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On the Sphere-Decoding Algorithm II.
Generalizations, Second-Order Statistics,

and Applications to Communications
Haris Vikalo and Babak Hassibi

Abstract—In Part I, we found a closed-form expression for
the expected complexity of the sphere-decoding algorithm, both
for the infinite and finite lattice. We continue the discussion in
this paper by generalizing the results to the complex version of
the problem and using the expected complexity expressions to
determine situations where sphere decoding is practically feasible.
In particular, we consider applications of sphere decoding to
detection in multiantenna systems. We show that, for a wide range
of signal-to-noise ratios (SNRs), rates, and numbers of antennas,
the expected complexity is polynomial, in fact, often roughly cubic.
Since many communications systems operate at noise levels for
which the expected complexity turns out to be polynomial, this
suggests that maximum-likelihood decoding, which was hitherto
thought to be computationally intractable, can, in fact, be imple-
mented in real-time—a result with many practical implications.
To provide complexity information beyond the mean, we derive
a closed-form expression for the variance of the complexity of
sphere-decoding algorithm in a finite lattice. Furthermore, we
consider the expected complexity of sphere decoding for channels
with memory, where the lattice-generating matrix has a special
Toeplitz structure. Results indicate that the expected complexity
in this case is, too, polynomial over a wide range of SNRs, rates,
data blocks, and channel impulse response lengths.

Index Terms—Expected complexity, frequency-selective chan-
nels, multiple-antenna systems, polynomial-time complexity,
sphere decoding, wireless communications.

I. INTRODUCTION

I NTEGER least-squares problems of the form

(1)

appear in a host of applications. In communications, when the
channel is linear and the noise independent, identically dis-
tributed (i.i.d.) Gaussian, maximum-likelihood (ML) decoding
leads to a least-squares cost. When the transmitted symbols are
from a finite set, this can be often cast as an integer least-squares
problem. Applications where the sphere-decoding algorithm
is employed for solving the integer least-squares problem (1)
include lattice codes [1]–[4], CDMA systems [5], and multi-
antenna systems [6]–[8]. In all these applications, the unknown
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vector represents the transmitted signal, the matrix rep-
resents the channel, and the vector represents the received
signal. For example, in the multiantenna context of V-BLAST
[6], where we have transmit and receive antennas, is
the real channel matrix, and for linear
space–time codes (such as those in [8]), it is the equivalent
channel matrix. The integer least-squares problem also arises
in the detection of signals transmitted over frequency-selective
finite impulse response channels [9]. Other applications include
global positioning systems (GPSs) [10] and cryptography.
In fact, there is a whole family of public-key cryptosystems
based on the NP-hardness of the integer least-squares problem
[11]–[13].

In this paper, we continue with the study of complexity of
sphere decoding started in Part I. In Sections II and IV, we
demonstrate the use of the expressions for expected complexity
to determine situations where sphere decoding is practically
feasible, i.e., we use those expressions to search for the tran-
sition from polynomial to exponential expected complexity. In
particular, in Section II, the expected complexity of sphere de-
coding for an infinite lattice, relevant for GPS applications, is
examined over a range of values of the system parameters. In
Section IV, we study the complexity of sphere decoding em-
ployed for ML detection in multiantenna wireless communi-
cation systems. Since in this application, the underlying op-
timization problem is complex valued, we first generalize the
expected complexity results to the complex version of the in-
teger least-squares problem in Section III. Using these expres-
sions, we show in Section IV that over a wide range of rates,
signal-to-noise ratios (SNRs), and dimensions (in fact, those
that are typically encountered in communications problems),
the expected complexity of the sphere-decoding algorithm is
polynomial, often cubic. In order to provide complexity infor-
mation beyond the first-order statistics that we found in Part I,
in Section V, we calculate the variance of complexity of sphere
decoding. Application of the sphere-decoding algorithm to fre-
quency-selective channels and the complexity of the algorithm
therein are studied in Section VI. The complexity of the algo-
rithm for the case when the system of equations in (1) is over-
determined and some variations of the basic sphere-decoding
algorithm are discussed in Section VII, while the conclusion is
in Section VIII. Many of the results of this paper and various
extensions can be found in the first author’s Ph.D. dissertation
[14].
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II. EXPECTED COMPLEXITY EXPONENT OF SPHERE DECODING

IN INFINITE LATTICE

As a measure of complexity, instead of the complexity itself,
it is often useful to look at the complexity exponent, defined as

(2)

In other words, for the particular complexity exponent , the
expected complexity of sphere decoding is

When plotted, is more visually appealing since the com-
plexity exponent approaches a constant if the expected com-
plexity is polynomial and grows like if
is exponential.

