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Abstract— An extension of the AutoRegressive (AR) model
is studied, which allows transformations and distortions on
the regressor to be handled. Many important signal processing
problems are amenable to this Extended AR (i.e. EAR) model.
It is shown that Bayesian identification and prediction of the
EAR model can be performed recursively, in common with the
AR model itself. The EAR model does, however, require that the
transformation be known. When it is unknown, the associated
transformation space is represented by a finite set of candidates.
What follows is a Mixture-based EAR model, i.e. the MEAR
model. An approximate identification algorithm for MEAR is
developed, using a restricted Variational Bayes (VB) procedure.
It preserves the efficient recursive update of sufficient statistics.
The MEAR model is applied to the robust identification of AR
processes corrupted by outliers and burst noise respectively, and
to click removal for speech.

Index Terms— Bayesian identification, probabilistic mixtures,
sufficient statistics, recursive identification, Variational Bayes,
adaptive systems, filter-bank, burst noise.

I. INTRODUCTION

Bayesian identification of a model is defined as evaluation
of the posterior distribution of the model parameters [1], [2].
Recursive Bayesian identification is concerned with updating
the parameter distribution as new data become available.
A numerically efficient solution is possible for the class
of models with conjugate parameter priors. The linear Au-
toRegressive (AR) model belongs to this class. Linear AR
processes are widely applied in filtering [3], speech analysis
[4], spectrum analysis [5], control [6], etc. However, the
underlying assumptions (i.e. linear combination of measured
values, and Gaussian distribution for the residue) are rarely
met in practice. Physical models, typically requiring complex
non-linear modelling, may then be used to fit the observed
data. Attempts to extend the AR model itself have also been
made [7], [8]. However, these solutions are computationally
expensive and thus unsuitable for processing of large amounts
of data or for on-line (real-time) identification. Typically,
therefore, AR models continue to be used even in these cases.

In this text, we propose an extension to the AR model
that preserves analytical tractability, allowing fast, recursive,
on-line identification of the model. Recursive algorithms are

important in on-line control applications [9], and for adaptive
filtering [10]. In off-line cases, the emphasis on computational
issues and recursive methods can also pay off, for example in
the off-line processing of massive datasets [11].

The link between conjugacy and recursive Bayesian identi-
fication is reviewed in Section II and applied to the AR model
in Section III. In Section IV, we extend to all possible models
whose posterior distribution on parameters is as given in
Section III. In Section V, we further extend the model to allow
for unknown transformations of data. The price paid is loss
of recursive conjugacy in the resulting probabilistic mixture.
Conjugacy is restored via an approximation, optimal in the
sense of Kullback-Leibler distance. It yields a numerically
efficient identification procedure for this set of models. This
is used in Section VI to de-noise AR processes corrupted
by isolated outliers, and by burst noise, respectively. An
application in speech analysis is also given. Discussion and
Conclusions follow in Sections VII and VIII respectively.

II. BAYESIAN RECURSIVE IDENTIFICATION

Our concern is with the inference of unknown model param-
eters at all observation times, n = 1, 2, 3, . . .. The Bayesian
perspective requires evaluation of a probability distribution on
these unknowns at all n. This contrasts with the point esti-
mation task, where unknowns are represented by a decision-
theoretic certainty equivalent. Tractability of the identification
task is assured when the parameter distribution is confined to
the family of distributions that is conjugate to the observation
model. A full review of the concept of conjugacy is available
in [12] and briefly summarized next.

The data measured at time n are denoted by xn, and the
history of the system is defined as Xn = [x1, x2, . . . , xn]. Let
the data be generated by an observation model formalized as
a probability density function (distribution), f (xn|θ,Xn−1),
with X0 = {} by assignment. This model is parameterized
by unknown θ. Identification of the model is equivalent to
evaluation of the posterior distribution of θ, ∀n. From Bayes’
rule:

f (θ|Xn) ∝ f (xn|θ,Xn−1) f (θ|Xn−1) . (1)
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Since (1) is recursive, analytical tractability of the update is
assured if distributions f (θ|Xn) and f (θ|Xn−1) are of the
same form. This is achieved if there exists a mapping, sn =
s (Xn) , sn ∈ <q , satisfying the condition

f (θ|Xn) = f (θ|sn) . (2)

s (·) is time-invariant and finite-dimensional (q <∞), and sn
are known as the sufficient statistics [12]. Then, f (θ|·) is said
to be conjugate to the observation model, f (xn|θ,Xn−1).
Since (2) must be valid for n = 0, the prior, f (θ) = f (θ|s0),
must also be conjugate. A conjugate distribution exists for
every observation model in the exponential family [13]. Under
(2), functional recursion (1) can be replaced by an algebraic
recursion on sn, achieving Bayesian identification of θ, ∀n,
and guaranteeing a numerically stable procedure.

III. REVIEW OF BAYESIAN IDENTIFICATION FOR THE
AUTOREGRESSIVE (AR) MODEL

A univariate time-invariant AR model is of the form

xn = −
p

∑

k=1

akxn−k + σen, (3)

where p ≥ 1, en denotes the input and xn the output
(observation) of the system, as illustrated in Fig. 1 (left). The
problem is to estimate fixed, unknown, real parameters, σ and
a = [a1, . . . , ap]

′, of this model. Here, ′ denotes transposition.
The classical solution to this problem is based on the Wiener
criterion. Point estimates are obtained by solution of the
normal equations. Two principal approaches to its solution
are the covariance and correlation methods respectively [14].
Recursive solutions exist, such as the Recursive Least Squares
(RLS) algorithm [9].

The Bayesian approach assumes that (3) is driven by white
noise of Gaussian distribution, i.e. f (en) = N (0, 1). Then,

f (xn|a, σ,xn) = N
(

−a′xn, σ
2
)

, (4)

where n > p, and xn = [xn−1 . . . xn−p]
′ is the regression

vector at time n.
(4) belongs to the exponential family, and so both a conju-

gate prior and sufficient statistics are available. The parameter
distribution which is conjugate to (4) is of the Normal-inverse-
Gamma (N iG) type [12]:

N iGa,σ (V, ν) ≡ σ−ν

IN iG (V, ν)
×

exp

{

−1

2
σ−2 [−1, a′]V [−1, a′]

′
}

, (5)

IN iG (V, ν) = Γ (0.5ν)λ−0.5ν |Vaa|−0.5 20.5p, (6)

V =

[

V11 V ′
a1

Va1 Vaa

]

, λ = V11 − V ′
a1V

−1
aa

Va1. (7)

Γ (·) denotes the Gamma function [15], and (7) denotes
a partitioning of V ∈ <(p+1)×(p+1) into blocks, isolating
V11, the (1, 1) element. V, ν are the sufficient statistics of
N iGa,σ (·).

