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Sampling and Reconstruction of Signals With Finite
Rate of Innovation in the Presence of Noise

Irena Maravić and Martin Vetterli, Fellow, IEEE

Abstract—Recently, it was shown that it is possible to develop
exact sampling schemes for a large class of parametric nonban-
dlimited signals, namely certain signals of finite rate of innovation.
A common feature of such signals is that they have a finite number
of degrees of freedom per unit of time and can be reconstructed
from a finite number of uniform samples. In order to prove sam-
pling theorems, Vetterli et al. considered the case of deterministic,
noiseless signals and developed algebraic methods that lead to per-
fect reconstruction. However, when noise is present, many of those
schemes can become ill-conditioned. In this paper, we revisit the
problem of sampling and reconstruction of signals with finite rate
of innovation and propose improved, more robust methods that
have better numerical conditioning in the presence of noise and
yield more accurate reconstruction. We analyze, in detail, a signal
made up of a stream of Diracs and develop algorithmic tools that
will be used as a basis in all constructions. While some of the tech-
niques have been already encountered in the spectral estimation
framework, we further explore preconditioning methods that lead
to improved resolution performance in the case when the signal
contains closely spaced components. For classes of periodic signals,
such as piecewise polynomials and nonuniform splines, we propose
novel algebraic approaches that solve the sampling problem in the
Laplace domain, after appropriate windowing. Building on the re-
sults for periodic signals, we extend our analysis to finite-length sig-
nals and develop schemes based on a Gaussian kernel, which avoid
the problem of ill-conditioning by proper weighting of the data ma-
trix. Our methods use structured linear systems and robust algo-
rithmic solutions, which we show through simulation results.

Index Terms—Annihilating filters, generalized sampling, non-
bandlimited signals, nonuniform splines, piecewise polynomials,
rate of innovation, singular value decomposition.

I. INTRODUCTION

SAMPLING theory has undergone a strong research revival
over the past decade, mainly motivated by the intense

activity taking place around wavelets, which led to an extension
of Shannon’s original theory and development of advanced
formulations with direct relevance to signal processing and
communications [23]. For example, a modern Hilbert-space
formulation allows the standard sampling paradigm for the rep-
resentation of bandlimited functions to be extended to a more
general class of shift-invariant subspaces, including uniform
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splines and wavelets [1], [23]. Such a framework resulted in
simpler and more realistic interpolation models, many of which
have proved to be useful from an implementation point of view
[23].

Recently, it was shown that it is possible to develop exact
sampling schemes for classes of signals that are neither ban-
dlimited nor live on a shift-invariant subspace, namely, certain
signals of finite rate of innovation [24]. A common feature of
such signals is that they have a parametric representation with
a finite number of degrees of freedom and can be reconstructed
from a finite set of uniform samples. Examples include streams
of Diracs, nonuniform splines and piecewise polynomials. The
key in all constructions is to identify the innovative part of a
signal, such as time instants of Diracs, using an annihilating or
locator filter, a well-known tool from spectral estimation [19] or
error correction coding [2]. This reduces a nonlinear estimation
problem into the simpler problem of estimating the parameters
of a linear model.

In [24], only a class of deterministic, noiseless signals was
considered. While in such a case the developed schemes lead
to perfect reconstruction by sampling the signal at (or above)
the rate of innovation, many of those methods involve steps
that can result in numerical ill-conditioning in the presence of
noise. For example, it was shown that the problem of recon-
structing nonuniform splines or piecewise polynomials can be
reduced to the problem of reconstructing streams of Diracs by
taking a sufficient number of signal derivatives. However, when
noise is present, such an approach often results in an ill-condi-
tioned problem, where standard techniques from noisy spectral
estimation, including oversampling and solving various systems
using the singular value decomposition, are not sufficient for
improving the numerical performance. This naturally requires
a revision of some of the techniques presented in [24] and de-
velopment of alternative algebraic approaches that can solve the
problem of ill-conditioning in the presence of noise and allow
for precise reconstruction.

In this paper, we develop improved, more robust methods
that make use of proper preconditioning techniques and achieve
good numerical performance, while retaining a linear, model-
based flavor of the original sampling schemes. We develop a
subspace framework for signal reconstruction [16], [17] which,
along with efficient noise suppression via singular value decom-
position, provides an elegant and robust solution to the sam-
pling problem. We specifically analyze the case of a stream
of weighted Diracs, used as a basic building block in all our
schemes, and develop algorithmic tools that yield precise es-
timates of all relevant signal parameters. Furthermore, we de-
velop techniques that can significantly improve resolution ca-
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pabilities of the proposed subspace method in the case when the
signal contains closely spaced components. For classes of pe-
riodic signals, such as piecewise polynomials and nonuniform
splines, we propose novel algebraic approaches that use proper
data windowing and solve the problem in the Laplace domain.
We also consider the case of finite-length signals, and develop
improved schemes based on a Gaussian sampling kernel and
weighting of the data matrix.

Some of the techniques we use are already encountered in
the context of parametric spectral estimation [8], [17], [19] and
model-based signal analysis [16]. In particular, we use algebraic
methods that reduce a set of samples into a sum of exponentials;
therefore, the reconstruction problem can be broadly considered
as theoneofestimatingtheparametersofsuperimposedexponen-
tials. This problem has been studied extensively in the literature
and several classes of high-resolution or subspace methods have
already been developed [16], [17], [19]. We specifically focus
on state space parameterization of a signal subspace [16], which
allows us to use high-resolution techniques based on eigende-
composition of certain well-conditioned matrices [8], [16]. A
closely related method, the ESPRIT algorithm, was developed
in [17], which can be viewed as an extension of the state space
approach applicable to antenna arrays. In [8], several subspace
techniques for estimating generalized eigenvalues of matrix
pencils are discussed, such as PRO-ESPRIT and TLS-ESPRIT.

The outline of the paper is as follows. In Section II, we present
some of the main sampling results for signals of finite rate of
innovation from [24], and discuss the problems that arise in the
presence of noise. In Section III, we consider the problem of
sampling a periodic continuous-time signal made up of a stream
of Diracs, embedded in additive white Gaussian noise. We de-
velop a frequency-domain subspace framework for high-reso-
lution parameter estimation [16] and prove a relation between
the subspace approach and the polynomial realization of the
estimator [8], [24]. We also discuss techniques for improving
the resolution performance of the proposed method, without in-
creasing the computational complexity. In Section IV, we ex-
tend the results to more complex classes of periodic signals of
finite rate of innovation, such as nonuniform splines and piece-
wise polynomials, and present methods that solve the problem
in the Laplace domain. In Section V, we consider the sampling
problem for finite-length signals using a Gaussian kernel, and
develop schemes that allow for an almost local reconstruction of
the signal. In Section VI, we present an analysis of the numerical
performance of the subspace estimator and discuss the problem
of a model mismatch. Simulation results that illustrate the nu-
merical performance of the developed techniques are shown in
Section VII, and finally, in Section VIII, we conclude with a
brief summary of the main results.

