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Robust Minimum Variance Beamforming
Robert G. Lorenz, Member, IEEE, and Stephen P. Boyd, Fellow, IEEE

Abstract—This paper introduces an extension of minimum vari-
ance beamforming that explicitly takes into account variation or
uncertainty in the array response. Sources of this uncertainty in-
clude imprecise knowledge of the angle of arrival and uncertainty
in the array manifold.

In our method, uncertainty in the array manifold is explicitly
modeled via an ellipsoid that gives the possible values of the array
for a particular look direction. We choose weights that minimize
the total weighted power output of the array, subject to the con-
straint that the gain should exceed unity for all array responses in
this ellipsoid. The robust weight selection process can be cast as
a second-order cone program that can be solved efficiently using
Lagrange multiplier techniques. If the ellipsoid reduces to a single
point, the method coincides with Capon’s method.

We describe in detail several methods that can be used to de-
rive an appropriate uncertainty ellipsoid for the array response.
We form separate uncertainty ellipsoids for each component in the
signal path (e.g., antenna, electronics) and then determine an ag-
gregate uncertainty ellipsoid from these. We give new results for
modeling the element-wise products of ellipsoids. We demonstrate
the robust beamforming and the ellipsoidal modeling methods with
several numerical examples.

Index Terms—Ellipsoidal calculus, Hadamard product, robust
beamforming, second-order cone programming.

I. INTRODUCTION

CONSIDER an array of sensors. Let denote
the response of the array to a plane wave of unit amplitude

arriving from direction ; we will refer to as the array man-
ifold. We assume that a narrowband source is impinging on
the array from angle and that the source is in the far field of
the array. The vector array output is then

(1)

where includes effects such as coupling between elements
and subsequent amplification; is a vector of additive noises
representing the effect of undesired signals, such as thermal
noise or interference. We denote the sampled array output by

. Similarly, the combined beamformer output is given by

where is a vector of weights, i.e., design variables, and
denotes the conjugate transpose.

The goal is to make and small, in which
case, recovers , i.e., . The gain of the
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weighted array response in direction is ; the expected
effect of the noise and interferences at the combined output is
given by , where , and denotes the ex-
pected value. If we presume that and are known, we
may choose as the optimal solution of

minimize

subject to (2)

Minimum variance beamforming is a variation on (2) in
which we replace with an estimate of the received signal
covariance derived from recently received samples of the array
output, e.g.,

(3)

The minimum variance beamformer (MVB) is chosen as the
optimal solution of

minimize

subject to (4)

This is commonly referred to as Capon’s method [1]. Equation
(4) has an analytical solution given by

(5)

Equation (4) also differs from (2) in that the power expression
we are minimizing includes the effect of the desired signal plus
noise. The constraint in (4) prevents the gain in the
direction of the signal from being reduced.

A measure of the effectiveness of a beamformer is given by
the signal-to-interference-plus-noise ratio (SINR), given by

SINR (6)

where is the power of the signal of interest. The assumed
value of the array manifold may differ from the actual value
for a host of reasons, including imprecise knowledge of the
signal’s angle of arrival . Unfortunately, the SINR of Capon’s
method can degrade catastrophically for modest differences be-
tween the assumed and actual values of the array manifold. We
now review several techniques for minimizing the sensitivity of
MVB to modeling errors in the array manifold.

A. Previous Work

One popular method to address uncertainty in the array re-
sponse or angle of arrival is to impose a set of unity-gain con-
straints for a small spread of angles around the nominal look
direction. These are known in the literature as point mainbeam
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constraints or neighboring location constraints [2]. The beam-
forming problem with point mainbeam constraints can be ex-
pressed as

minimize

subject to (7)

where is an matrix of array responses in the con-
strained directions, and is an vector specifying the de-
sired response in each constrained direction. To achieve wider
responses, additional constraint points are added. We may sim-
ilarly constrain the derivative of the weighted array output to be
zero at the desired look angle. This constraint can be expressed
in the same framework as (7); in this case, we let be the deriva-
tive of the array manifold with respect to look angle and .
These are called derivative mainbeam constraints; this deriva-
tive may be approximated using regularization methods. Point
and derivative mainbeam constraints may also be used in con-
junction with one another. The minimizer of (7) has an analyt-
ical solution given by

(8)

Each constraint removes one of the remaining degrees of
freedom available to reject undesired signals; this is particularly
significant for an array with a small number of elements. We
may overcome this limitation by using a using a low-rank
approximation to the constraints [3]. The best rank approxi-
mation to , in a least squares sense, is given by , where

is a diagonal matrix consisting of the largest singular
values, is a matrix whose columns are the corre-
sponding left singular vectors of , and is a matrix
whose columns are the corresponding right singular vectors
of . The reduced-rank constraint equations can be written as

or equivalently

(9)

where denotes the Moore–Penrose pseudoinverse. Using (8),
we compute the beamformer using the reduced-rank constraints
as

This technique, which is used in source localization, is referred
to as MVB with environmental perturbation constraints (MV-
EPC); see [2] and the references contained therein.