Using the closed-form expression for the expected com-
plexity of sphere decoding in an infinite lattice given by (28) in
Part I, the complexity exponent is plotted as a function of for
different values of in Fig. 1. As can be seen from the figure,
for small enough noise, the expected complexity is polynomial,
as indicated by the constant over a wide range of . On the
other hand, for large noise, clearly exhibits the
behavior, and the computational complexity of the algorithm is
exponential. Thus, we see the transition from polynomial time
to exponential complexity, which, for a wide range of , takes
place at .

III. GENERALIZATION OF COMPLEXITY RESULTS TO THE

COMPLEX CASE

In many applications, one is confronted with a complex ver-
sion of the integer least-squares problem. In this case, we may
generally assume that the model is

(3)

where now is comprised of i.i.d. (cir-
cularly-symmetric complex normal) entries, is
comprised of i.i.d. entries, and is an -di-
mensional complex vector whose entries have real and imagi-
nary parts that are integers. As before, we are interested in the
problem

(4)

The standard sphere-decoding algorithm given in Section 3.1
of Part I can be applied, provided that we use the complex QR
decomposition and modify the algorithm to accommodate for
complex inputs. In particular, the algorithm now runs over com-
plex dimensions . Therefore, instead of finding
points that belong to an interval on a real line, steps 2 and 3 of
the algorithm in Section 3.1 of Part I need to be modified so that
they compute coordinates of the points within a disc in a com-
plex plane. In the other steps of the algorithm, all that one needs
to do is replace the real operations with appropriate complex
ones. We are omitting the details of the algorithm and its com-
plexity analysis for brevity and because they closely parallel the
real case and state the complexity results below.

Fig. 1. Complexity exponent as a function of dimension m for the noise
variance � = 0:01; 0:1;1; 10 with � = :1 chosen for the sphere decoder
applied to an infinite lattice.

Corollary 1. [Expected Complexity of Sphere Decoding Over
Infinite Lattice]: Consider the model

where is comprised of i.i.d. entries,
is comprised of i.i.d. entries, and

is an -dimensional vector whose entries are complex vectors
with integer numbers for real and imaginary parts. Then, the
expected complexity of the sphere-decoding algorithm with a
search radius for solving the integer least-squares problem

is given by

(5)
where the number of elementary operations per visited point in
complex dimension is , and is the
number of ways can be represented as the sum of squared
integers.

Corollary 2. [Expected Complexity for Finding the Optimal
Solution]: Consider the setting of Corollary 1 in Part I. Given
any , consider a strategy where we first choose a
radius such that we find a lattice point with probability , and
then increase it to a probability of , and so on, if no point
is found. Then, the expected complexity of the sphere-decoding
algorithm to find the optimal solution is given by

(6)
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Fig. 2. Multiple antenna system.

where , is the number of ways can be
represented as the sum of squared integers, denotes a
normalized gamma function, and is chosen such that

(7)

When confronted with a complex integer least-squares problem
over a finite lattice, similar results hold.

The next corollary is the complex analog of Theorem 2 in
Part I.

Corollary 3. [Expected Complexity of the Sphere Decoding
Over a Finite Lattice]: Consider the model

where is comprised of i.i.d. entries,
is comprised of i.i.d. entries, and

is an -dimensional vector whose entries are complex-valued
elements of an -QAM constellation. Define the SNR as

Then, the expected complexity of the sphere-decoding al-
gorithm with a search radius , chosen such that

, for solving the integer least-squares
problem

1) for a 4-QAM constellation

(8)
2) for a 16-QAM constellation

(9)

where is the coefficient of in the polynomial

3) for a 64-QAM constellation, the expected complexity is

(10)

where is the coefficient of in the
polynomial

where and
, and

4) similar expressions can be obtained for 256-QAM, etc.,
constellations.

The number of elementary operations per visited point in
(8)–(10) is , while in (8)–(10)
denotes a normalized gamma function.

