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Estimation of the Number of Sources in Unbalanced
Arrays via Information Theoretic Criteria

Eran Fishler‡ and H. Vincent Poor†

Abstract— Estimating the number of sources impinging on an
array of sensors is a well known and well investigated problem.
A common approach for solving this problem is to use an
information theoretic criterion, such as Minimum Description
Length (MDL) or the Akaike Information Criterion (AIC). The
MDL estimator is known to be a consistent estimator, robust
against deviations from the Gaussian assumption, and non-robust
against deviations from the point source and/or temporallyor
spatially white additive noise assumptions. Over the yearsseveral
alternative estimation algorithms have been proposed and tested.
Usually, these algorithms are shown, using computer simulations,
to have improved performance over the MDL estimator, and to
be robust against deviations from the assumed spatial model.
Nevertheless, these robust algorithms have high computational
complexity, requiring several multi-dimensional searches.

In this paper, motivated by real life problems, a systematic
approach toward the problem of robust estimation of the number
of sources using information theoretic criteria is taken. An
MDL type estimator that is robust against deviation from
assumption of equal noise level across the array is studied.The
consistency of this estimator, even when deviations from the equal
noise level assumption occur, is proven. A novel low-complexity
implementation method avoiding the need for multi-dimensional
searches is presented as well, making this estimator a favorable
choice for practical applications.

I. I NTRODUCTION

A. Motivation

The problem of estimating the number of sources impinging
on a passive array of sensors has received a considerable
amount of attention during the last two decades. The first
to address this problem were Wax and Kailath, [1]. In their
seminal work [1] it is assumed that the additive noise process
is a spatially and temporally white Gaussian random process.
Given this assumption the number of sources can be deduced
from the multiplicity of the received signal correlation matrix’s
smallest eigenvalue [2], [3]. In order to avoid the use of
subjective thresholds required by multiple hypothesis testing
detectors [4], Wax and Kailath suggested the use of the
Minimum Description Length (MDL) criterion for estimating
the number of sources. The MDL estimator can be interpreted
as a test for determining the multiplicity of the smallest
eigenvalue [3].
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Following [1], many other papers have addressed this prob-
lem (see, among others [5], [6], [7], [8], [9], [10]). These
papers can be divided into two major groups: the first is
concerned with performance analysis of the MDL estimator
[11], [2], [12], [13], while the second is concerned with
improvements on the MDL estimator.

Papers detailing improvements of the MDL estimator can
be found quite extensively: [5], [14], [6], [15], [16], [9] is
only a partial list of such works. In many of these works
the MDL approach is taken, and by exploiting some type of
prior knowledge, performance improvement is achieved [17],
[6], [10]. One of the assumptions usually made is that the
additive noise process is a spatially white process, and the
robustness of the proposed methods against deviations from
this assumption is usually assessed via computer simulations
[9]. In general it can be observed that methods which use
some kind of prior information are robust, while methods
which are based on the multiplicity of the smallest eigenvalue
are non-robust. The reason for these latter estimators’ lack of
robustness is that, when a deviation from the assumed model
occurs, the multiplicity of the smallest eigenvalue equalsone
[1]. Thus, one can not infer the number of sources from the
multiplicity of the received signal correlation matrix’s smallest
eigenvalue. On the other hand, methods that are based on
some prior knowledge, e.g., the array steering vectors, usually
have high computational complexity, requiring several multi-
dimensional numerical searches [18]. Moreover, these methods
are not necessarily consistent when some deviations from the
assumed model occur, although they exhibit good robustness
properties in simulations.

Efficient and robust estimation of the number of sources is
very important in bio-medical applications (see, for example
[19], and references therein). For example, in one such ap-
plication it is of interest to estimate the number of neurons
reacting to a short stimulus. This is done by placing a very
large array of sensors over a patient’s head, and recording
the brain activity as received by these sensors. In these bio-
medical problems noa priori knowledge (e.g., knowledge of
steering vectors) exists. Moreover, since different sensors are
at slightly different distances from the patient’s skin, the noise
levels at the outputs of the sensors vary considerably. Thusbio-
medical applications are an example of one important class of
problem in which the additive noise is not necessarily spatially
homogeneous.

Although robust estimators for the number of sources exist,
these estimators require somea priori knowledge which is
often not avilable, and their computational complexity is large,
as noted above. Thus, computationally efficient and robust

http://arxiv.org/abs/cs/0501058v1


2

estimators for the number of sources are of considerable
interest. These estimators should not require prior knowledge
and should be consistent even when deviations from the
assumed model occur. Such estimators for specific types of
deviations from the assumed model are developed in this paper.
In particular, we consider the situation in which the sensor
noise levels are spatially inhomogeneous. It will be shown
that while traditional methods for estimating the number of
sources tend to over-estimate the number of sources under
these circumstances, our proposed estimator does not have this
tendency.

B. Problem Formulation

Consider an array ofp sensors and denote byx(t) the
received,p-dimensional, signal vector at time instantt. Denote
by q < p the number of signals impinging on the array. A
common model for the received signal vector is [18], [11]:

x(t) = As(t) + n(t) , t = 1, 2, . . . , N (1)

where A = [a(ψ1), a(ψ2), · · · , a(ψq)] is a p × q matrix
composed ofq p-dimensional vectors, anda(ψ) lies on the
array manifold{A = a(ψ)|ψ ∈ Ψ}, where Ψ denotes
a set of parameters describing the array response.a(ψ) is
called the array response vector or the steering vector and
A is referred to as the steering matrix, andψi is a vec-
tor of unknown parameters associated with theith source.
s(t) = [s1(t) · · · sq(t)]

T is a white complex, stationary
Gaussian random processes, with zero means and positive
definite correlation matrix,Rs; n(t) is a temporally white
complex Gaussian vector random process, independent of
the signals, with zero mean and correlation matrix given by
diag

(
[σ2

1 , σ
2
2 , . . . , σ

2
p]
)
, where diag

(
[σ2

1 , σ
2
2 , . . . , σ

2
p]
)

denotes
a diagonal matrix with the vector[σ2

1 , σ
2
2 , . . . , σ

2
p] on its diag-

onal. This correlation matrix represents the scenario in which
each sensor potentially faces a different noise level. Define
σ2 = 1

p

∑p

i=1 σ
2
i , wi = σ2

i − σ2, andw = [w1, w2, . . . , wp].
The additive noise correlation matrix can be described withthe
aid ofσ2 andw as followsE

{
n(t)nH(t)

}
= σ2

I+diag(w).
This alternate representation simplifies some of the proofsand
derivations in the sequel. Note, that the vectorw represents a
deviation from the assumption that the noise level is constant
across the array. Finally, all the elements of the steering matrix,
A, are assumed to be unknown [1], with the only restriction
being thatA is of full rank. In the sequel the Gaussian
assumption will be eased.