The statistics of the conjugate prior distribution, V0, ν0, are
chosen to reflect our initial parameter knowledge. If we do

not have any preferences, we use a diffuse (non-committal)
distribution. Typically, V0 = ρIp+1, ν0 = ρ, where Ip+1 is
the (p+ 1)× (p+ 1) identity matrix, and ρ is a small positive
scalar. Substituting (4) into (1), and using (5) at time n − 1,
the posterior distribution at time n > p is

f (a, σ|Xn) = N iGa,σ (Vn, νn) , (8)

Vn = Vn−1 + x̄nx̄
′
n = V0 +

n
∑

i=p+1

x̄ix̄
′
i, (9)

νn = νn−1 + 1 = ν0 + (n− p) . (10)

Here, x̄n = [xn,x
′
n]

′ is the extended regression vector. The
outer product, x̄nx̄′

n, will be called a dyad in this paper. Since
the recursion begins at n = p+ 1, (9) and (10) are initialized
with Vp = V0 and νp = ν0 respectively. This is equivalent to
choosing a stationary distribution for n ≤ p.

For many practical tasks, we need to derive moments of
these distributions. They are:

E (a|Xn) = V −1
aa,nVa1,n = ân, (11)

E
(

σ2|Xn

)

=
λn

νn − p+ 2
= σ̂2

n, (12)

E
(

(a − ân) (a − ân)
′ |Xn

)

=
λn

νn − p
Vaa,n, (13)

where the quantities in (7) have been evaluated at time n.
These (and subsequent) formulae are also valid when xn
is a vector of measured data. The distributions of unknown
variables are then the corresponding multivariate forms.

The Bayesian posterior moments (11)–(13) correspond to
point estimates employed in the signal processing literature.
(11), (12) are algorithmically identical to the results of the
covariance method [14], and are valid ∀n > p, as derived. The
Bayesian identification framework above yields the following
extensions.

Computational Issues: a numerically efficient solution to
(9), (11) is based on the LD decomposition [16]; i.e. Vn =
LnDnL

′
n, where Ln is lower triangular and Dn is diagonal.

The update of the sufficient statistics (9) is replaced by
recursions on Ln and Dn [17]. The resulting identification
algorithm is then compact, efficient, and numerically stable.

Prediction: the one-step-ahead predictive distribution is
given by the ratio of normalizing coefficients (6), a result
established in general for the exponential family in [12]. For
the AR model,

f (xn+1|Xn) =
IN iG

(

Vn + x̄n+1x̄
′
n+1, νn + 1

)

√
2πIN iG (Vn, νn)

, (14)

using (6). This is the Student t-distribution with νn − p + 2
degrees of freedom. The mean value of this distribution is
readily found to be

E (xn+1|Xn) = ânxn+1 = x̂n+1, (15)

using (11), and is therefore equal to the intuitively appealing
result from classical theory [14].
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Fig. 1. Block diagrams of the AutoRegressive (AR) (left) and Extended AR (EAR) (right) models.

Model Order Determination: when the model order, p,
in (3) is unknown, it must be handled as a discrete random
variable in the Bayesian identification framework, and repre-
sented as such in the notation. Application of the chain rule
n − p times, using (14), and Bayes’ rule yield the following
posterior distribution of p:

f (p|Xn) ∝ IN iG (Vn, νn) f (p) . (16)

f (p) denotes the prior distribution of model order, typically
chosen as uniform on integer support p ∈ {1, . . . , pmax},
where pmax ≥ 1 is a hyperparameter.

Exponential forgetting: the assumption of constant pa-
rameter values is rarely met in practice. In many applications,
however, a complete model of parameter variations—such as
that required in [1], [18]—is not known. The full Bayesian
parametric solution must then be replaced by heuristic tech-
niques. The standard batch (off-line) algorithm uses window-
ing [19]. Alternatively, the concept of forgetting [20] is used
in adaptive signal processing [21] and recursive estimation [9].

A Bayesian treatment of forgetting was developed in [22].
There, the missing model of parameter evolution is handled
via a probabilistic operator:

f (θn|Xn−1) ∝
[

f (θn−1|Xn−1)θn

]φn
f̃ (θn)

1−φn . (17)

The notation f (·)θn
indicates the replacement of the argument

of f (·) by θn, where θn is the time-variant unknown parameter
set at time n. f̃ (·) is a chosen (known) alternative distribution,
expressing auxiliary knowledge about θn at time n. Coefficient
φn, 0 ≤ φn ≤ 1 is known as the forgetting factor. The N iG
conjugate family (5) is closed under the convex combination
(i.e. geometric mean) in (17), yielding another member of the
N iG family. Hence, we choose f̃ , to be N iG

(

Ṽ , ν̃
)

, with

time-invariant parameters, Ṽ and ν̃. The posterior distribution
is then given by (8), with statistics

Vn = φnVn−1 + x̄nx̄
′
n + (1 − φn) Ṽ , (18)

νn = φnνn−1 + 1 + (1 − φn) ν̃, (19)

with n > p. Note that Ṽ , ν̃ play an important role in these
identification recursions, as they are injected at each step. In
order to minimize their influence, we can choose f̃ diffuse,
having, for example, the same parameter values as the prior:
Ṽ = V0, ν̃ = ν0.

