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Abstract—This work provides a general framework for the
design of second-order blind estimators without adopting any
approximation about the observation statistics or the a priori
distribution of the parameters. The proposed solution is obtained
minimizing the estimator variance subject to some constraints on
the estimator bias. The resulting optimal estimator is found to
depend on the observation fourth-order moments that can be cal-
culated analytically from the known signal model. Unfortunately,
in most cases, the performance of this estimator is severely limited
by the residual bias inherent to nonlinear estimation problems.
To overcome this limitation, the second-order minimum variance
unbiased estimator is deduced from the general solution by as-
suming accurate prior information on the vector of parameters.
This small-error approximation is adopted to design iterative
estimators or trackers. It is shown that the associated variance
constitutes the lower bound for the variance of any unbiased
estimator based on the sample covariance matrix.

The paper formulation is then applied to track the angle-of-ar-
rival (AoA) of multiple digitally-modulated sources by means of
a uniform linear array. The optimal second-order tracker is com-
pared with the classical maximum likelihood (ML) blind methods
that are shown to be quadratic in the observed data as well. Simu-
lations have confirmed that the discrete nature of the transmitted
symbols can be exploited to improve considerably the discrimina-
tion of near sources in medium-to-high SNR scenarios.

Index Terms—Blind estimation, direction-of-arrival, estimation
bounds, non-data-aided, second-order techniques, tracking.

I. INTRODUCTION

THIS paper addresses the problem of blind parameter esti-
mation. This problem arises in many applications in which

we have a linear system that is known except for a finite number
of parameters that we need to estimate. The estimator is re-
quired to find out the value of these parameters based on a
noisy observation of the system output. In some problems, the
designer has knowledge or even control over the system input
(e.g., radar, sonar and, sometimes, in control and communica-
tions [1, Sec. 1]). However, in other problems, the system input
is not available and the designer has only a statistical knowledge
about the input signal (e.g., speech recognition, image analysis
and, also in control and communications [1, Sec. 1]). In that
case, the unknown inputs are regarded as nuisance parameters
[1, Sec. 10.7] that the estimator has to cope with in order to
supply blind estimates of the parameters of interest.
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The maximum likelihood (ML) principle provides a system-
atic way for deducing the minimum variance unbiased (MVU)
estimator when the observation size is sufficiently large [1]. The
ML estimator is the one maximizing the joint likelihood func-
tion , where is the observed vector, the vector of
parameters of interest, and the vector of nuisance parameters.
To avoid the joint estimation of all the parameters, including
the vector of nuisance unknowns , the unconditional or sto-
chastic ML (UML) criterion models the vector of nuisance pa-
rameters as a random vector and maximizes the marginal of
the likelihood function conditioned to , that is,

, where stands for the expected value
with respect to . Unfortunately, the UML estimator is generally
unknown because the expectation with respect to cannot be
solved in a closed form. As shown in the paper, if the signal-to-
noise ratio (SNR) tends to zero, the unconditional likelihood
function is quadratic in the observation with indepen-
dence of the statistical distribution of the nuisance parameters

. This fact has motivated the study of second-order estima-
tors since the low SNR approximation turns out to be realistic
in many applications (e.g., modern digital communications).

The interest for second-order estimators is also based on the
relevance of other second-order blind techniques studied exten-
sively in the literature and described later in this paper. The
first one is the conditional maximum likelihood (CML) criterion
[2]–[5] that models the nuisance parameters as deterministic un-
knowns, as opposed to the UML approach, and maximizes the
compressed likelihood function in which
stands for the ML estimate of (considering that is a con-
tinuous variable).

The other quadratic ML criterion considered in the paper is
the Gaussian maximum likelihood (GML) [2]–[4] that models
the nuisance parameters as Gaussian random variables in
order to obtain an analytical solution for the expectation in

. Hence, the GML estimator corresponds to
the UML solution when the nuisance parameters are Gaussian
distributed or the SNR is asymptotically low. However, higher
order techniques are generally required to yield efficient esti-
mates at high SNRs [6]. Moreover, it is proved in the paper that
the optimal second-order estimator exploits the fourth-order
cumulant matrix of the nuisance parameters, improving in
that way the GML performance in some circumstances for
medium-to-high SNRs, as shown in the simulations section.

Finally, other relevant second-order methods are those based
on the eigendecomposition of the sample covariance matrix of
such as the Pisarenko, MUSIC, and related variants [7], [8]. It is
worth noting that although these techniques are not directly ad-
dressed in the paper, there is a clear relationship between these
methods and the CML approach, as analyzed in [8, Sec. VI].
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From this background, the paper offers a convenient frame-
work for the design of optimal second-order blind estimators
without resorting to the usual Gaussian assumption on the
nuisance parameters. The optimal second-order estimator is
obtained minimizing the estimator variance subject to some
constraints on the estimator expected value. This optimization
is carried out in the Bayesian sense, that is, averaging with
respect to the prior distribution of the parameters of interest.
Unfortunately, in most estimation problems, the performance
of the resulting estimator is severely limited by the residual
bias as studied in [9]. Consequently, the use of second-order
schemes is normally relegated to implement Newton–Raphson
or Scoring based iterative estimators or trackers [1, eq. (7.50)],
[10] in which, after an initial acquisition stage, the estimator
or tracker operates in the small-error regime, which is usu-
ally referred to as the steady-state in tracking applications
[10]. Focusing on the small-error approximation, the optimal
second-order iterative estimator or tracker is deduced from the
general Bayesian solution by applying an extremely informa-
tive prior. The resulting small-error solution supplies the MVU
estimator for the problem at hand, and its variance constitutes
the lower bound for the variance of any unbiased estimator or
tracker based on the sample covariance matrix, including the
ML-based and MUSIC-like algorithms introduced above.