We denote byθq the set of unknown parameters assuming
q sources, that isθq = [Rs,q,Aq, σ

2
n,q,wq], whereRs,q is the

transmitted signals’ correlation matrix assumingq sources;Aq

is the steering matrix assumingq sources;σ2
n,q is the white

noise level; andwq is the vector containing the parameters
representing the deviations from the spatially white noise
assumption. The parameter space of the unknown parameters
givenq sources is denoted byΘq. The problem is to estimate
q based onN independent snapshots of the array output,
x1 = x(t1), . . . ,xN = x(tN ) [1].

C. Information Theoretic Criteria and MDL Estimators

An Information Theoretic Criterion (ITC) is an estimation
criterion for choosing between several competing parametric
models [3]. Given a parameterized family of probability den-
sities, fX (X|θq) , θq ∈ Θq for X = [x1, . . . ,xN ] and for
variousq, an ITC estimator selectŝq such that [3]:

q̂ITC = argmin
q

ITC(q) = argmin
q

{
−L

(
θ̂q

)
+ penalty(q)

}
(2)

whereL (θq)
△
= log fX (X|θq) is the log-likelihood of the

measurements,̂θq = argmaxθq∈Θq
fX (X|θq) is the max-

imum likelihood (ML) estimate of the unknown parameters
given theqth family of distributions, andpenalty(q) is some
general penalty function associated with the particular ITC
used. The MDL and AIC estimators are given bypenalty(q) =
0.5|Θq| log (N) and penalty(p) = |Θq| respectively, where
|Θq| is the number of free parameters inΘq [20], [21], [1]. It
is well known that, asymptotically and under certain regularity
conditions, the MDL estimator minimizes the description
length (measured in bits) of both the measurements,X, and
the model,θ̂q [22], while the AIC criterion minimizes the
Kullback-Liebler divergence between the various models and
the true one. In the rest of the paper we will consider only the
MDL criterion, although other penalty functions can also be
treated similarly.

Although in many problems associated with array process-
ing, e.g., direction of arrival (DOA) estimation, one has some
prior knowledge about the array structure, when estimatingthe
number of sources this prior knowledge is usually ignored [1],
[18]. The reason for this is that by ignoring the array structure
and assuming Gaussian signals and noise, andw ≡ 0, the
resulting MDL estimator (2), termed here the Gaussian-MDL
(GMDL) estimator [11], has a simple closed form expression
given by [1]

q̂|GMDL = arg min
q=0,...,p−1


−N log

∏p

i=q+1 li(
1

p−q

∑p
i=q+1 li

)p−q

+
1

2
(q(2p− q) + 1) logN

]
(3)

wherel1 ≥ l2 ≥ · · · ≥ lp are the eigenvalues of the empirical
received signal’s correlation matrix,̂R = 1

N

∑
xix

H
i . It is

well known that whenw ≡ 0 the GMDL estimator is a
consistent estimator of the number of sources, while when
w 6= 0, the GMDL estimator, (3), is not consistent and in fact,
as the number of snapshots approaches infinity, the probability
of error incurred by the GMDL estimator approaches one [11].

Denote by Rq the set of all positive definite, rankq,
Hermitian,p× p matrices, and byW the set of all zero mean
p-length vectors. Given the assumptions made in the problem
formulation, the MDL estimator for estimating the number
of sources, denoted hereafter as the Robust-MDL (RMDL)



FISHLER AND POOR: ROBUST ESTIMATION OF THE NUMBER OF SOURCES 3

estimator, is given by,

q̂RMDL = arg min
q=0,...,p−1{

N log
∣∣∣ÂqR̂s,qÂ

H
q + σ̂2

n,qI+ diag(ŵq)
∣∣∣

+Tr

{(
ÂqR̂s,qÂ

H
q + σ̂2

n,qI+ diag(ŵq)
)−1

R̂

}

+
1

2
(q(2p− q) + p) logN

}
(4)

where Âq, R̂s,q, σ̂
2
n,q, ŵq are the ML estimates of the un-

known parameters assumingq sources, that is

Âq, R̂s,q, σ̂
2
n,q, ŵq = arg max

AqRs,qA
H
q ∈Rq,σ2

n,q>0,wq∈W[
−N log

∣∣AqRs,qA
H
q + σ2

n,qI+ diag(wq)
∣∣

+Tr
{(

AqRs,qA
H
q + σ2

n,qI+ diag(wq)
)−1

R̂

}]
. (5)

Note that sinceAqRs,qA
H
q ∈ Rq, by using eigen-

decomposition we can writeAqRs,qA
H
q =

∑q

i=1 λiviv
H
i ,

where{vi} is an orthonormal set of vectors. Hence, the vector
of unknown parameters assumingq sources is also given by

θq = [λ1, . . . , λq,v
T
1 , . . . ,v

T
q ,w

T , σ2
n]. (6)

D. Organization of the Paper

The rest of this paper is organized as follows: In Section II
we discuss the indentifiabilty of the estimation problem and
we prove the consistency of the RMDL estimator. In Section
III we describe a low-complexity algorithm for approximating
the RMDL estimator, (4), and we discuss the properties of
this algorithm. In Section IV we present empirical results.In
Section V some concluding remarks are provided.

II. I DENTIFIABILITY AND CONSISTENCY OF THERMDL
ESTIMATOR

A. Identifiability

Consider a parameterized family of probability density
functions (pdf’s) fX(x|θ), θ ∈ Θ. This family of den-
sities is said to beidentifiable if for every θ 6= θ′, the
Kullback-Liebler divergence betweenfX (x|θ) andfX (x|θ′)
is greater than zero, that isD (fX (x|θ) ||fX (x|θ′)) > 0,
where D(f(x)||g(x)) =

∫
f log f

g
is the Kullback-Leibler

divergence betweenf(x) andg(x) [23]. This condition insures
that there is a one-to-one relationship between the parameter
space and the statistical properties of the measurements.

The problem discussed in Section I-B is a model order
selection problem [22]. This problem is unidentifiable if it
is possible to find for somek 6= l two points in the parameter
space,θk ∈ Θk and θl ∈ Θl such thatf (·|θk) = f (·|θl).
Unfortunately, we can, in fact, identify two such points leading
to the conclusion that the estimation problem discussed in
Section I-B is unidentifiable. The received signal’s pdf is
fully characterized by the received signal’s correlation matrix.
Thus, in order to prove that the problem is unidentifiable, it
suffices to find two different parameter values under which the
corresponding received signal’s correlation matrices areequal.

