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Abstract

The performance of collaborative beamforming is analyzeidgithe theory of random arrays. The
statistical average and distribution of the beampatterranfiomly generated phased arrays is derived
in the framework of wireless ad hoc sensor networks. Eackosemode is assumed to have a single
isotropic antenna and nodes in the cluster collaboratittelgsmit the signal such that the signal in
the target direction is coherently added in the far-fieldigeglt is shown that withNV sensor nodes
uniformly distributed over a disk, the directivity can appch N, provided that the nodes are located
sparsely enough. The distribution of the maximum sidelobakps also studied. With the application
to ad hoc networks in mind, two scenarios, closed-loop arehdpop, are considered. Associated with
these scenarios, the effects of phase jitter and locatitimatson errors on the average beampattern are
also analyzed.

To Appear in IEEE Transactions on Signal Processing, 2005.

. INTRODUCTION

Recent advances in the construction of low cost, low powed, mass produced micro sensors and
Micro-Electro-Mechanical (MEM) systems have ushered irea ra in system design using distributed
sensor networks [1, 2]. The advent of sensor network teciygyoprovides a variety of applications that
have been considered unrealistic in the past. One suclcapph is in the area of space communications:
with ad hoc sensor networks, a number of sensor nodes rapddaded on a planet can collaboratively
collect information and then, also collaboratively, sehd information back to Earth. In this scenario,
the sensors must have an ability to transmit informationr oxary long distances with high energy
efficiency. In this kind of point-to-point communicationirectional antennas are a preferred means to
avoid interference.

In general, this can be achieved by adaptive beamformingerGa number of well-designed an-
tenna elements at the transmitting/receiving sensor nasbesh node could in principle autonomously
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Fig. 1. Collaborative beamforming concept in ad hoc senstwaorks.

transmit/receive the information to/from any desired cli@n. The advantages and applications of beam-
forming with antenna arrays are well known; in wireless caminations, this enables Space-Division
Multiplex Access (SDMA), a technology which has the potantib significantly increase the capacity of
multiple access channels.

One of the most important constraints on wireless sensoenégy efficiency. Since the sensor
nodes are often distributed in places where manual mainten# costly, such as remote locations,
on top of buildings and so on, it should be possible to opethése for several months without
battery replacement. Considering the fact that each aatetement requires analog circuitry (and thus
leads to costly hardware), in practice each distributedsaets likely to be equipped with only a
single antenna and this precludes the use of autonomousfér@aimg in scenarios of very energy
efficient communication. Nevertheless, if the sensors & dluster share the informatica priori and
synchronously transmit the data collaboratively as skatcim Fig[l, it may be possible to beamform
when transmitting (and also receiving) the data in a digted manner. The resultant overhead due to
intra-cluster information sharing may be relatively snedlthis can be done by low-cost short distance
broadcasting-type communication among nodes. Thus, wdiltlted collaborative beamforming, the
nodes can send the collected information to the far-endverxever long distances with high efficiency.
Also, only the sensor cluster in the specified target dioectieceives the data with high signal power
and no significant interference occurs for clusters in otfiezctions. Overall there is thus a potential
to increase the capacity of the multiple access channeifisigmntly despite the additional overhead for
information sharing.

The obvious question is whether one can form a nice beampattéh a narrow mainbeam, or
achieve a reasonable directional gain (directivity). Tl@s®r nodes in ad hoc networks are located
randomly by nature, and the resultant beampattern depentfie@articular realization of the sensor node
locations. Therefore, it may be quite natural to treat then@attern with probabilistic arguments. In this
paper, assuming idealized channel model conditions anehaatproperties, we analyze the achievable
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performance of collaborative beamforming based on distieith sensor nodes in a probabilistic sense.
Specifically, the statistical properties of the achievatdampattern of the random sensor arrays are
studied based on the following assumptions. The sensons &or ad hoc network and the geometry of
the cluster is given by a two-dimensional disk of a givenuadiver which all sensor nodes are distributed
uniformly as illustrated in Fidl1. Since the correspondiagfield beampattern depends on the particular
realization of the random array of nodes, the probabilitstribution of the far-field beampattern is of
particular interest.

