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Abstract—Partial updating of LMS filter coefficients is an
effective method for reducing computational load and power con-
sumption in adaptive filter implementations. This paper presents
an analysis of convergence of the class of Sequential Partial Update
LMS algorithms (S-LMS) under various assumptions and shows
that divergence can be prevented by scheduling coefficient updates
at random, which we call the Stochastic Partial Update LMS
algorithm (SPU-LMS). Specifically, under the standard indepen-
dence assumptions, for wide sense stationary signals, the S-LMS
algorithm converges in the mean if the step-size parameter is in
the convergent range of ordinary LMS. Relaxing the independence
assumption, it is shown that S-LMS and LMS algorithms have
the same sufficient conditions for exponential stability. However,
there exist nonstationary signals for which the existing algorithms,
S-LMS included, are unstable and do not converge for any value of

. On the other hand, under broad conditions, the SPU-LMS al-
gorithm remains stable for nonstationary signals. Expressions for
convergence rate and steady-state mean-square error of SPU-LMS
are derived. The theoretical results of this paper are validated and
compared by simulation through numerical examples.

Index Terms—Exponential stability, max partial update, partial
update LMS algorithms, periodic algorithm, random updates, se-
quential algorithm, set-membership.

I. INTRODUCTION

THE least mean-squares (LMS) algorithm is a popular algo-
rithm for adaptation of weights in adaptive beamformers

using antenna arrays and for channel equalization to combat in-
tersymbol interference. Many other application areas of LMS
include interference cancellation, echo cancellation, space time
modulation and coding, signal copy in surveillance, and wireless
communications. Although there exist algorithms with faster
convergence rates like RLS, LMS is popular because of its ease
of implementation and low computational costs [18], [20], [25].

Partial updating of the LMS adaptive filter has been pro-
posed to reduce computational costs and power consumption
[13], [14], [22], which is quite attractive in the area of mobile
computing and communications. Many mobile communication
devices have applications like channel equalization and echo
cancellation that require the adaptive filter to have a very large
number of coefficients. Updating the entire coefficient vector
is costly in terms of power, memory, and computation and is
sometimes impractical for mobile units.
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Two types of partial update LMS algorithms are prevalent
in the literature and have been described in [11]. They are re-
ferred to as the “Periodic LMS algorithm” and the “Sequen-
tial LMS algorithm.” To reduce computation needed during the
update part of the adaptive filter by a factor of , the Peri-
odic LMS algorithm (P-LMS) updates all the filter coefficients
every th iteration instead of every iteration. The Sequential
LMS (S-LMS) algorithm updates only a fraction of coefficients
every iteration. Another variant referred to as “Max Partial Up-
date LMS algorithm” (Max PU-LMS) has been proposed in [1],
[9], and [10]. Yet another variant known as the “set-member-
ship partial-update NLMS algorithm” (SMPU-NLMS) based
on data-selective updating appears in [8]. The algorithm com-
bines the ideas of set-membership normalized algorithms with
the ideas of partial update algorithms. These variants have data
dependent updating schedules and therefore can have faster con-
vergence, for stationary signals, than P-LMS and S-LMS algo-
rithms that have data independent updating schedules. However,
for nonstationary signals, it is possible that data dependent up-
dating can lead to nonconvergence. This drawback is illustrated
by comparing Max PU-LMS and SMPU-NLMS to the regular
LMS and proposed SPU-LMS algorithms through a numerical
example. SPU-LMS is similar to P-LMS and S-LMS algorithms
in the sense that it also uses data independent updating sched-
ules. Thus, while analytical comparison to Max PU-LMS and
SMPU-NLMS algorithms would be interesting, comparisons
are limited to S-LMS and P-LMS.

In [11], for stationary signals, convergence conditions were
derived for the convergence of S-LMS under the assumption
of small step-size parameter , which turned out to be the
same as those for the standard LMS algorithm. Here, bounds
on are obtained that hold for stationary signals and arbitrary
fixed sequence of partial updates. First, under the standard in-
dependence assumptions, it is shown that for stationary sig-
nals first order stability of LMS implies first order stability of
S-LMS. However, the important characteristic of S-LMS, which
is shared by P-LMS as well, is that the coefficients to be up-
dated at an iteration are pre-determined. It is this characteristic
which renders P-LMS and S-LMS unstable for certain signals
and which makes an alternative random coefficient updating ap-
proach attractive.

In this paper, we propose a new partial update algorithm in
which the subset of the filter coefficients that are updated each
iteration is selected at random. The algorithm, referred to as the
Stochastic Partial Update LMS algorithm (SPU-LMS), involves
selection of a subset of size coefficients out of possible
subsets from a fixed partition of the coefficients in the weight
vector. For example, filter coefficients can be partitioned into
even and odd subsets and either even or odd coefficients are
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randomly selected to be updated in each iteration. Conditions
on the step-size parameter are derived that ensure convergence
in the mean and the mean square sense for stationary signals,
for deterministic signals, and for the general case of mixing
signals.

Partial update algorithms can be contrasted against another
variant of LMS known as the Fast Exact LMS (FE-LMS) [4].
Here also, the updates are done every th instead of every iter-
ation ( has to be much smaller than , the filter length, to re-
alize any computational savings [4]). However, the updates after
every th iteration result in exactly the same filter as obtained
from LMS with updates done every iteration. Therefore, the
algorithm suffers no degradation with respect to convergence
when compared to the regular LMS. A generalized version of
Fast Exact LMS appears in [5] where the Newton transversal
filter is used instead of LMS.

When convergence properties are considered the FE-LMS
algorithm is more attractive than the PU-LMS algorithm.
However, PU-LMS algorithms become more attractive when
the available program and data memory is limited. The com-
putational savings in FE-LMS come at the cost of increased
program memory, whereas PU-LMS algorithms require neg-
ligible increase in program size and in some implementations
might reduce the data memory required. Moreover, in FE-LMS
the reduction in number of execution cycles is offset by the
additional cycles needed for storing the data in intermediate
steps. Finally, the computational savings for the FE-LMS algo-
rithm are realized for a time-series signal. If the signal happens
to be the output of an array, that is the output of an individual
antenna is the input to a filter tap, then the method employed in
[4] to reduce computations no longer holds.