IV. THE EXTENDED AUTOREGRESSIVE (EAR) MODEL

In this section, the largest set of models is proposed
for which the algorithms in Section III remain valid. The
favourable algorithmic properties for the AR model are based
on the elegant recursive form (9), (10) of the N iG sufficient
statistics (5). This distribution remains N iG if there is a
change in the conditioning variables of (8), or even an increase
in the number of variables in the conditioning set by an
auxiliary vector of known exogenous terms, Wn:

f (a, σ|G(Xn,Wn)) = f (a, σ|ȳn) = N iGa,σ (Vn, νn) .
(20)

Here, the known transformation, G, is in general a set of p+1
nonlinear functions:

yn = g0 (Xn,Wn) , (21)
yi;n = gi (Xn−1,Wn) , i = 1, 2, . . . , p, (22)

where the latter are the p transformed regressors at time n.
The regression vector is therefore yn = [y1;n, y2;n, . . . , yp;n]

′,
and the extended regression vector at time n is

ȳn = [yn,y
′
n]

′
= G (Xn,Wn) . (23)

This is illustrated in Fig. 1 (right). Auxiliary variable, Wn,
may contain any known variables, such as the time index, n,
for time-variant systems, or a measured external (exogenous)
signal, etc. (20) implies an AR structure (3) defined with
respect to an internal variable, yn. Hence, the distribution of
observations is obtained by transformation of (4):

f (xn|a, σ,Xn−1, G) = |Jn (xn)| N
(

−a′yn, σ
2
)

, (24)

where Jn (·) is the Jacobian of transformation g0 (21); i.e.
Jn (xn) = ∂g0

∂xn
. This creates an additional restriction that g0

be a differentiable, one-to-one mapping for each setting of Wn.
Moreover, g0 must explicitly be a function of xn in order that
Jn 6= 0. This ensures uncertainty propagation from en to xn
(Fig. 1).

Bayesian identification with this model is, by design, of the
same form as for the AR model (4)–(13), replacing the dyadic
update of Vn in (9) with one in terms of ȳn:

Vn = Vn−1 + ȳnȳ
′
n, n > p. (25)

The update for νn (10) is unchanged.
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The EAR model class includes the following important
cases [2]: (i) the ARMA model with a known MA part; (ii)
the ARX model, i.e. AR with exogenous observed input, wn;
(iii) an AR process, yn, observed via a known bijective non-
linear transformation, xn = g−1

0 (yn); (iv) the incremental
AR process with the regression defined on increments of the
measurement process.

Prediction: this is given by (14) with x̄n+1 replaced by
ȳn+1 and Vn given by (25). Using (21):

f (xn+1|Xn, G) = |Jn+1 (xn+1)| f (g0 (xn+1,Xn) |Xn, G) .
(26)

Note that (26) remains a Student t-distribution (14) iff Jaco-
bian Jn+1 is independent of xn+1, i.e. for linear transforma-
tions, g0 (21).

Model Structure Determination: the structure of the EAR
model is no longer dependent solely on p (Fig. 1) but on the
whole transformation, G. The structure determination problem
is then one of calculating the a posteriori probabilities of
choices, {G1, G2, . . . , Gc}, from a finite set. From Bayes’
rule:

f (Gi|Xn) ∝ f
(

Xn\p(i)|Xp(i), Gi
)

f (Gi) , i = 1, . . . , c,
(27)

where the first term on the right-hand-side is formed from
n − p(i) terms of the kind in (26), and Xn\p(i) =
[

xp(i)+1, . . . , xn
]

, where p(i) is the regression length (i.e. or-
der (3)) of the ith EAR model.

V. THE MIXTURE-BASED EAR (MEAR) MODEL

We now relax the EAR assumption (20) which requires G
to be known. Instead, we consider a finite set, G, of possible
transformations, called the filter-bank:

G = {Gi, i = 1, . . . , c} . (28)

We assume that the observation, xn, at each time n was
generated by one element of G. (24) can be rewritten as

f (xn|a, σ,Xn−1,G, ln) =

c
∏

i=1

f (xn|a, σ,Xn−1, Gi)
li;n .

(29)
Here, the active transformation is labelled by a new discrete
auxiliary variable, ln = [l1;n, . . . , lc;n]

′, with possible states
ln ∈ {ε1, . . . , εc}. Here, εi is the ith elementary basis vector:

εi = δc (i) = [δ (i− 1) , . . . , δ (i− c)]′ , i = 1, . . . , c,

(30)

δ (ρ) =

{

1,

0,

if ρ = 0,

otherwise.
(31)

ln constitutes a hidden field which we model via a first-
order homogeneous Markov chain, with transition matrix T ∈
[0, 1]

c×c:

f (ln|T, ln−1) = Muln
(T ln−1) =

c
∏

i=1

c
∏

j=1

t
li;nlj;n−1

i,j ; (32)

i.e. Pr (ln = εi|T, ln−1 = εj) = ti,j , the ijth element of T .
Muln

(·) denotes the multinomial distribution, whose con-
jugate distribution is Dirichlet [23] with matrix parameter
Ψ ∈ (<+)

c×c:

f (T |Ψ) = DiT (Ψ) =
1

IDi (Ψ)

c
∏

i=1

c
∏

j=1

t
ψi,j−1
i,j , (33)

IDi (Ψ) =

∏c
i=1

∏c
j=1 Γ (ψi,j)

Γ
(

∑c
i=1

∑c
j=1 ψi,j

) , (34)

T̂ = E (T |Ψ) =
1

∑c

i=1

∑c

j=1 ψi,j
Ψ. (35)

The extended observation model is

f (xn, ln|a, σ, T,Xn−1,G, ln−1) =

f (xn|a, σ,Xn−1,G, ln) f (ln|T, ln−1) , (36)

which may be evaluated via (29), (32). Hence, the conditioning
model parameter set is a, σ augmented by T, ln−1. Marginal-
ization over ln yields an observation model in the form of a
probabilistic Mixture of EAR components with common AR
parameterization, a, σ:

f (xn|a, σ, T,Xn−1,G, ln−1) =
c

∑

i=1

f (xn, ln = εi|a, σ, T,Xn−1,G, ln−1) . (37)

This defines the MEAR model. Next, consider the pos-
terior distribution of model parameters at time n − 1,
i.e. f (a, σ, T, ln−1|Xn−1,G). This is updated by (36) accord-
ing to Bayes’ rule:

f (a, σ, T, ln, ln−1|Xn,G) ∝ f (a, σ, T, ln−1|Xn−1,G)×
f (xn, ln|a, σ, T,Xn−1,G, ln−1) . (38)