The paper is organized as follows: In Section II, the signal
model is introduced. Next, in Section III, the second-order con-
straint is motivated based on the quadratic structure of the afore-
mentioned ML-based estimators. In Section IV, the implemen-
tation of iterative estimators and the design of trackers in time-
varying scenarios is considered and related to the Crámer–Rao
bound (CRB) theory. Then, in Section V, the optimal second-
order estimator is deduced from scratch by considering an ar-
bitrary prior for the parameters and the actual statistics of the
nuisance parameters. Focusing on iterative schemes or trackers,
the general solution provided in Section V is particularized in
Section VI for the small-error case adopting an impulsive prior.
The mathematical deduction is accompanied by a short discus-
sion on identifiability and design considerations in multiuser
problems. In Section VII, the problem of angle-of-arrival (AoA)
tracking is studied in the case of non-Gaussian sources to illus-
trate the theoretical results of the paper. Finally, the paper is fin-
ished with a section of conclusions.

The following notation is used in the paper. Superscripts T,
*, H, and # stand for matrix transpose, matrix conjugate, matrix
transpose conjugate, and matrix pseudoinverse, respectively.
Uppercase and lowercase boldface (or calligraphic) denote
matrices and vectors, respectively. , and are
used to refer to the th element of , the th column of , and
the element in the th row and th column of , respectively.
The symbols vec Tr , and stand for
the column-wise vectorization, the trace, the determinant, the
Euclidean norm and the Kronecker product, respectively. Fi-
nally, is the expected value with respect to the random
vector and with respect to all the random terms inside
the braces.

II. SIGNAL MODEL

This paper deals with the estimation of the vector of real1

parameters from a given noisy observation
that is known to follow the linear model

(1)

where is the temporal index, is the vector of un-
known nuisance parameters at time is the usual
Gaussian noise term, and is an arbitrary transfer
matrix parameterized by the vector of parameters . Hence-
forth, and are circular,2 independent, zero-mean,
strict-sense stationary random vectors of known statistics. The
nuisance parameters are deemed uncorrelated3 and the noise co-
variance matrix is given by , where
is a known, full-rank matrix. In the context of Bayesian estima-
tion, the parameter of interest is modeled as a random vari-
able that is statistically independent of . In the following,
the temporal index will be omitted when we refer to a generic
observation for the sake of clarity.

III. CLASSICAL FORMULATION

The estimation problem formulated in the last section has
been studied for a long time. The formal solution is provided
by the maximum likelihood (ML) principle that yields asymp-
totically efficient and unbiased estimators, meaning
that the CRB is attained asymptotically [1, Th. 7.1]. In the in-
troduction, the UML estimator was presented as the maximizer
of the (unconditional) likelihood function that, using the signal
model in Section II, can be expanded as follows:

Re

(2)

where and are irrelevant factors independent of , and the
dependence on is omitted from for the sake of clarity.

A. Low-SNR Unconditional Maximum Likelihood
(Low-SNR UML)

Unfortunately, the expectation with respect to the unknown
vector usually precludes deducing an analytical expression for
the marginal probability density function (pdf) , except
if, for instance, is normally distributed. However, the Gaussian
assumption may be unrealistic in some estimation problems. For
example, in digital communications, the transmitted symbols
are nuisance parameters that belong to a discrete alphabet, and
the Gaussian assumption is clearly incorrect. To overcome this
obstacle, the likelihood function is usually evaluated assuming
a very low SNR [4]. The low-SNR constitutes a worst-case situ-
ation, yielding robust estimators of . Thus, if the noise covari-
ance matrix is rewritten as , in order to make ex-

1If the vector of parameters is complex, ��� is formed stacking the real and
imaginary components. Notice that the complex formulation is equivalent but a
bit more confusing.

2A random complex vector v is circular if Efvv g = 0.
3Notice that there is no loss of generality as long as the autocorrelation of

x(n) can always be included in A(���).
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plicit the variance of the noise samples Tr , the
exponential in (2) can be expanded into a Taylor series around

, resulting in

(3)

with Re [4].
Assuming now circular, uncorrelated symbols of unit power, the
above expectation is evaluated, obtaining

Tr

Tr (4)

where has not been expanded
because it is negligible compared to , and

(5)

is the sample covariance matrix of the observation .
Finally, bearing in mind that for and

omitting constant terms, the low-SNR log-likelihood function is
given by

Tr Tr

(6)

proving that the sample covariance matrix is a sufficient
statistic for the estimation of under the linear model intro-
duced in (1) if the SNR is asymptotically low and the observed
vector is sufficiently large. To be more precise, the log-likeli-
hood function in (6) is an affine transformation of the sample
covariance matrix with

Tr

(7)

the independent term, and the kernel of , respectively.

B. Conditional Maximum Likelihood (CML)

Based on the above deduction, efficient estimators become
asymptotically quadratic in the observation for
low SNRs. Nonetheless, the low-SNR approximation usually
yields a significant variance floor when applied in high SNR
scenarios due to the disturbance of the random nuisance pa-
rameters. The variability caused by the nuisance parameters is
usually referred to as self-noise or pattern-noise in digital syn-
chronization [10]. In order to design second-order self-noise free
estimators, the conditional ML (CML) has been proposed as an
alternative to the low-SNR UML estimator [2]–[5]. As sketched
in the introduction, the CML estimator maximizes the following
compressed log-likelihood function:

Tr (8)

where is the ML estimate of
the nuisance parameters, assuming that is a tall matrix,
i.e., in (1). This condition is necessary to have self-

noise free estimates. Therefore, the CML cost function is also
quadratic in the observation with and

(9)

which is the kernel of .
The CML solution in (8) is actually projecting the whitened

observation onto the orthogonal subspace gener-
ated by the columns of . In that sense, the CML
solution (8) coincides with the low-SNR UML solution ob-
tained in (6) if the columns of are orthogonal,
i.e., , where is the identity matrix.
Otherwise, the CML estimator suffers from noise-enhancement
precluding its utilization in noisy scenarios [4].