The main contributions of this paper can be summarized as
follows.

• For stationary signals and arbitrary sequence of updates,
it is shown, without the independence assumption, that
S-LMS has the same stability and mean-square conver-
gence properties as LMS.

• Signal scenarios are demonstrated for which the prevalent
partial update algorithms do not converge.

• A new algorithm is proposed, called the Stochastic Partial
Update LMS Algorithm (SPU-LMS), that is based on ran-
domizing the updating schedule of filter coefficients that
ensures convergence.

• Stability conditions for SPU-LMS are derived for sta-
tionary signal scenarios, and it is demonstrated that the
steady-state performance of the new algorithm is as good
as that of the regular LMS algorithm.

• A persistence of excitation condition for the convergence
of SPU-LMS is derived for the case of deterministic sig-
nals, and it is shown that this condition is the same as for
the regular LMS algorithm.

• For the general case of mixing signals, it is shown that
the stability conditions for SPU-LMS are the same as that
of LMS. The method of successive approximation is ex-
tended to SPU-LMS and the results used to show that

SPU-LMS does not suffer a degradation in steady-state
performance.

• It is demonstrated through different examples that for non-
stationary signal scenarios, as might arise in echo can-
cellation in telephone networks or digital communication
systems, partial updating using P-LMS and S-LMS might
be undesirable as these are not guaranteed to converge.
SPU-LMS is a better choice because of its guaranteed
convergence properties.

The organization of the paper is as follows. First, in Section II,
a brief description of the sequential partial update algorithm is
given. The algorithm is analyzed for the case of stationary sig-
nals under independence assumptions in Section II-A. The rest
of the paper deals with the new algorithm. A brief description
of the algorithm is given in Section III, and its analysis is given
in Sections III-A (uncorrelated input and coefficient vectors),
B (deteriministic signals), and C (correlated input and coeffi-
cient vectors). It is shown that the performance of SPU-LMS is
very close to that of LMS in terms of stability conditions and
final mean squared error. Section IV discusses the performance
of the new algorithm through analytical comparisons with the
existing partial udpate algorithms and through numerical ex-
amples (Section IV-A). In particular, Section IV demonstrates,
without the independence assumption, the exponential stability
and the mean-square convergence analysis of S-LMS for sta-
tionary signals and of P-LMS for the general case of mixing
signals. Finally, conclusions and directions for future work are
indicated in Section V.

II. SEQUENTIAL PU-LMS ALGORITHM

Let be the input sequence, and let denote the
coefficients of an adaptive filter of odd length, . Define

where the terms defined above are for the instant and de-
notes the transpose operator. In addition, Let denote the de-
sired response. In typical applications, is a known training
signal which is transmitted over a noisy channel with unknown
FIR transfer function.

In the stationary signal setting, the offline problem is to
choose an optimal such that

is minimized, where denotes the complex conjugate of , and
denotes the complex conjugate transpose of .

The solution to this problem is given by

(1)

where , and . The minimum at-
tainable mean square error is given by
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For the following analysis, we assume that the desired signal
satisfies the following relation:1[11]

(2)

where is a zero mean complex circular Gaussian2 random
vector, and is a zero mean circular complex Gaussian (not
necessarily white) noise, with variance , uncorrelated with

.
Assume that the filter length is a multiple of . For con-

venience, define the index set . Partition
into mutually exclusive subsets of equal size .
Define by zeroing out the th row of the identity matrix if

. In that case, will have precisely nonzero
entries. Let the sentence “choosing at iteration ” stand to
mean “choosing the weights with their indices in for update
at iteration .”

The S-LMS algorithm is described as follows. At a given iter-
ation , one of the sets , is chosen in a predeter-
mined fashion, and the update is performed. Without loss of gen-
erality, it can be assumed that at iteration , the set is
chosen for update, where denotes the operation “ modulo

.”

if
otherwise

where . The above update equation can be
written in a more compact form

(3)

In the special case of odd and even updates , consists
of all odd indices and of all even indices.

Define the coefficient error vector as

which leads to the following coefficient error vector update for
S-LMS when is even

and the following when is odd:

1Note that the model assumed for d is same as assuming d and X are
jointly Gaussian sequences. Under this assumption, d can be written as d =
W X + m , where W is as in (1) and m = d �W X . Since
E[m X ] = E[X d ] � E[X X ]W = 0 and m and X are jointly
Gaussian, we conclude thatm andX are independent of each other which is
same as model (2).

2A complex circular Gaussian random vector consists of Gaussian random
variables whose marginal densities depend only on their magnitudes. For more
information, see [21] or [24. p. 198].

A. Analysis: Stationary Signals, Independent Input, and
Coefficient Vectors

Assuming that and are jointly WSS random sequences,
we analyze the convergence of the mean coefficient error vector

. We make the standard assumptions that and are
independent of each other [3]. For the regular full update LMS
algorithm, the recursion for is given by

(4)

where is the -dimensional identity matrix, and
is the input signal correlation matrix. The

well-known necessary and sufficient condition for
to converge in (4) is given by [18]

where denotes the spectral radius of
. This leads to

(5)

where is the maximum eigen-value of the input signal
correlation matrix . Note that this need not translate to be the
necessary and sufficient condition for the convergence of
in actuality as (4) has been obtained under the independence
assumption which is not true in general.

Taking expectations under the same assumptions as above
and using the independence assumption on the sequences

, which is the independence assumption on and ,
we obtain, when is even

and when is odd

Simplifying the above two sets of equations, we obtain, for
even-odd S-LMS when is even

(6)

and when is odd

(7)

It can be shown that under the above assumptions on , and
, the convergence conditions for even

and odd update equations
are identical. We therefore focus on (6). It will be

shown that if , then
.
Now, if instead of just two partitions of odd and even coef-

ficients , there are any number of arbitrary partitions
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, and then, the update equations can be similarly written
as above, with . Namely

(8)

, is obtained from , which is the identity matrix
of dimension , by zeroing out some rows in such that

.
We will show that for any arbitrary partition of any size
, S-LMS converges in the mean if LMS converges in the mean.