The update introduces the extra random variable, ln. Hence,
the parameter distributions at times n and n−1 have different
functional forms, violating conjugacy. After m updates, m
random variables will have been generated, with cm possible
states. This renders the update (38) unsuitable for on-line
identification. We overcome this problem via the following
conditional independence approximation of the posterior dis-
tribution at time n (38):

f (a, σ, T, ln, ln−1|Xn,G) = f (a, σ, T |Xn,G)×
f (ln|Xn,G) f (ln−1|Xn,G) , (39)

where the f (·) denote approximating distributions. Using (39)
at both n and n − 1 (i.e. for the first two terms in (38)
respectively), we see that f (a, σ, T |Xn−1,G) is updated in
the step from n− 1 to n independently of the label sequence
ln, avoiding the exponential explosion referred to above. An
optimal approximation within the class (39) may be found via
minimization of the Kullback-Leibler (KL) distance [24]:

KL
(

f (θ) ||f (θ)
)

=

∫

θ

f (θ) ln
f (θ)

f (θ)
dθ. (40)

Here, for convenience, θ denotes a, σ, T, ln, ln−1. KL opti-
mization of a conditional independence model (39) defines
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the Variational Bayes (VB) procedure [7]. The VB procedure
requires iterations between the optimizing functions (39) at
each time n, rendering it unsuitable for on-line identification.
To avoid this, we assign the third and second terms on the
right-hand-side of (39) respectively, as follows:

f (ln−1|Xn,G) = f (ln−1|Xn−1,G) , (41)

f (ln|Xn,G) = f (ln|Xn,G) . (42)

These assignments are obtained from marginalization of the
exact model (38). Then, the only functional variant in (39)
is the first term on the right-hand-side. It may be optimized
by minimization of the KL distance (40) from (39) to (38),
subject to constraints (41), (42):

f (a, σ, T |·) = arg min
f(a,σ,T |·)

KL
[

f (a, σ, T, ln, ln−1|·) ||f (a, σ, T, ln, ln−1|·)
]

. (43)

It is easy to show that the unique solution of (43) is

f (a, σ, T |Xn,G) ∝
exp Ef(ln|·)f(ln−1|·) [ln f (a, σ, T, ln, ln−1|Xn,G)] . (44)

Here, E·· [·] denotes expectation with respect to (41) and (42).
Substituting (29) and (32), via (36), into (38), and the result
into (44), we obtain

f (a, σ, T |Xn,G) ∝ f (a, σ, T |Xn−1,G)×
c

∏

i=1

f (xn|a, σ,Xn−1, Gi)
wi;n

c
∏

i=1

c
∏

j=1

t
wi;nwj;n−1

i,j , (45)

where
wn = E (ln|Xn,G) . (46)

(45) is a KL-optimized approximate update of the MEAR
model parameter inference from time n − 1 to n. We now
design the parameter distribution to be self-replicating under
this update. The second term on the right-hand-side of (45) is a
geometric mean of Gaussian distributions (24), being therefore
Gaussian with N iG conjugate distribution (5). The third term
is multinomial (32), with Dirichlet conjugate distribution (33).
The required conjugate distribution at time n − 1, subject to
approximation (39), is therefore

f (a, σ, T |Xn−1,G) = f (a, σ, T |Xn−1,G) =

N iGa,σ (Vn−1, νn−1)DiT (Ψn−1) . (47)

Substituting (47) into (45) yields the update equations:

f (a, σ, T |Xn,G) = N iGa,σ (Vn, νn)DiT (Ψn) , (48)

Vn = Vn−1 +

c
∑

i=1

wi;nȳi,nȳ
′
i,n, (49)

νn = νn−1 + 1, (50)
Ψn = Ψn−1 + wnw

′
n−1, (51)

with n > p. Update (49) is a weighted sum of dyads, each
generated respectively from the extended regressor, ȳi,n, of

the ith filter in (28). Note that (49) is similar to the result
derived in [25], using the Quasi-Bayes (QB) principle [26].

It remains to evaluate wn (46). The first term on the right-
hand-side of (38) may be expanded using the chain rule, and
(41), (47) then substituted. Furthermore, (29) and (32) may
be substituted into the second term on the right-hand-side of
(38). Then, integrating over a, σ, T, ln−1, it follows that

f (ln|Xn,G) = Muln
(wn) , (52)

wi;n ∝ IN iG

(

Vn−1 + ȳi,nȳ
′
i,n, νn−1 + 1

)

×
c

∑

j=1

wj;n−1IDi
(

Ψn−1 + εiε
′
j

)

, i = 1 . . . c. (53)

Finally, (41) is found by replacing n by n− 1 in (52).
Computational Issues: the implied MEAR identification

algorithm (49)–(51) requires about 2c times more operations—
c for (53) and c for (49)—than the standard AR procedure (9),
(10). Once again, the efficient LD decomposition of Vn may
be exploited (Section III).

MEAR-based Prediction: the MEAR predictor can be
found by marginalization, using (36) (replacing n by n+ 1),
(48), and the chain rule:

f (xn+1|Xn,G) =

c
∑

i=1

c
∑

j=1

t̂i,jwj;n−1f (xn+1|Xn, Gi) ,

(54)
where t̂i,j is the ijth element of (35). (54) is therefore a
mixture of EAR predictors (26). All non-central moments—
e.g. the expected value, x̂n+1—of (54) can be obtained as
the weighted algebraic mean of non-central moments of the
candidates. This does not hold for the central moments [27].

MEAR Model Structure Determination: the key restric-
tion of the MEAR model—namely, common AR parameters
a, σ (37)—implies that all filter candidates, Gi ∈ G (28), must
have the same dimension, p (Fig. 1). The identification of the
MEAR model does not provide inference of p, and additional
treatment is required. However, various choices of filter-bank,
G, can be tested via (54), in the same way as for the EAR
model (27).