Take, for example, the following received signal correlation
matrix: diag([11, 10.5, 9.5, 10]). This correlation matrix can
result from a noise-only scenario withσ2

n = 10.25 andw =
[0.75, 0.25,− 0.75,− 0.25], or from a one source scenario
whereσ2

n = 10,w = [0, 0.5,− 0.5, 0], a = [1, 0, 0, 0]T , and
Rs = 1. Thus we have found two scenarios, the first corre-
sponding to a noise only scenario, and the other corresponding
to a one source scenario, such that the distribution of the
received signal vector is the same. Thus, this example shows
that the estimation problem formulated is unidentifiable.

In order to make the estimation problem identifiable, all the
points having the same received signal pdf must be removed
from the parameter space except one. As is the custom in
model order selection problems, among all the points having
the same received signal pdf, the one with the smallest number
of sources, that is, the point with the lowest number of
unknown parameters, is left in the parameter space, and the
remaining ones are deleted. The main question that arises
is whether most of the points in the parameter space are
identifiable or not. Fortunately, the answer to this question
is yes; that is, most of the points in the parameter space
are identifiable. The following lemma characterizes all the
unidentifiable points in the parameter space.

Lemma 1:Supposeq < p. Then θq is an unidentifiable
point in the parameter space if and only if the matrix∑q

i=1 viv
H
i containsαej = [0j−1, 1,0p−j ] as its jth row

for somej ∈ [1, . . . , p], wherevi defined in (6).
Proof of Lemma 1:See Appendix I
The proof of Lemma 1 provides an interesting physical

interpretation of the unidentifiable points. In particular, it can
be seen from the proof of the lemma that all the unidentifiable
points are similar to the above example used to show that
the problem is unidentifiable. That is, an unidentifiable point
corresponds to a scenario where there are, sayq sources, and
one of them is received at only one of the sensors. Since
this source can not be distinguished from a deviation, from
some nominal value, of the noise level in the corresponding
element, this scenario could be confused with a different
scenario having one fewer source, and an increase in the noise
level at the proper element. From a practical viewpoint, this
type of situation is a rarity.

B. Consistency of the RMDL Estimator

In the previous subsection it was proved that the estimation
problem defined in Section I-B is unidentifiable. Nevertheless,
it was also argued that only a small portion of the points in the
parameter space are unidentifiable, meaning that by excluding
these points from the parameter space the problem becomes
identifiable. For the rest of this paper, we consider these points
to be excluded from the parameter space. Once the estimation
problem has been shown to be identifiable, it is possible to
infer the number of sources from the measurements. However
for a specific estimator, the issue of consistency must be
considered.

In model order selection, the common performance measure
is the probability of error, that isPe = P (q̂ 6= q) [3]. In what
follows the RMDL estimator, (4), is proven to be a consistent
estimator, that islimN→∞ Pe = 0.
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Lemma 2:The RMDL estimator, (4), is a consistent esti-
mator of the number of sources.

Proof of Lemma 2:See Appendix II
Deviations from the assumption of spatial homogeneity are

part of our general model. Thus, even if the noise levels at
various sensor are not equal, according to Lemma 2 the RMDL
estimator, (4), is still consistent. That is, the probability of
error of the RMDL estimator still converges to zero even in
the presence of deviations from assumption of equal noise
levels.

It is well known that the GMDL estimator, (3), is a non-
robust estimator when the noise levels at the various sensorare
not equal, i.e., the probability of error of the GMDL estimator
approaches one asN → ∞. Nevertheless, it is known that
the GMDL estimator is robust against statistical mismodeling.
Under very weak regularity conditions, if the transmitted
signal and/or the additive noise are non-Gaussian, then the
probability of error of the GMDL estimator still converges to
zero. Fortunately, it can be shown that the RMDL estimator,
(4) is robust against statistical mismodeling as well. Being
robust against both statistical and spatial mismodeling isan
advantage of the RMDL estimator over the GMDL estimator.

We conclude this subsection by proving that the RMDL
estimator, (4) is a consistent estimator even in the presence
of statistical mismodeling. Denote byg(x) the actual pdf
of the received signal at some time instant, and byf (x|θ)
the assumedmeasurement pdf, i.e., the Gaussian distribution.
Note that it is still assumed thatRx = E

{
xx

H
}

has the
following form Rx = AsRsA

H + σ2
nI + diag(w). Let

Eg {h(x)} =
∫
h(x)g(x)dx. The following lemma establishes

the consistency of the RMDL estimator when the sources are
not Gaussian

Lemma 3:Assume thatEg

{
∂ log f(x|θ)

∂θ

∂ log f(x|θ)
∂θ

T
}

and

Eg

{
∂2 log f(x|θ)
∂θ(∂θ)T

}
exist and are finite. Then the probability of

error of the RMDL estimator converges to zero asN → ∞.
Proof of Lemma 3:See Appendix III.

III. A P RACTICAL ESTIMATION ALGORITHM

In the previous section the asymptotic properties of the
RMDL estimators were considered. It was proven that the
RMDL estimator is both a consistent and robust estimator of
the number of sources. These two properties make the RMDL
estimator very appealing for use in practical problems. How-
ever the computational complexity of the RMDL estimator
is still very high compared to that of the GMDL estimator.
Recall that in order to implement the RMDL estimator ML
estimates of the unknown parameters must be found for every
possible number of sources. Since no closed-form expression
for these ML estimates exists, multi-dimensional numerical
searches must be used in order to find them. Even for moderate
array sizes, e.g.,p = 6, the number of unknown parameters is
a few dozen, which makes the task of finding the ML estimates
impractical.

In order to overcome the computational burden of com-
puting the ML estimates, we propose to replace the ML esti-
mates by estimates obtained using a low-complexity estimation
algorithm. A reasonable criterion used in array processing

applications is to choose as an estimate the parameter vector
that minimizes the Frobenius norm of the error matrix [24],
[25]; that is

θ̂q,LS = arg min
θq∈Θq

||(R̂−Rx(θq))||
2
F

= arg min
θq∈Θq

Tr
{
(R̂−Rx(θq))(R̂ −Rx(θq))

H
}

= arg min
θq∈Θq

p∑

i=1

p∑

j=1

∣∣∣[(R̂−Rx(θq))(R̂ −Rx(θq))]ij

∣∣∣
2

(7)

and the corresponding estimate for the number of sources is
given by,

q̂ = arg min
q=0,...,p−1

[
−L

(
θ̂q,LS

)
+ q(2p− q)

logN

2

]
. (8)

Replacing the ML estimates with their LS counterparts
raises two important questions. One is whether replacing the
ML estimates with the LS estimates results in performance
loss; and the second is whether efficient algorithms for com-
puting the LS estimates exist. Fortunately, it can be demon-
strated that no performance loss is incurred (asymptotically)
by replacing the ML estimates with the LS estimates, and
an efficient algorithm for computing the LS estimates exists.
It was pointed out by one of the reviewers that for finite
sample sizes since the ML estimates are replaced by the LS
estimates, it is not guaranteed thatL

(
θ̂q,LS

)
< L

(
θ̂q+1,LS

)
.

