(t), t = 1, 2, . . . , N . Then,

yDTFT(fk), k = 0, 1, . . . , N−1 form the normalized discrete Fourier transform (DFT) of y(t), t = 1, 2, . . . , N , which

can be computed efficiently using the fast Fourier transform (FFT) if N is a power of two. Here, (2.5b) follows

by substituting (2.2) into (2.5a). In [24, Ch. 7.9], the estimation of unknown parameters by maximizing the Whittle

log-likelihood is referred to as asymptotic ML estimation. For stationary processes, it is typically more convenient to

parametrize the PSD rather than the autocorrelation function, which makes the Whittle approximation very appealing.

Here, the Jakes’ PSD is a closed-form expression of the unknown parameters, whereas the corresponding covariance

matrix of the observations y is not analytically tractable:

E [yyH ] = σ2 · [sJ(fD) + IN ], (2.8)

where the (p, q) element of the matrix J(fD) is

[J(fD)]p,q = π · J0(2πfD(p− q)), (2.9)
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“H” denotes the Hermitian (conjugate) transpose, IN the identity matrix of size N , and J0(·) the zeroth-order Bessel

function of the first kind [1], [22], [23].

We now compute the asymptotic (Whittle) ML estimate of θ by maximizing (2.5). For fixed ρ, there exists a

closed-form expression for the asymptotic ML estimate of σ2:

σ̂2(ρ) =
1

N

N−1∑
k=0

Cy,N (fk)

g(fk;ρ)
, (2.10)

see also [26] and [27]. Substituting (2.10) into the Whittle log-likelihood function (2.5b) and neglecting constant

terms yields the concentrated likelihood function:

lc(y;ρ) = l(y, [σ̂2(ρ),ρT ]T ) = −N ln
[N−1∑
k=0

Cy,N (fk)

g(fk;ρ)

]
−
N−1∑
k=0

ln
[
g(fk;ρ)

]
(2.11)

to be maximized with respect to ρ.

Let us now introduce the following notation: define

zk(fD) =
i[0,fD)(fk)

(f2
D
− f2k )1/4

+
i(1−fD,1](fk)

[f2
D
− (1− fk)2]1/4

. (2.12)

Observe that, since fD ∈ (0, 1/2], the following identity holds:

znk (fD) =
i[0,fD)(fk)

(f2
D
− f2k )n/4

+
i(1−fD,1](fk)

[f2
D
− (1− fk)2]n/4

, (2.13)

implying that

g(fk,ρ) = s · z2k(fD) + 1, k = 0, 1, . . . , N − 1. (2.14)

Approximate ML Estimator of fD: In Appendix A, we derive the following approximate ML estimator:

f̂ app

D
= argmax

fD

N−1∑
k=0

z2k(fD) · Cy,N (fk), (2.15)

which is closely related to the approximate average ML method in [20]. Interestingly, f̂ app

D
may outperform the

asymptotic (Whittle) ML estimator of fD, see Section IV.

Initialization: The algorithms for maximizing (2.11) and (2.15) can be initialized using the following simple estimator

of fD (see [10, eq. (10)]):

f̂ HS

D
=

1

2π
·

√
2
∑N−1

t=1 |y(t)− y(t+ 1)|2∑N−1
t=1 |y(t)|2

, (2.16)

which can be viewed as an extension of the sample-covariance-based estimator by Holtzman and Sampath [6] to the

complex (I/Q) measurement scenario. The above estimator performs well if the number of observations N is small,

but does not have good asymptotic properties, see Section IV. We also propose the following initial estimate of s:

s(0) =
(1/N (0)) ·

∑N−1
k=0, zk(f

(0)
D ) 6=0

Cy,N (fk)/z
2
k(f

(0)
D )

[1/(N −N (0))] ·
∑N−1

k=0, zk(f
(0)
D )=0

Cy,N (fk)
, (2.17)

where f (0)D can be chosen as, for example, f̂ HS

D
or f̂ app

D
, and N (0) is the number of terms in the summation in the

numerator of (2.17), equal to the number of indices k for which zk(f (0)) is nonzero.
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A. Asymptotic Cramér-Rao Bound

We derive asymptotic CRB expressions for the unknown parameters and simplify them in the case where the SNR

s and number of samples N are large.

The asymptotic CRB for the unknown parameters θ is the inverse of the asymptotic Fisher information matrix

(FIM) I(θ):

CRB(θ) = I(θ)−1, (2.18)

where I(θ) easily follows from the Whittle approximation of the log-likelihood in (2.5a):

I(θ) =
N−1∑
k=0

∂ ln[Pyy(fk;θ)]

∂θ
· ∂ ln[Pyy(fk;θ)]

∂θT
, (2.19)

see also [24, Ch. 15.9]. We now specialize (2.18) and (2.19) to the Jakes’ PSD model in (2.2), which leads to

∂ ln[Pyy(fk;θ)]

∂σ2
=

1

σ2
, (2.20a)

∂ ln[Pyy(fk;θ)]

∂s
=

∂ ln[g(f ;ρ)]

∂s
=

1

g(fk;ρ)
· z2k(fD), (2.20b)

∂ ln[Pyy(fk;θ)]

∂fD

=
∂ ln[g(fk;ρ)]

∂fD

= − s fD

g(fk;ρ)
· z6k(fD) (2.20c)

for k = 0, 1, . . . , N − 1, where we used the following identity to derive (2.20c):

∂z2k(fD)

∂fD

= −fD · z6k(fD). (2.21)

Consequently,

I1,1(θ) = I1,1(σ2) =
N−1∑
k=0

∂ ln[Pyy(fk;θ)]

∂σ2
· ∂ ln[Pyy(fk;θ)]

∂σ2
=

N

(σ2)2
, (2.22a)

I1,2(θ) = I2,1(θ) =
N−1∑
k=0

∂ ln[Pyy(fk;θ)]

∂σ2
· ∂ ln[Pyy(fk;θ)]

∂fD

= −s fD

σ2
·
N−1∑
k=0

z6k(fD)

g(fk;ρ)
, (2.22b)

I1,3(θ) = I3,1(θ) =
N−1∑
k=0

∂ ln[Pyy(fk;θ)]

∂σ2
· ∂ ln[Pyy(fk;θ)]

∂s
=

1

σ2
·
N−1∑
k=0

z2k(fD)

g(fk;ρ)
, (2.22c)

I2,2(θ) = I2,2(ρ) =
N−1∑
k=0

∂ ln[Pyy(fk;θ)]

∂fD

· ∂ ln[Pyy(fk;θ)]
∂fD

= (s fD)
2 ·

N−1∑
k=0

z12k (fD)

g2(fk;ρ)
, (2.22d)

I2,3(θ) = I3,2(ρ) =
N−1∑
k=0

∂ ln[Pyy(fk;θ)]

∂fD

· ∂ ln[Pyy(fk;θ)]
∂s

= −s fD ·
N−1∑
k=0

z8k(fD)

g2(fk;ρ)
, (2.22e)

I3,3(θ) = I3,3(ρ) =
N−1∑
k=0

∂ ln[Pyy(fk;θ)]

∂s
· ∂ ln[Pyy(fk;θ)]

∂s
=

N−1∑
k=0

z4k(fD)

g2(fk;ρ)
. (2.22f)

We can partition I(θ) as follows:

I(θ) =
[
Iσ2,σ2(σ2) Iρ,σ2(θ)T

Iρ,σ2(θ) Iρ,ρ(ρ)

]
, (2.23a)
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where

Iσ2,σ2(σ2) = I1,1(σ2), (2.23b)

Iρ,σ2(θ) =

[
I1,2(θ)
I1,3(θ)

]
, (2.23c)

Iρ,ρ(θ) =

[
I2,2(ρ) I2,3(ρ)
I2,3(ρ) I3,3(ρ).

]
. (2.23d)

In the sequel, we use the same block partitioning of the CRB as for the above FIM. Using (2.22a) and the formula

for the inverse of a partitioned matrix in e.g. [28, Theorem 8.5.11] yields

CRBρ,ρ(ρ) =
[
Iρ,ρ(ρ)−

σ2Iρ,σ2(θ) · σ2Iρ,σ2(θ)T

N

]−1
(2.24a)

CRBσ2σ2(θ) =
σ4

N − σ2Iρ,σ2(θ)T · Iρ,ρ(ρ)−1 · σ2Iρ,σ2(θ)
. (2.24b)

Observe that σ2Iρ,σ2(θ) does not depend on σ2. Hence, CRBρ,ρ(ρ) is a function of ρ only, implying that the

asymptotic accuracy of (efficiently) estimating the maximum Doppler frequency fD and SNR parameter s depends

on the unknown parameters only through fD and s. Interestingly (2.24a) further implies that CRBs,s(ρ) is a function

of s only through g(fk;ρ) and a function of fD through zk(fD), k = 0, 1, . . . , N − 1. Also, CRBσ2σ2(θ) depends on

σ2 only through σ4 in the numerator of (2.24b); it is a function of s through g(fk;ρ) and a function of fD through

zk(fD), k = 0, 1, . . . , N − 1.