II. PROBLEM STATEMENT

A class of signals with finite rate of innovation can be infor-
mally defined as a class of parametric signals having a finite
number of degrees of freedom per unit of time [18], [24]. Even
though such signals are generally not bandlimited, it was shown
that some of them can be perfectly reconstructed from a set of
samples taken at the innovation rate [24]. These results can also
be extended to multidimensional signals [12], [13].

Consider the following simple example. Let a signal be
a continuous-time signal made up of weighted Diracs, i.e.

(1)

Clearly, such a signal is not bandlimited and the standard
Shannon sampling theorem cannot be used in this case. How-
ever, note that has only degrees of freedom, that is,
time delays and weighting coefficients .
Therefore, it seems intuitive that by taking only measure-
ments of the signal, one can perfectly estimate all the unknown
parameters. This can be achieved, provided that the signal is
sampled with a proper sampling kernel, such as a Gaussian or
a sinc sampling kernel [24].

In order to show the main idea behind the approach from
[24], assume that the signal is filtered with the Gaussian kernel

and that samples are taken from a
filtered version

(2)

In this case, the sample values are given by

(3)

If we denote by and , then
(3) is equivalent to

(4)

where . Note that the samples are given by a
linear combination of exponentials ; thus, we can reduce the
problem of estimating the unknown parameters and

, into the classical spectral estimation problem, that
is, the problem of estimating frequencies and weighting coef-
ficients of superimposed exponentials [8], [16], [19].

In the above example, we assumed a deterministic, noiseless
signal, when the presented method yields perfect estimates of all
the parameters from only samples. Yet, in the presence of
noise, such an approach often gives rise to numerical ill-condi-
tioning. To understand the main reason for performance degra-
dation, consider a noisy version of the signal, that is,

, where is additive white Gaussian noise, and
consider the set of noisy samples , taken with the Gaussian
kernel. As in the previous case, by denoting
and , the set of samples can be expressed
as (3)

(5)

In this case, however, the samples of noise become signif-
icantly amplified as increases, due to the weighting of s
with exponentially increasing terms . This obviously
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makes the above method for reconstructing the signal from the
samples ill-conditioned.

A similar problem occurs with other classes of signals as well,
such as piecewise polynomials or nonuniform splines. In [24], it
was proved that in the absence of noise, the sampling problem for
these signals can be reduced to the problem of sampling streams
of Diracs, by taking a sufficient number of signal derivatives. For
example, consider a periodic nonuniform spline of period

and degree , that is, a signal whose th derivative
is a periodic stream of weighted Diracs. If we denote

by and the Fourier series coefficients of
and , respectively, the following relation holds:

(6)

Similarly to the argument for numerical ill-conditioning in
the case of a set of Diracs, the problem with this approach
is derivation. In particular, in order to compute the coeffi-
cients and estimate the unknown parameters
and , one first has to multiply the coefficients with

, which amplifies noise as frequency increases.
In the case of piecewise polynomials, the method in [24] uses
derivation as well, leading to a sum of derivatives of Diracs.
In addition to noise amplification, such an approach requires
identification of multiple roots of the annihilating filter, a task
that is difficult even in the noiseless case.

This obviously calls for an extension of the original results
from [24] to solve the problems of ill-conditioning and robust-
ness to noise, and to investigate alternative algebraic approaches
that will yield numerically stable and precise reconstruction. In
the following, we will show that by exploiting the signal struc-
ture properly, one can come up with more general constructions
that satisfy all of the above requirements.

III. PERIODIC STREAM OF DIRACS: CONTINUOUS-TIME CASE

In this section, we consider the problem of sampling and re-
construction of a periodic stream of Diracs. While this signal
has a relatively simple parametric representation, it provides a
basis for all the constructions that will be discussed later.

A. Frequency Domain Formulation

Consider a periodic signal of period , given by a sum
of weighted Diracs

(7)

Since the signal is periodic, its Fourier series coefficients
are given by

(8)

where . That is, the coefficients are given by a
sum of complex exponentials , where are
usually referred to as signal poles [16], [19]. In [24], the param-
eters and are estimated from a set of

adjacent coefficients , using a method based on anni-
hilating filters, which belongs to the class of model-based para-
metric methods for harmonic retrieval [16]. In particular, the an-
nihilating filter approach exploits the fact that in the absence of
noise, each exponential can be “nulled out” or
annihilated by a first order FIR filter ,
that is

Therefore, one can consider a th order FIR filter
, with zeros at

(9)

Note that the filter is the convolution of elementary fil-
ters with coefficients . Since
is the sum of complex exponentials, each will be annihilated by
one of the roots of ; thus, we have

(10)

Without loss of generality, we can set and rewrite (10)
as

(11)

Therefore, (11) allows us to solve for the annihilating filter co-
efficients , given a set of ad-
jacent Fourier series coefficients . Once the annihilating
filter has been found, the information about the time in-
stants can be extracted from the roots of the filter, while the
corresponding coefficients are then estimated by solving the
system of linear equations (8).

Note that the signal has only degrees of freedom,
and . Therefore, in the absence of noise,

it suffices to use only adjacent Fourier series coefficients
to obtain perfect estimates of all the unknown param-

eters [24]. For example, one can consider the coefficients
, which can be obtained by sam-

pling a lowpass version of the signal. Namely, if denote the
uniform samples taken with a sinc kernel of bandwidth

, that is

then the following relation holds:

(12)
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where is the Fourier transform of . If the sampling pe-
riod is chosen such that , then the above
system of equations is invertible and will yield a unique solution
for . Finally, we should note that in order
to solve for the annihilating filter coefficients from (11),
one can also consider the coefficients corresponding to any
other signal subspace, as long as its dimension is greater than or
equal to the number of degrees of freedom of the signal [11].

In practice, noise will be present, and in general this can be
dealt with by oversampling (i.e., one has to consider a larger
signal subspace) and using standard techniques from noisy
spectral estimation, such as the singular value decomposition.
However, even though such an approach improves numerical
accuracy on the estimates of the filter coefficients, it is not suffi-
cient for good overall performance of the algorithm. Specifically,
both theoretical analysis and practice have shown that in order
to reduce sensitivity of time-delay estimates to noise, the filter
order should be chosen according to the length of the data set,
rather than the number of unknown signal components [7], [14].
That is, even though the number of components may be relatively
low, typically, a high-order filter must be used, which imposes
a significant computational burden since it is necessary to find
roots of a large size polynomial in order to extract a small number
of signal poles [16]. In addition to increased computational
complexity, overmodeling gives rise to spurious filter zeros,
which can be incorrectly identified as signal poles.

This brings us to a more practical version of the model-based
approach, the so-called subspace estimator, which avoids the
root finding step and relies only on a proper use of matrix opera-
tions. It takes advantage of the so-called shift-invariant subspace
property and leads to robust estimates without overmodeling,
by properly exploiting the algebraic structure of the signal sub-
space [7], [16].

B. Subspace-Based Approach

Consider again the set of the Fourier series coefficients ,
given by (8), and construct a Hankel1 data matrix of size

, where

...
(13)

For simplicity, we have constructed the data matrix using only
the coefficients with nonnegative indices . In [11], we
showed that the method can be directly extended to the case
when the coefficients with negative indices are used as well.