Unfortunately, it is not clear how best to pick the additional
constraints, or, in the case of the MV-EPC, the rank of the con-
straints. The effect of additional constraints on the design spec-
ifications appears to be difficult to predict.

Regularization methods have also been used in beamforming.
One technique, referred to in the literature as diagonal loading,
chooses the beamformer to minimize the sum of the weighted
array output power plus a penalty term, proportional to the
square of the norm of the weight vector. The gain in the assumed
angle of arrival (AOA) of the desired signal is constrained to be
unity. The beamformer is chosen as the optimal solution of

minimize

subject to (10)

The parameter penalizes large values of and has the
general effect of detuning the beamformer response. The reg-
ularized least squares problem (10) has an analytical solution
given by

(11)

Gershman [4] and Johnson and Dudgeon [5] provide a survey of
these methods; see also the references contained therein. Similar
ideas have been used in adaptive algorithms; see [6].

Beamformers using eigenvalue thresholding methods to
achieve robustness have also been used; see [7]. The beam-
former is computed according to Capon’s method, using a
covariance matrix that has been modified to ensure that no
eigenvalue is less than a factor times the largest, where

. Specifically, let denote the eigen-
value/eigenvector decomposition of , where is a diagonal
matrix, the th entry (eigenvalue) of which is given by , i.e.,

. . .

Without loss of generality, assume . We form
the diagonal matrix , the th entry of which is given by

; viz,

. . .

The modified covariance matrix is computed according to
. The beamformer using eigenvalue thresh-

olding is given by

(12)

The parameter corresponds to the reciprocal of the condition
number of the covariance matrix. A variation on this approach
is to use a fixed value for the minimum eigenvalue threshold.
One interpretation of this approach is to incorporate a priori
knowledge of the presence of additive white noise when the
sample covariance is unable to observe said white noise floor
due to short observation time [7]. The performance of this beam-
former appears to be similar to that of the regularized beam-
former using diagonal loading; both usually work well for an
appropriate choice of the regularization parameter .

We see two limitations with regularization techniques for
beamformers. First, it is not clear how to efficiently pick .
Second, this technique does not take into account any knowl-
edge we may have about variation in the array manifold, e.g.,
that the variation may not be isotropic.

In Section I-C, we describe a beamforming method that ex-
plicitly uses information about the variation in the array re-
sponse , which we model explicitly as an uncertainty ellip-
soid. Prior to this, we introduce some notation for describing
ellipsoids.
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B. Ellipsoid Descriptions

An -dimensional ellipsoid can be defined as the image of a
-dimensional Euclidean ball under an affine mapping from

to , i.e.,

(13)

where , and . The set describes an el-
lipsoid whose center is and whose principal semiaxes are the
unit-norm left singular vectors of scaled by the corresponding
singular values. We say that an ellipsoid is flat if this map-
ping is not injective, i.e., one-to-one. Flat ellipsoids can be de-
scribed by (13) in the proper affine subspaces of . In this
case, and with .

Unless otherwise specified, an ellipsoid in will be param-
eterized in terms of its center and a symmetric non-neg-
ative definite configuration matrix as

(14)

where is any matrix square root satisfying
. When is full rank, the nondegenerate ellipsoid

may also be expressed as

(15)

The first representation (14) is more natural when is de-
generate or poorly conditioned. Using the second description
(15), one may quickly determine whether a point is within the
ellipsoid.

As in (18), we will express the values of the array manifold
as the direct sum of its real and imaginary components

in ; i.e.,

(16)

While it is possible to cover the field of values with a complex
ellipsoid in , doing so implies a symmetry between the real
and imaginary components, which generally results in a larger
ellipsoid than if the direct sum of the real and imaginary com-
ponents are covered in .

C. Robust Minimum Variance Beamforming

A generalization of (4) that captures our desire to minimize
the weighted power output of the array in the presence of uncer-
tainties in is then

minimize

subject to (17)

where denotes the real part. Here, is an ellipsoid that
covers the possible range of values of due to imprecise
knowledge of the array manifold , uncertainty in the angle
of arrival , or other factors. We will refer to the optimal solution
of (17) as the robust minimum variance beamformer (RMVB).

We use the constraint for all in (17)
for two reasons. First, while normally considered a semi-infi-
nite constraint, we show in Section II that it can be expressed
as a second-order cone constraint. As a result, the robust MVB
problem (17) can be solved efficiently. Second, the real part of

the response is an efficient lower bound for the magnitude of the
response, as the objective is unchanged if the weight
vector is multiplied by an arbitrary shift . This is particu-
larly true when the uncertainty in the array response is relatively
small. It is unnecessary to constrain the imaginary part of the re-
sponse to be nominally zero. The same rotation that maximizes
the real part for a given level of simultaneously mini-
mizes the imaginary component of the response.

