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Linear Prediction Approach for Efficient
Frequency Estimation of Multiple Real

Sinusoids: Algorithms and Analyses
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Abstract—Based on the linear prediction property of sinusoidal
signals, two constrained weighted least squares frequency esti-
mators for multiple real sinusoids embedded in white noise are
proposed. In order to achieve accurate frequency estimation, the
first algorithm uses a generalized unit-norm constraint, while the
second method employs a monic constraint. The weighting ma-
trices in both methods are a function of the frequency parameters
and are obtained in an iterative manner. For the case of a single
real tone with sufficiently large data samples, both estimators
provide nearly identical frequency estimates and their perfor-
mance approaches Cramér–Rao lower bound (CRLB) for white
Gaussian noise before the threshold effect occurs. Algorithms for
closed-form single-tone frequency estimation are also devised.
Computer simulations are included to corroborate the theoretical
development and to contrast the estimator performance with
the CRLB for different frequencies, observation lengths and
signal-to-noise ratio (SNR) conditions.

Index Terms—Frequency estimation, linear prediction, monic
constraint, real sinusoids, unit-norm constraint, weighted least
squares.

I. INTRODUCTION

THE problem of estimating the frequencies of sinusoidal
components from a finite number of noisy discrete-time

measurements has attracted a great deal of attention [1]–[6] and
still is an active research area to date, because of its wide appli-
cations in science and engineering.

In spite of the fact that there are numerous frequency estima-
tion schemes in the literature, they can be generally classified
as nonparametric or parametric approaches. The nonparametric
frequency estimators, including the periodogram and correl-
ogram methods, are based directly on the Fourier transform.
Although no assumptions are made about the observed data
sequence, the resolution, or ability to resolve closely spaced
frequencies using the nonparametric approach is fundamentally
limited by the length of the data available. Alternatively, the
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parametric approach, which assumes that the signal satisfies
a generating model with known functional form, can attain a
higher resolution. Well-known parametric frequency estimation
techniques include maximum likelihood (ML) [7], nonlinear
least squares (NLS) [8], Prony’s method, instrumental variable
(IV) [9], Yule–Walker equations [10], total least squares [11],
iterative filtering [12] and subspace methods such as truncated
singular value decomposition, MUSIC and ESPRIT [4]. In
fact, under additive white Gaussian noise, the ML and NLS
methods are equivalent and both are statistically efficient in the
sense that the estimator variances achieve Cramér–Rao lower
bound (CRLB) asymptotically, but their computational require-
ments are extremely demanding. On the other hand, the rest of
the above mentioned parametric techniques utilize the linear
prediction (LP) property of sinusoidal signals, and generally
speaking, they provide suboptimum estimation performance
but are computationally efficient.

The motivation of this paper is to investigate if the LP ap-
proach can attain optimum frequency estimation performance
for multiple real sinusoids. In our previous work [13], a simple
frequency estimator for a single real tone is devised based on
the framework of Pisarenko [14], who was the first to exploit
the eigenstructure of the covariance matrix in frequency esti-
mation. Although it is an improvement to the original Pisarenko
harmonic decomposition (PHD) method, the algorithm does not
give efficient estimates and cannot be extended to multiple fre-
quency estimation. The major contributions of this paper can be
summarized as i) two efficient LP-based frequency estimators
for multiple real sinusoids are devised and ii) a proof for their
optimality in the case of a single real tone embedded in white
Gaussian noise is provided, that is, we have shown that the vari-
ances of the frequency estimates can approach the CRLB when
the data length is sufficiently large.

The rest of the paper is organized as follows. In Section II,
the problem of multiple frequency estimation is formulated
and the LP property of sinusoidal signals is reviewed. In
Section III, we first develop a constrained least squares (LS)
frequency estimator which can be considered as a reformulation
of Pisarenko’s method, and then it is improved through the
technique of weighted least squares (WLS) with a generalized
unit-norm constraint. The WLS frequency estimator with
monic constraint is devised in Section IV. Section V studies the
relationship between the two estimators as well as their biases
and variances for a single real tone when there are infinite
data samples. Closed-form single-tone frequency estimation is
investigated in Section VI. Numerical examples are presented
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in Section VII to corroborate the analytical development and
to evaluate the performance of the proposed algorithms by
comparing with the CRLB. Finally, conclusions are drawn in
Section VIII.

