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Robust H Filtering for Uncertain
2-D Continuous Systems

Shengyuan Xu, James Lam, Senior Member, IEEE, Yun Zou, Zhiping Lin, and Wojciech Paszke

Abstract—This paper considers the problem of robust fil-
tering for uncertain two-dimensional (2-D) continuous systems de-
scribed by the Roesser state-space model. The parameter uncer-
tainties are assumed to be norm-bounded in both the state and
measurement equations. The purpose is the design of a 2-D con-
tinuous filter such that for all admissible uncertainties, the error
system is asymptotically stable, and the norm of the transfer
function, from the noise signal to the estimation error, is below a
prespecified level. A sufficient condition for the existence of such
filters is obtained in terms of a set of linear matrix inequalities
(LMIs). When these LMIs are feasible, an explicit expression of
a desired filter is given. Finally, a simulation example is pro-
vided to demonstrate the effectiveness of the proposed method.

Index Terms— filtering, linear matrix inequality, 2-D con-
tinuous systems, uncertain systems.

I. INTRODUCTION

THE problems of estimation and filter design have received
much attention in the past decades. It is known that one

of the most popular ways to deal with the filtering problem
is the celebrated Kalman filtering approach, which generally
provides an optimal estimation of the state variables in the
sense that the covariance of the estimation error is minimized
[1]. This approach usually requires the exact information on
both the external noises and the internal model of the system.
However, these requirements are not always satisfied in prac-
tical applications. To overcome these difficulties, an alternative
approach called filtering has been introduced, which
aims to determine a filter such that the resulting filtering error
system is asymptotically stable, and the -induced norm (for
continuous systems) or -induced norm (for discrete systems)
from the input disturbances to the filtering error output satisfies
a prescribed performance level. In contrast to the Kalman
filtering approach, the filtering approach does not require
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exact knowledge of the statistical properties of the external
noise, which renders this approach very appropriate in many
practical applications. A great number of filtering results
have been reported, and various approaches, such as the linear
matrix inequality (LMI) approach [2], polynomial equation
approach [10], algebraic Riccati equation approach [19], [22],
and frequency domain approach [21], have been proposed in
the literature. When parameter uncertainties appear in a system
model, the robust filtering problem has been investigated,
and some results on this topic have been presented; see, e.g.,
[5], [8], [12], [27], and the references therein. It is worth
pointing out that these results were obtained in the context of
one-dimensional (1-D) systems.

For two-dimensional (2-D) systems, the filtering
problem has been studied recently. Based on a proposed
bounded real lemma, the filtering problem for 2-D systems
described by the Roesser model was solved in [7], where
filters in both the observer-based form and the general state
equation form were designed. For 2-D systems in the For-
nasini–Marchesini local state-space model, an LMI approach
was developed to design filters in [25]; these results were
further extended to 2-D systems with polytopic parameter
uncertainties in the system model in [23]. It is noted that all
these mentioned filtering results were derived for 2-D
discrete systems [13]. Although many stability analysis and
control results for 2-D continuous systems have been reported
in the literature [9], [14], [17], [18], [20], [24], the filtering
problem has not been fully investigated, which motivates the
present study.

In this paper, we deal with the robust filtering problem
for uncertain 2-D continuous systems. The parameter uncertain-
ties are assumed to be norm-bounded, appearing in both the state
and measurement equations. The class of continuous 2-D sys-
tems under consideration is described by the Roesser state-space
model. The problem we address is the design of 2-D contin-
uous filters such that for all admissible uncertainties, the error
system is asymptotically stable, and the norm of the transfer
function, from the noise signal to the estimation error, is below
a prescribed level. A sufficient condition for the solvability of
this problem is obtained in terms of a set of LMIs. A desired

filter can be constructed by solving these given LMIs. A
simulation example is provided to show the effectiveness of the
proposed approach.

Notation: Throughout this paper, for real symmetric ma-
trices and , the notation (respectively, )
means that the matrix is positive semi-definite (re-
spectively, positive definite). is the identity matrix with
appropriate dimension. The superscript “ ” represents the
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transpose of a matrix. The symbol denotes the spectral
norm of a matrix. Matrices, if not explicitly stated, are assumed
to have compatible dimensions.