IV. EXPECTED COMPLEXITY EXPONENT OF SPHERE

DECODING IN FINITE LATTICES: ML DETECTION

IN MULTIANTENNA SYSTEMS

In this section, we use the expressions from Section III to
study the expected complexity of sphere decoding employed for
ML detection in multiantenna systems. Fig. 2 shows a multi-
antenna system with -transmit and -receive antennas.

The received signal is related to the transmitted symbol
via

(11)

where is the known channel matrix comprised of
i.i.d. complex-Gaussian entries , and is
the additive noise vector, comprised of i.i.d. complex-Gaussian
entries . Furthermore, entries in the symbol vector
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Fig. 3. Complexity exponent as a function of M for � = 20 dB and L =

2; 4; 8; 16.

are chosen from a complex-valued -QAM constellation, i.e.,
both the real and the imaginary components of are elements
of an -PAM constellation . As in Section III, the SNR is
given by

tr
tr

where tr denotes trace of its argument. The transmission rate
is defined as the number of bits transmitted per channel use

We consider the expected complexity of the sphere-decoding
algorithm for signal detection in the system shown in Fig. 2 with
equal number of transmit and receive antennas, for
various QAM modulation schemes. The expected complexity

is a function of both the symbol vector size and
the SNR .1 We shall consider “snapshots” in each dimension,
i.e., we keep either or variable fixed and examine the ex-
pected complexity as a function of the other variable. Fig. 3
shows the complexity exponent, defined as

as a function of for a fixed SNR dB and -QAM
constellations with . For low rates (i.e., small
constellations), the expected complexity is polynomial, whereas
for high rates (i.e., large constellations), it is exponential. Sim-
ulation results suggest that the complexity is polynomial as
long as the rate is sufficiently—but not necessarily all that
much—below the Shannon capacity corresponding to the SNR.
Since this is the regime at which most communication systems
operate, it suggests that ML decoding can be feasible. For

1In all of the simulations presented, the complexities are for the scheme that
finds the optimal solution. In other words, our initial radius is determined so
that we find a lattice point with probability .9 (i.e., � = :1). If no lattice point is
found, we increase the radius so that this probability increases to .99, and so on.

Fig. 4. Complexity exponent as a function of � for M = N = 5 and L =

2; 4; 8; 16.

instance, the complexity exponents curves in Fig. 3 that corre-
spond to and modulation schemes appear to be
in the exponential regime. However, as is illustrated in Fig. 3
for , the data rates corresponding to the points on those
two curves are larger than the corresponding ergodic capacity

For instance, when (and SNR 20 dB), ergodic ca-
pacity is . For the same system parameters, only
the rates provided by the modulation schemes corresponding to

and ( and , respectively, as
denoted in Fig. 3) can be supported by the channel. The other
two modulation schemes cannot be employed (we assume un-
coded transmission). Note that the expected complexity expo-
nent in the data transmission regime that is supportable by the
channel complexity is roughly cubic—which, in fact, is the com-
plexity of the heuristic techniques. For comparison, exhaustive
search in , 16-QAM system requires examining

points, which is roughly of sixth order.
Fig. 4 shows the complexity as a function of SNR for

and -QAM constellations with . A particular
modulation scheme can be used only in the range of SNRs that
supports transmission at the rate corresponding to that modula-
tion scheme. We note that in such a range, the complexity ex-
ponent is roughly cubic. For instance, although the complexity
for appears to be high over a wide range of SNR, it is
only for dB that this modulation scheme can be
employed [ is the SNR for which the capacity

]. The complexity exponent at and is
. The other SNRs marked on Fig. 4, dB

and dB, have similar meanings (only for and
, respectively).

Figs. 3 and 4 show the analytically obtained expected com-
plexity, that is, the first-order statistics. In Fig. 5, the empir-
ical distribution of the complexity exponent is shown for

transmit and receive antennas, 16-QAM modula-
tion scheme, and for four different SNR values. From Fig. 4, we
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Fig. 5. Complexity exponent distribution for M = N = 5, L = 4, and SNR = 16; 18; 20; 22 dB.

see that the lowest SNR in Fig. 5 (16 dB) roughly corresponds
to the minimum SNR required for transmission on the partic-
ular system with the modulation scheme of choice. The outer
dashed lines in each graph of Fig. 5 denote the complexity expo-
nents that are three standard deviations away from the mean. The
middle dashed line denotes the mean itself, i.e., the expected
complexity. We can make the following observations in relation
to the distributions as the SNR increases.