In the absence of noise, can be decomposed as
, where and are given by

...
(14)

diag (15)

1A Hankel matrix is a matrix in which the (i; j)th entry depends only on the
sum i + j.

...
(16)

At this point, it is important to note that the above factorization is
not unique. That is, if , then

is another possible factorization, for every choice of
nonsingular matrices and . However, as we will

show in the following, any such factorization can be used to
estimate the signal parameters.

Consider first the matrix , given by (14). Since has a
Vandermonde structure, it can be written in the following, more
compact form

...

(17)

where is a row vector of length , given by ,
while is a diagonal matrix containing the signal poles
on the main diagonal, i.e., diag . Similarly, due to the
Vandermonde structure of the matrix (16), it can be written
as

...

(18)

where .
The subspace approach takes advantage of two properties of

the data matrix . The first property is that in the case of noise-
less data, has rank . This will allow us to reduce the noise
level by approximating the noisy data matrix with a rank ma-
trix. The second property is the shift-invariant subspace prop-
erty. Namely, if we consider the matrices and , given by
(17) and (18), they satisfy the following relations:

and (19)

where and denote the operations of omitting the first and
the last row of , respectively. Note that the shift-invariance
property is satisfied not only by and , but also by all ma-
trices and , where, as already mentioned, and are
any nonsingular matrices. In order to prove this prop-
erty, consider, for example, the matrix . This matrix can be
expressed as

...

(20)

where we have inserted between and
. Given that , it becomes
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obvious that satisfies the shift-invariance property as well,
that is

(21)

Since the matrix in (21) is related to by a similarity
transformation, it has the same eigenvalues as , i.e., .
Similarly, it can be proved that the matrix , where is any

nonsingular matrix, satisfies the following relation:

(22)

In practice, the data matrix will be decomposed using the
singular value decomposition (SVD) as

(23)

where the columns of and are principal left and right
singular vectors of , respectively, while the second term con-
tains remaining nonprincipals. Since the presence of additive
white noise has little effect on the principal singular vectors,2

the singular vectors and , corresponding to the domi-
nant singular values, will be good estimates of the singular vec-
tors of the original, noiseless matrix . Since both and
are matrices of rank (as well as and in (17) and (18)),
there will exist nonsingular matrices and such that

and . As a result, both matrices
and will satisfy the shift-invariance property, and, therefore,
the time instants of Diracs can be uniquely determined
from the eigenvalues of an operator that maps onto
(or onto ), that is

(24)

Finally, we should note that when the signal poles are estimated
from the left singular vectors , the minimum required size of
the data matrix in the noiseless case is . Alter-
natively, if the right singular vectors are used for estimation,
the minimum size of is . Once the signal poles
have been estimated, the weighting coefficients can be found
as a least-squares solution to (8). In the following, we give a
summary of the algorithm.

Subspace-Based Algorithm:

1) Given a set of the Fourier series coefficients , con-
struct an matrix data as in (13), where

.
2) Compute the singular value decomposition of , that is,

. Find the principal left and right singular
vectors, and , as the singular vectors corresponding
to the largest singular values of .

3) Estimate the signal poles by computing the
eigenvalues of a matrix , defined as

(25)

Note that if is used in (25), one would estimate com-
plex conjugates of s, since in the singular value decom-
position of is used with the Hermitian transpose.

2This is true under the assumption that the smallest singular value corre-
sponding to the signal is not dominated by noise.

4) Find the coefficients as a least-squares solution to the
Vandermonde system (8), that is

C. Relation Between the Subspace and the Polynomial
Estimator

In the above case, where the coefficients are given by
a linear combination of exponentials, it is possible to find a de-
composition of the matrix , where both and

are Vandermonde matrices. This allowed us to exploit the
shift-invariance property (19), and estimate the signal poles as
the eigenvalues of the operator that maps one signal subspace
onto another, “shifted” subspace. However, in the case when
the coefficients have more complex structure (e.g., in the
case of piecewise polynomial signals), finding an exact alge-
braic expression for matrices obtained by any such decomposi-
tion becomes a much more involved task, whereas the polyno-
mial parameterization may still allow for an intuitive and rel-
atively simple solution. Therefore, in this section, we prove a
general relation between the annihilating filter approach [24]
and the subspace estimator, which will allow us to extend the
subspace method to other classes of signals. To avoid any con-
fusion about notation, in the following, lowercase bold and up-
percase bold will denote, respectively, a column/row vector and
a matrix.

Given a set of Fourier series coefficients , we first define
the state vector [16] of length as

(26)

From the system (11), one can see that each coefficient
can be predicted from its past values; thus, we can write

(27)

Combining (26) and (27), we obtain

...

...

...

(28)

or in matrix form

(29)
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Therefore, the state space representation of the polynomial es-
timator is given by

(30)

(31)

Starting with (30) and (31), we can write

(32)

Now let us show how the above relations can be used to find
a subspace-based solution to the estimation problem. Similar
to the approach from Section III-B, one should first construct a
Hankel data matrix as in (13), of size , where

. Using (31) and (32), the matrix in (13) can be factored as
follows:

...

(33)

Thus, one can think of as being an operator that maps onto
(or, alternatively, onto ). Now the key is to observe that

the characteristic polynomial of is given by

det (34)

By comparing (34) with an expression for the annihilating filter,
that is, , it follows that the eigen-
values of the operator (i.e., the zeros of its characteristic
polynomial) are identical to the zeros of the annihilating filter.
Note that this relation holds in the general case and allows one
to obtain the subspace estimator once the annihilating filter has
been determined, and vice versa. As already discussed in Sec-
tion III-B, there will be no difference whether is obtained
from the matrix in (33), or from another matrix , where

is any nonsingular matrix. The corresponding estimates of
are related by similarity transformation and, thus, have the

same eigenvalues. This property also holds in the case when
is computed from the matrix or, alternatively, . In prac-
tice, since the matrix will be decomposed using the singular
value decomposition as , with the
first term corresponding to the principal components, the op-
erator can be found either from the matrix or from the
matrix . This leads us to the following proposition.

Proposition 1: Consider a Hankel matrix with en-
tries (13), and let denote its singular
value decomposition. Assume next that can be anni-
hilated by an FIR filter , that is,

, where
is chosen such that is of minimum order. Then, in the

noiseless case, the roots of the filter are identical to the
nonzero eigenvalues of a matrix .

D. Estimation of Closely Spaced Diracs: Improving the
Resolution

Model-based parameter estimation using subspace methods
has received significant attention in the literature [8], [9], [16].
In many problems encountered in practice, such as direction
finding, frequency estimation, channel estimation and others,
subspace-based methods provide an attractive alternative to a
more complex maximum likelihood (ML) estimator, as they
yield accurate estimates at a reasonable computational cost.
However, the problem encountered in all model-based methods
is that their performance typically degrades if the signal con-
tains closely spaced components. This can become critical in
certain applications, such as channel estimation in ultra-wide-
band systems [11], [14], where one has to estimate many
closely spaced components in a very low signal-to-noise ratio
regime. In the following, we present two different techniques
that improve the resolution performance of the developed
scheme without increasing the data set used for estimation.