This problem can be easily solved by noting that because
the problem is a nested hypotheses problemhatθq ∈ Θq+1.
Therefore, ifL(θ̂q|LS) < L(θ̂q+1|LS), we can useL(θ̂q|LS)

instead ofL(θ̂q+1|LS) in the MDL formula.
Our problem is a model order selection problem, and our

main interest is in the probability of error of the proposed
estimator. In [11], it is demonstrated that the MDL’s asymp-
totic probability of error depends onθq and θ∗q−1 ∈ Θq−1,
where θ∗q−1 = argminθq−1

D(f(x|θq)||f(x|θq−1)). It is
easily seen thatθ∗q−1 is the limit of the ML estimates under

the assumption ofq − 1 sources, i.e., ˆθq−1|θq
N→∞
−→ θ∗q−1.

Analysis similar to that in [11] demonstrates that if a consistent
estimator is used instead of the ML estimator in the MDL
estimator, then the asymptotic probability of detection remains
the same. Since the LS estimator is a consistent estimator of
the unknown parameters, the asymptotic performance of the
RMDL’s simplified version, (8), is the same as the asymptotic
performance of the RMDL estimator, (4).

Similarly to the ML estimates,̂θq,LS is the solution of a
nonlinear programming problem, requiring brute-force multi-
dimensional search. Nevertheless, based on the concept of
serial interference cancellation (SIC) [26], in what follows a
novel algorithm for findingθ̂q,LS is suggested. In this algo-
rithm the unknown parameters are divided into two groups,
and given the estimate of one group of unknown parameters,
an estimate of a second group of unknown parameters is
constructed. The estimates are constructed in such a way as
to insure a decrease in the Frobenius norm of the error matrix
after each iteration. The estimation process iterates between
the two groups of unknown parameters, until the estimates
converge to a stationary point.
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In multiple access communications two (or more) users
transmit information over two non-orthogonal subspaces. The
serial interference cancellation multiuser detection algorithm
for data detection in such situations works as follows. First,
the unknown parameters associated with the first user are
estimated. Next, an error signal is constructed by subtracting
from the received signal the estimated first user’s transmitted
signal. In the next stage, the unknown parameters associated
with the second user are estimated from the error signal. In
the next iteration, the unknown parameters associated with
the first user are re-estimated based on the received signal
after subtraction of the estimated second user’s transmitted
signal. This iterative process is continued until convergence is
reached.

The principle behind the SIC multiuser detector can
be used for constructing a novel low-complexity esti-
mation algorithm for estimating the unknown parameters
in the present situation. In what follows such a low-
complexity estimation algorithm is described and its prop-
erties are discussed. The unknown parameters in our es-
timation problem are[λ1, . . . , λq,v

T
1 , . . . ,v

T
q ,w

T , σ2
n], or

equivalently,AqRs,qA
H
q , σ2

n,q,wq. These unknown parame-
ters are divided into two groups. The first group contains
[λ1, . . . , λq,v

T
1 , . . . ,v

T
q , σ

2
n], or equivalentlyAqRs,qA

H
q and

σ2
n,q, while the second containswq. The first group corre-

sponds to the unknown parameters of the ideal point source
plus spatially white additive noise model, while the second
corresponds to the unknown parameters representing the de-
viations from the ideal model. In a sense,wq can be regarded
as the unknown parameters that robustify the estimator. The
input to the algorithm isR̂x = 1

N

∑N

t=1 x(ti)x(ti)
H which

is a sufficient statistic for estimating the unknown parameters,
assuming Gaussian sources and noise.

Denote byσj
n,q,A

j
qR

j
s,q

(
A

j
q

)H
, andw

j
q the estimates of

the unknown parameters after thejth iteration. The proposed
algorithm is implemented as follows: In the first iteration,
σ1
n,q,A

1
qR

1
s,q

(
A

1
q

)H
are estimated from̂Rx. The best esti-

mates, in both the ML sense and the Least Squares (LS) sense
(see appendix IV), are

σ1
n,q =

√√√√ 1

p− q

p∑

i=q+1

li (9)

A
1
qR

1
s,q

(
A

1
q

)H
=

q∑

i=1

(
li −

(
σ1
n,q

)2)
viv

H
i (10)

where l1 > · · · > lp and v1, . . . ,vp are, respectively, the
eigenvalues and eigenvectors ofR̂x. In the next step an error
matrix, denoted byE, is constructed by subtracting from̂Rx

the estimate for the estimated part of the received signal’s
correlation matrix corresponding to the ideal model, that is
A

1
qR

1
s,q

(
A

1
q

)H
+
(
σ1
n,q

)2
I. Thus, the error matrix is given

by

E = R̂−A
1
qR

1
s,q

(
A

1
q

)H
−
(
σ1
n,1

)2
I. (11)

Next, w1
q is estimated fromE, and the best estimate in both

the ML and LS sense is,

w
1
q = diag(E) . (12)

At the jth iteration, we apply the same procedure except that
σj
n,q andAj

qR
j
s,q

(
A

j
q

)H
are estimated from̂R−w

j−1
q , while

w
j
q is estimated from̂R−A

j
qR

j
s,q

(
A

j
q

)H
−
(
σj
n,q

)2
I.

Summarizing the above, our proposed estimation algorithm
is given as follows:

1) Initialize E = R̂.
2) Computel1 ≥ · · · lp, v1, . . . ,vp the eigenvalues and the

corresponding eigenvectors ofE.
3) Compute the following estimates,

σn,q =

√√√√ 1

p− q

p∑

i=q+1

li (13)

AqRs,q (Aq)
H

=

q∑

i=1

(
li − (σn,q)

2
)
viv

H
i (14)

wq = diag
(
R̂−AqRs,q (Aq)

H
− (σn,q)

2
I

)
(15)

4) ComputeE = R̂−wq.
5) If the estimates have stabilized, stop; otherwise return

to step 2.
A major question that arises is whether this algorithm is

guaranteed to converge and, if so, whether the stationary
point of the algorithm is optimal in some sense. Fortunately,
the answers to these questions are yes. In Appendix IV it
is proven that in each step of the algorithm, the Frobenius
norm of the error matrix decreases, that is||R̂−R(θnq )||

2
F ≥

||R̂−R(θn+1
q )||2F , whereθnq is the estimate of the unknown

parameters after thenth iteration. This also proves that the
proposed algorithm converge to a local minimum of the LS
cost function.