• The expected complexity decreases, which was already
implied by the results illustrated in Fig. 4.

• The variance of the complexity decreases, as illustrated
with the tightening of the standard deviation.

• The “point-mass” segments become more pronounced.
This is expected: For large SNRs, the radius of the sphere
will be small, and only a small (discrete) number of lattice
points are found inside.

More discussion on the variance of sphere decoding will follow
in the next section of the paper.

Finally, Fig. 6 shows the improvement in performance
of sphere decoding over the minimum mean-squared error
(MMSE) nulling and cancelling with optimal ordering for a
multiantenna system employing transmit and
receive antennas and 16-QAM modulation scheme. The com-
plexity of ML decoding for a single frame via sphere decoding
here is comparable to that of nulling and cancelling, whereas
the performance improvement is significant. The range of SNRs
in Fig. 6 is typical for indoor applications ([6]).

V. VARIANCE OF COMPUTATIONAL COMPLEXITY

OF SPHERE DECODING

Recall the basic real-valued integer least-squares problem
that we focused on in Part I. As argued there, the complexity
of sphere decoding is a random variable that depends upon the
realization of the generator matrix and the noise vector . So
far, we have considered its first moment, i.e., the expected com-
plexity. In this section, we find the variance of the complexity
of sphere decoding for a finite lattice. Using the results derived
in Part I of the paper, we can express the variance as

Var

(12)

where is the number of points in a sphere of dimension
and radius , and is the number of operations (flop count)
per visited point in dimension . The average number of points



2824 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005

Fig. 6. Sphere decoder versus nulling and cancelling, M = N = 5, L = 4, and corresponding e .

per dimension, , , has
been given in Theorem 2 in Part I of the paper. What remains
to be determined in (12) is the correlation , i.e.,
the expected number of pairs of points that fall inside the spheres
of radius and dimensions and , centered at the received
vector. To this end, recall that a skewed lattice point belongs
to a sphere of radius around the received vector iff

where we denoted , and . Therefore, for any
pair of points , where and are -dimensional and
-dimensional vectors in and , respectively, we wish to

calculate

(13)

where the vectors and are -dimensional and -dimen-
sional, respectively, and the upper-triangular matrices and

are and , respectively, and are defined by the
following partitioning of the vector and the matrix :

and

Assume that has been transmitted. Then, we can write

and

where , and and are -dimensional and -dimen-
sional vectors, respectively, obtained by partitioning as

Without loss of generality, we will assume that . Let
denote the vector comprised of the last entries of . Then,
one can show (see Appendix A) the following.

1) If

(14)

2) If

(15)



VIKALO AND HASSIBI: SPHERE-DECODING ALGORITHM II. GENERALIZATIONS 2825

where

and

and

The summation in (13) is over all possible pairs of points
. This is a formidable task for even small to moderate

. To ease the calculation, we count the number of pairs of
points that give the same . From
(14) and (15), it follows that the probability is completely de-
termined by the quadruplet . There-
fore, we can enumerate all pairs of lattice points by
counting the number of solutions to the system of equations

and

where , , , and are integer numbers that satisfy the con-
straints imposed by dimensions and and by the span of the
constellation .

We will show the enumeration for a 2-PAM constellation.
Since the constellation is symmetric, and all points are equally
likely to be transmitted, we can assume that the point com-
prised of all 1/2 has been sent. Let us first count the number of
pairs that give a particular triplet .
Since the transmitted vector has all entries equal to 1/2, the en-
tries of and can only be 0 and 1. Therefore, each entry of ,

, and can simultaneously only take on the values (0,0,0),
(1,0,0), (0,1,0), and (1,1,1). So, we form a multinomial in three
variables, where each variable represents one of the components
in an admissible triplet

Therefore, the polynomial

(16)

counts all possible triplets in the following
manner: There are pairs
of points such that

The number of vectors that, in addition to satisfying the
above, have is given by .