To the best of the authors’ knowledge, the beampattern &spécollaborative beamforming using
random arrays have not been analyzed before in the framewforkireless ad hoc sensor networks.
Nevertheless, in the antenna design literature, prolssibilanalysis of random arrays is not new. In the
framework of linear array design with a large number of sefidoo [3] has developed a comprehensive
theory of random arrays in the late 1960s. It has been shoatrréimdomly generated linear arrays with
a large number of nodes can in fact form a good beampattemhigh probability and that with linear
random arrays ofV sensors, the directivity approach&'sasymptotically. Although our scenario is quite
different in that our main goal is not to design array geogndiut to exploit the randomness of the
distributed sensor network, it turns out that the resultssivell develop in this paper can be seen as
an extension of the theory of linear random arrays, [3], tadoan arrays on a disk. Thus, the same
conclusion will be reached: wittV collaborative sensor nodes, one can achieve a directivibrder N
asymptotically.

The major difference between classical beamforming byraraerrays and distributed beamforming is
that whereas the geometry of the former is usually knevmniori, the exact location of the sensor nodes
in ad hoc network is not, and it should be acquired dynanyicBiten if their relative location is estimated
by some adaptive algorithm (e.qg., [1] for receiver beamfag)) considering the low SNR operation of the
sensor nodes, it is almost certain that the acquired geani@wmrmation has some inaccuracy. Also, since
all nodes are operated with physically different local batdrs, each node may suffer from statistically
independent phase offsets. In order to model and elucitiateffect of these impairments, we consider
the following two scenariosclosed-loop and open-loop. The closed-loop scenario may be described as
follows. Each node independently synchronizes itself tolibacon sent from the destination node (such
as a base station) and adjusts its initial phase to it. Thnesbeam will be formed in the direction of
arrival of the beacon. This kind of system is often referrech$ aself-phasing array in the literature,
and may be effective for systems operating in Time-Divisizuplex (TDD) mode. The residual phase
jitter due to synchronization and phase offset estimatimoray sensor nodes is then often the dominant
impairment. On the other hand, in the open-loop scenario sgeirae that all nodes within the cluster
acquire their relative locations from the beacon of a neagigrence point or cluster head. The beam will
then be steered toward an arbitrary direction. Thus, thérdgi®n need not transmit a beacon, but each
node requires knowledge of its relative position from a ptetmined reference point within the cluster.
This case may occur in ad hoc sensor networks where senses tminot have sufficient knowledge
of the destination directiom priori. In this scenario, since the acquisition of precise knogte$ not
realistic, the effects of location estimation ambiguity arg sensors upon the beampattern may be of
particular interest.

Throughout the paper, the nodes and channel are assumedstatioeover the communication period,
and for simplicity the information rate is assumed to be sigfitly low that Inter-Symbol Interference
(ISI), due to residual timing offset, is negligible. It wililso be assumed that all nodes share the same
transmitting informatiora priori, as the main focus of the paper is on the beampattern, rdtharthe

It is interesting to note that the theory of random arraysieen discussed and developed almost exclusively in thersmte
design community, e.g., in [3-6].
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Fig. 2. Definitions of notation.

front-end communication performance.

The paper is organized as follows. Sectidn Il describes $iseraptions, model, and main parameters
that describe beam characteristics associated with tmeefk@rk of wireless ad hoc sensor networks.
In SectiorTll, the average properties of the beampatteendarived. The average beampattern of linear
random arrays has been derived in [3], and our results capdieas its extension to our sensor network
model. For analytical purpose, we also introduce the canog@ dB sidelobe region. In SectidnllV,
the statistical distribution of the beampattern in a spedirection is derived. Lo [3] has derived the
distribution of the beampattern in linear arrays based oraasGian approximation of the array factor,
which is a common assumption in the random array literatureontrast, we shall develop a numerical
method to calculate the exact distribution of the beampatésnd also examine the accuracy of the
Gaussian approximation in detail.

The distribution of the maximum of the sidelobe region iscdssed in Sectiof]V. This aspect of
beampattern was analyzed by Steinberg [4], Agrawal and [,ogsd Donvito and Kassam [6] in the
framework of linear random arrays. In this paper, we deriwaupper bound on the distribution of the
maximum sidelobe in our framework of collaborative beamfimg based on the approach of [6]. The
effect of phase jitter or location estimation errors on thguttant beampattern, associated with the closed-
loop and open-loop scenarios, is analyzed in Sefidn VinBéeg [7] has analyzed the effects of phase
estimation errors in linear arrays, and based on a similpragezh we analyze the effects of the average
beampattern with phase estimation errors. Finally, Sedfl concludes the paper.