II. PROBLEM FORMULATION

Consider an uncertain 2-D continuous system described by
the following Roesser’s state-space model [16]:

(1)

(2)

(3)

where and are the horizontal
states and vertical states, respectively; is the ex-
ogenous input; is the measurement output; and

is the signal to be estimated. , , , , ,
and are known real constant matrices. , , , and

are unknown matrices representing the parameter uncer-
tainties in the system matrices and are assumed to be of the form

(4)

where , , , and are known real constant matrices,
and is an unknown matrix satisfying

(5)

The uncertain matrices , , , and are said to be
admissible if both (4) and (5) hold.

Remark 1: It should be pointed out that the structure of the
uncertainty with the form (4) and (5) has been widely used when
dealing with the issues related to both 1-D and 2-D uncertain
systems; see, e.g., [6], [15], and the references therein.

The nominal system of (1) and (3) can be written as

It can be seen that the transfer function matrix of the 2-D con-
tinuous system is as follows:

(6)

where

diag (7)

Throughout the paper, we adopt the following definition.

Definition 1: The norm of the 2-D continuous system
is defined as

Now, we consider the following 2-D continuous filter for the
estimate of :

(8)

(9)

where and are the hori-
zontal states and vertical states of the filter, respectively; and

is the estimate of . The matrices ,
, and are to be selected. Denote

Then, the filtering error dynamics from the systems and
can be obtained as

where

(10)

(11)

(12)

(13)

(14)

(15)

The robust filtering problem to be addressed in this paper
can be formulated as follows: Given a scalar and the
uncertain 2-D continuous system , find an asymptotically
stable filter in the form of (8) and (9) such that the filtering
error system is asymptotically stable and the transfer func-
tion of the error system given as
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satisfies

(16)

for all admissible uncertainties.

III. MAIN RESULTS

In this section, an LMI approach will be developed to solve
the robust filtering problem formulated in the previous sec-
tion. Before giving the main results, we first present the fol-
lowing results, which will be used in the following development.

Lemma 1: [9], [20] The 2-D continuous system

is asymptotically stable if there exist matrices and
satisfying the following LMI:

where diag .
Lemma 2: [26] Let , , and be real matrices of appro-

priate dimensions with satisfying . Then, for any
scalar

Theorem 1: Given a scalar . The 2-D contin-
uous system is asymptotically stable and satisfies
the performance if there exists a matrix

diag with and such that
the following LMI holds:

(17)

Proof: By (17), we have

which, together with Lemma 1, implies that system is
asymptotically stable. Next, we show the performance. By
applying the Schur complement formula to (17), we obtain

and

Multiplying this inequality by yields

(18)

Let ; then, (18) can be rewritten as

Therefore, there exists a matrix such that

(19)

where

Set

Then, it can be verified that

(20)

By (19) and (20), we have

(21)

Since system is asymptotically stable, we have

for all , . Therefore, is well defined
for all , . Now, pre- and post-multiplying (21) by

and , respectively, we
have that for all ,

Thus, by noting (6), we have

(22)

Now, observe that
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Then, by the Schur complement formula, we have

which, by the Schur complement formula again, gives

(23)

Then, it follows from (22) and (23) that for all ,

Hence, by Definition 1, we have . This completes
the proof.

Remark 2: Theorem 1 provides an LMI condition for the 2-D
continuous system to be asymptotically stable and satisfy a
specified performance level. Theorem 1 can be regarded as
an extension of existing results on bounded realness for 1-D con-
tinuous systems [11] to the 2-D case. It is noted that the bounded
lemma for spatially interconnected systems was reported in [4],
which cannot include Theorem 1 as a special case.

Now, we are in a position to present the solvability condition
for the robust filtering problem.