Consider our proposed iterative algorithm. The most com-
plex operation in our algorithm is the eigenvalue decom-
position whose complexity isO(p3). Since the process is
repeatedp times (one for each possible number of sources),
the complexity of our algorithm isO(p4) per iteration.

Since no closed expression for the ML estimates exists,
some numerical maximization method must be used. There-
fore, the complexity of the ML estimator depends on the
number of iterations and the exact numerical maximization
method used. However, we can still demonstrate that the com-
plexity of the ML estimator is higher than that of our proposed
algorithm. Since efficient numerical maximization algorithms
require the computation of the derivative of the likelihood
function, we examine the complexity of computing this deriva-
tive. The most complex operation in computing the derivative

is
∂Tr
{
R

−1
x

(θ)R̂
}

∂θi
= −Tr

{[
R

−1
x

(θ)R̂R
−1
x

(θ)
]

∂R−1
x

(θ)
∂θi

}
,

which has a complexity ofO(p8). This operation has to be
repeatedp times, one for each possible number of sources.
Therefore the complexity of computing the derivative of the
likelihood function per iteration isO(p9). It follows that for
p > 3, the complexity of the ML estimator is higher by several
orders of magnitude than our proposed iterative algorithm.

IV. SIMULATIONS

In this subsection simulation results with synthetic data are
presented. We consider a uniform linear array with 10 ele-
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ments, and assume three equal-power and independent sources
having signal-to-noise ratio (SNR) per element of0 dB.
The sources’ directions of arrival (DOA’s) are taken to be
[0◦ 5.7◦ 11.4◦]. We consider two cases: the first corresponds
to complex Gaussian sources, i.e.,s(t) ∼ CN

(
0, σ2

)
; and

the second corresponds to sources that are distributed as
complex Laplacian sources, i.e.,ℜ (s(t)) and ℑ (s(t)) are
independent random variables having pdf1

α
e−

|x|
α . The second

case corresponds to impulsive sources usually found in bio-
medical application.

We first consider the case in whichw = 0; i.e., the noise
is spatially white. Figure 1 depicts the probability of correct
decision in this case of both the GMDL estimator and the
RMDL estimator when used with the estimates computed by
the iterative algorithm. Since no deviations from the spatial
white noise model exist in this case, the GMDL estimator is
both consistent and robust, and indeed the empirical prob-
ability of error of the GMDL estimator converges to zero
whether the sources are Gaussian or Laplacian. The RMDL
estimator is also both a consistent and a robust estimator, and
again the empirical probability of error of the RMDL estimator
converges to zero as well, independent of the source distri-
bution. These empirical results demonstrate that the GMDL
estimator is superior to the RMDL estimator in this situation,
an additional 100 samples are required by the RMDL estimator
in order to achieve the same probability of correct decisionas
the GMDL estimator. In [27] it was proven that by exploiting
more prior information the performance of the MDL estimator
improves. This explains the superiority of the GMDL estimator
over the RMDL estimator, since the GMDL estimator makes
use of the spatial whiteness of the additive noise process, while
the RMDL estimator ignores this information.

In practice, multi-channel receivers are used in DOA esti-
mation systems. The noise level in each receiver is different
and hence the system has to be calibrated. Due to finite
integration time, errors and different drifts in each channel,
small differences in the noise levels at the different receiver
channels exist. In the next example this scenario is simu-
lated. For simulating this scenariow is taken to bew =
σ2
n

10 [−9/10,−7/10, . . . , 9/30]. Thisw represents a scenario in
which the noise level in each receiver is different from the
nominal noise level by no more than−10 dB. Figure 2 depicts
the probability of correct decision of both the GMDL and the
RMDL estimators as functions of the number of snapshots
taken for both Gaussian and Laplacian sources.

The multiplicity of the received signal correlation matrix’s
smallest eigenvalue is equal to one, and hence the GMDL
estimator is not consistent, that isP (q̂ 6= 3) → 1 [3]. From
Fig. 2 it is seen that the empirical probability of error of the
GMDL estimator converges to one as the number of snap-
shots increases. Nevertheless, it can be seen that this happen
only when the number of snapshots is quite large (about
10,000). This phenomenon can be explained by examining
the eigenvalues of the received signal’s correlation matrix.
The eigenvalues of the received signal’s correlation matrix
are given by[20.1, 10.9, 1.93, 1.07, · · · , 0.92]. For the GMDL
estimator, the simulated scenario corresponds to a scenario

wherep− 1 sources exists, the noise level equals to0.9, and
the SNR of the fourth strongest source at the array output is
−7 dB. The GMDL requires about 10,000 snapshots in order
for the probability of detection of this weak “virtual” source
to be noticeable. As the number of snapshots increases, the
probability of detection of this weak virtual source increases
as well, causing the probability of correct decision to decrease
to zero. On the other hand, it can be seen that the probability
of error of the RMDL estimator converges to zero as the
number of snapshots increases for both the Gaussian and the
Laplacian sources. This demonstrate both the consistency and
the robustness of the RMDL estimator.

In Figure 3 we study the spatial separation between the
sources required for reliable detection. We assume that the
three sources’ directions of arrival are[0, ρ, 2ρ], 15,000 snap-
shots are taken by the receiver, and the SNR per element is
either0 dB or 5 dB. Figure 3 depicts the probability of correct
decision of both the GMDL and the RMDL estimators for both
Gaussian and Laplacian sources as a function ofρ.

In the figure we can see again that the RMDL estimator
outperforms the GMDL estimator. Even if large separation
between the sources exists, the probability of correct decision
of the GMDL estimator does not approach one. The prob-
ability of correct decision of the RMDL estimator, on the
other hand, approaches one with the increase in the separation
between the sources. This difference can be explained with
the aid of the received signal correlation matrix’s eigenvalue
spectrum. The received signal correlation matrix eigenvalues
equal [11.54, 11.05, 10.39, 1.07, ..., 0.9237]. The three high-
est eigenvalues correspond to the three sources. However,
due to the different noise level in each sensor, the rest of
the eigenvalues are not equal to the noise level. The large
number of snapshots enables the GMDL estimator to detect
the differences in the weakest eigenvalues as valid sources,
which results in an error event. However, if the number of
snapshots is reduced, the GMDL estimator will not detect
these differences. Nonetheless, if the number of snapshot is
reduced, and a valid weak source exists, the GMDL estimator
will not detect this valid source.

As discussed in the beginning of this paper, in biological
applications the noise level may vary considerably between
the different receiver channels. Thus, large deviations from the
ideal model are expected in such systems. For simulating this
type of scenario we takew =

σ2
n

2 [−9/10,−7/10, . . . , 9/10],
which represents deviations of up to−3 dB from the nominal
noise level. Figure 4 depicts the probabilities of correct deci-
sion of the GMDL and the RMDL estimators as functions of
the number of snapshots taken.