Since the Jakes’ PSD in (2.2) is infinite at f = fD and f = 1− fD, the regularity conditions for the information

inequality are not satisfied, see [29, Ch. 3.4.2]. To avoid this problem, we assume that the frequencies fk, k =

0, 1, . . . , N − 1 in the DFT grid do not coincide with fD or 1− fD. Note that CRBfD,fD(ρ) strongly depends on the

minimum distance between fD and the DFT grid f0, f1, . . . , fN−1. For a fixed fD, a small variation in the number of

samples N may significantly change this distance, which causes oscillatory behavior of CRBfD,fD(ρ) as a function

of N , see Fig. 1 in Section IV. For a large fixed N (i.e. dense DFT grid), a small variation of fD causes a significant

change in the minimum distance, resulting in oscillations in CRBfD,fD(ρ) as a function of fD, see Fig. 3 in Section

IV. (The exact CRBfD,fD in [10, Fig. 2], computed under a different measurement model, also fluctuates as a function

of fD.)

CRBfD,fD(ρ) and CRBs,s(ρ) for Large s and N : For large s and N , the following approximations hold:

1

N

N−1∑
k=0

z2k(fD)

g(fk,ρ)
≈
∫ fD

−fD

df

s+
√
f2

D
− f2

≈ 2fD

s
, (2.25a)

1

N

N−1∑
k=0

z4k(fD)

g2(fk,ρ)
≈
∫ fD

−fD

df

(s+
√
f2

D
− f2)2

≈ 2fD

s2
. (2.25b)

Using (2.27), we simplify (2.24a):

CRBρ,ρ(ρ) =

[
κfD,fD(ρ) κfD,s(ρ)
κfD,s(ρ) κs,s(ρ)

]−1
, (2.26)
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where

κfD,fD(ρ) ≈ f2
D
·
N−1∑
k=0

{
z4k(fD)−

[
(1/N) ·

N−1∑
l=0

z4l (fD)
]}2

, (2.27a)

κfD,s(ρ) ≈ −fD(1− 2fD)

s
·
N−1∑
k=0

z4k(fD), (2.27b)

κs,s(ρ) ≈
2fDN

s2
· (1− 2fD). (2.27c)

Then, the CRBs for fD and s can be approximated as shown in (2.28):

CRBfD,fD(ρ) ≈
2N

fD ·
(
2fDN ·

∑N−1
k=0

{
z4k(fD)−

[
(1/N) ·

∑N−1
l=0 z4l (fD)

]}2
− (1− 2fD) ·

[∑N−1
k=0 z

4
k(fD)

]2) , (2.28a)

CRBs,s(ρ) ≈
s2 ·

∑N−1
k=0

{
z4k(fD)−

[
(1/N) ·

∑N−1
l=0 z4l (fD)

]}2

(1− 2fD) ·
(
2fDN ·

∑N−1
k=0

{
z4k(fD)−

[
(1/N) ·

∑N−1
l=0 z4l (fD)

]}2
− (1− 2fD) ·

[∑N−1
k=0 z

4
k(fD)

]2)
≈ s2

2N · fD(1− 2fD)
. (2.28b)

Clearly, as the number of samples N grows, the approximate CRBs,s(ρ) decreases proportionally to 1/N , see also

Fig. 1 (right) in Section IV. Furthermore, the approximate CRBfD,fD(ρ) does not depend on s [see also Fig. 2 (left)

in Section IV] and CRBs,s(ρ) is proportional to s2, which is also confirmed in Fig. 2 (right).

Note that σ2 is not identifiable when fD = 0.5, implying that the SNR parameter s is not identifiable as well.

(Recall that s is defined as the ratio between the scattering power of the fading channel and the noise variance σ2.)

Consequently, CRBs,s(ρ) goes to infinity as fD approaches 0.5, see (2.28b) and Fig. 4 in Section IV. However,

s is identifiable when σ2 is known, see also Section IV. This scenario is of practical interest, since σ2 may be

estimated from noise-only data. Inverting the approximate Iρ,ρ(ρ) [where the approximate formulas (2.25) were

used to compute its elements] yields the approximate CRB for s when σ2 is known

CRBs,s(ρ | known σ2) ≈ s2/(2NfD), (2.29)

which decreases proportionally to 1/fD as fD increases, see also Fig. 4.

B. Extension to Ricean Fading

In the Ricean-fading scenario, y has nonzero mean and (noisy) Jakes’ covariance, described by

E [y] = x · [ϕ(1; fLOS), ϕ(2; fLOS), . . . , ϕ(N ; fLOS)]
T , (2.30a)

cov[y] = E {(y − E [y])(y − E [y])H} = σ2 · [sJ(fD) + IN ], (2.30b)

where

ϕ(t; fLOS) = exp(j2πfLOSt), t = 1, 2, . . . , N (2.31)
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and

• x is the (unknown) complex amplitude of the line-of-sight component;

• fLOS ∈ [0, fD) ∪ [1− fD, 1) is the Doppler shift due to the line-of-sight component;

• s is the SNR of the scattering (diffuse) channel component.

(Note that the line-of-sight Doppler shift can be written as fLOS = fD · cosϑ where ϑ is the angle between the

line-of-sight and mobile velocity vectors.)

The vector of unknown parameters is now4

θ = [σ2,ρT ,Re{x}, Im{x}, fLOS]
T (2.32)

and the Whittle approximation to the log-likelihood (for the measurements y) becomes:

l(y;θ) = −N lnπ −
N−1∑
k=0

{
ln
[
σ2 · g(fk;ρ)

]
+
|yDTFT(fk)− x · ϕDTFT(fk; fLOS)|2

σ2 · g(fk;ρ)

}
, (2.33)

where ϕDTFT(f ; fLOS) is the normalized DTFT of the sequence ϕ(t; fLOS), t = 1, 2, . . . , N :

ϕDTFT(f ; fLOS) =
1√
N
· exp[−j2π(f − fLOS)] ·

1− exp[−j2π(f − fLOS)N ]

1− exp[−j2π(f − fLOS)]
. (2.34)

For fixed ρ and fLOS, there exist closed-form expressions for the asymptotic ML estimates of x and σ2 that maximize

(2.33):

x̂(ρ, fLOS) =

∑N−1
k=0 [ϕDTFT(fk; fLOS)]

∗ · yDTFT(fk) / g(fk;ρ)∑N−1
k=0 |ϕDTFT(fk; fLOS)|2/g(fk;ρ)

, (2.35a)

σ̂2(ρ, fLOS) =
1

N
·
N−1∑
k=0

|yDTFT(fk)− x̂(ρ, fLOS) · ϕDTFT(fk; fLOS)|2

g(fk;ρ)

=
1

N
·
N−1∑
k=0

(
|yDTFT(fk)|2

g(fk;ρ)

)
− 1

N
·
|
∑N−1

k=0 [ϕDTFT(fk; fLOS)]
∗ · yDTFT(fk) / g(fk;ρ)|2∑N−1

k=0 |ϕDTFT(fk; fLOS)|2/g(fk;ρ)
. (2.35b)

Substituting (2.35) into the Whittle log-likelihood function (2.33) and neglecting constant terms yields the concentrated

likelihood function

lc(y;ρ, fLOS) = l
(
y, [σ̂2(ρ, fLOS),ρ

T ,Re{x̂(ρ, fLOS)}, Im{x̂(ρ, fLOS)}, fLOS]
T
)

= −N ln
[
σ̂2(ρ, fLOS)

]
−
N−1∑
k=0

ln
[
g(fk;ρ)

]
(2.36)

to be maximized with respect to ρ and fLOS.

Initialization: The maximization of (2.36) can be initialized using the sample-covariance-based estimate f̂ HS

D
of the

maximum Doppler frequency fD [see (2.16)], nonlinear least-squares estimate of the line-of-sight Doppler shift fLOS:

f̂ LS

LOS
= argmax

fLOS

∣∣∣ N∑
t=1

y(t) · exp(−j2πfLOSt)
∣∣∣ = argmax

fLOS

|yDTFT(fLOS)|, (2.37)

4See (2.4) for the definition of ρ.
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and an estimator of the scattering SNR s similar to (2.17):

s(0) =
(1/N (0)) ·

∑N−1
k=0, zk(f̂ HS

D )6=0
|yDTFT(fk)−N−1/2 · yDTFT(f̂

LS

LOS
) · ϕDTFT(fk; f̂

LS

LOS
)|2 / z2k(f̂ HS

D
)

[1/(N −N (0))] ·
∑N−1

k=0, zk(f̂ HS
D )=0

|yDTFT(fk)−N−1/2 · yDTFT(f̂ LS
LOS

) · ϕDTFT(fk; f̂ LS
LOS

)|2
, (2.38)

where N (0) is the number of terms in the summation in the numerator of (2.38).