Combining the above, we conclude that

is the number of pairs of points such that ,
, , and , which gives us the full

enumeration for which we were seeking.
The results of this section can be summarized in the following

theorem.
Theorem 1. [Variance of Complexity of the Sphere Decoding

Algorithm Over Lattice]: Consider the model

where is comprised of i.i.d. entries,
is comprised of i.i.d. entries, and

is an -dimensional vector whose entries are elements of an
2-PAM constellation. Then, the variance of the complexity of
the sphere-decoding algorithm with a search radius of for
solving the integer least-squares problem

is given by

Var

where

where is computed in Section 4.4 in Part I, where
, , , , ,
, and is given by expressions

(14) and (15) wherein , , , and
.

Proof: Follows from the above discussions.
Though we do not give enumeration for , the variance

of complexity of the sphere-decoding algorithm for those cases
can, in principle, be found by calculating summation (13) over
all possible pairs of points .
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Fig. 7. Example with m = n = 2, L = 2. The curves from the top to the
bottom are the exponents for the expected complexity, the expected complexity
plus one standard deviation, and the expected complexity minus one standard
deviation, respectively. The solid lines are obtained theoretically, and the dashed
lines are obtained empirically from the flop count in MATLAB 5.

We illustrate the variance results summarized in Theorem 1
on an example with , . The middle curve
in Fig. 7 is the expected complexity exponent. The top curve in
Fig. 7 corresponds to the exponent of the expected complexity
plus one standard deviation, and the bottom curve corresponds
to the exponent of the expected complexity minus one standard
deviation. The variance is computed using Theorem 1, where the
integral in (15) is computed numerically, using Mathematica.

VI. SPHERE DECODING FOR DETECTION IN

FREQUENCY-SELECTIVE CHANNELS

The sphere-decoding algorithm that we considered in Part I
assumes no special structure on the channel matrix and
requires computing its factorization. In this section, we
describe how the sphere-decoding idea can be employed for
detection on frequency-selective channels directly, without
performing the factorization of the corresponding (banded
Toeplitz) channel matrix. This observation was first made in
[9]. Furthermore, we consider the expected complexity of the
algorithm for this special case of the lattice-generating matrix.
To this end, consider the frequency-selective channel model in
Fig. 8, with the input/output relation given by

where , are the coefficients of the channel im-
pulse response assumed to be Gaussian , is the th

Fig. 8. Frequency-selective channel.

symbol in a transmitted sequence (chosen from an -PAM con-
stellation), and denotes Gaussian noise.2 The data
is assumed to be transmitted in blocks of symbols, which are
separated by guard intervals of symbols. To employ the
sphere-decoding algorithm, we write the channel model as

(17)

where is the vector of the transmitted
data sequence, is the vector of the re-
ceived sequence, and is the vector of an
additive white Gaussian noise. The matrix is
given by

...
. . .

. . .
. . .

. . .

. . .

. . .
...

Here is where the banded Toeplitz structure of comes in
handy. Recall that the lattice point lies in a sphere of ra-
dius if and only if

(18)

The right-hand side of (18) can be expanded as

(19)
where the first term depends only on , the second term on

, and so on. Therefore, considering the first term
only, a necessary condition for to lie inside the sphere is
that

This condition is equivalent to belonging to the interval3

(20)

2We have assumed a real model to follow [9]. Both the algorithm, as well as
the complexity analysis, can be easily extended to the (perhaps more realistic)
complex model. However, in the interest of space, we shall refrain from consid-
ering also the complex case. The complexity analysis in the real case is already
quite involved (including a certain enumeration of integer-entried Toeplitz ma-
trices), and the interested reader should be able to extend our results in a straight-
forward fashion.

3We assume that h > 0. Note that the boundaries of intervals here and below
change when dividing by h < 0.
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Of course, (20) is by no means sufficient. For every satisfying
(20), defining

and

a stronger necessary condition can be found by looking at the
first two terms in (19), which leads to belonging to the
interval

(21)

One can continue in a similar fashion for and so on until
. However, these conditions used to find are necessary but

still not sufficient. Only if an additional constraint

(22)

is satisfied will the point indeed belong to the sphere, i.e.,
satisfy condition (18).

We can summarize the algorithm as follows.

Input: , , .

1) Set , ,
2) (Bounds for ) Set

,
3) (Increase ) . If

go to 5, else to 4.
4) (Increase ) ; if ,

terminate algorithm, else go to 3.
5) (Decrease ) If go to 6.

Else ,

,
.

6) If
, so-

lution found. Save and its dis-
tance from ,

, and go
to 3.