C. Gaussian Maximum Likelihood (GML)

It can be shown that the low-SNR UML and CML solutions
are independent of the actual SNR. When the SNR is known, the
estimator can be designed specifically for a given SNR so that
a tradeoff is established between the contributions of noise and
self-noise. Concretely, the estimator is demanded to converge
to the low-SNR ML estimator when and to the CML
when . In order to guarantee this asymptotic behavior,
the Gaussian assumption about the nuisance parameters distri-
bution is largely adopted, yielding the well-known Gaussian ML
(GML) estimator [2]–[4]. Once again, the GML solution is an
affine transformation of the sample covariance matrix that, omit-
ting constant terms, is given by

Tr (10)

with

(11)

which is the covariance matrix of .
Therefore, bearing in mind that Tr , it is

found that

Tr

(12)

are the independent term and the kernel of the GML likelihood
function (10), respectively.

IV. ITERATIVE ML ESTIMATION AND TRACKING

Generally, the ML-based estimators presented in the last sec-
tion do not admit an analytical solution, and the iterative maxi-
mization of the associated log-likelihood functions is required.
Focusing on the UML estimator, which has been deduced for
low SNRs in (6) and for Gaussian nuisance parameters in (10),
the CRB theorem formulated in [1, Th. 3.2] guarantees that
under minor regularity constraints, the following scoring algo-
rithm is asymptotically efficiency [1, (7.50)]:

# (13)

assuming that the initial guess is sufficiently close to the
global maximum in the case of a multimodal problem. In the
last equation the integer is the iteration index,

is the log-likelihood gradient, and
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is the associated Fisher Informa-
tion Matrix (FIM). The Moore–Penrose pseudo-inverse #

is introduced in (13) in order to cover those ill-conditioned
cases in which the FIM is singular [11]. Notice that the con-
vergence of (13) is not guaranteed unless the log-likelihood
function is quadratic near its maximum. Otherwise, the above
scoring method might fluctuate around this point. Nonetheless,

becomes typically quadratic near its maximum
when [1, p. 187].

The above scoring algorithm can be generalized to estimate a
given transformation of the parameter [11], [1, Sec. 3.8]. In that
case, we obtain that

# (14)

where is the referred transformation, and
is the Jacobian of . Notice that

for the studied low-SNR scenario (6) and/or if the nuisance
parameters are Gaussian (10), the above UML scoring method
is linear in the sample covariance matrix .

After convergence, it is held that , where is the
true parameter (small-error assumption), and consequently, the
covariance matrix of the estimation error is given by

# (15)

that coincides with the generalized CRB formulated in [11] [1,
Sec. 3.8]. Notice again that (15) is verified if and only if the
observation is large enough , or, alternatively, the
SNR goes to infinity. Indeed, both conditions ensure that the es-
timator converges to the true parameter and not to other spurious
maxima (the so-called outliers or large-errors [12]). The occur-
rence of outliers in nonlinear estimation problems establishes
an SNR threshold below which the ML estimator variance de-
parts from the one predicted by the CRB [12]. This implies that
the observation size must be large enough to work above the
threshold when the SNR is very low (Section III-A).

The above recursions can be modified to derive adaptive
closed-loop schemes in which the observation is updated
at each iterate in order to track the parameter evolution in
nonstationary problems. From (14), the proposed ML tracker
is as follows:

# (16)

where is the temporal index introduced in (1) and a di-
agonal matrix containing the forgetting factor or step-size of
each parameter. Thus, sets the normalized (noise equivalent)
loop bandwidth associated with each parameter [10, Sec.
3.5.5]. The loop bandwidth determines the maximum variability
of the parameters that the closed loop is able to track as well as
the closed-loop effective observation time that, approximately,
is equal to instants ([10, (3.5.83)]).

Notice that the log-likelihood gradient is now
time-variant because it depends on the current observation

, whereas is fixed, assuming that both and
are stationary random variables (see Section II).

In (16), the function might
be the composition of any transformation of the parameter

and the assumed model for the parameter dynamics, i.e.,
.

Regarding the tracker performance, the CRB can be attained
in the steady-state as in some estima-
tion problems (e.g., timing synchronization [10, Sec. 7.4.3]).
Nonetheless, in other estimation problems, the observation
size must be augmented to attain the CRB (e.g.,
parametric spectral estimation in time-series analysis or the
dual problem of angle-of-arrival estimation in array signal
processing [8, Sec. VIII]).

V. GENERALIZED SECOND-ORDER ESTIMATORS

Thus far, second-order estimation has been motivated starting
from the ML principle. The optimality of quadratic ML iterative
schemes has been claimed when the SNR approaches zero or the
nuisance parameters are Gaussian. Additionally, the quadratic
CML and GML solutions have been presented as an alternative
to remove the self-noise at high SNRs. In this section, the use of
second-order schemes is extended beyond the small-error and
Gaussian assumptions accepted previously.