II. PROBLEM FORMULATION AND LINEAR

PREDICTION PROPERTY

The problem of multiple real sinusoidal frequency estima-
tion is formulated as follows. Given the discrete-time noisy
measurements

(1)

where

(2)

with , and are unknown constants
which denote the amplitude, frequency and phase of the -th
real-valued sinusoid, respectively, while is an additive
white noise with unknown variance . For frequency esti-
mation in colored noise, the reader is referred to [15]–[19].
Furthermore, it is assumed that the number of sinusoids, , is
known a priori. The task here is to find , ,
from the samples of .

It is well known that can be uniquely expressed as a
linear combination of its previous samples as

(3)

where are referred to as the LP coefficients. A relationship
between and is given by [9]

(4)

where and , , are real, which
implies that the frequencies are equal to the phases of the roots

of , namely, . In our LP approach,
we first estimate and the frequency estimates are then de-
termined using (4).

III. WEIGHTED LEAST SQUARES FREQUENCY ESTIMATION

WITH GENERALIZED UNIT-NORM CONSTRAINT

Based on the LP property of sinusoidal signals and the sym-
metry of , we define an error function of the form

(5)

where are the optimization variables of up to a scalar
since is not fixed to be unity. The corresponding LS cost
function is simply

(6)

where we have (7)–(9), shown at the bottom of the page, and
represents the transpose operation. Decomposing into signal
and noise components, we have

(10)

where the expressions of and are shown in the equation at
the bottom of this page and in the first equation at the bottom
of the next page, respectively. By substituting (10) into (6) and
then taking the expected value, it is easy to show that

(11)

where diag . Note that if ,
, then is a zero vector. Since the second term

of (11) is a function of , we see that the minimum of
does not correspond to the desired except when
only. As a result, biased frequency estimates will be obtained via
minimizing (6) in the presence of noise. Similar to the unit-norm
constraint approach [20], [21], a straightforward way to get rid
of the frequency bias and avoid the trivial solution of all zeros is

(7)

...
...

...
...

(8)

(9)

...
...

...
...
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to minimize subject to a generalized unit-norm constraint
of the form

(12)

This formulation is not really novel because it only replaces the
sample covariance matrix in the Pisarenko’s method [14] by the
data matrix and utilizes , .
Using the method of Lagrange multipliers, the problem of min-
imizing (6) subject to (12) can be solved as follows. Define the
Lagrangian

(13)

where is the Lagrange multiplier. Differentiating with
respect to and then setting the resultant expression to zero
yields

(14)

where is the estimate of up to
a scalar, and is given by [22] the generalized eigenvector
corresponding to the smallest generalized eigenvalue of ( ,

). Note that since is diagonal, the generalized eigenvalue
problem can be easily converted into a standard eigenvalue
problem by finding the eigenvector corresponding to the
smallest eigenvalue of . Alternatively,
the constrained optimization problem in (6) and (12) is also
equivalent to minimizing an unconstrained cost function [21]:

(15)

Since the estimator based on (14) or (15) is closely related to
the PHD method, we refer it to as reformed Pisarenko harmonic
decomposer (RPHD). In fact, we have derived a closed-form
solution for the RPHD when by setting in
(15), and the estimate of is given by [13]

(16)

where and

The frequency estimate is then computed as . For
single-tone frequency estimation, using (14) or (15) is equiva-
lent to employing (16), although the latter has an obvious ad-
vantage of much smaller computational requirement, particu-
larly when is large. It is demonstrated [13] that the estimator
of (16) outperforms the original Pisarenko’s method for small

or large signal-to-noise ratio (SNR), which can be explained
by the fact that optimum sample covariance matrix estimation is
difficult to achieve in such conditions, but it is not optimum as
it has variances of order or and at high
and low SNRs, respectively, for . We expect that these
findings also hold for multiple frequency estimation based on
(14) or (15).