The case follows as a special case. The intuitive reason
behind this fact is that both the mean update equation for LMS

and the mean update equation for
S-LMS ,
try to minimize the mean squared error . This
error term is a quadratic bowl in the coordinate system.
Note that LMS moves in the direction of the negative gradient

by retaining all the components of this gradient in the
coordinate system, whereas S-LMS discards some of the

components at every iteration. The resulting direction, in which
S-LMS updates its weights, obtained from the remaining com-
ponents can be broken into two components: one in the direction
of and one perpendicular to it. Hence, if LMS reduces
the mean squared error, then so does S-LMS.

The result is stated formally in Theorem 2, and the following
theorem is used in proving the result.

Theorem 1—[19, Prob. 16, p. 410]: Let be an arbitrary
matrix. Then, if and only if there exists

some positive definite matrix such that
is positive definite. Here, denotes the spectral radius of

.
Theorem 2: Let be a positive definite matrix of dimension

with ; then,
, where , are obtained by zeroing out some rows

in the identity matrix such that . Thus, if and
are jointly wide sense stationary, then S-LMS converges in

the mean if LMS converges in the mean.
Proof: Let be an arbitrary nonzero vector of

length . Let . In addition, let
.

First, we will show that
, where .

where . If we can show is positive
semi-definite, then we are done. Now

Since , it is easy to see that
is positive definite. Therefore,

is positive semi-definite, and

Combining the above inequality for , we note
that if for at least one
, . We will show by contradiction that is indeed

the case.
If not, then for all , .

Since , this implies . Therefore,
. Similarly, for all ,

. This, in turn, implies that for all
, , which is a contradiction since

is a positive-definite matrix, and
.

Finally, we conclude that

Since is arbitrary, we have to be positive
definite so that applying Theorem 1, we conclude that .

Finally, if LMS converges in the mean, we have
or , which, from the above proof, is sufficient

to conclude that . Therefore, S-LMS
also converges in the mean.

Remark 1: Note that it is sufficient for to be such that
is positive definite. That means that the subsets updated

at each iteration need not be mutually exclusive.
Remark 2: It is interesting to note that in the proof above if

1) we choose and
for each ;

2) we write as
instead of as

then it can be shown that for stationary signals the sequential
algorithm enjoys a more lenient condition on for convergence
in the mean: . This con-
dition is more lenient than that of regular LMS:

.
With a little extra effort, a tighter bound on the spectral radius

of can be demonstrated.
Theorem 3: Fix , and let be such that

. Then, there exists a constant dependent
only on such that is contained within a
circle of radius for all .

Proof: Let be an arbitrary nonzero vector of
length as before. Let and

.
From the proof of Theorem 2, we have, for
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with , and
. is defined as ,

where denotes the projection of onto the nonzero
eigenspace of .

Next, consider , . Then, the
update equation for is . Let
be as before and .

Let

Then

In addition

for . Next, denoting for and making use
of the facts that and

, we obtain for

Therefore, at least one of is greater than or equal to
. Otherwise,

, which is a
contradiction.

Next, choosing
and noting that

for all
, we obtain

This leads to

Finally, using Theorem 1, we conclude that
or .

Remark 3: If we assume that is block diagonal such that
with , then an even tighter

bound on can be obtained. In this case,
and turns out to be simply

III. STOCHASTIC PU-LMS ALGORITHM

The description of SPU-LMS is similar to that of S-LMS
(Section II). The only difference is as as follows. At a given it-
eration, , for S-LMS one of the sets , is chosen
in a predetermined fashion, whereas for SPU-LMS, one of the
sets is sampled at random from with prob-
ability and subsequently the update is performed. i.e.,

if
otherwise (9)

where . The above update equation can be
written in a more compact form

(10)

where now is a random matrix chosen with equal probability
from , (recall that is obtained by zeroing out
the th row of the identity matrix if ).

A. Analysis: Stationary Stochastic Signals, Independent Input,
and Coefficient Vectors

For the stationary signal analysis of SPU-LMS, the desired
signal is assumed to satisfy the same conditions as in
Section II, namely, . In this section, we
make the usual assumptions used in the analysis of standard
LMS [3]: We assume that is a Gaussian random vector and
that and are independent. and are
independent of each other by definition. We also assume, in this
section, for tractability, that is block diagonal
such that .

For convergence-in-mean analysis, we obtain the following
update equation conditioned on a choice of .

which after averaging over all choices of gives

(11)

To obtain the above equation, we have made use of the fact that
the choice of is independent of and . Therefore, has
to satisfy to guarantee convergence in
mean.

For the convergence-in-mean square analysis of SPU-LMS,
the convergence of the error variance is studied as
in [20]. Under the independence assumptions, we obtain

tr , where is as defined
earlier.

First, conditioned on a choice of , the evolution equation of
interest for tr is given by

(12)

where . Let , where satisfies
. Applying the definition of to (12), we obtain

the equation

(13)
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where is a vector of diagonal elements of , and
is an vector of ones.
It is easy to obtain the following necessary and sufficient con-

ditions (following the procedure of [20]) for convergence of
from (12)

(14)

which are independent of and identical to that of LMS. As
pointed out in Section II-A, the above conditions have been ob-
tained under the independence assumption that are not valid in
general.

The integrated MSE difference [20]

(15)

introduced in [12] is used as a measure of the convergence rate
and as a measure of misadjustment.
It is easily established that the misadjustment takes the form

(16)

which is the same as that of the standard LMS. Thus, we con-
clude that random update of subsets has no effect on the final
excess mean-squared error.

Finally, it is straightforward to show (following the procedure
of [12]) that the integrated MSE difference is

tr (17)

which is times the quantity obtained for standard LMS algo-
rithm. Therefore, we conclude that for block diagonal R, random
updating slows down convergence by a factor of without af-
fecting the misadjustment. Furthermore, it can be easily verified
that a much simpler condition tr , provides a
sufficient region for convergence of SPU-LMS and the standard
LMS algorithm.

B. Analysis: Deterministic Signals

Here, we follow the analysis for LMS, albeit extended to com-
plex signals, which is given in [25, pp. 140–143]. We assume
that the input signal is bounded, that is

, and that the desired signal follows the model

which is different from (2) in that is assumed to be perfectly
predictable from .