Consider again the data matrix , defined in (13). In order
to estimate the signal poles s, we have exploited the shift-in-
variant subspace property (19), that is, , or alter-
natively, , where is a diagonal matrix with s
along the main diagonal, while . However, the Van-
dermonde structure of and allows for a more general ver-
sion of (19), specifically

and (35)

where and denote the operations of omitting the first
rows and last rows of , respectively [22]. In this case, the

matrix has elements on its main diagonal.
Therefore, the advantage of using the values of larger than

, is that the effective separation among the estimated time
delays is increased times, which in turn improves the resolu-
tion capabilities of the method [14]. In the sequel, this approach
will be referred to as the “subspace-shifting” approach.

Another way to improve the performance in the case of
closely spaced components is the following. Instead of con-
structing the data matrix as in (13), one can construct another
data matrix as

...
. . .

...
. . .

...
(36)

That is, is obtained by interleaving the rows of the original
matrix in (13). Following the discussion from Section III-B,
in the noiseless case, the matrix can be decomposed as
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, where and are the matrices given by (15) and
(16), respectively, while the matrix is now given by

...
. . .

...
. . .

...

(37)

Note that each column of the matrix is made up of blocks
that contain consecutive powers of the signal pole . Therefore,
in order to estimate s, one can exploit the following shift-
invariance property:

(38)

where in this case and denote the operations of
omitting the first row and last row in each block of , respec-
tively. Note that the matrix is the same diagonal matrix as be-
fore, with elements on its main diagonal. How-
ever, since the matrix has better conditioning than the orig-
inal data matrix , the interleaving approach results in better
resolution performance, as we will show in Section VI. There-
fore, we can state the following proposition.

Proposition 2: Consider the matrices and defined in
(13) and (36), respectively, and let and

denote their singular value decompositions. Then, the
following holds.

1) If are eigenvalues of the matrix ,
then are eigenvalues of the matrix

.
2) Matrices and have

identical eigenvalues.
3) If are the time locations of Diracs estimated

from the eigenvalues , then are the
locations estimated from , that is, the separation
between each two components is increased times.

Finally, we would like to note that since we are considering pe-
riodic signals, estimates of the time locations obtained from
the powers of the signal poles are not unique. That is, for
each computed eigenvalue , there exists a set of possible
corresponding time delays , given by , where

. In order to avoid this ambiguity, one
can first find an approximate location of the cluster of Diracs,
by estimating only one principal component, using the orig-
inal method from Section III-B, since it is well-known that the
largest signal-space singular vector is relatively insensitive to
signal separation [10]. This information can be used later to se-
lect a proper set of the locations , once the values of have
been estimated.

IV. EXTENSION TO OTHER PERIODIC SIGNALS WITH FINITE

RATE OF INNOVATION

In this section, we extend our results to more general classes
of periodic signals with finite rate of innovation, such as nonuni-
form splines and piecewise polynomials. In particular, we show
how to modify methods from [24] in order to achieve good nu-
merical performance in the noisy case.

A. Periodic Nonuniform Splines

We first consider the sampling problem for periodic nonuni-
form splines, since this case is a direct extension of the sampling
problem for a stream of Diracs, which will also set the grounds
for the following section on piecewise polynomials.

A signal is a periodic nonuniform spline of period
and degree , with knots at , if its th
derivative is a periodic stream of weighted Diracs, that is

(39)

The Fourier series coefficients are given by (6),
that is, , where

. Therefore, by considering the coefficients that
correspond to the th derivative of the original signal

, we can reduce the problem of estimating the unknown
signal parameters to the one of estimating the parameters of
superimposed complex exponentials. Note that the derivation
can be done in the frequency domain, by multiplying the
Fourier series coefficients with . Once
the coefficients have been computed, the signal
parameters can be estimated using the method developed in
Section III-B. However, in the presence of noise, derivation
of is an ill-conditioned step, as it enhances noise. In the
following, we will present a modified version of the method
from [24], which yields better performance while retaining the
shift-invariant flavor of the original scheme.

Consider again the Fourier series coefficients , given
by (6). Note that the term , corresponding to
the th derivative operator in the frequency domain,
grows as . Thus, the idea is to weight the coefficients

with a multiplicative term , which has an
exponential decay, in order to compensate for the polynomial
growth of . One possible solution is to choose

, where is a parameter that can be adjusted
according to the value of SNR ( is a positive real number) and
the size of the data set used for estimation. Consider, thus, an
expression for the new, weighted coefficients

(40)

Note that the s are given by a sum of damped expo-
nentials, however, the shift invariance property (19) still holds.
Therefore, one can use the method from Section III-B to esti-
mate the unknown parameters and from the
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coefficients . The only difference compared to the orig-
inal approach is that the estimated eigenvalues are now given
by , where . Given that the value
of the damping factor is known, the time instants s can be
found directly from the eigenvalues , while estimation of the
weighting coefficients follows the same procedure as before.
We note that this is a general result, which holds for all classes of
periodic signals considered in [24]. Namely, all the methods de-
veloped for periodic signals use the Fourier series coefficients

to extract the signal poles , and, thus, es-
timate the unknown locations . Alternatively, one can con-
sider the set of weighted coefficients and use the same
techniques to estimate the scaled version of the signal poles,

. Therefore, instead of solving the problem
in the Fourier domain [24], one can solve the problem in the
Laplace transform domain, which allows for the same algo-
rithmic tools, and yet leads to better conditioning for certain
classes of signals. Thus, we have the following proposition.

Proposition 3: Consider a periodic nonuniform spline
of period and degree , with the th derivative
of the form ,
and corresponding Fourier series coefficients

. Consider a weighted
set of coefficients . If

is the annihilating filter for , then will
be the annihilating filter for , and vice versa. An equiva-
lent statement holds for eigenvalues obtained by the subspace
approach (25).

While in the above proposition we made no assumption on the
value of the parameter , in practice, it should be chosen such that
in a considered frequency band, the power spectral density (PSD)
of noise, weighted by , is as uniform as
possible (and does not exceed the PSD of a signal). However,
we should note that in the general case of nonuniform splines
of degree , the method may still be sensitive to noise,
despite windowing. Namely, in the case when transitions be-
tween adjacent pieces are almost smooth, it is difficult to extract
the discontinuities in the differentiated signal, even with proper
windowing. In the case of piecewise polynomials, this is not an
issue, since the signal itself already contains discontinuities.