Since LS optimization generally cannot provide the best so-
lution [23], this gives an alternative explanation for the subop-
timality of Pisarenko’s method as well as the RPHD. From (6),
an improvement to the RPHD is to add a symmetric weighting
matrix, say, , to the LS cost function. A typical choice of
is [23]:

(17)

where with
is the residual

error at the true . The inverse of is calculated as (18),
shown at the bottom of the page.

Now, the constraint of (12) will be revised as the cost function
is modified, and the development is given as follows. From (6)
and (10), we expand as

(19)

...
...

...
...

...
...

...
...

...
...

...

(18)
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Premultiplying by gives

(20)

Premultiplying (20) by and then taking the expected value,
we get

(21)

where

(22)

The matrix is computed as (see Appendix A) (23), shown
at the bottom of the page, where ,

, with represents the th element of
.
As a result, the LP-based WLS frequency estimation with the

generalized unit-norm constraint is achieved via minimizing

(24)

subject to the constraint of

(25)

Following (13) and (14), the frequency estimates are determined
from another generalized eigenvalue problem:

(26)

It is observed that (14) is only a special case of (26) when is
an identity matrix and .

Since is not available, we do not have the exact form of
. In actual implementation, we can first set to the identity

matrix to obtain an initial estimate . This initial solution will
be used to obtain a scaled estimate of , denoted by , where
we replace by in and then divide it by so that
is characterized by only. The process is then iterated to obtain
a better solution. The detailed algorithm is given as follows.

i) Find an initial estimate by the RPHD via computing
the eigenvector corresponding to the minimum eigen-
value of , or by other high res-
olution frequency estimation techniques.

ii) Use the estimated to construct and then take the
inverse to obtain as well as .

iii) Compute the generalized eigenvector corresponding to
the minimum generalized eigenvalue of ( ,

).
iv) Repeat Steps ii) and iii) until a reliable solution has been

reached.
v) Use the finalized to compute the frequency estimates.

Although we are not aware [24] of the existence of a proof of
global convergence for the above relaxation algorithm, simula-
tion results in Section VII demonstrate that using a few iterations
in the estimation procedure, the algorithm is able to achieve
global convergence with performance approaching the CRLB
for sufficiently large SNRs and/or data lengths. Since normally
we have , the major computational requirement of the
algorithm is to determine the inverse of , which requires

multiplications if its special structure is ignored. Al-
though we have not addressed its fast realization, efficient algo-
rithms for symmetric sparse Toeplitz matrix inverse are found
in the scientific computing literature, and interested readers can
refer to works in this field. As a final remark, an advantage
of our approach over commonly used high-resolution methods
such as MUSIC and ESPRIT [4], [5] is that we do not require a
user-chosen parameter which corresponds to the size of the data
matrix or sample covariance matrix. Nevertheless, we need to
specify the stopping criterion, which is in terms of number of
iterations in our study, for the proposed approach.

IV. WEIGHTED LEAST SQUARES FREQUENCY ESTIMATION

WITH MONIC CONSTRAINT

Apart from the unit-norm constraint, monic constraint is
also commonly employed in the literature [21], [25], [26]. In
this Section, we will derive the WLS frequency estimator with
monic constraint based on (24). With the constraint of ,
we partition as

(27)

where

(28)

The data matrix is then partitioned accordingly as

(29)

...
...

...
...

...

(23)
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where

...

and the expression of is shown at the bottom of the page.
Substituting (27) and (29) into (24), the monic constraint WLS
frequency estimator is to minimize

(30)

Differentiating with respect to and then setting the re-
sultant expression to zero yields

(31)

where is the estimate of . At first sight, (31)
seems to give biased estimation because is correlated with

[23]. In fact, it is true that (31) will provide biased frequency
estimates when standard LS is employed, that is, when is
replaced by an identity matrix. However, in the next Section,
we argue that the bias of the solution in (31) is insignificant for
a sufficiently large observation length, due to the presence of
our particular choice of weighting matrix . As in the unit-
norm constraint frequency estimator, is employed instead in
practice. We summarize the iterative procedure for the LP-based
WLS frequency estimation with monic constraint as follows.

i) Find an initial estimate based on the eigenvector corre-
sponding to the minimum eigenvalue of

, and then normalize the first element of to get ,
or otherwise.

ii) Use the estimated to construct and then take the
inverse to obtain .

iii) Compute an improved using (31).
iv) Repeat Steps ii) and iii) until a reliable solution has been

reached.
v) Use the finalized to compute the frequency estimates.