Our approach differs from the previously mentioned beam-
forming techniques in that the weight selection uses the a priori
uncertainties in the array manifold in a precise way; the RMVB
is guaranteed to satisfy the minimum gain constraint for all
values in the uncertainty ellipsoid.

Wu and Zhang [8] observe that the array manifold may be
described as a polyhedron and that the robust beamforming
problem can be cast as a quadratic program. While the polyhe-
dron approach is less conservative, the size of the description
and, hence, the complexity of solving the problem grows with
the number of vertices. Vorobyov et al. [9], [10] have described
the use of second-order cone programming for robust beam-
forming in the case where the uncertainty in the array response
is isotropic. In this paper, we consider the case in which the
uncertainty is anisotropic [11], [12]. We also show how this
problem can be solved efficiently in practice.

D. Outline of the Paper

The rest of this paper is organized as follows. In Section II,
we discuss the RMVB. A numerically efficient technique based
on Lagrange multiplier methods is described; we will see that
the RMVB can be computed with the same order of complexity
as its nonrobust counterpart. A numerical example is given in
Section III. In Section IV, we describe ellipsoidal modeling
methods that make use of simulated or measured values of the
array manifold. In Section V, we discuss more sophisticated
techniques, based on ellipsoidal calculus, for propagating
uncertainty ellipsoids. In particular, we describe a numerically
efficient method for approximating the numerical range of
the Hadamard (element-wise) product of two ellipsoids. This
form of uncertainty arises when the array outputs are subject
to multiplicative uncertainties. Our conclusions are given in
Section VI.

II. ROBUST WEIGHT SELECTION

For purposes of computation, we will express the weight
vector and the values of the array manifold as the direct
sum of the corresponding real and imaginary components

(18)

The real component of the product can be written as ;
the quadratic form may be expressed in terms of as

, where

We will assume is positive definite.
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Let be an ellipsoid covering the
possible values of , i.e., the real and imaginary components of

. The ellipsoid is centered at ; the matrix determines its
size and shape. The constraint for all in (17)
can be expressed as

(19)

which is equivalent to

for all s.t. (20)

Now, (20) holds for all if and only if it holds for the
value of that maximizes , namely, .
By the Cauchy-Schwartz inequality, we see that (19) is equiva-
lent to the constraint

(21)

which is called a second-order cone constraint [13]. We can then
express the robust minimum variance beamforming problem
(17) as

minimize

subject to (22)

which is a second-order cone program. See [13]–[16]. The sub-
ject of robust convex optimization is covered in [17]–[21].

By assumption, is positive definite, and the constraint
in (22) precludes the trivial minimizer

of . Hence, this constraint will be tight for any optimal
solution, and we may express (22) in terms of real-valued
quantities as

minimize

subject to (23)

In the case of no uncertainty where is a singleton whose
center is , (23) reduces to Capon’s
method and admits an analytical solution given by the MVB (5).
Compared to the MVB, the RMVB adds a margin that scales
with the size of the uncertainty. In the case of an isotropic array
uncertainty, the optimal solution of (17) yields the same weight
vector (to a scale factor) as the regularized beamformer for the
proper the proper choice of .

A. Lagrange Multiplier Methods

It is natural to suspect that we may compute the RMVB ef-
ficiently using Lagrange multiplier methods. See, for example,
[14] and [22]–[26]. Indeed, this is the case.

The RMVB is the optimal solution of

minimize

subject to (24)

if we impose the additional constraint that . We define
the Lagrangian associated with (24) as

(25)

where . To calculate the stationary points, we
differentiate with respect to and ; setting these partial
derivatives equal to zero, we have, respectively

(26)

and

(27)

which are known as the Lagrange equations. To solve for the
Lagrange multiplier , we note that (26) has an analytical solu-
tion given by

Applying this to (27) yields

(28)

The optimal value of the Lagrange multiplier is then a zero
of (28).

We proceed by computing the eigenvalue/eigenvector decom-
position to diagonalize (28), i.e.,

(29)
where . Equation (29) reduces to the following
scalar secular equation:

(30)

where are the diagonal elements of . The values of
are known as the generalized eigenvalues of and and are
the roots of the equation . Having computed
the value of satisfying , the RMVB is computed
according to

(31)

Similar techniques have been used in the design of filters for
radar applications; see Stutt and Spafford [27] and Abramovich
and Sverdlik [28].

In principle, we could solve for all the roots of (30) and
choose the one that results in the smallest objective value

and satisfies the constraint , which is assumed
in (24). In the next section, however, we show that this con-
straint is met for all values of the Lagrange multiplier greater
than a minimum value . We will see that there is a single
value of that satisfies the Lagrange equations.

B. Lower Bound on the Lagrange Multiplier

We begin by establishing the conditions under which (9) has
a solution. Assume , i.e., is symmetric and
positive definite.

Lemma 1: For full rank, there exists an
for which if and only if .