B. Piecewise Polynomials

Similar to the definition of periodic nonuniform splines, a
signal is a periodic piecewise polynomial of period ,
having pieces of maximum degree , if and only if its

th derivative is a periodic stream of differentiated Diracs, that
is

(41)

The corresponding Fourier series coefficients are now given by

(42)

By denoting , we obtain

(43)

As already discussed in the previous section, the problem in
the presence of noise is derivation. Therefore, instead of con-
sidering the set of coefficients corresponding to the th
derivative, the idea is to consider a set of weighted coefficients

, given by

(44)

However, in this case, it is no longer obvious that the shift-
invariant subspace property (19) can be exploited, since each
term is additionally multiplied by a polynomial

. That is, the coefficients are given by
a nonlinear combination of complex exponentials. In the fol-
lowing, we will show that one can still obtain a closed-form
subspace solution to the problem of parameter estimation from

. Specifically, since the exact solution can be rela-
tively easily obtained using the annihilating filter method [24],
we will use Proposition 1, to find a subspace solution to the
problem. This will provide a practical approach for solving a
more general class of nonlinear estimation problems [14], and
will also extend classic high-resolution spectral estimation tech-
niques [8], [16], [19].

Consider the annihilating filter ,
which satisfies

(45)

In [24], it was shown that in the case when the coefficients
are given by (44), the annihilating filter has multiple

roots at

(46)

Namely, the key is to observe that each component
in (44) is annihilated by a

filter which has zeros at [24], i.e.,

(47)

Since the filter annihilates all the components
, the annihilating filter for the

signal is given by

(48)

Therefore, the information about the time delays can be ex-
tracted from the th order roots of the filter , while
the corresponding weights can be then found by solving
the system of linear equations (42).

Let us show next how this result can be used to find a
subspace solution to the estimation problem. Following the
approach from Section III-B, given a set of the coefficients

, one first has to construct a Hankel data matrix
of size , where . The second step is to com-
pute the SVD of and extract its principal left singular
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vectors (or alternatively, principal right singular vectors
). Once has been estimated, one should compute the

matrix as in (25), that is, . From Proposition
1, it follows that the eigenvalues of are identical to the roots
of the annihilating filter (48). Specifically, since the filter
has th order roots at , the
matrix will have distinct eigenvalues at , each with an
algebraic multiplicity . Thus, an equivalent statement to the
one in Proposition 1, holds in this case as well. However, we
note that in the presence of noise, it is desirable to estimate the
signal poles from those eigenvalues closest to the circle

[19]. Finally, we note that since the signal already
contains discontinuities, the above method will generally result
in better numerical performance than in the case of nonuniform
splines.

V. APERIODIC SIGNALS OF FINITE RATE OF INNOVATION

So far, we have considered the sampling problem for peri-
odic signals of finite rate of innovation and developed methods
that exploit the structure of the Fourier series coefficients. The
problem becomes more challenging in the aperiodic case, since
the frequency domain approach cannot be used. Therefore, we
will present alternative methods that solve the problem in the
time domain. We will consider schemes where a signal is sam-
pled with a Gaussian kernel, since in such a case, the signal sam-
ples have an algebraic structure that can be easily exploited; see
(3) and (4).

A. Streams of Diracs

Consider first the basic problem discussed in Section II, that
is, the problem of sampling the finite stream of weighted
Diracs, , with the Gaussian kernel

. Denote by the samples of the noise-
less signal and let . We have shown that the
weighted set of samples can be expressed as a sum
of real exponentials (4), i.e.,

where and . In practice, the samples
will be perturbed by noise, and the noisy measurements

can be expressed as

(49)

where denote the samples of additive white Gaussian noise.
Clearly, the problem in the presence of noise is exponential
weighting of the samples, and the Laplace domain formulation
of the problem, discussed in Section IV-A, may not always pro-
vide a good alternative. We will, thus, present a similar approach
to the one developed for periodic signals, which can also be
viewed as a generalization of the Laplace domain solution.

Consider again the subspace approach, where the following
Hankel matrix is constructed:

...
...

. . .
(50)

with . Denote by a matrix constructed from the
noiseless samples . Then we can write , where
the matrix is made up of weighted samples of noise

...
...

. . .

(51)

For medium to high values of SNR, perturbation on the matrix
has little effect on the principal singular vectors. In such a

case, a rank approximation of the noiseless data matrix
can be obtained by computing the singular value decomposition
of and setting all but the largest singular values to zero.
However, in our case, due to the exponential weighting of noise
samples, dominant singular values do not necessarily belong to
the signal space, as they may also include those corresponding
to noise. In the following, we propose a scaling technique that
additionally multiplies the entries of the noisy matrix in order
to make the noise variance as uniform (and minimal) as possible.
This will allow us to use the SVD for noise suppression.

The idea is to replace with another matrix

In general, and can be any invertible matrices, however, the
goal is to choose those matrices such that the entries of

have a uniform and minimum variance. One possible
solution is to make both and be diagonal matrices, since
any linear combination of lines or columns of would increase
the noise variance. In order to obtain a uniform variance, the
elements of and can be chosen as

(52)

(53)

As a result of such a transformation, one can think of the
entries of as being the samples of additive white noise. Now
we can use the singular value decomposition of the noisy matrix

, i.e.

where the first term contains principal components of .
However, note that the above transformation destroys the
Hankel structure of the original data matrix. Therefore, once
the principal components of have been computed, one can
compensate for the effects of and by constructing a new,
denoised data matrix as .

At this point, we should note that there are other whitening
transformations that can be used to mitigate the effect of expo-
nential weighting of noisy samples. For example, one can com-
pute a Cholesky decomposition [6] of the noise covariance ma-
trix, that is, (assuming that is a positive defi-
nite matrix), and multiply the data matrix by prior to com-
puting the singular value decomposition. The main advantage of
the method we proposed (with two diagonal matrices and )
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is its simplicity: it involves only averaging along rows/columns
and avoids matrix inversion, while achieving the desired goal.

B. Nonuniform Splines

We will now extend the analysis to the more general class
of finite-length signals with finite rate of innovation, such as
nonuniform splines. A signal is a nonuniform spline of
degree if and only if its th derivative is a stream of
weighted Diracs, that is

(54)

Clearly, by sampling the signal with the Gaussian
kernel, we can reduce the problem of signal reconstruction
to the one of estimating the parameters of superimposed
weighted Diracs, which can be solved using the method from
Section III-B. However, since one often has no access to the
derivatives of the input signal, an equivalent approach would
be to sample the input signal with an th derivative
Gaussian kernel. Such a kernel can be expressed as

(55)

where is a polynomial of degree , given by the following
recurrence relation:

(56)

Note that in the case when , the polynomial
in (55) and (56) is a Hermite polynomial of degree [5]. In
Section V-D, we will show how one can approximate such ker-
nels with a linear combination of Gaussian functions. Such an
approach will lead to a more practical version of the sampling
scheme where the signal is sampled with the Gaussian kernel,
while all subsequent manipulations are carried out on a set of
samples.

C. Piecewise Polynomials

Similar to the periodic case, a signal is a piecewise poly-
nomial with pieces, each of maximum degree , if and only
if its th derivative is a stream of differentiated Diracs,
that is

(57)

If the signal is sampled with a th derivative Gaussian
kernel, the samples are given by

(58)

As already discussed in Section V-A, we can consider a new
set of samples , obtained by multiplying with . If we
let be an th order polynomial from (56) and

, then the samples can be expressed as

(59)

Since in the above expression each exponential is ad-
ditionally multiplied by a polynomial in , one can use the sub-
space approach discussed in Section IV-B to solve for all the un-
known parameters. Note that in this case one has to have access
to the derivatives of the signal as well, or alternatively, one
should use the th derivative Gaussian kernel. However,
such an approach is not desirable in practice, since typically one
cannot choose the sampling kernel arbitrarily. In the following,
we present a method that allows the signal to be sampled with
the Gaussian kernel, whereas the derivatives of the signal are
then computed from a set of samples.