It is noteworthy that the above algorithm is similar to the itera-
tive quadratic maximum likelihood (IQML) approach [27], [28].
However, their formulations are quite different as the IQML es-
timate is derived from the ML criterion while ours is based on
the WLS technique.

V. RELATIONSHIP BETWEEN ESTIMATORS

AND PERFORMANCE ANALYSIS

We will first show that the WLS frequency estimates using the
generalized unit-norm and monic constraints are very close, and

then derive the estimator bias and variance. In order to make the
theoretical development in this Section feasible, we limit to the
case of a single sinusoid because the analysis for will be
extremely complicated. To proceed, the following assumptions
are required:

A1): The ideal weighting matrix is employed in both
frequency estimators. This assumption is used to simplify the
derivation. Although generally differs from its estimate ,
Section VII indicates that the simulation and theoretical results
agree quite well for sufficiently large and/or SNR, although
the analysis is based on .

A2): The number of measurement samples is sufficiently
large. A major difficulty in developing the theoretical study
is that there is no closed-form expression for , even for

. Through considering , we are able to find a
closed-form expression to approximate . This assumption
also implies the error in , and, hence, , is very small.

For , we redefine accordingly with the use of (22)
and (23):

(32)

The next step is to express in terms of ,
which is achieved via the development of an approximate form
for (See Appendix B):

...
...

...
...

...
...

(33)

where the approximation error decreases as increases, and
we have (34), shown at the bottom of the next page. Note that
from (33) and (34), we can use an estimate of instead of

in the algorithms for sufficiently large , but there is no
obvious advantage because the computational complexity of
is also . Substituting (33) and (34) into (32), we obtain
(see Appendix C):

(35)

...
...

...
...
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On the other hand, premultiplying both sides of (26) by and
with the use of (25), the minimum generalized eigenvalue of
( , ) can be expressed as

(36)

As is getting closer to and considering tends to
infinity such that approaches and
the terms involving both and tend to zero, (36) becomes

(37)

Putting (35) into (37) yields

(38)

This means that the WLS frequency estimate using the unit-
norm constraint is approximately equal to the solution obtained
from

or

(39)

where 0 is a zero vector of size 2, provided that the first ele-
ment of , namely, , is not zero, and in this sense the con-
straint of (25) is simply to avoid the trivial solution of all zeros.
As one of the eigenvalues of approaches zero, the
rank of will become 1 and hence any one of the
two equations in (39) can be used to solve for . In partic-
ular, employing the last equation in (39) yields (31), which is
the monic-norm solution. As a result, the WLS frequency esti-
mators using the generalized unit-norm and monic constraints
will give very close estimates as and on parameter
convergence. In fact, we have demonstrated via computer simu-
lations that for a single real tone, using the upper, lower, or both
equations of (39) gives very similar estimation performance for
sufficiently large sample lengths. In addition, it can be shown
that the two equations will provide equivalent frequency esti-
mates in the absence of noise. It is noteworthy that the nearly
equivalence of the two estimators for can also be shown
in a similar manner as long as .

In the following, we will derive the bias and variance for the
monic constraint estimator, and the results should hold for the
unit-norm constraint method as . Partitioning and

into and as in (29), and expressing in
terms of with the use of , (31) becomes

(40)

The bias of , denoted by , is then

(41)

Note that the approximation in the expectation is valid because
the value of is dominated by a deterministic
term, which is shown in Appendix D. In this Appendix, we have
also derived the value of , which has the form:

SNR
(42)

where SNR , which is of order . This means
that the corresponding bias of the frequency estimate is also

and, thus, is insignificant as .
The variance of for sufficiently large , denoted by

var , is derived as (see Appendix D)

var
SNR

(43)

The relationship between var and the variance of , de-
noted by var , is [13]

var
var

(44)

Substituting (43) into (44), we eventually get

var
SNR

(45)

which is equal to the CRLB for single-tone frequency estimation
in white Gaussian noise [4] as , although our derivation
does not necessitate that is Gaussian. Finally, we should
emphasize that the theoretical results are produced under the

...
...