Exponential forgetting: the assumption of a stationary
parameter set, a, σ, T , can be relaxed by means of the proba-
bilistic operator in (17). The prior for the update (47) is then
replaced by

f (an, σn, Tn|Xn−1,G) ∝
[

f (an−1, σn−1|Xn−1,G) an
σn

]φNiG

f̃ (an, σn)
1−φNiG ×

[

f (Tn−1|Xn−1,G)Tn

]φDi
f̃ (Tn)

1−φDi , (55)

where we have used the notation in (17). Two time-invariant
forgetting factors, φN iG and φDi, are chosen to reflect the
conditional independence in (47). The alternative distributions,
f̃ , are assumed to be time-invariant, and are chosen as N iG (5)
and Di (33), respectively, to ensure that (55) is self-replicating
(conjugate) under the KL-optimized update (45). The recur-
sions on sufficient statistics (49)–(51) are then reformulated
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as (n > p):

Vn = φN iGVn−1 +

c
∑

i=1

wi;nȳi,nȳ
′
i,n + (1 − φN iG) Ṽ , (56)

νn = φN iGνn−1 + 1 + (1 − φN iG) ν̃, (57)

Ψn = φDiΨn−1 + wnw
′
n−1 + (1 − φDi) Ψ̃, (58)

where Ṽ , ν̃ and Ψ̃ are the parameters of the alternative
distributions, and wn is given by (53) adapted appropriately
via (56)–(58).

VI. APPLICATIONS IN THE ROBUST IDENTIFICATION OF
CORRUPTED AR PROCESSES

A. Identification of an Outlier-corrupted AR Process

We consider the problem of isolated outliers. These are not
modelled by (3), since the outlier-affected observed value does
not become an element of any future regression. Hence, the
autoregressive variable, zn, is unobserved, and the observation
process is

xn = zn + ωn, (59)

where ωn denotes a possible outlier at time n. For an isolated
outlier, it holds that

Pr [ωn±i = 0|ωn 6= 0] = 1, i = 1, . . . , p. (60)

The AR model is identified via f (a, σ|Xn) (8) (i.e. not via
f (a, σ|Zn)) and so the outlier has influence if and only if
it enters the extended regressor x̄n (9). Since x̄n is of finite
length, p+1, and since the outliers are isolated, a finite number
of mutually exclusive scenarios can be defined. Each of these
scenarios can be expressed via an EAR model and combined
together using the MEAR approach, as follows.

a) None of the values in x̄n is affected by an outlier:
i.e. xn−i = zn−i, i = 0, . . . p. G1 is then the unity transfor-
mation: ȳn = x̄n. For ease of notation, we have dropped the
component index, i, in ȳi;n, here and in what follows.

b) The observed value, xn, is affected by an outlier: from
(60), all delayed values are unaffected; i.e. xn−i = zn−i, i =
1, . . . p. For convenience, ωn can be expressed as ωn = hnσen,
where hn is an unknown multiplier of the realized AR residual
(3). From (3), (59):

xn = −a′xn + (1 + hn)σen.

Dividing across by (1 + hn) reveals the appropriate EAR
transformation (23):

G2 : ȳn =
1

1 + hn
x̄n. (61)

G2 is parameterized by hn, with constant Jacobian, J2 = 1
1+hn

(24).
c) The k-steps-delayed observation, xn−k, is affected

by an outlier, k ∈ {1, . . . , p}: in this case, the known
transformation should replace this value by an interpolant,
ẑn−k, which is known at time n. The set of transformations
for each k is then

G2+k : ȳn = x̄n + δp+1 (k + 1) (ẑn−k − xn−k) ,

where vector δ· (·) is defined in (30). G2+k is parameterized
by ẑn−k, with Jacobian J2+k = 1.

We have described an exhaustive set of c = p + 2 filters,
Gi, transforming the observation regressors, x̄n, to EAR
regressors, ȳn, for which the AR model (3) is valid, via (24).
Parameters hn and ẑn−k must be defined. We choose the
parameter of G2 to be a known fixed hn = h. Alternatively, if
the variance of outliers is known to vary significantly, we can
split G2 into u > 1 candidates with respective fixed values
h(1) < h(2) < . . . < h(u). Next, ẑn−k is chosen as the k-
steps-delayed value of the following causal reconstruction:

ẑn =

c
∑

j=1

E {zn|ln = εj} f (ln = εj |Xn,G)

= xn





c
∑

j=1,j 6=2

wj;n



 − w2;nâ
′
n−1xn. (62)

Here, we are using (15), (52), and the fact that zn = xn for
all transformations except G2.

A second-order, stable, stationary AR process with param-
eters a = [−1.8, 0.98]′, σ = 0.01, was simulated with a
random outlier at every 30th sample. The total number of
samples was N = 200, and u = 1 (i.e. c = 4), with h = 10.
Identification results (using stationary identification (49)–(51)
with non-informative priors) are illustrated in Fig. 2 along with
the reconstruction (62). When an outlier occurs, all candidate
filters are sequentially used (middle diagram). Thus, the re-
gressors, ȳi,n, containing the outlier are sequentially removed
from (49) very effectively. The marginal distribution of a is
Student-t, ∀n > p, with moments given by (11) and (13). The
terminal moments are illustrated in Fig 2 (right), via the 95%
Highest Posterior Density (HPD) ellipses [12]. The MEAR
inference of a is close that using (8) with uncorrupted data.
Robust identification has therefore been achieved. In effect,
the procedure has unified the pre-processing and identification
tasks for the AR model.

B. Identification of a Burst-noise-corrupted AR Process

A burst noise scenario requires more than one outlier to be
considered in the regressor. We transform the underlying AR
model (3) into state-space form [9]:

zn+1 = Azn + rσen, (63)

A =











−a1 −a2 · · · −ap
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0











, r =











1
0
...
0











, (64)

such that A ∈ <p×p and r ∈ <p×1. The observation process
with burst noise is modelled as

xn = c
′zn + hnσξn, (65)

where c = [1, 0, . . . , 0]′∈ <p×1, and ξn is distributed as
N (0, 1), independent of en. hnσ denotes the time-dependent
standard deviation of the noise which is assumed strictly
positive during any burst, and is zero otherwise. Note that (63),
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Fig. 2. Reconstruction and identification of an AR(2) process corrupted by isolated outliers. Left: comparison of the measured and reconstructed signal.
Middle: weights (53) of the MEAR components (outlier occurred at n = 150). Right: comparison of the terminal (n = N = 200) moments of the marginal
posterior distributions of a.