Remark: One can immediately notice a potential drawback
to the aforementioned algorithm. The additional constraint (22)
means that the previously considered constraints might have
not been particularly stringent. This would clearly have negative
impact on the complexity. Indeed, as we shall argue shortly, we
observe that there are scenarios where performing the QR fac-
torization and then employing sphere decoding may, in fact, be
the more favorable approach.

A. Expected Complexity of Sphere Decoding Algorithm for
Frequency-Selective Channels

For simplicity, we will assume that (the case
is treated similarly). To find the expected complexity of sphere
decoding for a banded Toeplitz matrix , we follow the proce-
dure outlined in Part I. First, note that (18) can be written as

where is the -dimensional vectors comprised of the last
entries of the vector , and is the matrix comprised of the
last rows of . Then, the algorithm described in the previous
section visits all -dimensional points such that

while the additional constraint in step 6 of the pseudo-code en-
sures that the stricter condition (18) is satisfied. Suppose that the
lattice point was transmitted and that the vector
was observed. To find the expected number of the -dimen-
sional points tested in step 6 of the code, we need to compute
the probability that for an arbitrary lattice point

where is a -dimensional vector comprised of the last en-
tries of the vector . The expected number of points in a -di-
mensional sphere of radius can now be found as

where the summation is over all pairs of points .
A similar expression holds for an expected number of points

in a -dimensional sphere . In particular

where , , and are -dimensional vectors, and is a
matrix obtained by the partitions

In Appendix B, we show that the probability that a point
belongs to the -dimensional sphere of radius is

(23)
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where

(24)

is the characteristic function of , and
. Furthermore, , are the eigenvalues of

the matrix , where, for , and
are matrices defined as

...
. . .

...
. . .

(25)

while for , they are matrices defined as

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

(26)

The expected complexity of the sphere-decoding algorithm is
given by [cf. (18), Part I]

expected of points in

dim sphere of radius

From the pseudo-code of the sphere-decoding algorithm for a
banded Toeplitz lattice-generating matrix given in the pre-
vious section, we find that the number of elementary operations
per point in a -dimensional sphere is

Note that includes the number of operations for
testing the additional constraint in step 6 of the code. Com-

bining all of the above, we can write the expression for the
expected complexity as

(27)

where is given by (24).
For given and , one can often find the closed-form expres-

sion for the probability (23). [In many cases, (23) is a linear
combination of a number of incomplete gamma functions.] Al-
ternatively, one can compute (23) by means of numerical in-
tegration (with, e.g., Mathematica or MATLAB). However, the
more pressing problem is one of finding an efficient enumera-
tion of the eigenvalues of the matrix over the
lattice, i.e., counting the number of pairs of points that
yield the particular set of eigenvalues of .
Unfortunately, unlike the enumeration via generating functions
in Part I of the paper, this enumeration appears to be difficult
to obtain. Thus, we leave the expression for the expected com-
plexity of sphere decoding for a banded Toeplitz in the form
(27). Note that for small dimensional problems (i.e., problems
with small and ), one can compute (27) by actually going
over all possible pairs of points , .

B. Some Comments

In the previous section, we considered the expected com-
plexity of sphere decoding that exploits the banded Toeplitz
structure of the channel matrix . However, there is a range
of system parameters , , and , for which it is more efficient
to first perform the factorization of . This is due to the
fact that the sphere decoding that directly uses may impose
less strict conditions on lattice points than the sphere decoding
that uses the upper-triangular matrix from the factoriza-
tion—as implied by the need to impose additional conditions
(22) when doing the former. The matrices and obtained
from the factorization of the banded Toeplitz do not have
as nice statistical properties as and obtained from the fac-
torization of the full, Gaussian i.i.d. matrix . Hence, we illus-
trate the previous point by means of simulations.

For illustration, consider an example with , ,
and . In Fig. 9, we plot the (empirically calculated) com-
plexity exponent as a function of SNR. Note that in the range
of SNRs where the bit-error rate (BER) performance is ,
the complexity of the sphere-decoding algorithm that exploits
the Toeplitz structure of the matrix is always less than the
combined complexity of the factorization and the standard
sphere decoding that makes use of the matrix .