D. Practical Realization of the Gaussian Sampling Schemes

Consider again the Gaussian kernel . The
idea is to express the th derivative Gaussian kernel as a linear
combination of the shifted versions of . Let

, where is the corresponding
shift. By choosing , the function becomes a very
good approximation of the first derivative Gaussian function (up
to a scaling factor). In order to show this, consider the Fourier
transform of , i.e.

(60)

where denotes the Fourier transform of . Since
, we have

(61)

Using the Taylor series expansion of the second term in (61), we
obtain

(62)

The key is to observe that , which is given by a product
of a polynomial in variable and an exponentially de-
caying function of , contains only one dominant term, that is

(63)

This can be seen in Fig. 1(a), where we plot the magnitude of the
first three terms in the above sum for . Now one can com-
pare the expression in (63) with an expression for the Fourier
transform of the first-derivative Gaussian function, given by

(64)

Note that there is only a scaling relation between the two expres-
sions; therefore, the above approach gives a good approximation
of the first derivative Gaussian function, which is illustrated in
Fig. 1(b)–(d).
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Fig. 1. Approximation of the derivatives of a Gaussian kernel. (a) Magnitude of the first three terms in the expression (62). (b) First derivative Gaussian kernel
and its approximated version. (c) Second derivative Gaussian kernel and its approximation. (d) Third derivative Gaussian kernel and its approximation.

The same idea can be used to approximate higher-order
derivatives of the Gaussian kernel, using the following recur-
rence relation:

(65)

Namely, as in the previous case, the key is to note the following
relation in the frequency domain:

(66)

Let us now return to the sampling problem for finite-length
signals. For example, consider a piecewise polynomial of max-
imum degree . We have seen that in order to reconstruct the
signal, one has to take samples with the th derivative
Gaussian kernel at locations kT. Following the procedure de-
scribed above, these samples can be obtained from the set of
samples taken with the Gaussian kernel at sampling instants

, where . This leads to a
practical version of the developed algorithm, which we will il-
lustrate in Section VII.

VI. PERFORMANCE EVALUATION

A. Analysis of Noise Sensitivity

The statistical properties of the estimates obtained using high-
resolution methods have been studied extensively, mainly in
the context of estimating the frequencies of superimposed com-
plex sinusoids from noisy measurements [7], [8], [15], [16]. Ex-
pressions for the mean square error (MSE) of the frequency
estimates [7] indicate that the numerical performance of such
methods is very close to the Cramer–Rao bound (CRB) [20],
which represents the lowest achievable MSE by any unbiased
estimator. In the following, we present some of the key ideas
used in the statistical analysis of the state space approach, while
more on this topic can be found in [7], [16].

Consider the data matrix and denote by
the corresponding covariance matrix. We will analyze the sub-
space approach which uses the eigendecomposition of the co-
variance matrix . However, note that the same analysis ap-
plies to our method, based on the singular value decomposi-
tion of the matrix , since the left singular vectors of

are the eigenvectors of , that is, . Let
, where is the error in the eigenvec-

tors corresponding to the signal subspace. Then, can be
written as , where
is the unique orthogonal projection matrix onto the signal sub-
space, that is, if belongs to the signal subspace, then .



MARAVIĆ AND VETTERLI: SAMPLING AND RECONSTRUCTION OF SIGNALS WITH FINITE RATE OF INNOVATION 2799

Similarly, is a projection operator onto the noise
subspace. Now the key is to observe that only con-
tributes to the error in the eigenvalue estimates [16], which sim-
plifies the analysis considerably.

The first step in the analysis is to relate , the error in the
covariance matrix, to

(67)

Next, we consider how affects as well as
its eigenvalues. By denoting , it can be shown
[16] that

(68)

while the error in can be related to the error of its eigenvalue
through the following relation:

(69)

where and are left and right eigenvectors of corre-
sponding to the eigenvalue . Finally, by combining (67)–(69),
we obtain

(70)

where , with
and .

Therefore, starting from (70) and using the statistics of ,
one can compute the mean-square-error (MSE) of . How-
ever, due to the complex dependency of on the data, the
general expressions are quite complex. Thus, we give simplified
expressions for the MSE of the frequency estimate in the case
of a single exponential, which in our framework corresponds to
the estimate of the time delay of one Dirac impulse.

Consider for simplicity the case of a periodic signal with
period . Let the data matrix be of size , and let

be the total number of samples used for es-
timation. Assuming that the signal and noise are uncorrelated,
the optimum performance is achieved when or

, resulting in the MSE of time delay estimation [7]

SNR
(71)

where . This is close to the CRB [20], given by

CRB
SNR

(72)

which indicates desirable numerical performance of the sub-
space-based approach. Similar conclusions can be reached for
the two-source case [4], [7], while for the general results, we
refer to [7] and [21].

B. Model Mismatch

In all the methods presented so far, we assumed that both
a signal model and the model order are known a priori. This
allowed us to select an appropriate reconstruction technique, as
well as the size of the data matrix, to ensure that all the signal

parameters are reliably estimated. In the presence of noise, a
low-rank subspace property is destroyed and such an increased
dimension of the solution set must be carefully dealt with.

In the problem of estimating the parameters of superimposed
exponentials, the model order can be obtained from the number
of dominant singular values of the noisy data matrix, which is
a very good estimate, provided that the smallest singular value
of the original, noiseless matrix is not dominated by the noise
variance. However, for low values of SNR, it is often difficult
to discriminate between small singular values corresponding to
the signal from extraneous ones due to noise and, typically, only
dominant signal components can be reliably estimated [19]. The
problem becomes more involved in the case of piecewise poly-
nomials and nonuniform splines, since one has to take a suffi-
cient number of signal derivatives prior to constructing the data
matrix. Such an approach obviously raises the following ques-
tion: how can one reconstruct the signal in the case when nei-
ther the signal model nor the model order are known? While at
this point we do not have a formal answer to this question, we
would still like to point to one possible solution, namely, finding
a piecewise constant approximation of the signal.

In order to explain the main idea behind such an approach,
consider a periodic signal of period , filtered with a low-
pass filter and sampled uniformly at a critical rate. In the case
when the bandwidth of the filter is relatively low compared to
the effective bandwidth of the original signal, one could expect
that the Shannon interpolation formula would not yield a good
approximation of the signal. Therefore, following the approach
used for reconstruction of a stream of Diracs from a lowpass ver-
sion, one can obtain a piecewise constant approximation
of the signal. This would potentially yield a better approxima-
tion, particularly for signals with discontinuities.