Define and .
Lemma 1: If , then as . Here,

indicates statistical expectation over all possible choices of ,
where each is chosen randomly with equal probability from

.
Proof: See Appendix I.

For a positive definite matrix , we say that converges
exponentially fast to zero if there exists a , and a

positive integer such that tr tr for all
. tr denotes the trace of the matrix .
Theorem 4: If and the signal satisfies the following

persistence of excitation condition, for all , there exist ,
and such that

(18)

then , and exponentially fast.
Proof: See Appendix I.

Condition (18) is identical to the persistence of excitation
condition for standard LMS [25]. Therefore, the sufficient con-
dition for exponential stability of LMS is enough to guarantee
exponential stability of SPU-LMS.

C. Analysis: Correlated Input and Coefficient Vectors

In this section, the performance of LMS and SPU-LMS is
analytically compared in terms of stability and misconvergence
when the uncorrelated input and coefficient signal vectors as-
sumption is invalid. Unlike the analysis in Section III-A, where
the convergence analysis and the performance analysis could be
tackled with the same set of equations, here, the stability and
performance analyzes have to be done separately. For this, we
employ the theory, which is extended here to circular complex
random variables developed in [16] for stability analysis and
[2] for final mean-squared error analysis. Our analysis holds
for the broad class of signals that are -mixing. Mixing con-
ditions provide a very general and powerful way to describe the
rate of decay of the dependence between pairs of samples as
the sample times are moved farther apart. Such conditions are
much weaker than conditions on the rate of decay of the autocor-
relation function, which are restricted to second-order analysis
and Gaussian processes. For this reason, general mixing condi-
tions, such as the -mixing condition defined in Appendix III,
have been widely used in adaptive signal processing and adap-
tive detection [2], [7], [16], [17], [23] to analyze convergence of
algorithms for dependent processes. We adopt this framework
in this paper (see Appendices II and IV for detailed proofs and
definitions) and summarize the results in this section.

The analysis in Section III-A is expected to hold for small
, even when the uncorrelated input and coefficient vectors as-

sumption is violated. It is, however, not clear for what values of
the results from Section III-A are valid. The current section

makes the dependence of the value of explicit and concludes
that stability and performance of SPU-LMS are similar to that
of LMS.

Result 1 (Stationary Gaussian Process): Let be a sta-
tionary Gaussian random process such that

as and , then for any
, there exist constants , , and

such that for all and for all
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if and only if the input correlation matrix , is
positive definite.

Proof: See Appendix II.
It is easily seen from the extension of [16] to complex sig-

nals that the LMS algorithm requires the same necessary and
sufficient conditions for convergence (see Appendix II). There-
fore, the necessary and sufficient conditions for convergence of
SPU-LMS are identical to those of LMS.

The analysis in Result 1 validates the analysis in
Section III-A, for similar input signals, where the analysis
was done under the independence assumption. In both cases,
we conclude that necessary and sufficient condition for con-
vergence is that the covariance matrix be positive definite.
Although Section III-A also gives some bounds on the step-size
parameter , it is known they are not very reliable as the
analysis is valid only for very small .

The mean squared analysis on is based
on the analysis in [2], which follows the method of successive
approximation. The details of the extension of this method to
SPU-LMS are provided in Appendix IV. The analysis in this
section is performed by assuming that

The effectiveness of the method is illustrated in Results 2 and
3, where the steady-state performance of the two algorithms is
compared for two simple scenarios where the independence as-
sumption is clearly violated.

Result 2 (i. i. d. Gaussian Process): Let
, where is the length of the vector

. is a sequence of zero mean i.i.d Gaussian random
variables. Let denote the variance of and denote the
variance of . It is assumed that is a white i.i.d. Gaussian
noise. Then, for LMS, we have

(19)

and for SPU-LMS, assuming to be a multiple of and sets
to be mutually exclusive, we have

Note that the constant in the final mean square expression for
SPU-LMS is the same as that for LMS. Therefore, for large ,
it can be seen that SPU-LMS is marginally worse than LMS in
terms of misadjustment.

Proof: See Appendix IV-A.
It will be interesting to see how the results above compare to

the results obtained under the independence assumptions anal-
ysis in Section III-A. From (13), we obtain the vector of diag-
onal elements of to be

for both LMS and SPU-LMS, where is an vector of
ones. The analysis in this section gives

for LMS and

for SPU-LMS.
Result 3 (Spatially Uncorrelated Temporally Correlated

Process): Let be given by

where is a vector of circular Gaussian random variables with
unit variance. Here, in addition, it is assumed that is a white
i.i.d. Gaussian noise with variance . Then, for LMS, we have

(20)

and for SPU-LMS, assuming to be a multiple of and sets
to be mutually exclusive, we have

Here, in addition, for large , SPU-LMS is marginally worse
than LMS in terms of misadjustment.

Proof: See Appendix IV-B.
Here, in addition, the results obtained above can be compared

to the results obtained from the analysis in Section III-A. From
(13), we obtain to be

for both LMS and SPU-LMS. The analysis in this section gives

for LMS and

for SPU-LMS.
Therefore, the analysis in this section highlights differences

in the convergence of LMS and SPU-LMS that would not have
been apparent from the analysis in Section III-A. It can be noted
that for small the penalty for assuming independence is not
insignificant (especially for SPU-LMS). However, for large ,
the independence assumption analysis manages to yield a reli-
able estimate, even for larger values of , in spite of the fact that
the assumption is clearly violated.

IV. DISCUSSION AND EXAMPLES

It is useful to compare the performance of the new algorithm
to those of the existing algorithms by performing the analyses
of Sections III-A, B, and C on the periodic Partial Update LMS
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Algorithm (P-LMS) and the sequential Partial Update LMS Al-
gorithm (S-LMS). To do that, we first need the update equation
for P-LMS, which is as follows:

We begin with comparing the convergence-in-mean analysis
of the partial update algorithms. Combining -iterations, we
obtain for LMS , for P-LMS

, for SPU-LMS , and,
finally, for S-LMS (assuming )

. Therefore, the rate of decay of all the partial update
algorithms is times slower than that of LMS.