It can be seen that in this scenario the empirical er-
ror probability of the GMDL estimator approaches one
even when the number of snapshots is small (about 750).
Again, this can be explained by examining the received
signal correlation matrix’s eigenvalues, which are equal to
[20.13, 10.93, 2, 1.36, . . . , 0.62]. The GMDL estimator inter-
prets this scenario as ap− 1 sources scenario with the noise
level equal to0.5, and the SNR of the fourth strongest source
at the array output is6 dB. Due to its high SNR, only a small
number of snapshots are required for detecting this “virtual”
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source, and by detecting this virtual source an error event is
created. As the number of snapshots increases, the probability
of detection of this virtual source increases as well, causing the
probability of correct decision to decrease to zero. Again,it
can be seen that the probability of error of the RMDL estimator
converges to zero as the number of snapshots increases.

In the last figure, Figure 5, we study the spatial sep-
aration between the sources required for reliable detection
when the deviation from the equal noise power assumption
is large. We assume that three sources’ directions of arrival
are [0, ρ, 2ρ], 250 snapshots are taken by the receiver, and the
SNR per element is either0 dB or 5 dB. Figure 5 depicts the
probabilities of correct decision of both the GMDL and the
RMDL estimators for the Gaussian and Laplacian sources as
a function ofρ. Again, we can see that the RMDL estimator
outperforms the GMDL estimator. Even for large separation
between the sources, the deviation from the equal noise level
assumption results in a change in the eigenvalue structure.This
change is detected by the GMDL estimator as an additional
sources, and hence an error event occurs.

V. SUMMARY AND CONCLUDING REMARKS

In this paper the problem of robust estimation of the
number of sources impinging on an array of sensors has
been addressed. It has been demonstrated that by proper use
of additional unknown parameters, the resulting estimator,
denoted as the RMDL estimator, is robust against both spatial
and statistical mismodeling. This situation represents anim-
provement on the traditional MDL estimator which is robust
only against statistical mismodeling. In addition, a novellow-
complexity algorithm for computing the estimates of the un-
known parameters has been presented. It has been shown that
this algorithm converges to the LS estimates of the unknown
parameters. On one hand, the computational complexity of
the proposed estimator is higher than the complexity of the
traditional MDL estimator; on the other hand the complexity
is far less than the complexity of known robust estimators
which require several multi-dimensional searches.

The proposed estimation algorithm can be used to robustify
other estimation algorithms as well. Take for example the MU-
SIC algorithm for estimating DOAs [28]. It is well known that
the MUSIC algorithm is not robust against spatial mismodel-
ing. Even slight spatial mismodeling can cause a large errorin
the estimated signal subspace, leading to substantial estimation
errors. The use of our estimation technique to improve the
robustness of the MUSIC algorithm is an interesting topic for
further study.
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APPENDIX I
PROOF OFLEMMA 1

In this appendix Lemma 1 is proven by a way of induction
on the number of sources. We first note that since

∑q
i=1 viv

H
i

is an Hermitian matrix, then if
∑q

i=1 viv
H
i containsej as its

jth row it also containseTj as itsjth column.
We first assumeq = 0; that is, the noise-only scenario. Since

the noise-only scenario is always identifiable, the lemma holds
for this case.

Now assume that the lemma holds forq sources, that is for
every identifiable pointθq ∈ Θq,

∑q

i=1 viv
H
i does not have

ej as one of its rows for everyj = 1, . . . , p.
The following two lemmas will be essential in what follows.

Lemma 4:Assume that,θq ∈ Θq is an identifiable point,

and denote bỹR(θq)
△
=
∑q

i=1 λiviv
H
i . Denote byl1 ≥ · · · ≥

lq+1 > 0 = · · · = 0 and {ci} are the eigenvalues and
their corresponding eigenvectors of the matrixR̃(θq)+eje

H
j .

Assume that rank(R̃(θq) + eje
H
j ) = q + 1, then,

∑q+1
i=1 cic

H
i

hasej as hisjth row.
Proof of Lemma 4:Assume with out loss of generality that

j = 1. Since{ci} is an ortho-normal basis,
∑p

i=1 cic
H
i =∑q+1

i=1 cic
H
i +

∑p

i=q+2 cic
H
i = I. According to the lemma we

have to prove that
∑q+1

i=1 cic
H
i has the following form,

q+1∑

i=1

cic
H
i =

[
1 0

0
T

M

]
. (16)

This will happen if and only if
∑p

i=q+2 cic
H
i has the following

form
p∑

i=q+2

cic
H
i =

[
0 0

0
T

M
′

]
, (17)

whereM+M
′ = I, (recall that

∑q+1
i=1 cic

H
i +

∑p

i=q+2 cic
H
i =

I). It is easy to verify that
∑p

i=q+2 cic
H
i will have the form

given by (17) if and only if[cl]1 = 0 for every l > q + 1, so
proving the lemma is equivalent to proving that[cl]1 = 0 for
every l > q + 1. Assume thatl > q + 1. From the properties
of eigen-decomposition it follows that

(R̃(θq) + e1e
H
1 )cl =

q+1∑

i=1

licic
H
i cl = 0 =

(
q∑

i=1

λiviv
H
i + e1e

H
1

)
cl =

q∑

i=1

λi(v
H
i cl)vi + e1[cl]1 (18)

whereλ1 ≥ · · · ≥ λp and v1, . . . ,vp are, respectively, the
eigenvalues and eigenvectors ofR̃(θq). Since{ci}

q+1
i=1 spans

the subspace spanned by{vi}
q
i=1, thenv

H
i cl = 0 for every

i ≤ q. Thus, by using (18),

e1[cl]1 = 0, (19)

which is possible if and only if[cl]1 = 0.
Lemma 5: rank(R̃(θq) + eie

H
i ) = q + 1.

Proof of Lemma 5:Without loss of generality (wlg) it is
proven that rank(R̃(θq) + e1e

H
1 ) = q + 1. Assume that

rank(R̃(θq) + e1e
H
1 ) = q. Thus the rank of both̃R(θq)

and R̃(θq) + e1e
H
1 are equal. Hence, it is possible to find

k constants, denoted bya1, . . . , aq, not all of them equal to
zero, such that

e1 =

q∑

i=1

aivi. (20)

From (20) it is easy to see that

R̃(θq) + e1e
H
1 = VAV

H (21)

where V = [v1, . . . ,vq], and A is some q × q diagonal
matrix. Sinceθq is an identifiable point, according the in-
duction assumption there existsl > q such that[vl]1 6= 0
(otherwise according to the previous lemma the point would
have been unidentifiable contredicting our assumption thatθq
is identifiable). As such,

(
R̃(θq) + e1e

H
1

)
vl = VAV

H
vl = 0 = e1[vl]1 (22)

which is possible if and only if[vl]1 = 0, This is a
contradiction, and Lemma 5 follows.