Proof: To prove the if direction, define

(32)
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By the matrix inversion lemma, we have

(33)

For , is a monotonically in-
creasing function of ; therefore, for , there
exists a for which

(34)

This implies that the matrix is singular.
Since

, , for all .
As in (28) and (30), let . Ex-

amining (28), we see

Evaluating (28) or (30), we see . For

all , , and is continuous. Hence,
assumes the value of 0, establishing the existence of a
for which .

To show the only if direction, assume that satisfies
. This condition is equivalent to

(35)

For (35) to hold, the origin cannot be contained in ellipsoid
, which implies .
Remark: The constraints and

in (24), taken together, are equivalent to the constraint
in (23). For , full rank,

and , (23) has a unique minimizer . For
, is full rank, and the Lagrange equation

(26)

holds for only a single value of . This implies that there is a
unique value of for which the secular equation (30)
equals zero.

Lemma 2: For with
full rank, , and , if and only if
the matrix has a negative eigenvalue.

Proof: Consider the matrix

We define the inertia of as the triple
, where is the number of positive eigen-

values, is the number of negative eigenvalues, and is the
number of zero eigenvalues of . See Kailath et al. [29, pp.
729–730].

Since both block diagonal elements of are invertible

(36)
where , which is the Schur
complement of the (1,1) block in , and

, which is the Schur complement of the (2,2) block in . We
conclude if and only if the matrix

has a negative eigenvalue. By the matrix
inversion lemma

(37)
Inverting a scalar preserves its sign; therefore

(38)

if and only if has a negative eigenvalue.
Remark: Applying Sylvester’s law of inertia to (28) and

(30), we see that

(39)

where is the single negative generalized eigenvalue. Using
this fact and (30), we can readily verify ,
as stated in Lemma 1.

Two immediate consequences follow from Lemma 2. First,
we may exclude from consideration any value of less than

. Second, for all , the matrix has a single
negative eigenvalue. We now use these facts to obtain a tighter
lower bound on the value of the optimal Lagrange multiplier.

We begin by rewriting (30) as

(40)

Recall that exactly one of the generalized eigenvalues in the
secular equation (40) is negative. We rewrite (40) as

(41)

where denotes the index associated with this negative eigen-
value.

A lower bound on can be found by ignoring the terms in-
volving the non-negative eigenvalues in (41) and solving

This yields a quadratic equation in

(42)

the roots of which are given by



LORENZ AND BOYD: ROBUST MINIMUM VARIANCE BEAMFORMING 1689

By Lemma 2, the constraint implies that
has a negative eigenvalue since

Hence, , where is the single negative eigenvalue.
We conclude that , where

(43)

For any feasible beamforming problem, i.e., if
has a negative eigenvalue, the parenthetical quan-

tity in (43) is always non-negative. To see this, we note that
, where is the eigenvector associated with

the negative eigenvalue . Hence, can be expressed
as the optimal solution of

minimize

subject to (44)

and , which is the cor-
responding objective value. Since

(45)

we conclude .

C. Solution of the Secular Equation

The secular equation (30) can be efficiently solved using
Newton’s method. The derivative of this secular equation with
respect to is given by

(46)

As the secular equation (30) is not necessarily a monotonically
increasing function of , it is useful to examine the sign of the
derivative at each iteration. The Newton-Raphson method en-
joys quadratic convergence if started sufficiently close to the
root . Se Dahlquist and Björck [30, §6] for details.

D. Summary and Computational Complexity of the RMVB
Computation

We summarize the algorithm below. In parentheses are ap-
proximate costs of each of the numbered steps; the actual costs
will depend on the implementation and problem size [31]. As
in [25], we will consider a flop to be any single floating-point
operation.

RMVB Computation
Given , strictly feasible and .
1) Calculate .
2) Change coordinates.

a) Compute Cholesky factorization
.

b) Compute .
c) .

3) Eigenvalue/eigenvector computa-
tion.

a) Compute .
4) Change coordinates.
a) .

5) Secular equation solution.
a) Compute initial feasible point
b) Find for which .

6) Compute

The computational complexity of these steps is discussed as
follows.

1) Forming the matrix product is expensive; fortu-
nately, it is also often avoidable. If the parameters of the
uncertainty ellipsoid are stored, the shape parameter may
be stored as . In the event that an aggregate ellipsoid
is computed using the methods of Section IV, the quantity

is produced. In either case, only the subtraction of
the quantity need be performed, requiring flops.

2) Computing the Cholesky factor in step 2 requires
flops. The resulting matrix is triangular; hence, computing
its inverse requires flops. Forming the matrix in
step 2c) requires flops.

3) Computing the eigenvalue/eigenvector decomposition is
the most expensive part of the algorithm. In practice, it
takes approximately flops.

5) The solution of the secular equation requires minimal
effort. The solution of the secular equation converges
quadratically. In practice, the starting point is close to

; hence, the secular equation generally converges in
seven to ten iterations, independent of problem size.