III. ESTIMATING JAKES’ POWER SPECTRUM PARAMETERS IN SMART-ANTENNA SYSTEMS

Consider now a SIMO smart-antenna Rayleigh fading channel with nR receiver antennas. Denote by y(t) an nR × 1

vector of the complex fading channel estimates at time t ∈ {1, 2, . . . , N}. We assume that y(t) are corrupted by

spatially and temporally white circularly symmetric complex Gaussian noise with unknown variance σ2 and that the

noise is independent of the fading process. If the fading-channel components at all antennas share the same Doppler

spread and the real and imaginary parts of the fading process are independent (see [23, App. A]), then the noisy

nR × nR Jakes’ cross-spectral matrix (CSM)5 of y(t) can be written as

P yy(f ;θ) = σ2 ·G(f ;ρ) = σ2 ·
[S · i[0,fD)(f)
(f2

D
− f2)1/2

+
S · i(1−fD,1](f)

[f2
D
− (1− f)2]1/2

+ InR

]
, (3.1)

where S is the nR × nR (normalized) spatial fading covariance matrix and θ = [σ2,ρT ]T with

ρ = [fD, s
T ]T . (3.2)

Here, s describes a parametrization of the fading covariance matrix S. [An extension of the above model to the

MIMO scenario is straightforward. In the MIMO case, y(t) are nRnT × 1 vectors of the estimated MIMO channel

coefficients, and P yy(f ;θ) and S are nRnT× nRnT matrices. For simplicity, we focus on the SIMO scenario in the

following discussion.] We consider two models for S = S(s):

(i) unstructured: s = [Re{vech(S)}T, Im{vech(S)}T ]T (the correlation structure of the fading channel is

completely unknown),

(ii) diagonal (independent fading): S = diag{s1, s2, . . . , snR
} and s = [s1, s2, . . . , snR

]T (the fading-channel

coefficients are independent with non-equal variances),

where the vech and vech operators create a single column vector by stacking elements below the main diagonal

columnwise; vech includes the main diagonal, whereas vech omits it. Note that s is a valid parametrization only if S

is a positive semidefinite Hermitian matrix. For notational simplicity, we do not explicitly specify the dependence of S

on s in the following discussion. Note that the covariance matrix of the observations y = [y(1)T ,y(2)T , . . . ,y(N)T ]T

that corresponds to the CSM in (3.1) is not analytically tractable:

E [yyH ] = σ2 · [J(fD)⊗ S + InRN ]. (3.3)

5We define the CSM of a stationary zero-mean multivariate random process y(t) as P yy(f) =
∑∞

n=−∞ E [y(t)y(t+n)H ] ·exp(−j2πfn).
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Here, J(fD) was defined in (2.9) and ⊗ denotes the Kronecker product. The multivariate Whittle approximation to

the log-likelihood can be derived along the lines of [30] (see also [31, Ch. 13.7]):

l(y;θ) = −NnR lnπ −
N−1∑
k=0

{
ln |P yy(fk;θ)|+ tr[Cy,N (fk)P yy(fk;θ)

−1]
}

(3.4a)

= −NnR lnπ −
N−1∑
k=0

{
ln |σ2G(fk,ρ)|+ tr[Cy,N (fk)G(fk,ρ)

−1]/σ2
}
, (3.4b)

where

G(fk,ρ) = z2k(fD) · S + InR
, k = 0, 1, . . . , N − 1, (3.5)

see (3.1). Here | · | denotes the determinant and Cy,N (f) is the nR × nR periodogram matrix of the received data:

Cy,N (f) =
1

N

( N∑
t=1

y(t)e−j2πft
)
·
( N∑
t=1

y(t)e−j2πft
)H

= y
DTFT

(f) · y
DTFT

(f)H , (3.6)

where

y
DTFT

(f) =
1√
N
·
N∑
t=1

y(t)e−j2πft (3.7)

is the normalized DTFT of y(t), t = 1, 2, . . . , N . Hence, y
DTFT

(fk), k = 0, 1, . . . , N−1 form the normalized discrete

DFT of y(t), t = 1, 2, . . . , N . For fixed ρ, there exists a closed-form expression for the asymptotic ML estimate of

σ2 which maximizes (3.4):

σ̂2(ρ) =
1

nRN

N−1∑
k=0

tr{Cy,N (fk)G(fk;ρ)
−1}. (3.8)

Substituting (3.8) into (3.4b) and neglecting constant terms yields the concentrated likelihood function:

lc(y;ρ) = −nRN · ln
{N−1∑
k=0

tr[Cy,N (fk)G(fk;ρ)
−1]
}
−
N−1∑
k=0

ln
∣∣G(fk;ρ)

∣∣ (3.9)

to be maximized with respect to ρ.

In the following, we derive algorithms for computing the asymptotic ML estimates of the unknown parameters

under the unstructured and independent fading scenarios.

A. Asymptotic ML Estimation for Unstructured Fading

We compute the asymptotic ML estimates of the unknown parameters for unstructured fading. We first present

a parameter-expanded expectation-maximization (PX-EM) algorithm for computing the asymptotic ML estimates

σ̂2(fD) and Ŝ(fD) of σ2 and S when fD is known and then propose its extension to the case where fD is unknown

(in addition to S and σ2).

Known fD: In Appendix B, we apply the parameter-expansion approach in [32] to derive the following PX-EM

algorithm for estimating s and σ2 when fD is known: iterate between
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Step 1:

W
(i)
k (fD) = [(σ2)(i)(fD) · InR

+ z2k(fD) ·Ψ(i)(fD)]
−1, (3.10a)

h
(i)
a,k(fD) = zk(fD) ·Ψ(i)

a (fD) [A
(i)(fD)]

HW
(i)
k (fD)yDTFT

(fk), (3.10b)

Q
(i)
k (fD) = h

(i)
a,k(fD) · [h(i)

a,k(fD)]
H − z2k(fD) ·Ψ(i)

a (fD) [A
(i)(fD)]

HW
(i)
k (fD)A

(i)(fD)Ψ(i)
a (fD), (3.10c)

for k = 1, 2, . . . , N − 1 and

Step 2:

A(i+1)(fD) =
{N−1∑
k=0

zk(fD) · yDTFT
(fk)·[h

(i)
a,k(fD)]

H
}
·
{[N−1∑

k=0

z2k(fD)
]
·Ψ(i)

a (fD) +
N−1∑
k=0

z2k(fD) ·Q(i)
k (fD)

}−1
, (3.11a)

Ψ(i+1)
a (fD) = Ψ(i)

a (fD) +
1

N

N−1∑
k=0

Q
(i)
k (fD), (3.11b)

Ψ(i+1)(fD) = A(i+1)(fD)Ψ(i+1)
a (fD) [A

(i+1)(fD)]
H , (3.11c)

(σ2)(i+1)(fD) =
1

nRN

N−1∑
k=0

{[
y

DTFT
(fk)− zk(fD)·A(i)(fD)h

(i)
a,k(fD)

]H ·[y
DTFT

(fk)− zk(fD)·A(i)(fD)h
(i)
a,k(fD)

]
+(σ2)(i)(fD) · tr

[
InR
− (σ2)(i)(fD) ·W (i)

k (fD)
]}
. (3.11d)

The above iteration is performed until Ψ(i)(fD) and (σ2)(i)(fD) converge; denote by Ψ̂(fD) = Ψ(∞)(fD) and σ̂2(fD) =

(σ2)(∞)(fD) the estimates of Ψ and σ2 obtained upon convergence. Then, the asymptotic ML estimate of S is

computed as

Ŝ(fD) =
Ψ̂(fD)

σ̂2(fD)
, (3.12)

see also (B.5) in Appendix B. The PX-EM algorithm shares the same monotonic convergence properties as the

“classical” expectation-maximization (EM) algorithm, see [32, Theorem 1]. It also outperforms the EM algorithm in

the global rate of convergence (see [32, Theorem 2]), where the performance improvement is particularly significant

in the low-SNR scenarios, i.e. when σ2 is large compared with the entries of Ψ = σ2S.

The iteration (3.10)–(3.11) can be initialized as follows:

A(0) = InR
, (3.13a)

Ψ(0)(fD) = Ψ(0)
a (fD) =

1

N (0)
·

N−1∑
k = 0,

zk(fD) 6= 0

y
DTFT

(fk)yDTFT
(fk)

H

z2k(fD)
, (3.13b)

(σ2)(0) =
1

nR(N −N (0))
·

N−1∑
k = 0,

zk(fD) = 0

y
DTFT

(fk)
Hy

DTFT
(fk), (3.13c)

where N (0) is the number of terms in the summation in (3.13b).