Following the structure indicated in (6), (8), and (10), the
generic expression of any second-order estimator of the param-
eter is given by

Tr (17)

where and are the estimator coefficients corre-
sponding to the th parameter of , and and are the
column-wise stacking of and , that is, vec and

vec . This vectorization allows the compacting of
the multivariate second-order estimator as follows:

(18)

The objective in this section is to determine the matrix
and the vector that minimize the estimator variance subject to
some design constraints on the estimator mean response:

(19)

where vectorizes (in a column) the covariance
matrix of the observed vector (11).

Let us now consider that the estimator is provided with some
side-information on the value of the unknown parameters. Fol-
lowing a Bayesian approach, this side information will consist
of the a priori pdf of , hereafter called . The side infor-
mation is supposed to be obtained in a previous estimation stage
providing both the estimate and its accuracy (e.g., the previous
iterate in a recursive implementation) or directly introduced by
the designer with the purpose of controlling the estimator mean
response (19).

Regarding (19), the estimator will be designed for a given
target response , and the referred constraints will be those
obtained by minimizing the mismatch between the actual and
intended estimator responses, that is

(20)

where is the Bayesian expectation with respect to the
prior introduced previously.
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Notice that will be zero if and only if for
every , holding that (except for any null subset
of null probability). Normally, this condition is too much strin-
gent if the data vector is nonlinear in the parameters, mostly
when the range of is large. In that case, a perfect match
between and is not possible (i.e., ) and, as a
general solution, one may obtain the vector and the matrix
yielding the weighted least squares (WLS) fitting between the
multivariate functions and

(21)

where is the weighting function.
If (21) is first solved for the independent term and then the

resulting is substituted into (21), the desired solution for
and is given by

(22)

(23)

where

(24)

(25)

(26)

(27)

Generally, the constraints obtained in (23) form an underde-
termined system of equations because rank and

is contained, by definition, in the column span of . Hence,
(23) is actually providing design constraints on the matrix
that, after the diagonalization of , can be formu-
lated as follows:

(28)

where is the diagonal matrix con-
taining the nonzero eigenvalues of , and are the
corresponding eigenvectors.

Therefore, since (23) is only forcing constraints, the re-
maining degrees of freedom in can be used to optimize the
discriminator variance. Specifically, the aim is to minimize the
estimator variance in the Bayesian sense subject to the con-
straints on obtained in (23) or (28):

subject to or (29)

where computes the expectation with respect to and .
The Bayesian expectation in (21) and (29) plays a

prominent role into the deduction because it allows the incorpo-
ratation of the a priori knowledge on the parameter with which
the designer is provided. Recovering now the value of from
(22), the solution to the above constrained optimization problem
is given by

(30)

with and defined as

# (31)

(32)

The matrix contains the fourth-order central moments of
vector and is defined as

(33)

Regarding the inversion in (31) and (32), and are
full-rank iff the noise matrix is positive definite (11). In
Appendix A, a closed-form expression for is derived by
obtaining

(34)

where was introduced in (11), and
matrix is defined as

vec vec

vec vec (35)

denoting the fourth-order cumulant (kurtosis) matrix of the nui-
sance parameters .

In the case of zero-mean, circular complex nuisance pa-
rameters, the matrix can be calculated analytically (see
Appendix B), where we obtain

diag vec (36)

where the scalar is the fourth- to
second-order moment ratio, and diag converts a vector into
a diagonal matrix. Regarding the matrix , it is well known
that it vanishes for normally distributed nuisance parameters for
which . Otherwise, the matrix provides the complete
non-Gaussian information about the nuisance parameters that
second-order estimators are able to exploit.

At this point, it is worth realizing that and are cal-
culated analytically from the known signal model introduced
in Section II, avoiding the problematic estimation of fourth-
order statistics. In case the nuisance parameters are not circular,
the expectation in (35) can be computed numerically from the
known pdf of , and this can be done offline. Finally, notice that

can be estimated rapidly from a few realizations of if
the nuisance parameters belong to a discrete alphabet.

Plugging now (30) into (18), the optimal second-order esti-
mator and the associated covariance matrix is given by

(37)

Therefore, the Bayesian counterpart of , whose trace
was minimized in (29), is obtained after averaging with
respect to the parameter prior as follows:

#

(38)
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Finally, returning to (20), the residual deviation of with
respect to the ideal response can be expressed in any of
these alternative forms:

Tr Re

Tr Tr

Tr # (39)

where , and (22), (23), and (30) have
been used. Notice that any matrix solving (23) or (28) yields
the same value of . Simplifications are done taking into account
that . Furthermore, the last equality is verified
because can be replaced by any matrix holding
as, for example, the pseudo-inverse #.

VI. SMALL-ERROR APPROXIMATION

Thus far, the variability of has been considered by means
of the prior introduced in Section V. In this section, the
asymptotic case in which this variability is very small is studied

. This small-error assumption is commonly adopted
when designing iterative schemes or trackers in nonlinear esti-
mation problems, as explained in Section IV. After convergence,
the algorithm is assumed to operate in the neighborhood of the
true solution, where is approximately linear in the param-
eter, irrespective of the received signal parametrization. In that
case, second-order estimators are known to be efficient at low
SNRs or if the nuisance parameters are Gaussian, as claimed in
Section III.

Next, the general Bayesian estimator deduced in Section V
is particularized for a very informative prior , holding that

for any with arbitrarily small. This impul-
sive prior conveniently models the small-error regime described
in Section IV. In that case, the Taylor expansion around
can be used to approximate the expected value of those complex
matrices appearing in (37).