For convergence-in-mean square analysis of Section III-A,
we will limit the comparison to P-LMS. The convergence of
Sequential LMS algorithm has been analyzed using the small

assumption in [11]. Under this assumption for stationary
signals, using the independence assumption, the conditions for
convergence turn out to be the same as that of SPU-LMS. For
P-LMS using the method of analysis described in [20], it can
be inferred that the conditions for convergence are identical to
standard LMS. That is, (14) holds also for P-LMS. In addition,
the misadjustment factor remains the same. The only difference
between LMS and P-LMS is that the integrated MSE (15)
for P-LMS is times larger than that of LMS. Therefore, we
again conclude that the behavior of SPU-LMS and P-LMS
algorithms is very similar for stationary signals.

However, for deterministic signals the difference between
P-LMS and SPU-LMS becomes evident from the persistence of
excitation condition. The persistence of excitation condition for
P-LMS is [11] as follows: For all and for all , ,
there exist , and such that

(21)

Since any deteriministic signal satisfying (21) also satisfies (18)
but not vice-versa, it can be inferred that (21) is stricter than that
for SPU-LMS (18).

Taking this further, using the analysis in Appendix II, for
mixing signals, the persistence of excitation condition can sim-
ilarly be shown to be the following: There exists an integer

and a constant such that for all and for
all ,

Here, in addition, it can be seen that this condition is stricter
than that of SPU-LMS (25). In fact, in Section IV-A, signals are
constructed, based on the persistence of excitation conditions
for SPU-LMS and P-LMS, for which P-LMS is guaranteed not
to converge, whereas SPU-LMS will converge.

The analysis of Appendix II can be extended to S-LMS if an
additional requirement of stationarity is imposed on the excita-
tion signals. For such signals, it can be easily seen that the neces-
sary and sufficient conditions for statibility of LMS, SPU-LMS
and P-LMS are exactly the same and are sufficient for exponen-
tial stability of S-LMS (see Appendix III for details).

In addition, applying the analysis of Appendix IV used to
derive Results 2 and 3, it can be easily seen that the final error
covariance matrix for P-LMS is same as that of LMS [see (19)
and (20)]. Exactly the same results can be obtained for S-LMS as
well by combining the results of Appendix III with the analysis
in Appendix IV restricted to stationary -mixing signals.

For nonstationary signals, the convergence of S-LMS is an
open question, although analysis for some limited cyclo-sta-
tionary signals has been performed in [15]. In this paper, we
show through simulation examples that this algorithm diverges
for certain nonstationary signals and, therefore, should be em-
ployed with caution.

In summary, for stationary signals all three algorithms
(P-LMS, S-LMS, and SPU-LMS) enjoy the same convergence
properties as LMS. It is for nonstationary signals that S-LMS
and P-LMS might fail to converge, and it is for such signals
that the advantage of SPU-LMS comes to the fore. SPU-LMS
enjoys the same convergence properties as LMS, even for non-
stationary signals, in the sense that it is guaranteed to converge
for all signals that LMS converges for.

A. Numerical Examples

In the first two examples, we simulated an -element uni-
form linear antenna array operating in a multiple signal environ-
ment. Let denote the response of the array to the th plane
wave signal:

where and , .
is the broadside angle of the th signal, is the interelement

spacing between the antenna elements, and is the common
wavelength of the narrowband signals in the same units as
and . The array output at the th snapshot is given
by , where denotes the number
of signals, the sequence the amplitude of the th signal,
and the noise present at the array output at the th snapshot.
The objective, in both the examples, is to maximize the SNR
at the output of the beamformer. Since the signal amplitudes are
random, the objective translates to obtaining the best estimate of

, which is the amplitude of the desired signal, in the MMSE
sense. Therefore, the desired signal is chosen as .

Example 1: In the first example (see Fig. 1), the array has
four elements, and a single planar waveform with amplitude

propagates across the array from direction angle .
The amplitude sequence is a binary phase shifty keying
(BPSK) signal with period four taking values on { 1,1} with
equal probability. The additive noise is circular Gaussian
with variance 0.25 and mean 0. In all the simulations for SPU-
LMS, P-LMS, and S-LMS, the number of subsets for partial up-
dating was chosen to be 4, that is, a single coefficient is up-
dated at each iteration. It can be easily determined from (14) that
for Gaussian and independent signals, the necessary and suffi-
cient condition for convergence of the update equations for LMS
and SPU-LMS under the independence assumptions analysis is

. Fig. 2 shows representative trajectories of the empir-
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Fig. 1. Signal scenario for Example 1.

Fig. 2. Trajectories of MSE for Example 1.

ical mean-squared error for the LMS, SPU-LMS, P-LMS, and
S-LMS algorithms averaged over 100 trials for . All al-
gorithms were found to be stable for the BPSK signals, even for

values greater than 0.225. It was only as approached 0.32
that divergent behavior was observed. As expected, LMS and
SPU-LMS were observed to have similar regions of conver-
gence. It is also clear from Fig. 2 that, as expected, SPU-LMS,
P-LMS, and S-LMS take roughly four times longer to converge
than LMS.

Example 2: In the second example, we consider an eight-el-
ement uniform linear antenna array with one signal of interest
propagating at angle and three interferers propagating at
angles , , 3, and 4 (see Fig. 3). The array noise
is again mean 0 circular Gaussian but with variance 0.001.
Signals are generated, such that is stationary and ,

, 3, and 4 are cyclostationary with period four, which
make both S-LMS and P-LMS nonconvergent. All the signals
were chosen to be independent from time instant to time

Fig. 3. Signal scenario for Example 2.

instant. First, we found signals for which S-LMS does not
converge by the following procedure. Make the small ap-
proximation to the transition
matrix , and generate sequences

, , 2, 3, and 4 such that
has roots in the negative left half plane. This ensures that

has roots outside the unit circle.
The sequences found in this manner were then verified to cause
the roots to lie outside the unit circle for all . One such set
of signals found was that is equal to a BPSK signal with
period one taking values in { 1, 1} with equal probability.
The interferers , , 3, and 4 are cyclostationary BPSK
type signals taking values in { 1, 1} with the restriction that

if , if and if
. Here, stands for modulo . , , 2, 3, and

4 are chosen such that , , ,
and . These signals render the S-LMS algorithm
unstable for all .