Define g(θq) to be a function taking as an argument an
identifiable point inΘq, and returning a subset ofΘq+1,
such that for everyθq+1 ∈ g(θq), Rx(θq+1) = Rx(θq),
and for everyθq+1 ∈ g(θk), Rx(θq+1) 6= Rx(θq). It
is easy to see from Lemma 5 thatθq+1 ∈ g(θq) if and
only if, R̃(θq+1) = R̃(θq) + [w(θq)]ieie

H
i , σ2

n(θq+1) =
σ2
n(θq) +

1
p−1

∑
j 6=i[w(θk)]j , and [w(θq+1)]k = [w(θq)]k −

1
p−1

∑
j 6=i[w(θq)]j wherek 6= i, and1 ≤ i ≤ p. From Lemma

5 it is easy to see that(R̃(θq+1)) has rankq + 1, and from
Lemma 4 it is easy to see that the conditions stated in Lemma
1 are necessary. Since every unidentifiable point belongs to
someg(θq) then the lemma is proved.

APPENDIX II
PROOF OFLEMMA 2

In this appendix the consistency of the RMDL estimator is
proved. Specifically it is shown that the probability of error
of the RMDL estimator converges to zero as the number of
snapshots increases to infinity. An error event will occur ifand
only if there existsk 6= q such thatRMDL(q)−RMDL(k) >
0. Thus in order to prove the lemma it suffice to prove that
for everyk 6= q, P (RMDL(q)− RMDL(k) > 0) → 0.

Assume thatk > q. Since the problem is a nested hypothesis
problem,log fX(X|θ̂k) < log fX(X|θ̂p−1) [11]. Also, since
θ̂q maximizes the likelihood of the measurements under the as-
sumption ofq sources,log fX(X|θ̂q) > log fX(X|θq), where
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θq is the true parameter value. ThusRMDL(q)− RMDL(k)
can be bounded as follows,

RMDL(q)− RMDL(k) =

− log fX(X|θ̂q) + log fX(X|θ̂k) +

(q(2p− q)− k(2p− k))
logN

2

≤ − log fX(X|θq) + log fX(X|θ̂p−1)

+(q(2p− q)− k(2p− k))
logN

2
.

Using the spectral representation theorem, the received sig-
nal’s correlation matrix is equal toRx(θq) =

∑p

i=1 λiviv
H
i ,

whereλ1 > · · · > λp and v1, . . . ,vq are, respectively, the
eigenvalues and their corresponding eigenvectors ofRx(θq).
Thus there exists a point, denoted byθ∗p−1 ∈ Θp−1 such
that Rx(θq) = Rx(θ

∗
p−1) (take A = [v1, . . . ,vp−1],Rs =

diag(λ1 − λp, . . . , λ2 − λ1) , σ
2
n = λ1,w = 0). Sinceθ∗p−1

is an inner point ofΘp−1, one can use the theory of like-
lihood [29] to show that asymptotically,−2 log fX(X|θq) +

2 log fX(X|θ̂p−1) = 2 log fX(X|θ̂p−1) − 2 log fX(X|θ∗p−1)
is distributed as a chi-square random variable with degrees
of freedoms equal to the number of unknown parameters,
(p2 − 1). We next note that sinceq < k, (q(2p − q) −
k(2p− k)) logN

2 → −∞ asN approaches to infinity. Thus, as
the number of measurements increases, the probability that
− log fX(X|θq) + log fX(X|θ̂p−1) exceeds|(q(2p − q) −
k(2p − k)) logN

2 | is given by the tail of the chi-square dis-
tribution, which approaches zero asN approaches to infinity.
Thus,

P (RMDL(q)− RMDL(k) > 0) <

Pr
(
− log fX(X|θq) + log fX(X|θ̂p−1)

+ (q(2p− q)− k(2p− k))
logN

2
> 0

)
N→∞
→ 0,(23)

which complete the first part of the consistency proof.
Now, assumek < q. It was previously shown that under

very weak conditions the probability of miss of every MDL
estimator converges to zero asN → ∞ [11]. In particular the
probability of miss of the RMDL estimator, which satisfies
the condition stated in [11] is the MDL estimator, converges
to zero asN → ∞.

APPENDIX III
PROOF OFLEMMA 3

The proof of Lemma 3 is very similar to the proof of
Lemma 2, and thus only the necessary modifications for the
proof of lemma 2 are detailed. Again, in order to prove that
the probability of error converges to zero we will prove that
Pr {RMDL(q)− RMDL(k) > 0} → 0.

Assume k > q. It is easy to see from the proof
of Lemma 2 that Pr (RMDL(q)− RMDL(k) > 0) <
Pr(− log fX(X|θq)+ log fX(X|θ̂p−1) + (q(2p− q)− k(2p−
k)) logN

2 > 0). It is known that asymptotically, given
the conditions stated in the lemma,log fX(X|θp−1) −

log fX(X|θ̂∗p−1) is distributed as a weighted sum of chi-square
random variables having one degree of freedom [30]. Thus by

implying the same reasoning used in the proof of Lemma 2,
it easily shown thatP (RMDL(q)− RMDL(k) > 0) → 0.

Assumek < q. Again, this case is a special case of a more
general theorem presented in [11] and hence we omit a specific
proof for this case.

APPENDIX IV
CONVERGENCE OF THEPROPOSEDESTIMATION

ALGORITHM

Denote byθ̂nq = [ŵq,n, σ̂
2
q,n,

̂Aq,nRs,q,nA
H
q,n] the estimate

of θq after thenth iteration, and byEn the error between̂R
andRx(θ̂

n
q ), that isEn = R̂−Rx(θ̂

n
q ). In this appendix it is

proven thatTr
{
EnE

H
n

}
> Tr

{
En+1E

H
n+1

}
. The following

lemma will be very helpful in the sequel.