...
...

...

(34)
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assumptions A1) and A2). Nevertheless, the theoretical devel-
opment provides insightful findings for the performance of the
proposed estimators, as are demonstrated in the simulations.

VI. CLOSED-FORM ALGORITHMS FOR SINGLE-TONE

FREQUENCY ESTIMATION

For single-tone frequency estimation, it is possible to devise
closed-form algorithms for the LP-based WLS frequency esti-
mation using the generalized unit-norm and monic constraints.
The unit-norm constraint algorithm is first developed as follows.
Let which is a 2 2 matrix for . The
generalized eigenvalue problem of (26) can now be expressed
as

(46)

with the use of and . We then
eliminate using (46) and put to yield

(47)

where ,
and . It is found

that the root which corresponds to the frequency estimate is

(48)

As a result, the closed-form algorithm using the unit-norm con-
straint for single-tone frequency estimation is summarized as
follows.

i) Find an initial estimate of using (16) or other methods
such as finding the discrete Fourier transform (DFT) peak
of .

ii) Use the estimated to obtain and .
iii) Compute an improved estimate of using (48).
iv) Repeat Steps ii) and iii) until parameter convergence.
v) Compute the frequency estimate using .

For the closed-form algorithm using the monic constraint, we
notice that and of (31) are scalars
when . Similarly, the corresponding iterative estimation
procedure is as follows.

i) Find an initial estimate of using (16) or otherwise.
ii) Use the estimated to obtain .
iii) Compute an improved estimate of using

.
iv) Repeat Steps ii) and iii) until parameter convergence.
v) Compute the frequency estimate using .

VII. SIMULATION RESULTS

Computer simulations had been carried out to evaluate the
frequency estimation performance of the proposed algorithms
in white Gaussian noise. Comparisons were also made with the
CRLB [4]. Unless stated otherwise, the two algorithms were ini-
tiated by the RPHD. All simulation results provided were aver-
ages of 1000 independent runs.

Fig. 1. Frequency errors versus number of iterations at ! = 0:3� and
SNR = 10 dB for N = 20 and N = 200.

Fig. 2. Mean squared frequency errors versus ! at SNR = 10 dB and N =

20 with one iteration.

Fig. 1 illustrates typical realizations of the frequency errors in
a single run versus the number of iterations in the proposed algo-
rithms for a single real sinusoid with , and

with , which corresponded to a SNR of 10 dB.
The frequency errors were obtained by subtracting from the
corresponding frequency estimates and the scenarios of
and were considered. The iteration number of 0 re-
ferred to the frequency errors based on the initial estimates of
(16). Obvious changes in frequency errors are observed from
the zeroth to first iterations. Furthermore, it is seen that at most
three iterations were required to attain a nearly converged es-
timate, which implies that noticeable improvement in perfor-
mance will not be acquired if more iterations are employed.
The cases of using one and three iterations, which corresponded
to generally nonconverged and almost converged estimates, re-
spectively, were investigated as follows.

Fig. 2 shows the mean squared frequency errors (MSFEs) of
the two methods as well the CRLB for a single real sinusoid with

, and at SNR dB. Step (iv) in the
algorithms was skipped so that only one iteration was employed.
We observe that the MSFEs of the proposed methods had sim-
ilar values and were close to the CRLB for .
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Fig. 3. Mean frequency errors versus ! at SNR = 10 dB and N = 20 with
one iteration.

Fig. 4. Mean squared frequency errors versus ! at SNR = 10 dB and N =

200 with one iteration.

Fig. 5. Mean frequency errors versus ! at SNR = 10 dB andN = 200with
one iteration.

The mean frequency errors are shown in Fig. 3 and it is seen
that the biases in the WLS schemes were small except when

was near 0 or . This test was repeated for and

Fig. 6. Mean squared frequency errors versus ! at SNR = 10 dB and N =

20 with three iterations.