Unknown fD: If fD is unknown (in addition to S and σ2), we propose the following alternating-projection algorithm

for computing the asymptotic ML estimates of fD,S, and σ2:
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Step 1: Fix fD = f̂D and compute Ŝ(fD) using (3.10)–(3.11) and (3.12);

Step 2: Fix S = Ŝ(fD) [see (3.12)] and find f̂D that maximizes lc(y; [fD, s
T ]T ) in (3.9),

which increases the likelihood function (of the unknown parameters fD,S, and σ2) at each iteration cycle.

The above iteration can be initialized using the following simple estimator of fD:

f̂ HS

D
=

1

2π
·

√√√√2
∑N−1

t=1

∑nR

p=1 |[y(t)]p − [y(t+ 1)]p|2∑N−1
t=1

∑nR

p=1 |[y(t)]p|2
, (3.14)

which generalizes the sample-covariance-based method in (2.16) to the SIMO scenario.

B. Asymptotic ML Estimation for Independent Fading

We compute the asymptotic ML estimates of the unknown parameters θ for independent fading where S = diag(s1, s2,

. . . , snR
). As in Section III-A, we first propose a method for estimating S and σ2 for known fD and then generalize

it for an unknown fD.

Known fD: The PX-EM algorithm for estimating s = [s1, s2, . . . , snR
]T and σ2 when fD is known easily follows

(see Appendix B): iterate between

Step 1:

w
(i)
k,p(fD) = [(σ2)(i)(fD) + z2k(fD) · ψ(i)(fD)]

−1, (3.15a)

h
(i)
a,k,p(fD) = zk(fD) · ψ(i)

a,p(fD) · [a(i)p (fD)]
∗ · w(i)

k,p(fD) · [yDTFT
(fk)]p, (3.15b)

q
(i)
k,p(fD) = |h(i)a,k,p(fD)|2 − z2k(fD) · [ψ(i)

a (fD)]
2 · |a(i)p (fD)|2 · w(i)

k,p(fD), (3.15c)

for k = 1, 2, . . . , N − 1, p = 1, 2, . . . , nR and

Step 2:

a(i+1)
p (fD) =

∑N−1
k=0 zk(fD) · [yDTFT

(fk)]p ·[h
(i)
a,k,p(fD)]

∗[∑N−1
k=0 z

2
k(fD)

]
· ψ(i)

a,p(fD) +
∑N−1

k=0 z
2
k(fD) · q(i)k,p(fD)

, (3.16a)

ψ(i+1)
a,p (fD) = ψ(i)

a,p(fD) +
1

N

N−1∑
k=0

q
(i)
k,p(fD), (3.16b)

ψ(i+1)
p (fD) = |a(i)p (fD)|2 · ψ(i)

a,p(fD), (3.16c)

for p = 1, 2, . . . , nR and

(σ2)(i+1)(fD) =
1

nRN

N−1∑
k=0

nR∑
p=1

{∣∣∣[yDTFT
(fk)]p−zk(fD)·a(i)p (fD)·h(i)a,k,p(fD)

∣∣∣2+(σ2)(i)(fD)·[1−(σ2)(i)(fD)·w(i)
k,p(fD)]

}
.

(3.16d)

Here “∗” denotes complex conjugation and [y
DTFT

(fk)]p the pth element of y
DTFT

(fk). The above iteration is

performed until ψ(i)
p (fD), p = 1, 2, . . . , nR and (σ2)(i)(fD) converge to ψ̂p(fD) = ψ

(∞)
p (fD), p = 1, 2, . . . , nR and

σ̂2(fD) = (σ2)(∞)(fD). Then, the asymptotic ML estimate of S is computed as

Ŝ(fD) = diag
{ ψ̂1(fD)

σ̂2(fD)
,
ψ̂2(fD)

σ̂2(fD)
, . . . ,

ψ̂nR
(fD)

σ̂2(fD)

}
, (3.17)
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see also (B.18) in Appendix B. In analogy with (3.13), we can initialize the iteration (3.15)–(3.16) using

a(0)p = 1, (3.18a)

ψ(0)
p (fD) = ψ(0)

a,p(fD) =
1

N (0)
·

N−1∑
k = 0,

zk(fD) 6= 0

|[y
DTFT

(fk)]p|2

z2k(fD)
, (3.18b)

(σ2)(0) =
1

nR(N −N (0))
·

N−1∑
k = 0,

zk(fD) = 0

y
DTFT

(fk)
Hy

DTFT
(fk), (3.18c)

for p = 1, 2, . . . , nR, where N (0) is the number of terms in the summation in (3.18b).

Unknown fD: If fD is unknown, we can estimate it using (3.14) when N is small. For large N , (3.14) can be used

to initialize the alternating-projection algorithm for asymptotic ML estimation of fD,S, and σ2:

Step 1: Fix fD = f̂D and compute Ŝ(fD) using (3.15)–(3.16) and (3.17),

Step 2: Fix S = Ŝ(fD) [see (3.17)] and find f̂D that maximizes lc(y; [fD, s
T ]T ) in (3.9),

which is similar to the asymptotic ML algorithm for unstructured S and unknown fD in Section III-A.

C. Asymptotic Cramér-Rao Bound

The asymptotic CRB for the unknown parameters θ is the inverse of the asymptotic FIM I(θ), see (2.18). The (p, q)

element of the asymptotic FIM for p = 1, 2 . . . ,dim(θ), q = 1, 2 . . . ,dim(θ) is computed as

Ip,q(θ) =
N−1∑
k=0

tr
[
P yy(fk;θ)

−1 · ∂P yy(fk;θ)
∂θp

· P yy(fk;θ)−1 ·
∂P yy(fk;θ)

∂θq

]
, (3.19)

which follows by adapting the results of [30] to the complex data model. For p = 1 and the Jakes’ spectrum model

in (3.1), the above expression simplifies to (3.20):

I1,q(θ) = [I]σ2,θq =
N−1∑
k=0

tr
{
[σ2G(fk,ρ)]

−1∂[σ
2G(fk,ρ)]

∂σ2
[σ2G(fk,ρ)]

−1∂[σ
2G(fk,θ)]

∂θq

}

=
1

σ4

N−1∑
k=0

tr
{
[G(fk,ρ)]

−1∂[σ
2G(fk,ρ)]

∂θq

}
=


NnR/σ

4, q = 1

−(fD/σ
2) ·
∑N−1

k=0 z
6
k(fD) · tr

[
G(fk,ρ)

−1S
]
, q = 2

(1/σ2) ·
∑N−1

k=0 z
2
k(fD) · tr

[
G(fk,ρ)

−1 · ∂S/∂sq−2
]
, q > 2

. (3.20)

Similarly, for p = 2 and q ≥ 2, we obtain (3.21):

I2,q(θ) = [I]fD,θq =
N−1∑
k=0

tr
{
G(fk,ρ)

−1∂G(fk,ρ)

∂fD

G(fk,ρ)
−1∂G(fk,θ)

∂θq

}
= −fD

N−1∑
k=0

z6k(fD) tr
{
G(fk,ρ)

−1SG(fk,ρ)
−1∂G(fk,θ)

∂θq

}
=

{
(fD)

2 ·
∑N−1

k=0 z
12
k (fD) · tr

{
G(fk,ρ)

−1SG(fk,ρ)
−1S

}
, q = 2

−fD ·
∑N−1

k=0 z
8
k(fD) · tr

[
G(fk,ρ)

−1SG(fk,ρ)
−1 · ∂S/∂sq−2

]
, q > 2

. (3.21)
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For p, q ≥ 3, we have (3.22):

Ip,q(θ) = [I]sp−2,sq−2
=

N−1∑
k=0

tr
{
G(fk,ρ)

−1∂G(fk,ρ)

∂sp−2
G(fk,ρ)

−1∂G(fk,θ)

∂sq−2

}
=

N−1∑
k=0

z4k(fD) tr
{
G(fk,ρ)

−1 ∂S

∂sp−2
G(fk,ρ)

−1 ∂S

∂sq−2

}
. (3.22)

To derive (3.20)–(3.22), we used (3.5) and the identity (2.21). See Appendix C for further simplifications of these

expressions under the unstructured and independent fading scenarios.