(64) is identical to the AR model in the previous example (3).
The only modelling difference is in the observation process
(65) compared to (59), (60). We identify a finite number of
mutually exclusive scenarios, each of which can be expressed
using an EAR model:

a) The AR process is observed without distortion: i.e.
hn = hn−1 = . . . = hn−p = 0. Formally, G1 : ȳn = x̄n.

b) The measurements are all affected by constant-
deviation burst noise: i.e. hn = hn−1 = . . . = hn−p = h.
The state-space model (63), (65) is now defined by the joint
distribution

f (zn, xn|a, σ, zn−1, h) =

N
([

Azn−1

c′zn

]

, σ2

[

rr′ 0
0 h2

])

. (66)

(66) cannot be directly modelled as an EAR process because it
contains unobserved state vector zn. Using standard Kalman
Filter (KF) theory [2], [9], we can multiply terms together
of the kind in (66), and then integrate over the unobserved
trajectory—i.e. over {zp+1, . . . , zn}— to obtain the direct
observation model:

f (xn|a, σ,Xn−1, h) = N
(

aẑn, σ
2qn

)

. (67)

The moments in (67) are defined recursively as follows:

qn = h2 + c
′Sn−1c, (68)

Zn = Sn−1 − q−1
n (Sn−1c) (Sn−1c)

′
, (69)

ẑn = Aẑn−1 + h−2Znc (xn − c
′Aẑn−1) , (70)

Sn = rr′ +AZnA
′. (71)

(67) can be expressed as a valid EAR model (24), if ẑn and qn
are independent of the unknown AR parameters, a, σ. From
(68) and (70) however, both qn and ẑn are functions of A (a)
(64). In order to obtain a valid EAR model, we replace A (a)
in (70), (71) by its expected value, Ân−1 = A (ân−1), using
(11). Then, (67) is a valid EAR model defined by the set of
transformations

G2 : ȳn =
1√
qn

[xn, ẑ
′
n]

′
, (72)

with time-variant Jacobian, Jn = q
− 1

2
n (Xn−1), evaluated re-

cursively using (68). G2 is parameterized by unknown h, each

setting of which defines a distinct candidate transformation.
Note that ȳn in (72) depends on ân−1 (11). Parameter updates
are therefore correlated with previous estimates, ân−1.

c) Remaining cases: cases a) and b) do not address
the case where hk is not constant on a regression interval
k ∈ {n− p, . . . , n}. Complete modelling for such cases
is prohibitive, since [hn−p, . . . , hn] exists in a continuous
space. Nevertheless, it is anticipated that such cases might be
accommodated via a weighted combination of the two cases
above.

A non-stationary AR(2) process was studied, with a1;n in
the interval [−0.98,−1.8] (as displayed in Fig. 3 (right)),
a2;n = a2 = 0.98, σn = σ = 0.01, and N = 200.
Realizations are displayed in Fig 3 (left). For n < 95,
a1;n is increasing, corresponding to faster signal variations.
Thereafter, a1;n decreases, yielding slower variations. The
process was corrupted by two noise bursts (samples 50–80
and 130–180), with parameters h = 8 and h = 6 respectively
(65). The process was estimated using c = 3 filter candidates:
namely the unity transformation, G1, along with G2 (h = 5)
and G2 (h = 10). Identification results, using (48), (56)–
(58), are displayed in Fig. 3 (middle). Specifically, the 95%
HPD interval, via (11) and (13), of the marginal Student t-
distribution of a1;n and a2;n respectively, is displayed. The
process was identified using forgetting factors (55) φN iG =
0.92, φDi = 0.9, and non-informative, stationary, alternative
N iG distribution, f̃ (a, σ). Furthermore, the matrix parameter,
Ψ̃, of the stationary, alternative Di distribution, f̃ (T ) (55),
was chosen to be diagonally dominant with ones on the
diagonal. This discourages frequent transitions between filters.

The identification results (Fig. 3 (middle)) indicate better
detection of the first burst than the second. As already noted,
ẑi,n, i = 2, . . . , c, (which denotes the reconstructed state
vector (70) with respect to the ith filter), is correlated with
ân−1, which may undermine the tracking of time-varying AR
parameters, an. In this case, each Kalman component predicts
observations poorly, and receives low weights, w2;n and w3;n

(53), in (56). This means that the first component—which
does not pre-process the data—has a significant weight, w1;n.
Clearly then, the Kalman components have not spanned the
space of necessary pre-processing transformations well, and
need to be supplemented. Extra filters can be ‘plugged in’ in a
naïve manner (in the sense that they may improve the spanning
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Fig. 3. Identification of a non-stationary AR(2) process corrupted by burst noise. Left: comparison of simulated, corrupted (dash-dotted vertical lines delimit
beginning and end of each burst), reconstructed values (KF filter-bank), and reconstructed values (KF +LPF filter-bank). Middle: recursive identification of
parameters a1;n and a2;n (KF filter-bank). Right: recursive identification of parameters a1;n and a2;n (KF+LPF filter-bank).

of the pre-processing space, but should simply be rejected,
via (53) if poorly designed). During the second burst (Fig.
3), the process is slowing down. Therefore, we have extended
the bank of KF filters by a simple arithmetic mean Low-Pass
Filter (LPF) on the observed regressors:

G3 : ȳn =
1

3
(x̄n + x̄n−1 + x̄n−2) . (73)

(72) and (73) yield EAR models with the same AR param-
eterization, and so they can be combined within the MEAR
framework.

Identification of the process using the KF+LPF filter-bank
is displayed in Fig. 3 (right). Identification is improved during
the second burst. The observed signal is compared with the
reconstruction obtained using both variants (i.e. the KF and
KF+LPF filter-banks) in Fig. 3 (left). Reconstructed values
for the KF variant are derived from (62):

ẑn = w1;nxn −
3

∑

i=2

wi;nâ
′
nẑi,n, (74)

using (11), (56). For the KF+LPF variant, the term
w4;n

3 (xn + xn−1 + xn−2) is added to (74), where w4;n is the
estimated weight of the LPF component (53), (56)–(58).

Speech reconstruction: the MEAR filter-bank for the burst
noise case (KF variant) was applied in the reconstruction of
speech. A c = 4 MEAR model was used, involving G1 (ȳn =
x̄n), G2 (h = 3), G2 (h = 6) , G2 (h = 10). The speech was
modelled as AR with p = 8 (3). The forgetting factors (55)
were φN iG = φDi = 0.95. Once again, a diagonally-dominant
Ψ̃ was chosen for f̃ (T ).