Fig. 7. Mean frequency errors versus ! at SNR = 10 dB and N = 20 with
three iterations.

Fig. 8. Mean squared frequency errors versus ! at SNR = 10 dB and N =

200 with three iterations.

the results are plotted in Figs. 4 and 5. It is observed that both
estimators had very similar MSFEs and mean frequency errors
for . Moreover, their estimation performance
was comparable with the CRLB when was neither near 0
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Fig. 9. Mean frequency errors versus ! at SNR = 10 dB andN = 200with
three iterations.

Fig. 10. Mean squared frequency errors versus SNR at ! = 0:3� and N =

20 with three iterations.

Fig. 11. Mean squared frequency errors versus SNR at ! = 0:3� and N =

1000 with three iterations.

nor . The above experiments were repeated using three itera-
tions in the estimation procedures and the results are shown in
Figs. 6–9. It is observed that the two algorithms provided very

Fig. 12. Mean squared frequency errors versus N at ! = 0:3� and SNR =

0 dB with three iterations.

Fig. 13. Mean squared frequency errors versus ! at SNR = 0 dB and N =

1000 with three iterations.

Fig. 14. Mean squared frequency errors versus ! at SNR = �5 dB and
N = 1000 with three iterations.

similar estimation accuracies and approached the CRLB. These
results indicated the optimality of the two methods upon param-
eter convergence even for a short data length.
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Fig. 15. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:7� and N = 20 with three iterations.

Fig. 16. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:7� and N = 20 with three iterations.

Fig. 17. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:7� and N = 200 with three iterations.

Fig. 10 plots the MSFEs of the WLS algorithms versus SNR
at and with three iterations. Initializa-
tion using the DFT peak was also included. We see that both
algorithms with different initialization methods had the similar

Fig. 18. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:7� and N = 200 with three iterations.

Fig. 19. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:34� and N = 20 with three iterations.

Fig. 20. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:34� and N = 20 with three iterations.

threshold SNRs, with deviation of around 2 dB, and attained
the CRLB for sufficiently high SNR conditions. This test was
repeated for and the results are shown in Fig. 11. It
is observed that their threshold SNRs decreased, especially for
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Fig. 21. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:34�, ! = 0:7� and N = 20 with three iterations.

Fig. 22. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:34�, ! = 0:7� and N = 20 with three iterations.

the DFT initialization, which corresponded a larger SNR oper-
ation range, as increased. Fig. 12 plots the MSFEs versus
at and SNR dB. The plots of MSFEs versus fre-
quency at for SNR dB and SNR dB are
shown Figs. 13 and 14, respectively, where DFT was used as ini-
tialization while all other simulation settings were same as those
in Fig. 2. It is observed that accurate frequency estimation was
achieved in both small SNR cases. From Figs. 10–14, we sum-
marize that the two proposed estimators can produce optimum
estimation performance when the data lengths and/or SNRs are
sufficiently large. Furthermore, for single-tone frequency esti-
mation under lower SNR conditions, initialization with DFT
will give more robust estimates than using RPHD.

Figs. 15 and 16 show the MSFEs of the methods versus SNR
for the case of two sinusoids at with three iterations.
The parameters of the sinusoids were given as follows:

, , , and .
It is observed that the two algorithms were optimum when the
SNR was sufficiently high, with the monic constraint method
has relatively smaller threshold SNRs for both frequencies. The
test for dual tones was repeated for and the results are
shown in Figs. 17 and 18. The optimality of the two algorithms

Fig. 23. Mean squared frequency errors for ! versus SNR at ! = 0:3�,
! = 0:34�, ! = 0:7� and N = 20 with three iterations.

was again demonstrated for sufficiently high SNRs. Finally, the
high-resolution frequency estimation property of the algorithms
is demonstrated in Figs. 19–23, for and . The
parameters in the two-tone and three-tone cases were given as
follows, , , ,
and , and , , ,

, , and .