6) Accounting for the symmetry in and , computing
requires flops.

In comparison, the regularized beamformer requires flops.
Hence, the RMVB requires approximately 12 times the compu-
tational cost of the regularized beamformer. Note that this factor
is independent of problem size.

III. NUMERICAL EXAMPLE

Consider a ten-element uniform linear array, centered at the
origin, in which the spacing between the elements is half of
a wavelength. Assume that the response of each element is
isotropic and has unit norm. If the coupling between elements
is ignored, the response of the array is given by

where , and is the angle of arrival. The responses
of closely spaced antenna elements often differ substantially
from this model.
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Fig. 1. Beamformer block diagram.

In this example, three signals impinge upon the array: a
desired signal and two uncorrelated interfering signals

and . The signal-to-noise ratio (SNR) of the desired
signal at each element is 20 dB. The angles of arrival of the
interfering signals and are 30 and 75 ; the SNRs of
these interfering signals are 40 dB and 20 dB, respectively. We
model the received signals as

(47)

where denotes the array response of the desired signal,
and denote the array responses for the in-

terfering signals, denotes the complex amplitude of the
desired signal, and denote the interfering
signals, and is a complex vector of additive white noises.

Let the noise covariance , where is an
identity matrix, and is the number of antennas, viz, 10. Simi-
larly, define the powers of the desired signal and interfering sig-
nals to be , , and

, where

If we assume the signals , , and are all uncor-
related, the estimated covariance, which uses the actual array
response, is given by

(48)

In practice, the covariance of the received signals plus inter-
ference is often neither known nor stationary and, hence, must
be estimated from recently received signals. As a result, the per-
formance of beamformers is often degraded by errors in the co-
variance due to either small sample size or movement in the
signal sources.

We will compare the performance of the robust beamformer
with beamformers using two regularization techniques: diag-
onal loading and eigenvalue thresholding (see Fig. 1). In this
example, we assume a priori that the nominal AOA is 45 .
The actual array response is contained in an ellipsoid ,
whose center and configuration matrix are computed from

Fig. 2. Response of the MVB (Capon’s method, dashed trace), the regularized
beamformer employing diagonal loading (dotted trace), and the RMVB (solid
trace) as a function of angle of arrival �. Note that the RMVB preserves
greater-than-unity gain for all angles of arrival in the design specification of
� 2 [40; 50].

equally spaced samples of the array response at angles between
40 and 50 according to

and

(49)

where

for (50)

and

Here, , and .
In Fig. 2, we see the reception pattern of the array employing

the MVB, the regularized beamformer (10), and the RMVB, all
computed using the nominal AOA and the corresponding covari-
ance matrix . The regularization term used in the regularized
beamformer was chosen to be one one hundredth of the largest
eigenvalue of the received covariance matrix. By design, both
the MVB and the regularized beamformer have unity gain at the
nominal AOA. The response of the regularized beamformer is
seen to be a detuned version of the MVB. The RMVB maintains
greater-than-unity gain for all AOAs covered by the uncertainty
ellipsoid .

In Fig. 3, we see the effect of changes in the regularization
parameter on the worst-case SINRs for the regularized beam-
formers using diagonal loading and eigenvalue thresholding and
the effect of scaling the uncertainty ellipsoid on the RMVB.
Using the definition of SINR (6), we define the worst-case SINR
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Fig. 3. Worst-case performance of the regularized beamformers based on
diagonal loading (dotted) and eigenvalue thresholding (dashed) as a function of
the regularization parameter �. The effect of scaling of the uncertainty ellipsoid
used in the design of the RMVB (solid) is seen; for � = 1, the uncertainty
used in designing the robust beamformer equals the actual uncertainty in the
array manifold.

as the minimum objective value of the following optimization
problem:

minimize

subject to

where the expected covariance of the interfering signals and
noises is given by

The weight vector and covariance matrix of the noise and
interfering signals used in its computation reflect the chosen
value of the array manifold.

For diagonal loading, the parameter is the scale factor mul-
tiplying the identity matrix added to the covariance matrix, di-
vided by the largest eigenvalue of the covariance matrix .
For small values of , i.e., , the performance of the reg-
ularized beamformer approaches that of Capon’s method; the
worst-case SINR for Capon’s method is 29.11 dB. As ,

.
The beamformer based on eigenvalue thresholding performs

similarly to the beamformer based on diagonal loading. In this
case, is defined to be the ratio of the threshold to the largest
eigenvalue of ; as such, the response of this beamformer is
only computed for .

For the robust beamformer, we use to define the ratio of
the size of the ellipsoid used in the beamformer computation

divided by size of the actual array uncertainty .
Specifically, if ,

. When the design uncertainty equals the
actual, the worst-case SINR of the robust beamformer is seen
to be 15.63 dB. If the uncertainty ellipsoid used in the RMVB
design significantly overestimates or underestimates the actual
uncertainty, the worst-case SINR is decreased.