The P-LMS algorithm also fails to converge for the signal
set described above, irrespective of and the choice of , ,

, and . Since P-LMS updates the coefficients every fourth
iteration, it sees at most one of the three interfering signals
throughout all its updates and, hence, can place a null at, at most,
one signal incidence angle . Fig. 4 shows the envelopes of
the trajectories of S-LMS and P-LMS for the signals given
above with the representative value . As can be seen,
P-LMS fails to converge, whereas S-LMS shows divergent be-
havior. SPU-LMS and LMS were observed to converge for the
signal set described above when .

Example 3: In the third example, consider a four-tap
filter with a time series input, that is,

. The input, the filter coefficients, and
the desired output are all real valued. In this example, the goal is
to reconstruct the transmitted BPSK signal from the received
signal at the receiver using a linear filter. is a distorted
version of when passes through a linear channel with
transfer function given by .
The receiver noise is a zero mean Gaussian noise with vari-
ance 0.01. is a signal with symbol duration of four samples.
The desired output is now simply given by . The
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Fig. 4. Trajectories of MSE for Example 2.

Fig. 5. Trajectories of MSE for LMS, SPU-LMS, P-LMS, and S-LMS for
Example 3.

update is such that one coefficient is updated per iteration, i.e.,
. In this case, the coefficient error variance is plotted

rather than the mean squared error as this is a better indication
of system performance. Fig. 5 shows the trajectories of coeffi-
cient-error variance for LMS, SPU-LMS, P-LMS, and S-LMS
for a representative value of , respectively. As can be
seen, P-LMS and S-LMS fail to converge, whereas LMS and
SPU-LMS do converge.

Example 4: In the fourth example, we show a nonstationary
signal for which Max PU-LMS and SMPU-NLMS algorithms
do not converge. For algorithmic details of these two algorithms
and their analysis, see [8]. The two algorithms can be made
to not converge by first constructing deteriministic signals for
which their behavior is the same as that of S-LMS and then
finding a candidate among such signals for which S-LMS
diverges.

Consider a four-tap filter with time series input
. The goal in this example is to obtain

the best estimate of from
and , where is a Gaussian random

variable with zero mean and variance of 0.01. The update is
such that one coefficient is updated per iteration, i.e., .

Fig. 6. Trajectory of MSE for Max PU-LMS for Example 4.

Fig. 7. Trajectory of MSE for SMPU-NLMS for Example 4.

is chosen to be a deteriministic sequence of the following
form , where is a fixed sequence sat-
isfying . Such a restriction on
and ensures that SMPU-NLMS in updating only one coef-
ficient per iteration ends up updating the coefficients in a se-
quential manner. For this signal, Max PU-LMS also updates the
coefficients in a sequential manner, and its behavior is exactly
that of S-LMS. The values and were chosen
such that for all has eigenvalues
in the left half plane. That means that the small approximation
of the S-LMS update matrix
has eigenvalues outside the unit circle. For such input signals,
there is a good likelihood that SMPU-NLMS will diverge along
with S-LMS and Max PU-LMS. A signal for which the three
algorithms have been observed to diverge has ,

, , and .
Here also, the coefficient error variance is plotted rather than

the mean squared error. Figs. 6 and 7 show the trajectory of co-
efficient-error variance for MAX PU-LMS for a representative
value of and for SMPU-NLMS for a representative
value of (for a description of , see [8]), respec-
tively. Fig. 8 shows the corresponding trajectories for LMS and
SPU-LMS, again for a representative value of . As
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Fig. 8. Trajectories of MSE for LMS and SPU-LMS for Example 4.

can be seen, Max PU-LMS and SMPU-NLMS fail to converge,
while SPU-LMS and LMS do.

V. CONCLUSION AND FUTURE WORK

In this paper, the sequential partial update LMS algorithm has
been analyzed, and a new algorithm based on randomization of
filter coefficient subsets for partial updating of filter coefficients
has been proposed.

For S-LMS, stability bounds on step-size parameter for
wide sense stationary signals have been derived. It has been
shown that if the regular LMS algorithm converges in mean,
then so does the sequential LMS algorithm for the general case
of arbitrary but fixed ordering of the sequence of partial coef-
ficient updates. Relaxing the assumption of independence, for
stationary signals, stability and second-order (mean square con-
vergence) analysis of S-LMS has been performed. The analysis
was used to establish that S-LMS has similar behavior as LMS.

In the context of nonstationary signals the poor convergence
properties of S-LMS and Periodic LMS have been demon-
strated, and as a result, a new algorithm SPU-LMS with better
performance has been designed. For SPU-LMS the conditions
on step-size for convergence-in-mean and mean-square were
shown to be equivalent to those of standard LMS. It was
verified by theory and by simulation that LMS and SPU-LMS
have similar regions of convergence. It was also shown that
the Stochastic Partial Update LMS algorithm has the same
performance as P-LMS and S-LMS for stationary signals but
can have superior performance for some cyclo-stationary and
deterministic signals. It was also demonstrated that the random-
ization of filter coefficient updates does not increase the final
steady-state error as compared to the regular LMS algorithm.

The idea of random choice of subsets proposed in this paper
can be extended to include arbitrary subsets of size and not
just subsets from a particular partition. No special advantage is
immediately evident from this extension, however.

In the future, tighter bounds on the convergence rate of the
mean update equation of S-LMS for stationary signals can be
established for the general case of input correlation matrix .
Necessary and sufficient conditions for the convergence of the
algorithm for the general case of mixing-signals still need to be
derived. These can be addressed in the future.

In addition, it can be investigated whether performance anal-
ysis of Max PU-LMS and SMPU-NLMS algorithms mentioned
in Section I can be performed using the techniques employed
in this paper. Special emphasis should be laid on nonstationary
signal performance because, as has been shown through a nu-
merical example, these algorithms can diverge for such signals.