Thus, if is a generic complex matrix depending on the
vector of parameters , its mean value in the neighborhood of

can be approximated as follows:

(40)

where the linear term is omitted, taking into account that
by definition, and is the a priori covariance

matrix of the parameter:

(41)

In Appendix C, (24)–(27) and (33) are approx-
imated using (40), obtaining

(42)

(43)

(44)

(45)

(46)

where

(47)

(48)

Finally, under the small-error assumption, the prior is con-
centrated in so that in (41) collapses at this point,
becoming proportional to a given matrix , which is defined
as

(49)

with the radius of the infinitesimal ball in which
the prior is defined.

Evidently, under the small-error assumption, the fitting of
to inside the referred ball is much easier. Returning

to (20), it is easy to show that a perfect matching is achieved
iff the derivatives of and evaluated at

are identical:

(50)

For the time being, the target response is supposed to
verify the above equality for at least one matrix . Therefore,
solving again the minimization problem in (29) under the con-
straints on and obtained in (22) and (50), respectively, the
optimal small-error estimator is given by

#
(51)

where and were defined in (42) and (46), and the
Moore–Penrose pseudoinverse is maintained to cover those
cases in which is singular (50). Finally, the covariance
matrix of the estimation error is the following:

#
(52)

Regarding the obtained solution, it is remarkable that the es-
timator covariance matrix in (52) has the same structure as the
CRB in (15), where

(53)

plays the same role than the Fisher information matrix (FIM) in
the case of second-order estimators. Therefore, (52) can be seen
as the particularization of the CRB to second-order estimation
techniques. In fact, (52) is a member of the class of quadratic
covariance bounds analyzed in [13] following the representation
proposed in [14]. Note that has been proved to coincide with
the FIM of the problem when the SNR is asymptotically low or
the nuisance parameters are Gaussian (see Section III).

In general, it can be affirmed that

(54)

for any unbiased estimator based on the sample covariance
matrix , where means that
is semipositive definite, and is the CRB of

(15). As stated before, the second identity in (54) is solely
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verified when the SNR tends to zero or the nuisance parameters
are Gaussian random variables.

A. Second-Order Identifiability

Regarding the solution obtained in (51), two different cases
can be distinguished, depending on whether is full-rank or
not. In the first case, (50) is always satisfied whatever the content
of . On the other hand, the second case requires that lies
in the row span of . If not, (50) would be inconsistent, and
no solution would exist for the given set of target derivatives

. In fact, rank states the number of derivatives
that can be forced or, equivalently, how many parameters can
be discriminated separately from the considered signal model.
Hence, the rank of is strongly related to the local (small-
error) identifiability of the multivariate problem at hand.

Regarding the singular case, the authors proved in [11] that
a finite variance estimator does not exist if (50) is not satisfied.
Alternatively, the same conclusion can be drawn following the
geometrical interpretation carried out in [15]. Therefore, if the
desired target response does not satisfy (50), the designer
has to proceed as in (21) to obtain the best approximation to

holding (50). Thus, substituting (44) and (45) into (23),
the system of constraints for the small-error scenario would be

(55)

where the a priori covariance matrix (49) is used to carry out
the WLS fitting proposed in (21). Otherwise, if is full-rank,

is not profitable, showing that Bayesian estimators cannot
improve deterministic ones when the small-error assumption
applies.

Two main circumstances lead to the singularity of : a
wrong problem statement and/or the estimator finite resolution.
In the first case, the estimator ambiguity is attributable to one
of the following issues: 1) There are more parameters than
data samples ; 2) the parameters are not linearly
independent so that the model is “overparameterized”; or 3) the
inherent phase ambiguity of second-order estimators is due to
the insensitivity of to any phase-offset in the received signal.4

On the other hand, although the problem is correctly for-
mulated, the estimator is unable to resolve two parameters of
the same nature when their values are very similar. For ex-
ample, this problem arises when tracking multiuser parameters,
e.g., time-of-arrival, or AoA in array signal processing (see
Section VII-A). It is worth noting that this situation, contrary to
the ambiguities related before, cannot be predicted beforehand;
therefore, it is not possible to guarantee (50) all the time.
Therefore, the constraints in (55) must be used instead of those
in (50), and the general estimator in (37) must be considered
using the small-error matrices in (42)–(46).

However, from the designer viewpoint, the use of (55) may
be problematic because the estimator would reduce automat-
ically the rank of when entering into a singular situation
(e.g., if two users cross each other, as studied in Section VII-A),
changing the value of . In the next section, this problem is
overcome by setting the value of the cross derivatives free.

4The signal modulus would be also ambiguous if the noise variance � were
not known, as we have assumed throughout the paper.

B. Generalized Second-Order Constrained Estimators

Thus far, the estimator is designed to have a target mean re-
sponse , yielding the constraints in (50) when working
under the small-error regime. Whereas the diagonal terms in
are related to the estimator bias in the neighborhood of ,
the cross-terms reflect the coupling between parameters or, in
other words, the interparameter interference (IPI). The classical
unbiased solution forces in order to yield uncorrelated
estimates with no IPI. However, strictly speaking, unbiased es-
timators are only required to fix the diagonal terms to 1, that
is, diag diag , since the IPI contribution is zero-mean
under the small-error approximation and, therefore, can only in-
crease the estimator variance. Moreover, in noisy scenarios, the
IPI-free condition usually causes noise-enhancement, whereas
if the cross-terms in (50) are kept free, the estimator automati-
cally makes a tradeoff among noise, self-noise, and IPI in order
to minimize the overall variance.

Therefore, the proposed second-order unbiased estimator of
is given by

diag diag (56)

where diag stands here for the diagonal matrix built from the
diagonal of the argument, and is the second-
order FIM introduced in (53).