Fig. 4. Ambiguity function for the RMVB beamformer using an uncertainty
ellipsoid computed from a beamwidth of 10 (solid), 2 (dashed), and the Capon
beamformer (dotted). The true powers of the signal of interest and interfering
signals are denoted with circles. In this example, the additive noise power at
each element has unit variance; hence, the ambiguity function corresponds to
SNR.

For comparison, the worst-case SINR of the MVB with
(three) unity mainbeam constraints at 40 , 45 , and 50 is
1.85 dB. The MV-EPC beamformer was computed using the
same 64 samples of the array manifold as the computation of
the uncertainty ellipsoid (49); the design value for the response
in each of these directions was unity. The worst-case SINRs
of the rank-1 through rank-4 MV-EPC beamformers were
found to be 28.96, 3.92, 1.89, and 1.56 dB, respectively.
The worst-case response for the rank-5 and rank-6 MV-EPC
beamformers is zero, i.e., it can fail completely.

If the signals and noises are all uncorrelated, the sample co-
variance, as computed in (3), equals its expected value, and
the uncertainty ellipsoid contains the actual array response, the
RMVB is guaranteed to have greater than unity magnitude re-
sponse for all values of the array manifold in the uncertainty
ellipsoid . In this case, an upper bound on the power of the de-
sired signal is simply the weighted power out of the array,
namely

(51)

In Fig. 4, we see the square of the norm of the weighted array
output as a function of the hypothesized angle of arrival for
the RMVB using uncertainty ellipsoids computed according to
(49) and (50) with , 4 , and 0 . If the units of the array
output correspond to volts or amperes, the square of the magni-
tude of the weighted array output has units of power. This plot
is referred to in the literature as a spatial ambiguity function; its
resolution is seen to decrease with increasing uncertainty ellip-
soid size. The RMVB computed for corresponds to the
Capon beamformer. The spatial ambiguity function using the
Capon beamformer provides an accurate power estimate only
when the assumed array manifold equals the actual.

Prior to publication, we learned of a work similar to ours by
Li et al. [32], in which the authors suggest that our approach
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can be “modified to eliminate the scaling ambiguity when es-
timating the power of the desired signal.” We submit that 1)
there is no scaling ambiguity, and 2) the approach suggested
in [32] is counter productive. First, the array response is not an
abstract quantity. The array consists of sensors, each element
transforming a time-varying physical quantity such as electric
field strength or acoustic pressure to another quantity such as
voltage or current. The array response can then be measured and
expressed in terms of SI (International System) units. The effect
of signal processing electronics can be similarly characterized.
The sample covariance matrix, being derived from samples of
the array output, is hence unambiguous, and no scaling ambi-
guity exists. Second, sensor arrays do not generally have con-
stant vector norm for all angles of arrival and for all frequencies
of interest. Li et al. [32] suggest normalizing the nominal array
response to a constant equal to the number of sensor elements.
This normalization appears to discard useful information about
the array response, namely its norm, which can serve no useful
end.

We summarize the effect of differences between assumed and
actual uncertainty regions on the performance of the RMVB.

• If the assumed uncertainty ellipsoid is smaller than the
actual uncertainty, the minimum gain constraint will gen-
erally not be met, and the performance may degrade sub-
stantially. The power estimate, which is computed using
the RMVB as in (51), is not guaranteed to be an upper
bound, even when an accurate covariance is used in the
computation.

• If assumed uncertainty is greater than the actual uncer-
tainty, the performance is generally degraded, but the
minimum gain in the desired look direction is main-
tained. Given accurate covariance, the appropriately
scaled weighted power out of the array yields an upper
bound on the power of the received signal.

The performance of the RMVB is not optimal with respect to
SINR; it is optimal in the following sense. For a fixed covariance
matrix and an array response contained in an ellipsoid , no
other vector achieves a lower weighted power out of the array
while maintaining the real part of the response greater than unity
for all values of the array contained in .

Given an ellipsoidal uncertainty model of the array manifold
and a beamformer vector, the minimum gain for the desired
signal can be computed directly. If this array uncertainty is sub-
ject to a multiplicative uncertainty, verification of this minimum
gain constraint is far more difficult. In Section V, we extend the
methods of this section to the case of multiplicative uncertain-
ties by computing an outer approximation to the element-wise
or Hadamard product of ellipsoids. Using this approximation,
no subsequent verification of the performance is required. Prior
to this, we describe two methods for computing ellipsoids cov-
ering a collection of points.

IV. ELLIPSOIDAL MODELING

The uncertainty in the response of an antenna array to a plane
wave arises principally from two sources: uncertainty in the

AOA and uncertainty in the array manifold given perfect knowl-
edge of the AOA. In this section, we describe methods to com-
pute an ellipsoid that covers the range of possible values given
these uncertainties.