APPENDIX I
PROOFS OF LEMMA 1 AND THEOREM 4

Proof of Lemma 1: First note that . Next,
consider the Lyapunov function , where
is as defined in Lemma 1. Averaging the following update equa-
tion for :

tr

tr tr

over all possible choices of , , we obtain

tr

Since , the matrix
is positive definite. Therefore

tr

Since

tr

Noting that tr , we obtain

and since , we have and .

Before proving Theorem 4, we need Lemmas 2 and 3. We
reproduce the proof of Lemma 2 from [25] using our notation
because this enables us to understand the proof of Lemma 3
better.

Lemma 2—[25, Lemma 6.1 p. 143–144]: Let satisfy the
persistence of excitation condition in Theorem 4, and let

if
if

and

where is as defined in Theorem 4. Then, is a positive
definite matrix for some and .
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Proof: The proof is by contradiction. Then, for some
vector such that , suppose that we do not have

, where is any arbitrary positive number.
Then

for

Choosing , we obtain or
.

Choosing , we obtain

Therefore

Choosing , we obtain

Therefore

Proceeding along similar lines, we obtain
for , where is some constant. This implies

. Since is arbitrary, we ob-
tain that , which is a contradiction.

Lemma 3: Let satisfy the persistence of excitation con-
dition in Theorem 4, and let

if
if

where is a random masking matrix chosen with equal proba-
bility from , and let

where is as defined in Theorem 4, and is the average over
randomly chosen . Then, is a positive definite matrix
for some and .

Proof: The proof is by contradiction. Then, for some
vector such that , suppose that we do not have

, where is any arbitrary positive number.

Then

for

Choosing , we obtain or
.

Choosing , we obtain

Therefore

Now

and

Therefore, , which implies
. Proceeding along the same lines, we obtain

for for some constant
. This implies . Since is

arbitrary, we obtain that , which is a
contradiction.

Now, we are ready to prove Theorem 4.
Proof of Theorem 4: First, we will prove the convergence

of . We have . Pro-
ceeding as before, we obtain the following update equation for

The last step follows from the fact that . Using the
update equation for repeatedly, we obtain

From Lemma 2, we have

which ensures exponential convergence of tr .
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Next, we prove the convergence of . First, we have the
following update equation for tr

tr tr

tr (22)

Using (22) and

repeatedly, we obtain the following update equation:

tr tr tr

From Lemma 3, we have

tr tr

which ensures the exponential convergence of tr .

APPENDIX II
STABILITY ANALYSIS FOR MIXING SIGNALS

The results in this section are an extension of analysis in
[16] to SPU-LMS with complex input signals. Notations are the
same as those used in [16]. Let

be the Frobenius norm of the matrix . This is iden-

tical to the definition used in [2]. Note that in [16],
is the spectral norm of . Since for

a matrix , , the re-
sults in [16] could also have been stated with the definition used
here.

A process is said to be -mixing if there is a function
such that as and

, , where , is
the algebra generated by , .

Let be the input signal vector generated from the fol-
lowing process:

(23)

with . is a -dimensional
deterministic process, and is a general -dimensional

-mixing sequence. The weighting matrices
are assumed to be deterministic.

Define the index set and , as in
Section III. Let be a sequence of i.i.d masking matrices
chosen with equal probability from , .

Then, we have the following theorem which is similar to
Theorem 2 in [16].

Theorem 5: Let be defined by (23) in Appendix III,
where is a -mixing sequence such that it satisfies for any

and any increasing integer sequence

(24)

where , , and are positive constants. Then, for any ,
there exist constants , , and such that
for all and for all

if and only if there exists an integer and a constant
such that for all

(25)

Proof: The proof is just a slightly modified version of the
proof of Theorem 2 derived in [16, pp. 763–769, Sec. IV]. The
modification takes into account that in [16] is ,
whereas it is in the present context.

Note that [16, Th. 2] can be stated as a corollary to Theorem
5 by setting for all . In addition, note that Condition
(25) has the same form as Condition (18).

For Result 1, which is just a special case of Theorem 5, it is
enough [16] to observe the following.

1) Gaussian is obtained from (23) by choosing
and for all and to be Gaussian.

2) The Gaussian signal sequence as described in Result 1 is
a phi-mixing sequence.

3) The Gaussian signals satisfy the condition in (24).
4) For stationary signals, for all values of

, and, therefore, the following condition:
• There exists an integer and a constant such

that for all

(26)

simply translates to being positive definite.

APPENDIX III
S-LMS STABILITY ANALYSIS FOR STATIONARY

MIXING SIGNALS

The results in this section are an extension of analysis in [16]
to S-LMS with stationary complex input signals. Notations are
the same as those used in Appendix II. Let , , , and

be as defined in Appendix II.
In this section, we will place an additional restriction of

stationarity on . Define the index set
and as in Section III. Then, Theorem 3 means that

satisfies the following property of
averaged exponential stability.

Lemma 4: Letting , then is averaged
exponentially stable. That is, there exist constants ,

, and such that for all and for all
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Proof: From Theorem 3, we know that there exist ,
, and such that for all ,

Note that

for some and for all and .
Letting , then

Noting that , we have

for some . This leads to

where , and .
Using Lemma 4 and following the analysis of [16], we have

the following theorem, which is similar to [16, Th. 2].
Theorem 6: Let be defined by (23), where is a sta-

tionary -mixing sequence such that it satisfies, for any

(27)

where , , and are positive constants. Then, for any ,
there exist constants , , and such that
for all and for all

if is positive definite.
The corresponding result for LMS obtained from the exten-

sion of the analysis in [16] to complex signals is the following.
Result 4 (LMS Stability: Stationary Process): Let be de-

fined by (23), where is a stationary -mixing sequence
such that it satisfies, for any

(28)

where , , and are positive constants. Then, for any ,
there exist constants , , and such that
for all and for all

if and only if is positive definite.
Therefore, exponential stability of LMS implies exponential

stability of S-LMS.

The application of Theorem 6 to obtained from a time-
series signal is illustrated below.

Result 5 (Stationary Gaussian Process): Let be a sta-
tionary Gaussian random process such that

as , and ; then, for any
, there exist constants , , and

such that for all and for all

if the input correlation matrix is positive
definite.