On the other hand, consider the case with , ,
and . As Fig. 10 shows, the range of SNRs where the
sphere decoding with factorization is more preferable than
the sphere decoding that exploits the Toeplitz structure of is
quite wide. In fact, only in the range of BER that are
does the algorithm that exploits the Toeplitz structure of be-
come preferable.
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Fig. 9. BER performance and the expected complexity exponent of sphere decoding, T = 20, l = 12, L = 2. The plot on the right-hand side shows both
the complexity exponent of the algorithm that uses the Toeplitz structure of H and the exponent of the algorithm that uses QR factorization (for the latter, the
complexity of the QR factorization is included).

Fig. 10. BER performance and the expected complexity exponent of sphere decoding, T = 16, l = 8, L = 4. The plot on the right-hand side shows both
the complexity exponent of the algorithm that uses the Toeplitz structure of H and the exponent of the algorithm that uses QR factorization (for the latter, the
complexity of the QR factorization is included).

Note that the Viterbi algorithm, which has the same perfor-
mance as sphere decoding permitting a guard interval, has the
complexity that is exponential in the channel length and is linear
in the block length . Therefore, for the example in Fig. 10, the
complexity of the Viterbi algorithm is on the order of
flops. On the other hand, the sphere-decoding algorithm solves
the same ML detection problem with flops on av-

erage, which is a considerable computational saving. Sphere
decoding offers computational savings over the Viterbi algo-
rithm for this particular set of parameters and, in general, for
the cases where the length of the channel is large. However, for
short channels, low modulation schemes, and very long block
lengths, the Viterbi algorithm has lower (essentially linear in the
data block length) complexity than the sphere decoding.
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VII. REMARKS

In this and in Part I of the paper, we studied the complexity of
sphere decoding for finding an -dimensional vector so that

is the closest lattice point to the given -dimensional vector
, i.e., we studied the complexity of sphere decoding employed

for solving

when . On the other hand, for a finite lattice , one
can employ sphere decoding for solving the same problem, even
when , provided that one performs an additional partial
exhaustive search over the remaining dimensions. We
omit the details for brevity. However, it is easy to see that the
expected complexity of this scheme is given by

where is given by Theorem 2 in Part I.
On another note, the expected complexity that we discussed

in this paper accounts for finding all the lattice points in the
sphere. The point among those found that is closest to is the
solution to the integer least-squares problem. There are some
more efficient variations on the basic sphere-decoding algorithm
that potentially avoid having to search all lattice points inside the
sphere. We briefly mention two variations here.

• Sphere decoding with radius update
Whenever the algorithm finds a point inside the

sphere (note that is not necessarily the closest point
to ), we set the new radius of the sphere
and restart the algorithm. The radius update may be partic-
ularly useful at lower SNRs, where the number of points in
the initial sphere is relatively large. However, it may not be
beneficial at high SNR, since restarting the sphere decoder
may be costly. In any event, computing the expected com-
plexity for this modification of sphere decoding appears
to be complicated, since it requires the calculation of the
distribution of the radii that are updated.

• Schnorr–Euchner version of sphere decoding
This strategy was proposed in [15]. The likelihood that

the point will be found early is maximized if the search
at each dimension is performed from the middle of the
allowed interval for and if the radius update strategy (as
described above) is used. In particular, recall step 2 of the
sphere-decoding algorithm in Section 3.1 of Part I. There,
we set the upper and the lower bounds on

and the search for was performed by examining the
points

In the Schnorr–Euchner version of the sphere-decoding al-
gorithm, however, one starts from

where denotes rounding to the nearest element in the set
spanning the lattice and performs the search in the order of,
say,

The expected complexity of the Schnorr–Euchner version
of the sphere-decoding algorithm is no greater than the ex-
pected complexity of the basic algorithm that we derived
in Part I. However, computing its expected complexity in a
closed form appears to be formidable. More details about
the Schnorr–Euchner version of the sphere decoding, and
some improvements thereof, can be found in [3].

VIII. CONCLUSION

In this paper, we generalized the results on the expected
complexity of sphere decoding to the complex version of the
problem. We also calculated second-order statistics, i.e., we
found the variance of the complexity of sphere decoding.
Moreover, we studied applications of sphere decoding to
communication systems. In particular, we considered the appli-
cation to ML detection in multiantenna systems. Furthermore,
we studied the expected complexity of the sphere-decoding
algorithm for frequency-selective channels. In both cases, it
turns out that over a wide range of SNRs, rates, and dimensions,
the expected complexity is often cubic or subcubic. Since many
communications systems operate at noise levels for which
this is the case, this suggests that ML decoding, which was
hitherto thought to be computationally intractable, can, in fact,
be implemented with complexity similar to heuristic methods
but with significant performance gains—a result with many
practical implications.