On the other hand, if the aim is estimating a given trans-
formation of the parameter instead of itself, the
cross-terms significance changes radically, and assuming is
full matrix (all the elements different from 0), any unbiased es-
timator of is required to fulfill (50), leading to the original
small-error solution in (51). In general, if is sparse, only the
constraints in (50) corresponding to nonzero elements of
have to be imposed to obtain unbiased estimators of .

VII. ANGLE-OF-ARRIVAL TRACKING

In this section, the second-order framework presented in
the paper is applied to an illustrative multivariate estimation
problem: AoA tracking in the context of wireless communica-
tions [16]. In digital communications, the transmitted symbols
are unknown unless the receiver is assisted with known training
data to facilitate the estimation of certain relevant parameters.
When the symbols are unknown, blind methods are required to
extract these parameters of interest from the received signal [3],
[2], [8]. In that case, the transmitted symbols are nuisance pa-
rameters, degrading the estimator performance. These nuisance
parameters are clearly non-Gaussian since they are drawn from
a discrete alphabet (digital constellation).

The optimal AoA second-order tracker deduced in Section VI
is compared with the other quadratic ML-based methods
described in Section III. Simulations have confirmed that
second-order tracking can be improved if the discrete na-
ture of the nuisance parameters is exploited by means of the
fourth-order cumulant matrix (36). The optimal second-order
scheme will be named in the sequel the Best Quadratic Un-
biased Estimator (BQUE) [17] since it constitutes a logical
extension of the Best Linear Unbiased Estimator (BLUE) [1,
Sec. 6]. Moreover, simulations have shown the interest of the
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MUI-resistant AoA tracker formulated in Section VI-B in noisy
scenarios when the angular separation of the sources is small.

Simulations will be contrasted with two well-known theoret-
ical lower bounds: the Modified CRB (MCRB) [4], [10], [18]
and the Gaussian Unconditional CRB (UCRB) [2]–[4]. The
MCRB is a useful bound employed in communications that
may be attained when the nuisance parameters are known. In
the context of array signal processing, this happens when we
have a temporal reference (training data). On the other hand,
the UCRB has been shown in some problems to be a lower
bound for the performance of second-order blind estimators
[4]. However, as shown through the following examples, it can
happen that for medium-to-high SNRs, the estimator variance
violates the UCRB when the nuisance parameters are not
Gaussian. The MCRB and UCRB generic expressions are given
next for completeness:

Re

(57)

with vec vec . No-
tice that these bounds must be computed with

, which is the effective observation size in the case of
closed-loop trackers (Section IV).

A. Signal Model for AoA Tracking

Thus far, the study has been limited to stationary scenarios
in which the parameter is a static variable. In the context of
mobile communications, it is important to obtain an accurate
estimate of the different users angular position but also to track
these parameters as the transmitters move around the base sta-
tion. Consequently, it is necessary to estimate both the angle
and the angular speed of every source transmitting toward the
base station. Higher derivatives of the AoA (acceleration and
so on) will be disregarded from the study for clarity. Therefore,
based on the small-error estimators obtained in (51) and (56), a
closed-loop scheme (tracker) as the one suggested in (16) will
be implemented in order to track the parameter evolution. To
do so, we have to incorporate the parameter dynamics (speed,
acceleration, etc.) into the model.

Formally, let us consider the problem of tracking the AoA
of narrowband sources impinging into a uniform linear array
composed of antennas spaced m, where is the shared
signal wavelength. Let us consider that all the transmitters are
visible from the base station array and that they do not experi-
ence multipath propagation. Let be the tem-
poral evolution of the AoAs in radians and
the respective derivatives accounting for the angular speed. Let
us assume that the acceleration and higher derivatives are neg-
ligible during the observation time, that is, for

. Furthermore, let us assume that the bandwidth of
does not exceed , where is the symbol period. In that
case, holds the sampling theorem, and the trajectories
can be ideally reconstructed from their samples ,

yielding to the following discrete-time dynamical model or state
equation

(58)

where the angular speed is normalized to the symbol period
. Therefore, the composed vector of parameters that must be

estimated to track the users without having any systematic pur-
suit error is

(59)

with

(60)

Consequently, the optimal second-order AoA tracker is given
by

# (61)

using the small-error expression obtained in (51) with .
First of all, notice that this expression coincides with (16) when
the SNR tends to zero if .

The above solution forces to zero all the cross-derivatives of
, including the IPI terms associated with the interference

from other users (see Section VI-B). This interference is referred
to as multiuser or multiple access interference (MUI or MAI) in
the literature. Thus, the second-order AoA tracker in (61) will
be referred to as MUI-free hereafter.

On the other hand, following the reasoning in Section VI.B, it
is not strictly necessary to cancel out the cross-derivatives cor-
responding to different users because the tracker optimization
will remove the MUI contribution if the SNR is sufficiently high.
Likewise, if the SNR is low, the MUI term will be automatically
ignored to not enhance the noise contribution. Hence, it is only
necessary to decouple the estimates of and in order to
have unbiased estimates of (59). If not, AoA estimation
errors would yield angular speed deviations and vice versa. To
avoid this, we have to constrain these cross-derivatives to zero
as indicated next:

(62)

while the rest of cross-derivatives is liberated. We will refer to
this solution as the MUI-resistant AoA tracker in the sequel.

To complete the signal model, the received signal is intro-
duced into the matched filter and then sampled at one sample per
symbol in order to collect snapshots. Independent snapshots
are obtained, assuming that the actual modulation is ISI-free
and that the signals are perfectly synchronized. Notice that
the problem dynamics (angle and angular velocity) require pro-
cessing of snapshots.