APPENDIX IV
PERFORMANCE ANALYSIS FOR MIXING SIGNALS

The results in this section are an extension of analysis in [2]
to SPU-LMS with complex signals. The results enable us to pre-
dict the steady-state behavior of SPU-LMS without the standard
uncorrelated input and coefficient vectors assumption employed
in Section III-A. Moreoever, the two lemmas in this section
state that the error terms for LMS and SPU-LMS are bounded
above by the same constants. These results are very useful for
comparison of steady-state errors of SPU-LMS and LMS in the
sense that the error terms are of the same magnitude. A couple
of examples using the analysis in this section were presented
in Section III-C as Results 2 (see details in Appendix IV-A)
and 3 (see details in Appendix IV-B), where the performance of
SPU-LMS and LMS was compared for two different scenarios.

We begin the mean square error analysis by assuming that

Then, we can write the evolution equation for the tracking error
as

where for LMS and for SPU-LMS.
In general, obeys the following inhomogeneous equation:

where can be represent by a set of recursive equations as
follows:

where the processes , , and are described
by

where , and is an appropriate deterministic
process, which is usually chosen as . In [2], under
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appropriate conditions, it was shown that there exists some con-
stant and such that for all , we have

Now, we modify the definition of weak dependence as given
in [2] for circular complex random variables. The theory de-
veloped in [2] can be easily adapted for circular random vari-
ables using this definition. Let and be
a matrix-valued process. Let be a se-
quence of positive numbers decreasing to zero at infinity. The
complex process is said to be -weak de-
pendent if there exist finite constants , such
that for any and -tuple and any

-tuple , with
, it holds that

cov

where the supremum is taken over the set
, and denotes the th component

of . The set of functions over which the sup
is being taken are given by and

.
Define from [2] as follows:

and

deterministic matrices

where is a constant, depending only on the process and
the number .

can be written as , where for LMS
and for SPU-LMS. It is assumed that the following
hold true for . For some , , , and

• F1 : is is -exponentially stable.
That is

• F2 : is averaged exponentially stable.
That is

Conditions F3 and F4 stated below are trivially satisfied
for and .

• F3 : , and
.

• F4 :
.

The excitation sequence [2] is assumed to be
decomposed as , where the process
is a matrix-valued process, and is a
vector-valued process that verifies the following assumptions:

• EXC1: is -adapted,3 and and
are independent.

• EXC2 : ,
.

• EXC3 : belongs to ,
.

The following theorems from [2] are relevant.
Theorem 7 ([2, Th.]): Let , and let .

Assume EXC1, EXC2 , and EXC3 . For
, , , , and some , assume in

addition that F2 , F4 , and

• is weakly dependent and
;

• .

Then, there exists a constant (depending on ,
and on the numerical constants , , , , , , and

but not otherwise on , or on ), such that for all
, for all

Theorem 8 ([2, Th. 2]): Let , and let , , such
that . Let . Assume F1 ,
and

• ;
• .

Then, there exists a constant (depending on the numer-
ical constants , , , , , and but not on the process
or on the stepsize parameter ) such that for all

We next show that if LMS satisfies the assumptions above
(assumptions in [2, Sec. 3.2]), then so does SPU-LMS. Condi-
tions F1 and F2 follow directly from Theorem 5. It is easy to
see that F3 and F4 hold easily for LMS and SPU-LMS.

Lemma 5: The constant in Theorem 7 calculated for LMS
can also be used for SPU-LMS.

Proof: Here, all that is needed to be shown is that if LMS
satisfies the conditions (EXC1), (EXC2), and (EXC3), then so
does SPU-LMS. Moreover, the upper bounds on the norms for
LMS are also upper bounds for SPU-LMS. That easily follows
because , whereas and

for any norm .
Lemma 6: The constant in Theorem 8 calculated for LMS

can also be used for SPU-LMS.

3A sequence of random variables X is called adapted with respect to a se-
quence of �-fields F if X is F measurable [6].
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Proof: First, we show that if for LMS
, then so it is for SPU-LMS. First, note that for LMS, we can

write , whereas for SPU-LMS

This means that
. Therefore, since

and , we have

Since all conditions for Theorem 2 have been satisfied by
SPU-LMS in a similar manner, the constant obtained is also the
same.

A. I.I.D Gaussian Input Sequence

In this section, we assume that
, where is the length of the vector . is

a sequence of zero mean i.i.d Gaussian random variables. We
assume that for all . In that case

with

where for LMS, we have and in case of
SPU-LMS. We assume is a white i.i.d. Gaussian noise with
variance . We see that since the conditions (24) and (25) are
satisfied for Theorem 5, both LMS and SPU-LMS are exponen-
tially stable. In fact, both have the same exponent of decay.
Therefore, conditions F1 and F2 are satisfied.

We rewrite . Choosing
, we have in the case of

LMS and in the case of SPU-LMS. By Theorems 7
and 8 and Lemmas 5 and 6, we can upperbound both and

by exactly the same constants for LMS and SPU-LMS.
In particular, there exists some constant such that for
all , we have

Next, for LMS we concentrate on

and for SPU-LMS we concentrate on

After tedious but straightforward calculations (following the
procedure in [2]), we obtain for LMS

which yields
and for SPU-LMS, we obtain

which yields
.

B. Temporally Correlated Spatially Uncorrelated
Array Output

In this section, we consider given by

where is a vector of circular Gaussian random variables
with unit variance. Similar to Appendix IV-A, we rewrite

. Since we have chosen ,
we have in the case of LMS and in
the case of SPU-LMS. Again, conditions F1 and F2 are satis-
fied because of Theorem 5. By [2] and Lemmas 1 and 2, we can
upperbound both and by exactly the same constants
for LMS and SPU-LMS. By Theorems 7 and 8 and Lemmas 5
and 6, we have that there exists some constant such that
for all , we have

Next, for LMS, we concentrate on
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and for SPU-LMS, we concentrate on

After tedious but straighforward calculations (following the pro-
cedure in [2]), we obtain for LMS

which leads to
, and for SPU-LMS, we obtain

which leads to
.
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