There are quite a few open problems that remain and possible
directions for further work and research. With regards to finite
impulse response (FIR) channels, there is a need for an efficient
(number-theoretic) enumeration technique that would result in
a more explicit complexity expression. Second-order statistics
for the FIR case also need to be computed. On a different note,
for FIR channels, the sphere-decoding algorithm does not at all
exploit the Markovian property of the channel, which is pre-
cisely what the Viterbi algorithm does. Practical algorithms that
combine both structures (the lattice and the Markovian prop-
erty) are highly desirable, and some steps in this direction have
been taken in [16]. In this paper, we have considered only real-
(or complex-) valued lattices. ML decoding of linear error-cor-
recting codes can be viewed as finding closet lattice points (in a
Hamming distance sense) generated in Galois field. Moreover,
when error-correcting codes are coupled with analog channels
(through some modulation scheme), problems of joint detection
and decoding arise. Some preliminary work using the ideas of
this paper appear in [17].
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Finally, we should remark that an important message of this
two-part paper is that, for problems where there is an underlying
statistical model, the complexity of any algorithm is best viewed
as a random variable (see also [18] and the references therein).
A methodology for how to determine the statistics for one such
algorithm has been presented in this paper; however, we believe
that the general approach may find applications in other areas
(other than closest point searches) as well.

APPENDIX A
CALCULATION OF THE PROBABILITY

Recall that

and

We distinguish between the following two cases: and
, where denotes a vector comprised of the last

entries of .

1) : Since , if belongs to the -dimen-
sional sphere of radius , then it must be that be-
longs to the -dimensional sphere of radius and, there-
fore

However, from (20) in Part I of the paper

2) : To find , we consider the
characteristic function of

Denote

Consider two entries and of the vectors and

(28)
and

(29)
where is the entry of matrix . The are indepen-
dent, with -distribution of degrees of freedom,
while the nondiagonal entries are independent Gaussian
(see, e.g., [19]). Therefore, and are independent for

. So, is independent from ,
where is defined by the partition

Hence, we can write

(30)

Furthermore

(31)

To calculate , we need to find joint distribution for
. However, for and given by (28) and (29),

it is difficult to do so. Instead, we can consider an equivalent
problem that is quite easier to solve. To this end, recall Lemma 1
in Part I, which asserts that has the same distribution as the
upper triangular matrix obtained from the QR factorization of a

matrix comprised of i.i.d. Gaussian entries. This implies
that if we choose any isotropically random unitary matrix ,
independent of , the matrix will have a Gaussian
distribution with i.i.d. entries. In particular, if is
an isotropically distributed unitary matrix, we can write

where and have i.i.d. Gaussian entries.
Similarly

(32)

Thus, the th entry of and the th entry of can be written as

and

We note that and are independent for and jointly
Gaussian otherwise, i.e.,

where
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is the covariance matrix of the joint Gaussian probability den-
sity function . Therefore, the characteristic function

can be written as

Recall that we denoted . Therefore,
we can write

and thus, we have

(33)
On the other hand, using (32), the denominator of (31) can be
written as

Note that , and hence, we can write

and thus, we have

Similarly, the numerator of (31) can be written as

Combining the two expressions above, we obtain

(34)

Finally, combining (33) and (34), we obtain

(35)

The probability density function can be found by taking the in-
verse Fourier transform of the characteristic function in (35)

and thus, the probability can be found as

APPENDIX B
CALCULATION OF THE CHARACTERISTIC FUNCTION

IN SECTION VI-A

Note that we can write the random variable
as

(36)
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where , the -dimensional vector , is defined as

the matrix is defined as

and the matrices , are given by (25) and (26).
The characteristic function of can be

found as

(37)

where

By simplifying the integrand in (37), we obtain

and, finally

where the determinant of is found as

where , are the eigenvalues of the matrix .
In evaluating , we used the matrix inversion lemma

Combining all of the above, we obtain (24), i.e.,
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