Lemma 6:Let X be a p × p Hermitian matrix, with
eigenvalue representationX =

∑p

i=1 αiviv
H
i . The closest

(in the Frobenius norm sense)p × p Hermitian matrix X̂,
such thatX̂ =

∑q

i=1 licic
H
i + l

∑p

i=q+1 cic
H
i is the matrix

X̂ =
∑q

i=1 αiviv
H
i +

∑p

i=q+1

∑
p

j=q+1
lj

p−q
viv

H
i

Proof of Lemma 6:For the sake of simplicity we prove the
lemma for real vectors, and not complex ones. The extension
to complex vector is straight forward and thus is omitted
here. We first note that we have to find the matrixX̂ such

that Tr

{(
X− X̂

)(
X− X̂

)T}
is minimized. We note the

following identities,

XX
T =

p∑

i=1

p∑

j=1

αiαjviv
T
i vjv

T
j =

p∑

i=1

α2
iviv

H
i

Tr
{
XX

T
}
=

p∑

i=1

α2
i

X̂X̂
T =

q+1∑

i=1

q+1∑

j=1

liljcic
T
i cjc

T
j +

q+1∑

i=1

p∑

j=q+1

lilcic
T
i cjc

T
j

+

p∑

i=q+1

q+1∑

j=1

lljcic
T
i cjc

T
j +

p∑

i=q+1

p∑

j=q+1

l2cic
T
i cjc

T
j

Tr
{
X̂X̂

T
}
=

q+1∑

i=1

q+1∑

j=1

lilj
(
c
T
i cj

)2
+

q+1∑

i=1

p∑

j=q+1

lil
(
c
T
i cj

)2

+

p∑

i=q+1

q+1∑

j=1

llj
(
c
T
i cj

)2
+

p∑

i=q+1

p∑

j=q+1

l2
(
c
T
i cj

)2

XX̂
T =

p∑

i=1

q∑

j=1

αiljviv
T
i cjc

T
j +

p∑

i=1

p∑

j=q+1

αilviv
T
i cjc

T
j

Tr
{
XX̂

T
}
=

p∑

i=1

q∑

j=1

αilj
(
v
T
i cj

)2
+

p∑

i=1

p∑

j=q+1

αil
(
v
T
i cj

)2
.

By using these identities,Tr

{(
X− X̂

)(
X− X̂

)H}
can be
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expressed as follows:

R
△
= Tr

{(
X− X̂

)(
XX̂

)T}

= Tr
{
XX

T
}
− 2Tr

{
XX̂

T
}
+Tr

{
X̂X̂

T
}
=

p∑

i=1

α2
i − 2

p∑

i=1

q∑

j=1

αilj
(
v
T
i cj

)2
− 2

p∑

i=1

p∑

j=q+1

αil
(
v
T
i cj

)2

+

q+1∑

i=1

q+1∑

j=1

lilj
(
c
T
i cj

)2
+

q+1∑

i=1

p∑

j=q+1

lil
(
c
T
i cj

)2

+

p∑

i=q+1

q+1∑

j=1

llj
(
c
T
i cj

)2
+

p∑

i=q+1

p∑

j=q+1

l2
(
c
T
i cj

)2
. (24)

The derivatives ofR with respect to the unknown parameters
are given by the following:

∂R

∂lk
= −2

p∑

i=1

αi

(
v
T
i ck

)2
+ 2lk

(
c
T
k ck

)2
+
∑

i6=k

li
(
c
T
i ck

)2

+

p∑

j=q+1

l
(
c
T
k cj

)2
+

p∑

i=q+1

l
(
c
T
i ck

)2
, k = 1, . . . , q

∂R

∂l
= −2

p∑

i=1

p∑

j=q+1

αi

(
v
T
i cj

)2
+

q+1∑

i=1

p∑

j=q+1

li
(
c
T
i cj

)2

+

p∑

i=q+1

q+1∑

j=1

lj
(
c
T
i cj

)2
+ 2

p∑

i=q+1

p∑

j=q+1

l
(
c
T
i cj

)2

∂R

∂ck
= −4

p∑

i=1

αilk
(
v
T
i ck

)
vk + 4l2j

(
c
H
k ck

)
ck

+8

q+1∑

i6=k

lilk
(
c
T
i ck

)
ci , k = 1, . . . q

∂R

∂ck
= −4

p∑

i=1

αil
(
v
T
i ck

)
ci + 4

q+1∑

i=1

lil
(
c
T
i ck

)
ci

+4l2
(
c
T
k ck

)
ck + 4

p∑

i=q+1,i6=k

l2
(
c
T
i ck

)
ci

It is now easy to verify that by substituting into the above
equations the proposed solution and exploiting the fact
that {vi} is an orthonormal bases, all the derivatives are
equal to zero, and hence the proposed solution minimizes

Tr

{(
X− X̂

)(
X− X̂

)H}
.

According to the algorithm, at the beginning of the(n+1)th
iteration the following matrix is created,

∑q

i=1(li−σ2
n)viv

H
i +

σ2
nI =

∑q
i=1 liviv

H
i + σ2

n

∑p
i=q+1 viv

H
i , where l1 > · · · >

lp and v1, . . . ,vp are, respectively, the eigenvalues and the
corresponding eigenvectors of the matrix

R̂− diag(ŵq,n) = En + ̂Aq,nRs,q,nA
H
q,n + σ̂2

q,nI, (25)

andσ2
n = 1

p−q

∑p

i=q+1 li. Denote byE′
n+1 the error between

R̂−diag(ŵq,n) and
∑q

i=1(li−σ2
n)viv

H
i +σ2

nI; that isE′
n+1 =

R̂− diag(ŵq,n)−
∑q

i=1(li − σ2
n)viv

H
i − σ2

nI. According to
the Lemma 6Tr

{
E′

n+1E
′H
n+1

}
< Tr

{
EnE

H
n

}
.

At the second part of the(n + 1)th iteration,wq,n+1 is
constructed as follows,

wq,n+1 = diag

(
R̂−

q∑

i=1

(li − σ2
n)viv

H
i + σ2

nI

)

= diag
(
E′

n+1 +wq,n

)
. (26)

The total error, between̂R and the estimate is

En+1 = R̂− diag(wq,n)−

q∑

i=1

(li − σ2
n)viv

H
i

+σ2
nI− diag(wq,n+1) = E′

n+1 − diag
(
E′

n+1

)
. (27)

Hence Tr
{
En+1E

H
n+1

}
=

∑
i,j [En+1]ij [En+1]

H
ij =∑

i6=j [E
′
n+1]ij [E

′
n+1]

H
ij ≤

∑
i,j [E

′
n+1]ij [E

′
n+1]

H
ij =

Tr
{
E′

n+1E
′H
n+1

}
≤ Tr

{
EnE

H
n

}
, which concludes the

proof.
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Fig. 1. Three-user scenario, no mismatch. Probability of correct decision as
a function of the number of snapshots.
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Fig. 2. Three-user scenario, weak mismatch. Probability ofcorrect decision
as a function of the number of snapshots.
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Fig. 3. Three-user scenario, weak mismatch. Probability ofcorrect decision
as a function of the spatial separation between the sources.
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Fig. 4. Three-user scenario, strong mismatch. Probabilityof correct decision
as a function of the number of snapshots.
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Fig. 5. Three-user scenario, strong mismatch. Probabilityof correct decision
as a function of the spatial separation between the sources
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