During periods of silence in speech, statistics (56) are
effectively not updated, creating difficulties for adaptive iden-
tification. Therefore, we use an informative stationary alter-
native distribution, f̃ (a, σ), of the N iG type (5) for the AR
parameters in (55). We identify the time-invariant alternative
statistics, Ṽ , ν̃, using 1800 samples of unvoiced speech.
f̃ (a, σ) was then flattened to reduce ν̃ from 1800 to 2. This
choice moderately influences the accumulating statistics at
each step, via (56). Specifically, after a long period of silence,

the influence of data in (56) becomes negligible, and Vn is
reduced to Ṽ .

Three sections of the bbcnews.wav speech file, sampled
at 11kHz, were corrupted by additive noise. Since we are par-
ticularly interested in performance in non-stationary epochs,
we have considered three transitional cases: (i) voiced-to-
unvoiced transition corrupted by zero-mean, white, Gaussian
noise, with a realized Signal-to-Noise Ratio (SNR) of −1
dB during the burst; (ii) an unvoiced-to-voiced transition
corrupted by zero-mean white uniform noise at −2 dB; and
(iii) a silence-to-unvoiced transition corrupted by a click of
type 0.25 cos (3n) exp (−0.3n), superimposed on the silence
period. In the first two cases, the noise burst was successfully
suppressed. In the third case, the click was suppressed, but
with some suppression also of the unvoiced speech.

VII. DISCUSSION

The MEAR model (37) proposes a relatively rich exten-
sion of the classical AR model. It allows transformations on
regressors, which relates it to semi-physical modelling [28].
Being a mixture-based extension, it is also related to the
multiple model approach [29], to mixtures of AR processes
[30], and to the Generalized AR (i.e. GAR) approach [7].
It must be remembered, though, that the MEAR model is a
single AR model subject to an unknown transformation of
observations. This is formalized as a mixture with common
AR parameters (37). There are two main consequences. Firstly,
the MEAR model is appropriate in cases where the transfor-
mation/distortion process is independent of the underlying AR
process. Secondly, the AR parameter inference (48) requires a
single sufficient statistic matrix, Vn (49), updated via a linear
combination of c dyads, each calculated from one component
in turn. This is expressed in the associated computational
structure (Fig. 5). Vn is therefore updated by a structure of
rank c.

The restriction to common AR parameterization across all
components can easily be relaxed via obvious changes to the
recursive algorithm (49)–(51). Each AR component would
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then experience a local rank-1 update, and there would be
no inter-component interaction. Such a model would be over-
parameterized, as each component would then have unknown
AR parameters and an unknown transformation Gi, causing
identification problems. The common AR parameterization
in the MEAR model overcomes this problem. Moreover, the
MEAR rank-c update implies an interaction of regressors from
each component. This appears to be a key benefit of the MEAR
model, as it allows a small number of candidate models to span
a larger transformation space. In Section VI, for example, a
small number of discrete values, h, drawn from a potentially
large continuous range, could handle bursts generated by a
model not explicitly represented by any one component.

Interaction between a finite set of components has been
implemented by other techniques. The Kalman-based Inter-
acting Multiple Models (IMMs) [29] linearly combine state
vectors (i.e. certainty equivalents) evaluated using each filter,
before using it in the Kalman updates. Again, however, this
corresponds to a rank-1 update in our framework. The MEAR
algorithm (Fig. 5) only propagates sufficient statistics, Vn, and
not certainty equivalents.

The Bayesian identification method presented in this paper
unifies all tasks of inference into a single, model-consistent
framework. In the burst noise example of Section VI-B,
the MEAR algorithm combines the pre-processing tasks (of

burst detection and signal reconstruction) with on-line iden-
tification. It is the dynamic weights (53) which balance the
dyadic update contributed by each component at every step
(49). This contrasts with the previously reported methods.
For example, in [31], a Boolean detection decision is made
concerning presence of outliers. During a detected burst, a
Kalman filter is used for reconstruction, and updating of
statistics is interrupted. In our work, the updating of statistics
is never interrupted. Components which, in effect, pre-process
noisy data, contribute dyads constructed from filtered data.
Furthermore, exponential forgetting is used to handle time-
varying AR parameters, in place of the extended Kalman
filter in [31]. In difficult cases, such as silence regions of
speech (Section VI-B), forgetting with informative alternative
distributions (55) can be used.

A Quasi-Bayes (QB)-based approximate update of sufficient
statistics was employed in [25], for estimating an ARMA
model using a mixture-based extension (ARMMAX). The AR-
MMAX model is a special case of the MEAR model, but with
time-invariant component weights, instead of (32), and with
moving-average whitening filters as candidate transformations
(23). The candidates, G (28), used to represent the continuous
multidimensional transformation space, were designed using a
simplex method. This is an example of a technique for filter-
bank design, achieved at the price of loss of recursivity in the
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identification method. Further work on filter-bank design is
required.

In our work, we model the possible degradations of the AR
process, and design the filter-bank, G (28), in an attempt to
span these possibilities. The task is facilitated by interaction
between the filters, via the rank-c update (49). The parallel
architecture of the summed-dyad algorithm (Fig. 5) permits
extra candidates to be ‘plugged in’ with ease, in order to
supplement the set. We saw in Section VI-B, for instance,
how this can improve identification. When the extra candidate
is not relevant, its contributing dyads are weighted by low
component weights in (49), and become negligible.

VIII. CONCLUSION

We have introduced a mixture-based extension of the AR
model, and derived an associated recursive Bayesian iden-
tification scheme. The resulting MEAR model is a mixture
of AR components with common AR parameterization, each
component modelling the AR process defined with respect to
one possible data transformation. These transformations can
be interpreted as a bank of filters, used to pre-process a single
AR process.