Using the same block partitioning as in (2.23a), we have Iσ2,σ2(σ2) = I1,1(θ) = NnR/σ
4, and Iρ,σ2(θ) and

Iρ,ρ(θ) can be constructed using (3.20)–(3.22). Then, the formula for the inverse of a partitioned matrix [28, Theorem

8.5.11] yields

CRBρ,ρ(ρ) =
[
Iρ,ρ(ρ)−

σ2Iρ,σ2(θ) · σ2Iρ,σ2(θ)T

NnR

]−1
, (3.23a)

CRBσ2σ2(θ) =
σ4

NnR − σ2Iρ,σ2(θ)T · Iρ,ρ(ρ)−1 · σ2Iρ,σ2(θ)
. (3.23b)

As in the SISO case, σ2Iρ,σ2(θ) and CRBρ,ρ(ρ) are functions of ρ only, implying that the asymptotic accuracy of

(efficiently) estimating the maximum Doppler frequency fD and normalized spatial fading covariance parameters s

depends on the unknown parameters only through fD and s. Furthermore, (3.23a) implies that CRBs,s(ρ) is a function

of fD through zk(fD), k = 0, 1, . . . , N − 1. Also, CRBσ2σ2(θ) depends on σ2 only through σ4 in the numerator of

(3.23b) and is a function of fD through zk(fD), k = 0, 1, . . . , N − 1.

As in Section II-A, we assume that the sampling frequencies fk, k = 0, 1, . . . , N − 1 do not coincide with fD or

1− fD since the Jakes’ CSM in (3.1) is infinite at f = fD and f = 1− fD.

IV. NUMERICAL EXAMPLES

We evaluate the performance of the proposed methods using numerical simulations. Our performance metric is the

mean-square error (MSE) of an estimator, calculated using 400 independent trials. In all the examples, we have

chosen unit noise variance: σ2 = 1. The noise variance is assumed to be unknown, unless specified otherwise (see

Fig. 4).

SISO Rayleigh-fading Scenario: In the first set of simulations, we examine the MSE performances of

• the asymptotic (Whittle) ML estimators of the unknown parameters of interest (fD and s) and

• the approximate ML and sample-covariance-based estimators of fD in (2.15) and (2.16), respectively.

Simulated data was generated using the Jakes’ correlation model in (2.8); in particular, we simulated the measurement

vector y by premultiplying a white unit-variance complex Gaussian vector by a square root of the Jakes’ covariance

matrix in (2.8). In this scenario, we also generated simulated data using the sum of complex exponentials (as in e.g.

[2, eq. (3)] or [20, eq. (2)]), corrupted by additive white circularly symmetric complex Gaussian noise. The obtained

MSE results were almost identical to the results reported here.
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Fig. 1. Mean-square errors and asymptotic Cramér-Rao bounds for the asymptotic ML, approximate ML, and sample-covariance-based
estimators of fD (left) and asymptotic ML estimator of s (right) as functions of N , for fD = 0.365 and s = 3.

In Fig. 1, we show the MSEs (and corresponding asymptotic CRBs) for the above estimators as functions of the

number of samples N . The maximum Doppler frequency and SNR were fixed and set to fD = 0.365 and s = 3. In this

scenario, the asymptotic ML estimator of fD clearly outperforms the approximate ML and sample-covariance-based

methods, see Fig. 1 (left). Here, the asymptotic ML estimator of fD achieves excellent performance for N < 100

samples, compared with 500 samples needed for the approximate ML method. We consider the accuracy of estimating

the maximum Doppler frequency to be excellent if it is approximately within 6% of the true value, which corresponds

to MSEexcellent = 0.062 · f2
D
≈ 5 · 10−4. This choice is consistent with the best performance in [19, Fig. 5], see also

[1, Ch. 12].) Note that the sample-covariance-based method fails to reach MSEexcellent. The MSE for the asymptotic

ML estimate of s in Fig. 1 (right) is close to the corresponding CRBs,s(ρ) for all values of N and is approximately

proportional to 1/N , as predicted in Section II-A.

In Fig. 2, we present the MSEs of the above estimators as functions of s, for fixed fD = 0.365 and N = 300. When

s > 1, CRBfD,fD(ρ) is approximately independent of s whereas CRBs,s(ρ) increases with s proportionally to s2,

see also Section II-A. Clearly, fD is not identifiable when s = 0, which explains the sharp increase in CRBfD,fD(ρ)

as s decreases toward zero.

Figures 3 and 4 show the MSEs and asymptotic CRBs for fD and s (respectively) as functions of fD, for s = 3

and N = 300. In this scenario, the approximate ML estimator (2.15) outperforms the asymptotic ML method for

fD < 0.25, see Fig. 3. However, the approximate ML method performs poorly when fD is large, in contrast to the

asymptotic ML estimator which is (approximately) insensitive to the choice of fD. Motivated by the discussion on
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Fig. 2. Mean-square errors and asymptotic Cramér-Rao bounds for the asymptotic ML, approximate ML, and sample-covariance-based
estimators of fD (left) and asymptotic ML estimator of s (right) as functions of s, for fD = 0.365 and N = 300.

the identifiability of s in Section II-A, we now study the performances of the asymptotic ML estimators of s for both

unknown and known noise level σ2, see Fig. 4. For unknown σ2, the estimation of s deteriorates as fD approaches

0.5, as predicted by the approximate CRB results in Section II-A. In contrast, for known σ2, the estimation of s

improves as fD increases6. The MSEs for the asymptotic ML estimates of s are close to the corresponding CRBs

under both scenarios.

To compute the asymptotic ML estimates of fD and s and approximate ML estimates of fD, we utilized the

Nelder-Mead simplex method7 [33, Ch. 10.4], which converged in 24 iterations (on average).

SISO Ricean-fading Scenario: We now analyze the performances of the Rayleigh-fading based estimators of fD

and s and the Ricean-fading based asymptotic ML estimators of these parameters (Section II-B) under the Ricean

fading scenario. Simulated data was generated using the model in (2.30). Figs. 5 and 6 show the MSEs of the above

estimators as functions of the Ricean K factor K = |x|2/(πσ2s), defined as the ratio of the powers of the line-of-

sight and scattering (diffuse) channel components [1, Ch. 2.1.2.2], [11, Ch. 5.6.2]. Here, we set the scattering SNR

to s = 3 and consider two choices of the maximum Doppler frequency: fD = 0.265 (Fig. 5) and fD = 0.365 (Fig.

6). For K = 0 (Rayleigh fading), the approximate ML method for estimating fD outperforms other methods when

fD = 0.265; however, it is outperformed by both the Rayleigh- and Ricean-fading based asymptotic ML estimators

when fD = 0.365, which is also consistent with the results in Fig. 3. For large K, the approximate ML and Rayleigh-

6For known σ2, the asymptotic ML estimates of s and fD are obtained by maximizing (2.5b).
7The simplex method was implemented using MATLAB’s fminsearch function and initialized using (2.16) and (2.17).
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Fig. 3. Mean-square errors and asymptotic Cramér-Rao bounds for the asymptotic ML, approximate ML, and sample-covariance-based
estimators of fD as functions of fD, for s = 3 and N = 300.
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Fig. 5. Mean-square errors and asymptotic Cramér-Rao bounds for the Rayleigh- and Ricean-fading based estimators of fD as functions of
K, for s = 3 and fD = 0.265.
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Fig. 6. Mean-square errors and asymptotic Cramér-Rao bounds for the Rayleigh- and Ricean-fading based estimators of fD as functions of
K, for s = 3 and fD = 0.365.

fading based asymptotic ML methods perform poorly. Interestingly, the sample-covariance-based estimator (2.16) is

quite robust to the presence of the line-of-sight component. As expected, the best overall performance is achieved

by the Ricean-fading based asymptotic ML method.

SIMO Rayleigh-fading Scenario: Consider the SIMO Rayleigh-fading scenario in Section III with the maximum

Doppler frequency and number of receiver antennas set to fD = 0.265 and nR = 2. Simulated data was generated

using the Jakes’ correlation model for SIMO channels in (3.3); in particular, we simulated the measurement vector
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y by premultiplying a white unit-variance complex Gaussian vector by a square root of the Jakes’ covariance matrix

in (3.3). We first examine the asymptotic ML method for correlated fading, where the normalized spatial fading

covariance matrix was chosen as follows:

S =

[
s11 s12
s∗12 s22

]
=

[
0.33 0.17− j0.1

0.17 + j0.1 0.5

]
. (4.1)

In Figs. 7–9, we show the MSEs (and corresponding asymptotic CRBs) for the asymptotic ML estimates of the

unknown parameters fD and S, under the correlated fading scenario (see Section III-A), as functions of the number

of samples N . Fig. 7 also compares the MSE performance of the asymptotic ML estimator of fD with the sample-

covariance-based estimator in (3.14) and approximate ML method:

f̂ app

D
= argmax

fD

N−1∑
k=0

z2k(fD) · tr[Cy,N (fk)], (4.2)

which generalizes (2.15) to the SIMO scenario, see also Appendix A. As expected, the asymptotic ML estimator

outperforms the approximate ML and sample-covariance-based methods for large N . In this example, the sample-

covariance-based estimator outperforms the asymptotic and approximate ML methods when N is small (less than

100). Simplicity and good performance for small numbers of observations are important when fast computation of

fD is needed (e.g. in adaptive modulation schemes, see [2]); then the sample-covariance-based estimator (3.14) may

be the method of choice. As in the SISO case, the MSEs for the asymptotic ML estimates of (the elements of) S

are close to the corresponding asymptotic CRBs for all values of N and are approximately proportional to 1/N ,

see Figs. 8 and 9. The PX-EM algorithm for estimating S and σ2 in (3.10)–(3.11) converged in 40 iterations (on

average). The estimation of fD was performed using the Nelder-Mead simplex method, which converged in less than

20 iterations.