According to the considerations above, the snapshot recorded
at time is given by

(63)
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where is the vector containing the symbols transmitted by
the users at time are the white noise samples

, and the th column of

...

(64)

is the steering vector associated with the th source at time ,
where . Notice that incorporates the known
dynamical model (58).

In order to reproduce the vectorial model in (1), the
snapshots are stacked to build the following spatio-temporal
observation:

... (65)

where and are constructed as , and the transfer
matrix is given by

. . . (66)

As stated before, once the signal model has been determined,
we find the set of constituent matrices in (51) and (56). To con-
clude, the derivatives of the steering vectors are provided by

(67)

for all , where stands for the Kronecker
delta.

B. Numerical Results

Two independent sources transmitting from the far-field to a
uniform linear array composed of antennas are simu-
lated. The received power is assumed to be the same for sim-
plicity. Both signals are quadrature phase shift keying (QPSK)
modulated, and two snapshots are recorded at the
matched-filter output.

The figure of merit considered in this section is the estimator
normalized steady-state variance defined as

var (68)

where is half of the sources separation.
The variance will be plotted as a function of the SNR per source
at the matched-filter output , where is the
received symbol energy and the noise double-sided spectral
density.

Two AoA trackers forcing a different set of constraints on
will be tested:

1) MUI-free AoA tracker: ;
2) MUI-resistant AoA tracker: diag

diag diag , and the cross terms in (62)
are set to zero.

Two different scenarios have been simulated in order to illus-
trate and validate the main conclusions of the paper.

Simulation 1:

Two Users Crossing: Fig. 1 shows that the MUI-free AoA
tracker (left plot) loses tracking as the two sources approach
each other due to the noise enhancement observed when the
SNR is low SNR dB). This situation arises because,
when the users are transmitting from similar angles, the matrix

becomes nearly singular and the estimator variance in (52)
augments suddenly.

On the other hand, the MUI-resistant AoA tracker (right plot)
overcomes this critical situation because it does not try to re-
move the MUI term associated with the cross derivatives of
when the noise contribution is dominant (low SNR). Following
the explanation in Section VI-B, the MUI-resistant AoA tracker
liberates the cross derivatives in while the users are crossing,
and matrix is badly conditioned. In this manner, the tracker
does not enhance the noise contribution and is able to remain
“locked” during the crossing.

Simulation 2:

Steady-State Variance for Two Near Sources: The steady-
state variance of the MUI-free AoA tracker is plotted as a
function of the SNR, considering that we have two still users
separated 10 (Fig. 2) and 1 (Fig. 3). The noise equivalent
loop bandwidth (see Section IV) has been selected in
order to guarantee the small-error condition for all the sim-
ulated SNRs (Section VI). For the studied setup, the noise
enhancement caused by the source’s proximity is found to be
negligible. This fact makes the two suggested implementations
(MUI-resistant and MUI-free) to be practically equivalent in
the simulated scenarios. Theoretically, the performance of the
MUI-free estimator is very limited at low SNRs when the two
sources are close, as shown in Fig. 4, whereas its competitor
(MUI-resistant) achieves the single user performance, whatever
the simulated SNR. Fig. 4 illustrates the potential gain that
the MUI-resistant alternative offers in terms of steady-state
variance when the problem is badly conditioned and the obser-
vations are very corrupted by the noise.

In Figs. 2 and 3, the optimal second-order tracker has been
compared with the ML-based trackers formulated in Section III.
The first conclusion is that the low-SNR approximation appears
to be useless in these critical scenarios for the SNRs of in-
terest. The underlying motive is the so-called self-noise, i.e., the
variance floor caused by the nuisance parameters at high SNR
(Section III). The self-noise is really irrelevant when the SNR
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Fig. 1. AoA tracking of two users whose trajectories cross at time instant n = 500. The output of the MUI-free and MUI-resistant trackers is plotted on the left-
and right-hand sides, respectively. Two simulations are run with two different outcomes for the MUI-free tracker: Tracking is lost (solid line) or the two sources
are interchanged (dashed line). The signal SNR is fixed to 10 dB in both cases.

Fig. 2. Steady-state variance of the AoA tracker for two sources located
at $\pm 5$ degrees from the broadside. The loop-bandwidth is set to
$B_{n}=1.25\cdot 10^{-3}$ and the MUI-free estimator is simulated.

tends to zero, but it becomes dominant as soon as the SNR is in-
creased. Notice that in the AoA estimation problem at hand, the
so-called self-noise is generated by the random symbols (nui-
sance parameters) from the user of interest as well as the other
interfering users. Therefore, the MUI and self-noise contribu-
tions are strongly connected in this case study.

To overcome the low-SNR UML variance floor, the CML
tracker was proposed in Section III-B. The CML is able to yield
self-noise free estimates, but it suffers from noise enhancement

Fig. 3. Steady-state variance of the AoA tracker for two sources located
at $\pm 5$ degrees from the broadside. The loop-bandwidth is set to
$B_{n}=1.65\cdot 10^{-4}$ and the MUI-free estimator is simulated.

when the SNR is low because it tries to decorrelate the nuisance
parameters from the different users.

Regarding the GML AoA tracker presented in Section III-C,
the convergence to the CML solution for high SNRs and to the
low-SNR UML solution for low SNRs (if the x-axis were ex-
panded) is observed. Between these two asymptotic extremes,
the GML adjusts its coefficients, depending on the actual SNR
to minimize the joint contribution of the noise and the self-noise.
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Fig. 4. Normalized variance as a function of the SNR for the MUI-free and
MUI-resistant AoA trackers when the sources are separated 0.1 , 0.2 , 0.5 ,
or 1 , as indicated for each curve. The tracker loop bandwidth is set to B =

1:25 � 10 .