The principal design aim of the MEAR model was to
extend the modelling abilities of the classical AR model
without losing the recursive computational properties of its
identification. The recursive update was optimized at each
time step in the sense of Kullback-Leibler (KL) distance.
Conjugacy and sufficient statistics were preserved using a
conditional independence assumption. This resulted in an on-
line Variational Bayes (VB) approximation, which was further
restricted in order to yield a non-iterative solution, known as
the Quasi-Bayes (QB) formulation. This step-wise optimiza-
tion of the parameter inference is important in non-stationary
processing, yielding, for example, optimized point estimates
along with measures of their uncertainty. The computational
load of the MEAR identification procedure is light, increasing
only linearly with the number of components (i.e. the number
of filters in the filter-bank), and so real-time implementation
is feasible.

The MEAR model is expected to be useful in situations
where AR models are already used, but where there are now
various distortions present. A correctly designed filter-bank
for the MEAR model permits on-line recursive identification
of the AR process, robust to these distortions. The MEAR
model does not impose any specific form of filter on the
filter-bank. Thus, it can be seen as a flexible framework for
on-line comparison and cooperation between various ad hoc
candidate pre-processing filters. Key to the computational flow
of the proposed algorithm (Fig. 5) is the rank-c updating of
parameter statistics via a weighted sum of dyads formed from
the regressors of each transformation. The model can therefore
perform well even in situations where the filter-bank does not
include the true underlying data transformation.

Acknowledgements: This work was supported by grants:
AVCR S1075102, GACR 102/03/0049.

REFERENCES

[1] M. West, P. J. Harrison, and H. S. Migon, “Dynamic generalized linear
models and Bayesian forecasting,” Journal of the American Statistical
Association, vol. 80, no. 389, 1985.

[2] V. Peterka, “Bayesian approach to system identification,” in Trends and
Progress in System identification (P. Eykhoff, ed.), pp. 239–304, Oxford:
Pergamon Press, 1981.

[3] B. Porat, Digital processing of random signals: theory and methods.
Englewood Cliffs, N.J.: Prentice-Hall, 1994.

[4] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals.
Prentice-Hall, 1978.

[5] S. Kay, Modern Spectral Estimation. New Jersey: Prentice-Hall, 1988.
[6] P. Wellstead and M. Zarrop, Self-tuning Systems. Chichester: John Wiley

& Sons, 1991.
[7] S. J. Roberts and W. D. Penny, “Variational Bayes for generalized au-

toregressive models,” IEEE Transactions on Signal Processing, vol. 50,
no. 9, pp. 2245–2257, 2002.

[8] J. Rajan, P. Rayner, and S. Godsill, “Bayesian approach to parameter
estimation and interpolation of time-varying autoregressive processes
using the Gibbs sampler,” Vision, Image and Signal Processing, IEE
Proceedings, vol. 144, no. 4, pp. 249–256, 1997.

[9] L. Ljung and T. Söderström, Theory and practice of recursive identifi-
cation. Cambridge; London: MIT Press, 1983.

[10] B. Widrow and S. Stearns, Adaptive Signal Processing. Prentice-Hall,
1985.

[11] A. Quinn, P. Ettler, L. Jirsa, I. Nagy, and P. Nedoma, “Probabilistic
advisory systems for data-intensive applications,” International Journal
of Adaptive Control and Signal Processing, vol. 17, no. 2, pp. 133–148,
2003.

[12] J. Bernardo and A. Smith, Bayesian Theory. Chichester, New York,
Brisbane, Toronto, Singapore: John Wiley & Sons, 1997. 2nd edition.

[13] B. Koopman, “On distributions admitting a sufficient statistic,” Trans-
actions of American Mathematical Society, vol. 39, p. 399, 1936.

[14] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the
IEEE, vol. 63, no. 4, pp. 561–580, 1975.

[15] M. Abramowitz and I. Stegun, Handbook of mathematical functions.
New York: Dover Publications, Inc., 1972.

[16] G. Golub and C. VanLoan, Matrix Computations. Baltimore – London:
The John Hopkins University Press, 1989.

[17] G. Bierman, Factorization Methods for Discrete Sequential Estimation.
New York: Academic Press, 1977.

[18] G. Kitagawa and W. Gersch, “A smoothness priors time-varying AR
coefficient modelling on nonstationary covariance time series,” IEEE
Transactions on Automatic Control, vol. 30, no. 1, 1985.

[19] R. H. Middleton, G. C. Goodwin, D. J. Hill, and D. Q. Mayne, “Design
issues in adaptive control,” IEEE Transactions on Automatic Control,
vol. 33, no. 1, pp. 50–58, 1988.

[20] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York:
Academic Press, 1979.

[21] G. V. Moustakides, “Locally optimum adaptive signal processing al-
gorithms,” IEEE Transactions on Signal Processing, vol. 46, no. 12,
pp. 3315–3325, 1998.

[22] R. Kulhavý and M.B.Zarrop, “On general concept of forgetting,” Inter-
national Journal of Control, vol. 58, no. 4, pp. 905–924, 1993.

[23] S. Kotz and N. Johnson, Encyclopedia of statistical sciences. New York:
John Wiley, 1985.

[24] S. Kullback and R. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, vol. 22, pp. 79–87, 1951.

[25] L. He and M. Kárný, “Estimation and prediction with ARMMAX model:
a mixture of ARMAX models with common ARX part,” International
Journal of Adaptive Control and Signal Processing, vol. 17, no. 4,
pp. 265–283, 2003.

[26] D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis
of Finite Mixtures. New York: John Wiley & Sons, 1985.

[27] M. G. Kendall, A. Stuart, and K. Ord, Kendall’s Advanced Theory of
Statistics, Volume 1: Distribution Theory. Edward Arnold, 6th ed., 1998.

[28] T. Söderström and R. Stoica, System Identification. Prentice-Hall, 1989.
[29] X. R. Li and Y. Bar-Shalom, “Multiple-model estimation with variable

structure,” IEEE Transactions on Automatic Control, vol. 41, no. 4,
pp. 478–493, 1996.

[30] M. Kárný, J. Böhm, T. V. Guy, and P. Nedoma, “Mixture-based adaptive
probabilistic control,” International Journal of Adaptive Control and
Signal Processing, vol. 17, no. 2, pp. 119–132, 2003.

[31] M. Niedźwiecki and K. Cisowski, “Adaptive scheme for elimination
of broadband noise and impulsive disturbances from AR and ARMA
signals,” IEEE Transactions on Signal Processing, vol. 44, no. 3, 1996.