We now consider the independent fading scenario with S = diag{s1, s2} = diag{0.33, 0.5}. In Figs. 10 and

11, we show the MSEs (and corresponding asymptotic CRBs) for the asymptotic ML estimates of the unknown

parameters fD and s1, s2, (respectively) under the independent fading scenario (see Section III-B), as functions of the

number of samples N . Fig. 10 also shows the MSE performances of the sample-covariance-based method in (3.14)

and asymptotic ML estimator (4.2). The asymptotic ML estimator outperforms the approximate ML and sample-

covariance-based methods for large N , whereas the sample-covariance-based method outperforms the asymptotic and

approximate ML methods when N is less than 100. As in the SISO and unstructured SIMO fading scenarios, the

MSEs for the asymptotic ML estimates of s1 and s2 are close to the corresponding asymptotic CRBs for all values

of N and are approximately proportional to 1/N , see Fig. 11.

The PX-EM algorithm for estimating S and σ2 [see (3.15)–(3.16)] converged in less than 25 iterations. The

asymptotic ML estimation of fD was performed using the Nelder-Mead simplex method, which converged in less

than 20 iterations.
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Fig. 7. Mean-square errors and asymptotic Cramér-Rao bounds for the asymptotic ML, sample-covariance-based, and approximate ML
estimators of fD in a SIMO system with correlated fading, as functions of N .
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Fig. 11. Mean-square errors and corresponding asymptotic Cramér-Rao bounds for the asymptotic ML estimates of s1 and s2 in a SIMO
system with independent fading, as functions of N .

V. CONCLUDING REMARKS

We derived asymptotic ML methods for estimating the Doppler-spread, noise variance, and channel covariance

parameters from fading-channel estimates containing both the in-phase and quadrature-phase components under

SISO and smart-antenna scenarios. Asymptotic Cramér-Rao bounds were derived for the unknown parameters. We

also generalized the sample-covariance-based and approximate ML methods for estimating the Doppler spread in

[6], [10], and [20] to the smart-antenna SIMO scenario. The performance of the proposed methods was evaluated

for all parameters of interest under various simulation scenarios. We compared several Doppler-spread estimators

and discussed their relative merits (For example, we observed in Section IV that the approximate ML and sample-

covariance-based methods for Doppler-spread estimation may outperform the asymptotic ML estimator in some

scenarios, e.g. when the Doppler spread or the number of samples are small.) In general, the asymptotic ML method

shows excellent performance for large data records. We also discussed identifiability of the signal-to-noise ratio

parameter and showed how its estimation may be improved (and the identifiability problem resolved) when the noise

level is known.

Further research will include:

• examining the performance of the proposed methods in realistic non-uniform angle-of-arrival (AoA) and impulsive-

noise environments,

• developing methods that account for non-uniform AoA distributions (along the lines of [2], [10], and [34]) and

man-made and atmospheric impulsive noise (along the lines of [35], [36]),
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• efficiently estimating the AoA and noise-distribution parameters,

• extending the SIMO asymptotic ML estimators in Section III to the Ricean fading scenario, and
• computing exact Cramér-Rao bounds for the Rayleigh and Ricean fading models in Sections II and III.

APPENDIX A.. APPROXIMATE ML ESTIMATION OF THE DOPPLER SPREAD

We derive the approximate ML estimator (2.15) of the Doppler-spread parameter fD in the SISO scenario, discuss

its relationship with the approximate average ML method in [20], and extend it to the smart-antenna SIMO scenario.

SISO Scenario: We start with the following basis-function representation of the measurements y(t) (see e.g. [37, eq.

(2.6) and Fig. 1] and references therein):

y(t) =

L∑
l=1

xl · exp[j2πfD cos(πl/L)t] + e(t), t = 1, 2, . . . , N, (A.1)

which is a linear combination of L ≤ N complex exponentials at frequencies fD cos(πl/L), l = 1, 2, . . . , L, weighted

by the (unknown) complex amplitudes xl, l = 1, 2, . . . , L, and corrupted by additive white circularly symmetric

complex Gaussian noise e(t) with unknown variance σ2. Equation (A.1) approximates a multipath fading channel

with uniformly distributed scatterers around the mobile (see also a similar model in [20, eq. (2)]). For a fixed fD and

under the model (A.1), the ML estimates of xl, l = 1, 2, . . . , L and σ2 easily follow (see e.g. [37]):

[x̂1(fD), x̂2(fD), . . . , x̂L(fD)] = [y(1), y(2), . . . , y(N)]Φ(fD)
H · [Φ(fD)Φ(fD)

H ]−1, (A.2a)

σ̂2(fD) = (1/N) · [y(1), y(2), . . . , y(N)] ·
{
IN −Φ(fD)

H [Φ(fD)Φ(fD)
H ]−1Φ(fD)

}
· [y(1), y(2), . . . , y(N)]H , (A.2b)

where

Φ(fD) =


exp[j2πfD cos(π/L)] exp[j2πfD cos(π/L) · 2] · · · exp[j2πfD cos(π/L) ·N ]
exp[j2πfD cos(π2/L)] exp[j2πfD cos(π2/L) · 2] · · · exp[j2πfD cos(π2/L) ·N ]

...
...

...
...

exp[j2πfD cos(π(L− 1)/L)] exp[j2πfD cos(π(L− 1)/L) · 2] · · · exp[j2πfD cos(π(L− 1)/L) ·N ]
exp(−j2πfD) exp(−j2πfD · 2) · · · exp(−j2πfD ·N)

 .
Substituting (A.2) into the likelihood function for the above measurement model yields the concentrated likelihood

function (see e.g. [37, eq. (5.5)]):

l app

c (fD) =
(1/N) ·

∑N
t=1 |y(t)|2

σ̂2(fD)
(A.3)

to be maximized with respect to fD. For large N , we can use the following approximation (see [31, p. 157]):

Φ(fD)Φ(fD)
H ≈ NIL (A.4)

and a monotonic transformation (lc)
app)′(fD) = [1− 1/lappc (fD)] · (1/N)

∑N
t=1 |y(t|2 to obtain a simpler form of the

concentrated likelihood

(lapp

c )′(fD) =

L∑
l=1

Cy,N (fD cos(πl/L)). (A.5)
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The above expression is equivalent to the approximate average log-likelihood function for fD in [20, eq. (16)], where

it was derived using a different measurement model. Note that (A.5) cannot be computed efficiently because of

non-uniform sampling of the periodogram at frequencies that depend on the unknown parameter fD. For large L,

(A.5) is proportional to

lapp

c (fD) =
N−1∑
k=0

z2k(fD) · Cy,N (fk) (A.6)

and (2.15) follows. Note that (A.6) is different from Equation (17) in [20]. In [20], the authors mistakenly suggest

maximizing
∑N−1

k=0 fD · z2k(fD) · Cy,N (fk) with respect to fD, see [20, eqs. (3) and (17)].

SIMO Scenario: The above derivation is easily extended to the SIMO scenario in Section III, yielding (4.2).

APPENDIX B.. PX-EM ALGORITHM DERIVATION

We derive PX-EM algorithms for estimating S and σ2 assuming that fD is known.

First, note that the Whittle log-likelihood in (3.4) can be rewritten as

l(y;θ) = −
N−1∑
k=0

{
ln |πP yy(fk;θ)|+ yDTFT

(fk)
HP yy(fk;θ)

−1y
DTFT

(fk)
}
, (B.1)

which would be the exact log-likelihood in the scenario where y
DTFT

(fk), k = 0, 1, . . . , N − 1 are independent

zero-mean circularly symmetric complex Gaussian random vectors with covariances P yy(fk;θ). In the following,

PX-EM algorithms are derived for maximizing (B.1) with respect to S and σ2, assuming that fD is known. We

consider both the unstructured and independent fading scenarios, see the following discussion.

A. Unstructured Fading

We now derive the PX-EM algorithm for estimating S and σ2 for known fD and the unstructured fading scenario.