A. Ellipsoid Computation Using Mean and Covariance of
Data

If the array manifold is measured in a controlled manner,
the ellipsoid describing the array manifold may be generated
from the mean and covariance of the measurements from re-
peated trials. If the array manifold is predicted from numerical
simulations, the uncertainty may take into account variation in
the array response due to manufacturing tolerance, termination
impedance, and similar effects. If the underlying distribution is
multivariate normal, the standard deviation ellipsoid would be
expected to contain a fraction of points equal to ,
where is the dimension of the random variable.

We may generate an ellipsoid that covers a collection of
points by using the mean as the center and an inflated covari-
ance. While this method is very efficient numerically, it is
possible to generate “smaller” ellipsoids using the methods of
the next section.

B. Minimum Volume Ellipsoid (MVE)

Let be a set of samples of possible
values of the array manifold . Assume that is bounded.
In the case of a full rank ellipsoid, the problem of finding the
minimum volume ellipsoid containing the convex hull of can
be expressed as the following semidefinite program (SDP):

minimize

subject to

(52)

See Vandenberghe and Boyd [33] and Wu and Boyd [34]. The
minimum-volume ellipsoid containing is called the Löwner-
John ellipsoid. Equation (52) is a convex problem in variables

and . For full rank

(53)

with and . The choice of is not unique;
in fact, any matrix of the form will satisfy (53), where
is any real unitary matrix.

Commonly, is often well approximated by an affine set of
dimension , and (52) will be poorly conditioned numer-
ically. We proceed by first applying a rank-preserving affine
transformation to the elements of , with

. The matrix consists of the left sin-
gular vectors, corresponding to the nonzero singular values, of
the matrix

We may then solve (52) for the minimum volume, nondegen-
erate ellipsoid in , which covers the image of under .
The resulting ellipsoid can be described in as

as in (13), with and .
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For an -dimensional ellipsoid description, a minimum of
points are required, i.e., .

Compared to an ellipsoid based on the first- and second-order
statistics of the data, a minimum volume ellipsoid is robust in
the sense that it is guaranteed to cover all the data points used
in the description; the MVE is not robust to data outliers. The
computation of the covering ellipsoid is relatively complex; see
Vandenberghe et al. [35]. In applications where a real-time re-
sponse is required, the covering ellipsoid calculations may be
profitably performed in advance.

V. UNCERTAINTY ELLIPSOID CALCULUS

Instead of computing ellipsoid descriptions to represent col-
lections of points, we consider operations on ellipsoids. While
it is possible to develop tighter ellipsoidal approximations using
the methods of the previous section, the computational burden
of these methods often precludes their use.

A. Sum of Two Ellipsoids

Recall that we can parameterize an ellipsoid in in terms
of its center and a symmetric non-negative definite
configuration matrix as

where is any matrix square root satisfying
. Let and . The range

of values of the geometrical (or Minkowski) sum is
contained in the ellipsoid

(54)

for all , where

(55)

see Kurzhanski and Vályi [36]. The value of is commonly
chosen to minimize either the determinant or the trace of .
Minimizing the trace of in (55) affords two computational
advantages over minimizing the determinant. First, computing
the optimal value of can be done with operations; min-
imizing the determinant requires . Second, the minimum
trace calculation may be used without worry with degenerate el-
lipsoids.

There exists an ellipsoid of minimum trace, i.e., sum of
squares of the semiaxes, that contains the sum

; it is described by , where
is as in (55),

(56)

and denotes trace. This fact, which is noted by Kurzhanski
and Vályia [36, §2.5], may be verified by direct calculation.

B. Outer Approximation to the Hadamard Product of Two
Ellipsoids

In practice, the output of the antenna array is often subject
to uncertainties that are multiplicative in nature. These may be
due to gains and phases of the electronics paths that are not

Fig. 5. Possible values of array manifold are contained in ellipsoid E ; the
values of gains are described by ellipsoid E . The design variable w needs to
consider the multiplicative effect of these uncertainties.

precisely known. The gains may be known to have some formal
uncertainty; in other applications, these quantities are estimated
in terms of a mean vector and covariance matrix. In both cases,
this uncertainty is well described by an ellipsoid; this is depicted
schematically in Fig. 5.

Assume that the range of possible values of the array mani-
fold is described by an ellipsoid .
Similarly, assume the multiplicative uncertainties lie within a
second ellipsoid . The set of possible
values of the array manifold in the presence of multiplicative un-
certainties is described by the numerical range of the Hadamard,
i.e., element-wise product of and . We will develop outer
approximations to the Hadamard product of two ellipsoids. In
Section V-B2, we consider the case where both ellipsoids de-
scribe real numbers; the case of complex values is considered
in Section V-B3. Prior to this, we will review some basic facts
about Hadamard products.

1) Preliminaries: The Hadamard product of vectors is the
element-wise product of the entries. We denote the Hadamard
product of vectors and as

The Hadamard product of two matrices is similarly denoted and
also corresponds to the element-wise product; it enjoys consid-
erable structure [37]. As with other operators, we will consider
the Hadamard product operator to have lower precedence than
ordinary matrix multiplication.