VIII. CONCLUSIONS

Two accurate frequency estimation algorithms for multiple
real sinusoids in white noise based on the linear prediction ap-
proach have been developed. The first algorithm minimizes a
weighted least squares (WLS) cost function subject to a gener-
alized unit-norm constraint while the second method is a WLS
estimator with monic constraint. For a single real tone, both
algorithms give very close frequency estimates whose accura-
cies attain Cramér–Rao lower bound for white Gaussian noise.
Closed-form single-tone frequency estimation is also investi-
gated. Moreover, the optimality of the proposed algorithms for
single and multiple frequency estimation is demonstrated via
computer simulations at different frequencies, data lengths, and
signal-to-noise ratio conditions.

APPENDIX A

The derivation of (23) is given as follows. We first decompose
as

where

...
...

...
...

and

...
...

...
...
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The expected value of is then expanded as

(A.1)

Since is a white process with variance , the value of the
th element of is observed as

(A.2)

We then deduce from (A.2) that

...
...

...
...

(A.3)

In a similar manner, it is shown that

...
...

...
...

...

(A.4)
and

...
...

...
...

...

(A.5)
Substituting (A.3)–(A.5) into (A.1) yields (23).

APPENDIX B

The development of the approximate form for is inspired
by the fact that i) can be approximated as the square of a
tridiagonal matrix; ii) a special tri-diagonal matrix [30], [31] has
a closed-form inverse; and iii) the structure of the square of the
special tri-diagonal matrix is similar to that of . We first
notice from (33) that can be approximated by

...
...

...
...

...
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where
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That is, is identical to , except for the first and last
elements.

From [30] and [31], the inverse of the correlation matrix ,
which is expressed as
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is given by

...
...

...
...

...
...

...

(B.4)
Ignoring the first and last elements of , we have via
the establishment of the following relationship:

(B.5)

An obvious closed-form expression for at is then
with or , but it

is inappropriate because the corresponding elements of are
generally complex, whereas should be real. To find a real ap-
proximation matrix, we notice from (B.5) that is also approx-
imately equal to for (or ),
where represents the conjugate operation. This means that

is approximately equal to as well as for this
particular choice of . Therefore, a real approximation for ,
namely, , can be found between and , and a good
choice is simply their standard mean, as in (B.6), shown at the
bottom of the next page, where denotes the real part. As a
result, we have

(B.7)

By applying the matrix inversion by partitioning lemma [32]
and the using mathematical induction, we have proved that the
inverse of is in (B.8), shown at the bottom of the next page.
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Using (B.8), it is shown that , except for 12
elements at the four corners:

and

Using the matrix inversion lemma [23], it can be shown that
(B.7) holds very well except for the elements near the matrix
boundaries. The result for (B.7) has also been extended for

as

(B.9)

where each is parameterized by the frequency ,
, as in (B.7), and differs from

for the elements at the four corners.

APPENDIX C

The values for , and in (32) are first derived for
as follows. Using (B.6), is computed as

tr
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(C.1)

where tr denotes the trace operator. Similarly, it is shown that

(C.2)

and

(C.3)

From (C.1)–(C.3), we have

(C.4)

and

(C.5)

Substituting (C.4) and (C.5) into (32) yields (35).

APPENDIX D

We first derive the bias of and then its variance for suffi-
ciently large . The values of
and in (41) are determined as follows. The
term can be written as

tr

tr

(D.1)

The term is computed as
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(D.2)

Substituting (D.2) into (D.1) and using (C.1) and (C.2), we get

tr

(D.3)

On the other hand, the term can be expressed
as

tr (D.4)

Using (C.1) again, we have

tr

(D.5)
To compute , we first examine the vector ,
whose th element is evaluated as (D.6), shown at the top of the
next page, for sufficiently large . Using (D.6) and considering
that is large enough, we get

(D.7)

Substituting (D.3)–(D.5) and (D.7) into (41), and considering
gives (42), note that since and tr

are of and ,
for sufficiently large , and thus, the expectation approximation
made in (41) is valid.

The derivation of (43) is now given as follows. From (40), we
have

(D.8)

because and are symmetric. It is seen
that the expected value of (D.8) is difficult to compute. How-
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(D.6)

ever, the analysis can be much simplified if the approximation
of ,
and the law of iterated expectations are employed. With the use
of (D.4), (D.5), and (D.7), var is derived as follows:

var

SNR
(D.9)

which is (43).
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