Consider the following expanded measurement model:

y
DTFT

(fk) = zk(fD) ·Aha,k + ek (B.2a)

= zk(fD) · (hTa,k ⊗ InR
) · vec(A) + ek (B.2b)

for k = 0, 1, . . . , N−1, where A is the matrix of the auxiliary parameters, ha,k are independent, identically distributed

(i.i.d) zero-mean complex Gaussian random vectors with covariance Ψa = E [ha,kh
H
a,k], and ek is additive zero-mean

white complex Gaussian noise with covariance E [eke
H
k ] = σ2InR

. Here, the vec operator stacks the columns of a

matrix one below another into a single column vector and (B.2b) follows from (B.2a) by applying the following

identity:

vec(PQ) = (QT ⊗ I) vec(P ) (B.3)

which holds for arbitrary conforming matrices P and Q and an identity matrix I of appropriate dimensions, see

[28, eq. (2.11) at p. 342]. We assume that ha,k and ek are independent, implying that E [ha,k1e
H
k2
] = 0 for k1, k2 ∈
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{0, 1, . . . , N − 1}. Clearly, the covariances of y
DTFT

(fk) can be written as

P yy(fk;θ) = z2k(fD) ·AΨaA
H + σ2InR

, (B.4)

implying that

S = AΨaA
H/σ2. (B.5)

We wish to find the ML estimates of the following parameters of the expanded model: σ2,A, and Ψa; then the ML

estimate of S easily follows by using (B.5). To compute these ML estimates, we derive the EM algorithm (see e.g.

[38] and [39]) for the model (B.2) by treating ha,k, k = 0, 1, . . . , N − 1 as the unobserved (or missing) data. Then,

the complete-data log-likelihood function is

Lc(y,ha;σ
2,A,Ψa) = −2NnR lnπ −NnR lnσ

2 −N ln |Ψa|

−
N−1∑
k=0

{[y
DTFT

(fk)− zk(fD) ·Aha,k]
H [y

DTFT
(fk)− zk(fD) ·Aha,k]/σ

2} − tr
(
Ψ−1a

N−1∑
k=0

ha,kh
H
a,k

)
(B.6)

and the complete-data sufficient statistics are

t0(y) =
1

N

N−1∑
k=0

y
DTFT

(fk)
Hy

DTFT
(fk), (B.7a)

T 1(ha) =
1

N

N−1∑
k=0

ha,kh
H
a,k, (B.7b)

T 2(y,ha) =
1

N

N−1∑
k=0

zk(fD) · yDTFT
(fk)h

H
a,k, (B.7c)

T 3(ha) =
1

N

N−1∑
k=0

z2k(fD) · ha,k h
H
a,k, (B.7d)

where ha = [hTa,0,h
T
a,1, . . . ,h

T
a,N−1]

T . The complete-data log-likelihood (B.6) is easily maximized with respect to

A,Ψa, and σ2, yielding the following estimates:

Â =
[N−1∑
k=0

zk(fD) · yDTFT
(fk) · hHa,k

]
·
[N−1∑
k=0

z2k(fD) · ha,kh
H
a,k

]−1
= T 2(y,ha) · T 3(ha)

−1, (B.8a)

Ψ̂a =
1

N

N−1∑
k=0

ha,kh
H
a,k = T 1(ha), (B.8b)

and, for a given A,

σ̂2 =
1

nRN
·
N−1∑
k=0

[
y

DTFT
(fk)− zk(fD) ·A · h(i)

a,k

]H · [y
DTFT

(fk)− zk(fD) ·A · h(i)
a,k

]
=

1

nR

·
{
t0(y)− tr[AHT 2(y,ha)]− tr[T 2(y,ha)

HA] + tr[AHAT 3(ha)]
}
. (B.8c)

The equation (B.8a) follows as a least-squares solution to the linear regression problem in (B.2b):

vec(Â) =
{[N−1∑

k=0

z2k(fD) · h∗a,khTa,k
]
⊗ InR

}−1
·
N−1∑
k=0

zk(fD) · (h∗a,k ⊗ InR
) · y

DTFT
(fk), (B.9)
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where we used the Kronecker product theorem [28, Lemma 16.1.2] stating that for arbitrary conforming matrices

P ,Q,R, and S, (P ⊗Q) · (R⊗ S) = (PR)⊗ (QS). Then, (B.8a) follows by applying (B.3) to (B.9).

The complete-data likelihood belongs to an exponential family of distributions, i.e. the log-likelihood (B.6) is linear

in the natural sufficient statistics (B.7); see e.g. [29, ch. 1.6.2] for the definition of the multiparameter exponential

family and natural sufficient statistics. Then, it easily follows from (B.6) that the expectation (E) step reduces to

computing the conditional expectations of the complete-data natural sufficient statistics [in (B.7)] given the observed

data y. Observe that, for the measurement model in (B.2), y
DTFT

(fk) and ha,k are jointly complex Gaussian with

the following mean and covariance:

E

{[
y

DTFT
(fk)

ha,k

]}
= 0, (B.10a)

cov

{[
y

DTFT
(fk)

ha,k

]}
=

[
z2k(fD) ·AΨaA

H + σ2InR
zk(fD) ·AΨa

zk(fD) ·ΨaA
H Ψa

]
, (B.10b)

and then it easily follows from [24, result 7. at pp. 508–509] that ha,k conditioned on y
DTFT

(fk) is a complex

Gaussian vector with the mean and covariance equal to

E [ha,k|yDTFT
(fk)] = zk(fD) ·ΨaA

HW k yDTFT
(fk), (B.11a)

cov[ha,k|yDTFT
(fk)] = Ψa − z2k(fD) ·ΨaA

HW kAΨa, (B.11b)

where W k = [z2k(fD) ·AΨaA
H + σ2InR

]−1. Define also

Qk = E [ha,k|yDTFT
(fk)] · E [ha,k|yDTFT

(fk)]
H − z2k(fD) ·ΨaA

HW kAΨa. (B.12)

We now use the above expressions to find the conditional expectations of the complete-data natural sufficient statistics

(B.7):

E [t0(y) |y; σ2,A,Ψa] = t0(y), (B.13a)

E [T 1(ha) |y; σ2,A,Ψa] =
1

N

N−1∑
k=0

{
E [ha,k|yDTFT

(fk)] · E [ha,k|yDTFT
(fk)]

H + cov(ha,k|yDTFT
(fk))

}
= Ψa +

1

N

N−1∑
k=0

Qk, (B.13b)

E [T 2(y,ha) |y; σ2,A,Ψa] =
1

N

N−1∑
k=0

zk(fD) · yDTFT
(fk) · E [ha,k|yDTFT

(fk)]
H , (B.13c)

E [T 3(ha) |y; σ2,A,Ψa] =
1

N

N−1∑
k=0

z2k(fD)·
{
E [ha,k|yDTFT

(fk)] · E [ha,k|yDTFT
(fk)]

H + cov(ha,k|yDTFT
(fk))

}
=

1

N

[N−1∑
k=0

z2k(fD)
]
·Ψa +

1

N

N−1∑
k=0

z2k(fD) ·Qk, (B.13d)

where we emphasize the dependence of the above conditional expectations on the parameters σ2,A, and Ψa. Now, the

maximization (M) step follows by replacing the complete-data sufficient statistics (B.7) that occur in the complete-data
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ML estimates (B.8) with their conditional expectations computed in (B.13):

A(i+1) = E [T 2(y,ha) |y; (σ2)(i),A(i),Ψ(i)
a ] · E [T 3(ha) |y; (σ2)(i),A(i),Ψ(i)

a ]−1, (B.14a)

Ψ(i+1)
a = E [T 1(ha) |y; (σ2)(i),A(i),Ψ(i)

a ], (B.14b)

(σ2)(i+1) =
1

nR

·
(
t0(y)− tr{(A(i))H · E [T 2(y,ha) |y; (σ2)(i),A(i),Ψ(i)

a ]}

− tr{E [T 2(y,ha) |y; (σ2)(i),A(i),Ψ(i)
a ]H ·A(i)}

+tr{(A(i))HA(i) · E [T 3(ha) |y; (σ2)(i),A(i),Ψ(i)
a ]}

)
, (B.14c)

and the equations (3.11) easily follow. To derive (3.11d), we used the following identity [see also (B.11)]:

z2k(fD) tr{AHA · cov[ha,k|yDTFT
]} = tr

{
z2k(fD)AΨaA

H − z2k(fD)AΨaA
H

·[z2k(fD)AΨaA
H + σ2InR

]−1 · [z2k(fD)AΨaA
H + σ2InR

− σ2InR
]
}

= tr
(
z2k(fD)A

HΨaA · {InR
− InR

+ σ2 · [z2k(fD)AΨaA
H + σ2InR

]−1}
)