Assume, thus, that contains constant pieces. In this
case, is uniquely determined by a set of transition instants

and the corresponding amplitudes . The key
is to consider the first derivative of the piecewise constant
approximation . By denoting , the first
derivative is given by a periodic sum of weighted impulses

(73)

The idea is to approximate the first derivative of with the
sum of weighted Diracs, instead of approximating the original
signal . This can be done using the method developed in
Section III and estimating the values of and
from the following system:

(74)

where are the Fourier series coefficients corre-
sponding to the first derivative of the original signal. Note that
these coefficients are windowed by exponentially decaying
terms , in order to avoid ill-conditioning of the
system (40). The same idea can be used in the case of aperiodic
signals, where the samples corresponding to the first derivative
can be computed from samples taken with the Gaussian kernel,
as described in Section V-D.
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Fig. 2. Periodic stream of Diracs. A periodic signal of length 10000, made up of six weighted Diracs, is passed through a lowpass filter and sampled uniformly
at the critical rate, determined by the filter bandwidth. We considered three different filter bandwidths: B = [�500500]; B = [�1000;1000]; and B =
[�1250;1250]. (a) Magnitude of the signal spectrum and bands used for estimation. (b) MSE of location estimates versus SNR. Solid lines correspond to the case
when the locations are randomly chosen according to a uniform distribution over the interval [1, 10 000], while dashed lines correspond to the MSE in the case
when the average spacing between components is 20 (i.e., 0.2% of the signal period). (c) MSE of location estimates for the original method and the matrix-shifting
method versus SNR. For the latter method, the error is plotted for different values of the shift parameter p. (d) MSE of location estimates versus average spacing
between the components. The MSE of the original method is compared to the MSEs of the interleaving technique and the subspace-shifting approach.

VII. SIMULATION RESULTS

In this section, we illustrate the performance of the developed
schemes with simulation results. Experiments are done in dis-
crete-time, with a very long block size in oder to simulate con-
tinuous time.

A. Case of Periodic Signals

We first consider a length 10 000 signal made up of a periodic
stream of weighted Diracs (Fig. 2), and analyze the
following cases: the locations of Diracs are chosen randomly
according to a uniform distribution over the interval [1, 10 000];
the first component is chosen randomly over [1, 10 000], while
the spacing between the components is a Gaussian random
variable with mean and standard deviation . The
signal is filtered with a lowpass filter, having one of the fol-
lowing bandwidths: ,
and , and in each case, a lowpass ver-
sion of the signal is sampled uniformly at a critical rate. The
spectrum of the signal and different frequency bands used
for estimation are illustrated in Fig. 2(a). In Fig. 2(b), we
plot the mean-square error (MSE) of the position estimates

versus signal-to-noise (SNR) ratio. The error is computed as
an average MSE over 100 different trials and normalized to
the signal period. The results indicate that the performance of
the method can be improved by increasing the bandwidth and
estimating the parameters from a larger set of samples. Yet,
such an improved performance is achieved at the expense of
increased computational requirements, since the complexity of
the reconstruction scheme using samples is on the order of

[6]. More importantly, the performance of the method
degrades in the case when the average spacing between the
Diracs is small compared to the signal period. For example,
when the average spacing is 20 (i.e., 0.2% of the signal period)
and SNR dB, it is no longer possible to reconstruct the
signal using only the band , and one should estimate the
parameters from a larger signal subspace.

However, a more attractive solution to this problem is the one
presented in Section III-D, where the resolution performance is
improved by exploiting the shift-invariant subspace property in
a different way, rather than by increasing a data set used for es-
timation. In Fig. 2(c), we compare the MSE obtained with the
original method and the subspace-shifting method from Sec-
tion III-D. We show the estimation performance for different
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values of the parameter , which determines the increase in the
effective separation between the estimated components. Clearly,
for all considered values of SNR, the latter approach results in
much better numerical precision. Note that by increasing the
value of , the estimation accuracy improves, and in this par-
ticular case, the value of already yields very good pre-
cision. Also note that such an approach does not increase the
overall computational requirements, since the size of the data
matrix has not changed. Still, cannot be chosen arbitrarily
large, since one may end up deleting too many rows/columns
from the data matrix, which would result in degraded perfor-
mance. In Fig. 2(d), we compare the estimation performance
of the subspace-shifting approach and the interleaving method,
also presented in Section III-D, for different values of the av-
erage spacing between the Diracs. The value of SNR used in this
set of simulations is SNR dB. The results we obtained indi-
cate that the interleaving technique yields better performance
as the spacing between the components decreases. Also note
that the numerical precision achievable by both techniques is
by an order of magnitude better than the precision of the orig-
inal method.

Next, we consider the case of a periodic nonuniform spline
of period and degree , embedded in addi-
tive white Gaussian noise. The signal is filtered with a lowpass
filter of bandwidth and a uniform set of 100
samples is taken from the lowpass version. In order to recon-
struct the signal from the set of samples, we used the approach
from Section IV-A, where the scaling parameter is chosen to
be . In particular, we first estimated the locations
of the transition points, and then found the least-squares (LS)
linear fit between each two transitions based on a set of sam-
ples. In Fig. 3, we show the noisy version (SNR dB)
and the reconstructed signal, where the reconstruction error is
MSE . While in this case we have obtained a good
reconstruction of the original signal, in general, for , the
method becomes more sensitive to noise, as already discussed
in Section IV-A. In the following example, we consider a noisy
piecewise linear signal (SNR dB) of length 1000, made up
of seven pieces. The signal is passed through a lowpass filter of
bandwidth , and a set of 200 uniform samples
is taken from the lowpass version. We used the approach from
Section IV-B to reconstruct the signal, with the scaling param-
eter . As in the previous case, we first extracted the
locations and weights of the discontinuities, and then computed
the best LS linear fit between each two adjacent discontinuities.
In Fig. 3(b), we show the noisy version and the reconstructed
signal. The reconstruction error is MSE ; however, we
should note that as SNR decreases, the method is less sensitive
to noise than it was the case with nonuniform splines.

B. Finite-Length Signals

In this set of simulations, we consider finite-length signals
and evaluate the performance of the scheme based on a Gaussian
sampling kernel. We first analyze the case of a length 1000
signal, made up of weighted Diracs, where takes on values
between and . We assume that the spacing be-
tween the components is a Gaussian random variable with mean

Fig. 3. Periodic nonuniform splines and piecewise polynomials. (a) Noisy
nonuniform spline (SNR = 27 dB) of degree R = 1 and reconstructed
signal. The signal is reconstructed with an error of MSE = 0:0135. The
error is defined as MSE = Ef(x � x) g=Efx g, where x and x
denote, respectively, the estimated signal and the original signal in one period.
(b) Noisy piecewise linear signal (SNR = 15 dB) and reconstructed signal.
MSE of reconstruction is MSE = 0:015.