Indeed, the GML solution is found to be the best quadratic esti-
mator or tracker based uniquely on the second-order moments of
the nuisance parameters, i.e., in (35). Nonetheless, when
comparing the variance of the GML and BQUE AoA trackers in
Figs. 2 and 3, it is confirmed that second-order estimation is im-
proved for medium-to-high SNRs if the fourth-order statistical
knowledge on the nuisance parameters is exploited.
The resulting gain is shown to be greater when the angular sep-
aration is reduced if one compares the left- and right-hand side
plots in Fig. 3. Moreover, when the loop bandwidth is small
(Fig. 2), the BQUE performance is rather close to the one pre-
dicted by the MCRB in the case of known nuisance parameters,
and it definitely constitutes the lower bound for the variance of
any unbiased estimator based on the sample covariance matrix.

Surprisingly, the UCRB bound is violated by the GML esti-
mator out of the aforementioned asymptotic cases because the
nuisance parameters are actually non-Gaussian (QPSK discrete
symbols), and the UCRB is based on the Gaussian assumption.

VIII. CONCLUSION

The problem of parameter estimation in the presence of
random nuisance parameters is dealt with in the paper. It is
shown that the unconditional ML solution, which is known to
be efficient for large data records, is generally unknown unless
the SNR is asymptotically low or the nuisance parameters are
Gaussian distributed. In both cases, the sample covariance
matrix is proved to be (asymptotically) a sufficient statistic for
estimating the parameters of interest. From this background,
the paper formulates the optimal second-order estimator for
a given SNR and an arbitrary distribution of the nuisance
parameters. The Bayesian philosophy is adopted in order to
provide the estimator with any a priori knowledge about the
parameters of interest. The resulting estimator is shown to
exploit the fourth-order cumulants (i.e., kurtosis) of the nui-
sance parameters that admit a simple closed form or are easily

computed offline. Simulations have confirmed the importance
of considering this fourth-order information when tracking the
AoA of two near sources, even if the SNR is relatively low.

Unfortunately, only when the covariance matrix is linear
in the parameter of interest, the obtained solution is efficient,
meaning that the CRB is attained. Otherwise, the bias im-
pairment relegates the utilization of second-order schemes
to iterative schemes (or trackers). Accordingly, the optimal
second-order iterative estimator or tracker is deduced from
the general Bayesian solution, considering that the small-error
approximation is verified once the algorithm has converged to
the true solution. The resulting small-error estimator is found
to attain the CRB when the SNR is low or the nuisance pa-
rameters are Gaussian. In addition, the proposed solution is the
best quadratic unbiased estimator (BQUE) with independence
of the actual SNR or the nuisance parameter’s distribution.
Moreover, the variance of the proposed estimator constitutes a
new, realizable lower bound for the variance of any unbiased
estimation technique based on the sample covariance matrix.
In that sense, the paper is actually providing an alternative
CRB theory for sample covariance-based parameter estimators
introducing the second-order Fisher information matrix and the
concept of second-order efficiency.

APPENDIX A
DEDUCTION OF

The expression of in (33) can be written as follows:

(69)

where vec vec
.

Taking into account the circularity and zero mean of the noise
term, i.e., and

, only six terms, out of the 16 in ,
survive to the expectation in (69). They are classified next as
follows:

• signal signal

vec vec

• signal noise

vec vec

vec vec

vec vec

vec vec

• noise noise

vec vec
Then, using the following three properties [9, ch. 2]

vec vec (70)

(71)

vec vec

(72)
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and, bearing in mind that , one obtains that

vec vec

vec vec vec vec

vec vec (73)

where , and the following property of Gaussian
vectors is used (Appendix B):

vec vec

vec vec (74)

Therefore, grouping terms in (73) and bearing in mind (11),
the following result is obtained:

vec vec

vec vec

vec vec (75)

Finally, using once more (71) and (70) in order to write the
negative terms above as a function of and plugging this result
into (69), we get the expression proposed in (34).

APPENDIX B
FOURTH-ORDER MOMENTS

In this section, the fourth-order moments of a generic
zero-mean, circular, possibly non-Gaussian vector are
deduced. The resulting terms are ordered in the following
matrix:

vec vec (76)

whose elements are given by

(77)

where , and is the
Kronecker delta of multiple dimensions.

If all these elements are arranged in , the following three
terms are identified:

vec vec diag (78)

where , and is the diagonal matrices with
.

If the elements of are identically distributed,
and do not depend on , and thus, the third
term can be simplified to obtain that

vec vec diag (79)

In particular, the fourth-order moments of in (36) are given
by (79), bearing in mind that the symbols autocorrelation is

, and thus, . On the other hand, if
is normally distributed, as the noise vector in the adopted

signal model, the third term in (79) can be removed, taking into
account that in the Gaussian case, hence proving (74).

APPENDIX C
SMALL-ERROR MATRICES

Let us define the matrices and as the arguments
inside the brackets in (26) and (27):

(80)

Regarding matrix , it is easy to show that

(81)

since the pair of terms depending on and
vanish at .

Then, (45) is obtained after substituting into (40) the fol-
lowing result:

(82)

where the last equality is verified because is symmetric.
Proceeding in the same way with matrix , it is found that

(83)
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Then, (44) is deduced after plugging into (40) the following
expression:

(84)
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