Lemma 3: For any

Proof: Direct calculation shows that the , entry of the
product is , which can be regrouped as .

Lemma 4: Let and
. Then, the field of values of the Hadamard

product are contained in the ellipsoid

Proof: By Lemma 3, we have
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in particular

We can expand as

(57)

The Hadamard product of two positive semidefinite matrices
is positive semidefinite [37, pp. 298–301]; hence, the last three
terms on the right-hand side of (57) are all positive semidefinite.
Therefore

Lemma 5: Let , and let be any
vector in . The Hadamard product of is contained in
the ellipsoid

Proof: This is simply a special case of Lemma 3.
2) Outer Approximation: Let

and be ellipsoids in . Let
and be -dimensional vectors taken from ellipsoids and ,
respectively. Expanding the Hadamard product , we have

(58)

By Lemmas 4 and 5, the field of values of the Hadamard product

is contained in the geometrical sum of three ellipsoids

(59)
Ignoring the correlations between terms in the above expansion,
we find that , where

(60)

for all and . The values of and may be
chosen to minimize the trace or the determinant of . In addi-
tion to requiring much less computational effort, the trace metric
is numerically more reliable; if either or has a very small
entry, the corresponding term in expansion (60) will be poorly
conditioned.

As a numerical example, we consider the Hadamard product
of two ellipsoids in . The ellipsoid is described by

Fig. 6. Samples of the Hadamard product of two ellipsoids. The outer
approximations based on the minimum volume and minimum trace metrics are
labeled E and E .

The parameters of are

Samples of the Hadamard product of are shown in Fig. 6
along with the outer approximations based on the minimum
volume and minimum trace metrics and , respectively.

3) Complex Case: We now extend the results of
Section V-B2 to the case of complex values. Again, we
will compute the approximating ellipsoid using the minimum
trace metric. As before, we will consider complex numbers to
be represented by the direct sum of their real and imaginary
components. Let and be the direct sum
representations of and , respectively, i.e.,

We can represent the real and imaginary components of
as

(61)

where

and

Note that multiplications associated with matrices
correspond to reordering of the calculations and not general ma-
trix multiplications. Applying (61) to

and yields

(62)
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The direct-sum representation of the field of values of the
complex Hadamard product is contained in the geometrical
sum of ellipsoids

(63)

As before, we compute , where the center of the
covering ellipsoid is given by the sum of the first two terms
of (62); the configuration matrix is calculated by repeatedly
applying (54) and (55) to the remaining terms of (62), where
is chosen according to (56).

4) Improved Approximation: We now make use of two facts
that generally lead to tighter approximations. First, the ellip-
soidal outer approximation ignores any correlation between the
terms in expansion (62); hence, it is productive to reduce the
number of these terms. Consider a Given’s rotation matrix of
the form

. . .
. . .

. . .
. . .

(64)
The effect of premultiplying a direct sum representation of a
complex vector by is to shift the phase of each of component
by the corresponding angle . It is not surprising, then, that for
all and of the form (64), we have

(65)

which does not hold for unitary matrices in general.
We now compute rotation matrices and such that the

entries associated with the imaginary components of products
and , respectively, are set to zero. In computing , we

choose the values of in (64) according to
. is similarly computed using the values of , i.e.,

. We change coordinates ac-
cording to

The rotated components associated with the ellipsoid centers
have the form

(66)

zeroing the term in (62).
The desired outer approximation is computed as the geometrical
sum of outer approximations to the remaining five terms, i.e.,

(67)

Second, while the Hadamard product is commutative, the
outer approximation based on covering the individual terms in
the expansion (62) is sensitive to ordering; simply interchanging
the dyads and results in different qualities of
approximations. The ellipsoidal approximation associated with
this interchanged ordering is given by

(68)

Since our goal is to find the smallest ellipsoid covering the nu-
merical range of , we compute the trace associated with both
orderings and choose the smaller of the two. This determination
can be made without computing the minimum trace ellipsoids
explicitly, making use of the following fact. Let be the min-
imum trace ellipsoid covering . The trace of is
given by

which may be verified by direct calculation. Hence, determining
which of (67) and (68) yields the smaller trace can be performed
in calculations. After making this determination, we per-
form the remainder of the calculations to compute the desired
configuration matrix . We then transform back to the orig-
inal coordinates according to

VI. CONCLUSION

The main ideas of our approach are as follows.

• The possible values of the manifold are approximated or
covered by an ellipsoid that describes the uncertainty.

• The robust minimum variance beamformer is chosen to
minimize the weighted power out of the array subject to
the constraint that the gain is greater than unity for all
array manifold values in the ellipsoid.

• The RMVB can be computed very efficiently using
Lagrange multiplier techniques.

• Ellipsoidal calculus techniques may be used to efficiently
propagate the uncertainty ellipsoid in the presence of mul-
tiplicative uncertainties.
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