and standard deviation . The signal is filtered with
a Gaussian kernel . In Fig. 4(a), we show the
MSE (normalized to the length of the signal) of position esti-
mates obtained using the method from Section V-A, in the case
when and . The results are compared to the
error obtained using the original method (i.e., no weighting of
the data matrix). Note that by using the original method, it is
possible to reconstruct the signal only for high values of SNR
(i.e., SNR dB), whereas preconditioning of the data matrix

from (50) allows for significantly better estimation perfor-
mance. Yet, in order to ensure a good performance of the algo-
rithm, the width of the Gaussian kernel must be chosen care-
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Fig. 4. Aperiodic stream of Diracs: We consider a signal of length 1000, made up of K weighted Diracs (K is varied between 2 and 12) and sampled with the
Gaussian kernel e . Average spacing between the components is assumed to be t = 60. (a) MSE of position estimates versus SNR, for K = 6; � = 35.
The MSE of the original method (i.e., with no weighting of the data matrix) is compared to the MSE obtained by the method from Section V-A. (b) MSE of
reconstruction versus the width of the Gaussian kernel. The error is plotted as a function of the parameter �=t (and is shown for different values of SNR),
indicating a sensitivity of the method to the choice of the width �. (c) MSE versus �=t , for different values of K . (d) MSE versus number of Diracs K . For
each value of K , we chose the optimal value of the kernel width �, that is, the one which minimizes a reconstruction error. Dashed lines correspond to the MSE
obtained by sampling the signal over two smaller time windows and finding local reconstruction in each window.

fully. This can be seen in Fig. 4(b) and (c), where we plot the
reconstruction error as a function of the parameter , where

denotes the average spacing between the components. The
error is plotted for different values of SNR [Fig. 4(b)], as well
as different number of Diracs [Fig. 4(c)]. The results indi-
cate strong sensitivity to the choice of the parameter , specif-
ically as increases. In Fig. 4(d), we show the reconstruction
error versus the number of Diracs , while the parameter is
chosen such that the MSE of reconstruction is minimized. Note
that for all considered values of SNR, the method yields good
performance for ; however, when the number of Diracs
further increases, the performance degrades significantly. The
main reason for such a behavior is the following: as the number
of components increases, the time window where the signal
must be sampled increases as well, and its duration is approxi-
mately given by . Yet, the optimum width of the sam-
pling kernel is only a fraction of the average spacing , for ex-
ample, when [see Fig. 4(c)]. Given the ex-
ponential decay of the Gaussian kernel, for large values of , at
each sampling instant we will obtain the information only about
a limited number of Diracs, which results in bad con-
ditioning of the system. This makes the Gaussian scheme suit-

able mainly for local reconstruction, where the overall sampling
window is adapted to the width of the kernel. This is illustrated
in Fig. 4(d) as well, where we plot the MSE for , in the
case when we sample the signal over two distinct time windows
(of approximately equal duration), and in each window we per-
form local reconstruction. Such an approach clearly improves
the performance of the original method.

In Fig. 5(a), we illustrate a noisy piecewise constant signal
(SNR dB) of length 1000, made up of seven pieces. The
signal is filtered with a Gaussian kernel with , as shown
in Fig. 5(b), and a set of 160 samples is taken from the filtered
version shown in Fig. 5(c). The first derivative of the signal is
computed according to (65), and the method from Section V-A
is used for reconstruction. A reconstructed signal is illustrated
in Fig. 5(d), where the reconstruction error is MSE .
In Fig. 5(e), we show the MSE of reconstruction versus SNR,
for several different values of the number of samples . The
results indicate that the performance of the method improves
as the number of samples increases. In this case, a very good
reconstruction can be already obtained for , and by
further increasing the number of samples, the performance does
not significantly improve.
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Fig. 5. Aperiodic piecewise constant signal. (a) Noisy piecewise constant signal. (b) Gaussian sampling kernel. (c) Filtered signal. (d) Noisy signal and
reconstructed piecewise constant signal. The signal is reconstructed from N = 160 samples, with an error of MSE = 6 � 10 . (e) Reconstruction error versus
SNR for different number of samples. The error is defined as MSE = Ef(x � x) g=Efx g.

C. Model Mismatch

In Figs. 6 and 7, we illustrate robustness of our schemes to
model mismatch. We first consider a noisy signal made up of

weighted Diracs, where the locations are randomly
chosen according to a uniform distribution over the interval [1,
1000], while the weights are i.i.d. zero mean Gaussian random
variables with unit variance. The signal is filtered with a low-
pass filter of bandwidth and 200 uniform samples are
taken from the lowpass version. We used the subspace method
from Section III-B, where no prior knowledge of the model order
is assumed. That is, the number of components is estimated as the
number of dominant singular vectors of the corresponding data
matrix. In Fig. 6(b), we show the reconstructed stream of pulses,
and obviously, only the dominant pulses have been extracted.

We next consider the case of a periodic piecewise polyno-
mial signal of degree embedded in noise, where the
signal model is not known in advance. The signal is lowpass
filtered and a uniform set of 40 samples is taken from the low-
pass version. Since we made no assumption on the signal model,
we approximated the signal with a piecewise constant function

with pieces, as illustrated in Fig. 7(a). In Fig. 7(b), we
show the noisless signal and the reconstructed lowpass version
using Shannon interpolation formula, where the frequency band
used for reconstruction is the same as in the previous case. Ob-
viously, our approach yields better representation of discontinu-
ities, which points to some robustness of our scheme to model
mismatch.

VIII. CONCLUSION

In this paper, we have considered the sampling problem for
signals of finite rate of innovation in the presence of noise. We
have revisited some of the results for deterministic, noiseless
signals [24] and developed more robust methods that improve
conditioning of the original schemes and allow for much better
numerical performance. We specifically focused on the case of a
stream of Diracs and developed a subspace framework to signal
reconstruction [16], [17], which provides an elegant and robust
solution to the sampling problem. For classes of periodic sig-
nals, such as piecewise polynomials and nonuniform splines, we
proposed novel algebraic solutions that use proper windowing
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Fig. 6. Model mismatch: Unknown model order. (a) Signal made up
of 15 weighted Dirac impulses, with eight impulses being dominant.
(b) Reconstructed dominant components.

and solve the problem in the Laplace domain. While some of
the tools we used were borrowed from spectral analysis [19],
our framework extends classic spectral estimation techniques
and allows for solving more general classes of nonlinear esti-
mation problems. Furthermore, we have developed techniques
that improve resolution capabilities of the existing spectral es-
timation schemes in the case when the signal contains closely
spaced components. We have also considered finite-length sig-
nals, and proposed improved schemes based on a Gaussian sam-
pling kernel and weighting of the data matrix. Both the numer-
ical analysis and simulation results indicate desirable properties
of the proposed methods, particularly for classes of signals that
contain discontinuities. Applications of our framework can be
found in signal and image processing [3], [12], [13], spectral
estimation, and communications [14]. The results presented so
far raise several questions for future research. Some of the in-
teresting topics include developing a formal framework for an-

Fig. 7. Model mismatch: Unknown signal model. (a) Piecewise polynomial
signal, noisy version, and the piecewise constant approximation. (b) Original
signal and reconstructed lowpass version using Shannon’s interpolation
formula.

alyzing the problem of model mismatch and investigating local
reconstruction schemes for finite-length signals.
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