Theorem 2: Given a scalar and the uncertain 2-D
continuous system . Then, the robust filtering problem
is solvable if there exists a scalar and matrices , , ,

diag , and diag with ,
, , and satisfying the LMIs in (24) and

(25), shown at the bottom of the page, where

In this case, a desired 2-D continuous filter in the form of (8)
and (9) can be chosen with parameters as follows:

(26)

(27)

(28)

where

(29)

in which , , , and are any nonsingular ma-
trices satisfying

(30)

Proof: Let

Then, by (25), it is easy to see that is nonsingular.
Therefore, there always exist nonsingular matrices , ,

, and such that (30) is satisfied, that is

(31)

(32)

Set

Then, by some calculations, it can be verified that

(33)

where

Considering (25), we can deduce that and . Now,
pre- and post-multiplying (24) by diag yields the
first equation shown at the bottom of the next page, which, by the
Schur complement formula, implies (34), shown at the bottom
of the next page, where , , and are given in (26)–(28).
By (33), the inequality (34) can be rewritten as (35), shown at
the bottom of the next page, where is given in (15), and

(24)

(25)
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Pre- and postmultiplying (35) by diag and
diag results in

(36)

where the relationship is used, and , , , and
are given in (10). Now, noting

and using Lemma 2, we have

This, together with (36), gives

Finally, by Theorem 1, it follows that the error system is
asymptotically stable, and the transfer function of the error
system satisfies (16). This completes the proof.

Remark 3: Theorem 2 provides a sufficient condition for the
solvability of the robust filtering problem for 2-D contin-
uous systems. A desired filter can be constructed by solving the
LMIs in (24) and (25), which can be implemented by using re-
cently developed interior-point methods, and no tuning of pa-
rameters is required [3].

In the case when there is no parameter uncertainty in system
, that is, reduces to the following 2-D continuous system

(37)

(38)

(39)

by Theorem 2, we have the following corollary.

(34)

(35)
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Corollary 1: Consider the 2-D continuous system
in (37)–(39). Then, the filtering problem for this
system is solvable if there exist matrices , , ,

diag , and diag
with , , , and satisfying the LMIs in
(40) and (41), shown at the bottom of the page. In this case, a
desired 2-D continuous filter in the form of (8) and (9) can be
chosen with parameters as given in (26)–(28).

IV. SIMULATION EXAMPLE

In this section, we provide a simulation example to illustrate
the application of the proposed method in this paper.

Consider the uncertain 2-D continuous system with pa-
rameters as follows:

It can be verified that the nominal system is asymptotically
stable. The purpose of this example is to design a 2-D contin-
uous filter in the form of (8) and (9) such that the error system
is asymptotically stable and satisfies a prescribed perfor-
mance level , which is assumed to be 0.6 in this example.

Now, by resorting to the Matlab LMI Control Toolbox, we
obtain the solution to the LMIs in (24) and (25) as follows:

diag

diag

Fig. 1. Response of ~x (t ; t ).

To construct a desired filter, we further choose

(42)

(43)

(44)

It can be verified that the matrices , , , and
chosen in (42)–(44) are nonsingular and satisfy (30). Thus, from
Theorem 2, a desired filter can be chosen as

Now, we choose , and then, the responses
and of the error system are shown in Figs. 1 and 2,
respectively. Fig. 3 gives the response of the error . The
frequency response of the error system is given in Fig. 4, and the

(40)

(41)
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Fig. 2. Response of ~x (t ; t ).

Fig. 3. Filtering error response of ~z(t ; t ).

Fig. 4. Frequency response of error system.

achieved norm is approximately 0.4834, which compares
well with the value used. The simulation result shows
the effectiveness of the designed filter.

V. CONCLUSIONS

In this paper, we have studied the problem of robust
filtering for 2-D continuous systems described by Roesser’s
state-space model with norm-bounded parameter uncertainties
in the state and measurement equations. An LMI approach for
designing a 2-D continuous filter, which ensures asymptotic
stability of the error system and reduces the norm of
the transfer function from the noise signal to the estimation
error to a prescribed level for all admissible uncertainties, has
been proposed. A desired filter can be constructed through a
convex optimization problem that has been investigated fully
in the literature. A simulation example has been provided to
demonstrate the effectiveness of the proposed method.
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