= σ2 · tr
{
[z2k(fD)A

HΨaA+ σ2InR
− σ2InR

] · [z2k(fD)AΨaA
H + σ2InR

]−1
}
= σ2 · tr{InR

− σ2 ·W k}. (B.15)

B. Independent Fading

The PX-EM algorithm for estimating s and σ2 for known fD and the independent fading scenario is easily derived

from the following expanded measurement model:

[y
DTFT

(fk)]p = zk(fD) · ap · ha,k,p + [ek]p, (B.16)

for p = 1, 2, . . . , nR, k = 0, 1, . . . , N − 1, where ap are the auxiliary parameters, ha,k,p are independent zero-mean

complex Gaussian random variables with variances ψp, and ek is additive zero-mean white complex Gaussian noise

with covariance E [eke
H
k ] = σ2InR

, independent from ha,k,p. Under the above assumptions, the covariance matrices

of y
DTFT

(fk) can be written as

P yy(fk;θ) = z2k(fD) · diag
{
|a1|2ψa,1, |a2|2ψa,2, . . . , |anR

|2ψa,nR

}
+ σ2InR

, (B.17)

implying that

s = diag{|a1|2ψa,1/σ
2, |a2|2ψa,2/σ

2, . . . , |anR
|2ψa,nR

/σ2}. (B.18)

The PX-EM algorithm for independent fading in Section III-B follows from the above measurement model by using

arguments similar to those in Appendix B-A where the PX-EM algorithm was derived for the unstructured fading

scenario.

APPENDIX C.. ASYMPTOTIC FISHER INFORMATION MATRIX

We utilize (3.20)–(3.22) to compute the elements of I(θ) that correspond to the normalized fading covariance

parameters s in unstructured and independent fading scenarios (see Appendices C-A and C-B below). To simplify

the notation, we omit the dependences of I(θ) and G(f ;ρ) on θ and ρ, respectively.
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A. FIM for Unstructured S
Denote by Sp,q the (p, q) element of S, where p, q = 1, 2, . . . , nR. First, we use (3.20) to compute

[I]σ2,Sp,p
=

1

σ2
·
N−1∑
k=0

z2k(fD) · tr
[
G(fk)

−1 · ∂S

∂Sp,p

]
=

1

σ2
·
N−1∑
k=0

z2k(fD) ·
[
G(fk)

−1]
p,p

(C.1)

and, for p > q,

[I]σ2,Re{Sp,q} =
1

σ2

N−1∑
k=0

z2k(fD) tr
[
G(fk)

−1 ∂S

∂ Re{Sp,q}

]
=

2

σ2

N−1∑
k=0

z2k(fD) · Re{
[
G(fk)

−1]
p,q
}, (C.2a)

[I]σ2,Im{Sp,q} =
1

σ2

N−1∑
k=0

z2k(fD) tr
[
G(fk)

−1 ∂S

∂ Im{Sp,q}

]
=

2

σ2

N−1∑
k=0

z2k(fD) · Im{
[
G(fk)

−1]
p,q
}. (C.2b)

Similarly, (3.21) implies

[I]fD,Sp,p
= −fD ·

N−1∑
k=0

z8k(fD) · tr
[
G(fk)

−1SG(fk)
−1 · ∂S

∂Sp,p

]
= −fD ·

N−1∑
k=0

z8k(fD) ·
[
G(fk)

−1SG(fk)
−1]

p,p
(C.3)

and, for p > q,

[I]fD,Re{Sp,q} = −fD ·
N−1∑
k=0

z8k(fD) · tr
[
G(fk)

−1SG(fk)
−1 · ∂S

∂ Re{Sp,q}

]
= −2fD ·

N−1∑
k=0

z8k(fD) · Re
{
[G(fk)

−1SG(fk)
−1]p,q

}
(C.4a)

[I]fD,Im{Sp,q} = −fD ·
N−1∑
k=0

z8k(fD) · tr
[
G(fk)

−1SG(fk)
−1 · ∂S

∂ Im{Sp,q}

]
= −2fD ·

N−1∑
k=0

z8k(fD) · Im
{
[G(fk)

−1SG(fk)
−1]p,q

}
. (C.4b)

Finally, for p1 > q1 and p2 > q2, (3.22) simplifies to

IRe{Sp1,q1
},Re{Sp2,q2

} = IRe{Sp2,q2
},Re{Sp1,q1

} =
N−1∑
k=0

z4k(fD) tr
{
G(fk)

−1 ∂S

∂ Re{Sp1,q1}
·G(fk)

−1 ∂S

∂ Re{Sp2,q2}

}
= 2

N−1∑
k=0

z4k(fD)Re
{
[G(fk)

−1]q2,p1 · [G(fk)
−1]q1,p2 + [G(fk)

−1]q2,q1 · [G(fk)
−1]p1,p2

}
, (C.5a)

IRe{Sp1,q1},Im{Sp2,q2} = IIm{p2,q2},Re{Sp1,q1} =

N−1∑
k=0

z4k(fD) tr
{
G(fk)

−1 ∂S

∂ Re{Sp1,q1}
·G(fk)

−1 ∂S

∂ Im{p2, q2}

}
= −2

N−1∑
k=0

z4k(fD) Im
{
[G(fk)

−1]q2,p1 · [G(fk)
−1]q1,p2 + [G(fk)

−1]q2,q1 · [G(fk)
−1]p1,p2

}
, (C.5b)

IIm{Sp1,q1
},Im{Sp2,q2

} = IIm{Sp2,q2
},Im{Sp1,q1

} =
N−1∑
k=0

z4k(fD) tr
{
G(fk)

−1 ∂S

∂ Im{Sp1,q1}
·G(fk)

−1 ∂S

∂ Im{Sp2,q2}

}
= 2

N−1∑
k=0

z4k(fD)Re
{
− [G(fk)

−1]q2,p1 · [G(fk)
−1]q1,p2 + [G(fk)

−1]q2,q1 · [G(fk)
−1]p1,p2

}
, (C.5c)



29

and for p1 = q1 and p2 > q2,

ISp1,p1 ,Re{Sp2,q2} = IRe{Sp2,q2},Sp1,p1
=

N−1∑
k=0

z4k(fD) tr
{
G(fk)

−1 ∂S

∂Sp1,p1
G(fk)

−1 ∂S

∂ Re{Sp2,q2}

}
= 2

N−1∑
k=0

z4k(fD)Re
{
[G(fk)

−1]q2,p1 · [G(fk)
−1]p1,p2

}
, (C.6a)

ISp1,p1
,Im{Sp2,q2

} = IIm{Sp2,q2
},Sp1,p1

=
N−1∑
k=0

z4k(fD) tr
{
G(fk)

−1 ∂S

∂Sp1,p1
G(fk)

−1 ∂S

∂ Im{Sp2,q2}

}
= −2

N−1∑
k=0

z4k(fD) · Im
{
[G(fk)

−1]q2,p1 · [G(fk)
−1]p1,p2

}
, (C.6b)

and for p1 = q1 and p2 = q2,

ISp1,p1 ,Sp2,p2
= ISp2,p2 ,Sp1,p1

=

N−1∑
k=0

z4k(fD) tr
{
G(fk)

−1 ∂S

∂Sp1,p1
G(fk)

−1 ∂S

∂Sp2,p2

}
=

N−1∑
k=0

z4k(fD) ·
∣∣[G(fk)

−1]p1,p2
∣∣2.

(C.7)

B. FIM for Independent Fading

For independent fading (i.e. S = diag{s1, s2, . . . , snR
} and s = [s1, s2, . . . , snR

]T ), the elements of I(θ) related to

s can be computed as follows:

[I]σ2,sp =
1

σ2
·
N−1∑
k=0

z2k(fD) · tr
[
G(fk)

−1 · ∂S
∂sp

]
=

1

σ2
·
N−1∑
k=0

z2k(fD)

1 + z2k(fD)sp
, (C.8a)

[I]fD,sp = −fD ·
N−1∑
k=0

z8k(fD) · tr
[
G(fk)

−1SG(fk)
−1 · ∂S

∂sp

]
= −fD ·

N−1∑
k=0

z8k(fD) ·
sp

(1 + z2k(fD)sp)2
(C.8b)

for p = 1, 2, . . . , nR, and

Isp1 ,sp2 =
N−1∑
k=0

z4k(fD) tr
{
G(fk)

−1 ∂S

∂sp1
G(fk)

−1 ∂S

∂sp2

}
=

{
0, p1 6= p2∑N−1

k=0 z
4
k(fD)/[1 + z2k(fD)sp1 ]

2, p1 = p2
(C.9)

for p1, p2 ∈ {1, 2, . . . , nR}.
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