[l. SYSTEM MODEL AND BEAMPATTERN

The geometrical configuration of the distributed nodes agstidation (or target) is illustrated in Fig. 2
where, without loss of generality, all the collaborativens@ nodes are assumed to be located on the
z-y plane. Thekth node location is thus denoted in polar coordinateg/y;). The location of the
destination is given in spherical coordinates (Y, ¢o,6y). Following the standard notation in antenna
theory [8], the angl® € [0, 7] denotes the elevation direction, whereas the angte[—, 7| represents
the azimuth direction. In order to simplify the analysis flollowing assumptions are made:
1) The location of each node is chosen randomly, followingndoum distribution within a disk of
radius R.

2) Each node is equipped with a single ideal isotropic argenn

3) All sensor nodes transmit identical energies, and tha ftses of all nodes are also identical.
Thus the underlying model falls within the framework of pbdsrrays.
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4) There is no reflection or scattering of the signal. Thusrdhis no multipath fading or shadowing.
5) The nodes are sufficiently separated that any mutual cauplifects [8] among the antennas of
different sensor nodes are negligible.
Furthermore, we also assume that all the nodes are perfaathronized so that no frequency offset
or phase jitter occurs. The effects of phase ambiguitiehieméampattern will be discussed in Sedfidn VI.
Let di.(¢, ) denote the Euclidean distance betweenkitienode and the reference locatioa, ¢, 9),
which is written as

di(9,0) \/A2 + 2 — 2rpAsinf cos(¢ — Yy) 1)
If the initial phase of nodé < {1,2,..., N} is set to
27
Uy, = _Tdk(¢0790)7 2)
the corresponding array factor, given the realization afentocationsr = [ry,7s,...,ry] € [0, R]Y and
Y = [Y1,9,...,¢¥N] € [-m, 7]V, is written as
N
_ U i 22di(6.9) 22 [d, (6.,0) ~di (60,00
F(¢>,9lr,w)—ﬁ;ea ¢ % Nzey [ (6,6)— e (90.00)] @3)

where N is the number of sensor nodes akds the wavelength of the radio frequency (RF) carrier.
In this paper, we are interested in the radiation patterménfar-field region, and we assume that the
far-field conditionA >> r; holds. The far-field distancé,. (¢, 6) in (@) can then be approximated as

d(¢,0) = A — risinf cos(¢p — y). 4)
The far-field beampattern is thus approximated by

N
1 j 2% 7, [sin O cos(do—1Pr ) —sin 6 cos(¢p—x
F(6,0r,4p) ~ 5 Y ¢ X lintbeostonmvn)msindeoslomvill & f(g, 0l 4p). ©)
k=1

Alternatively, instead of applying’. as in [2), if we choose

2w .
\I/L = Trk sin Oy cos(pg — Vi), 6)

then we obtain the array factor as
Fi(6, 017, 9) zﬂf 4 (60)

2L [A—ry sin 0 cos(¢p—1Pr )47 sin O cos(Po—1k )]

Mz

k:

27 1 - 27 . . ~
— eJTAN Z el Tk [sin 0o cos(po—1)x)—sin 0 cos(¢—1bx)] & FT((Zﬁ, 9‘7", ’l/)) (7)
k=1

The only difference betweeR (¢, 0|r, 1) in @) and Ff(¢,0|r,+) in (@) is the existence of the initial
phase offset o%A. The far-field beampattern is thus identical for both systeamd the received signal
exhibits no difference as long as the base station compen&at this phase rotation.

Therefore, there are two ways of forming a beam. One way issto[R), but this approach requires
accurate knowledge of the distance, relative to the wagttek between each node and the destination.
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Thus, this applies to the closed-loop case such as selffqghagays. Alternatively, the use &l (6) requires
knowledge of the node positions relative to some commornreate (such as the origin in this example),
and thus corresponds to the open-loop case. Knowledge afl@ivation directiord, is also required,
but this may be assumed to be knoaipriori in many applications. In both cases, the synchronization
among sensors is critical, which may be achieved by the usefefence signals such as those of the
Global Positioning System (GPS).

Of particular interest in practice is the case whege= 5 i.e., the destination node is in the same
plane as the collaborative sensor nodes. Therefore, wecwiilsider the beampattern in this plane and
thus assume that = 6y = 7 for the rest of the paper. We then dendtép, 6 = 7/2|r,+) in @) by
F(¢|r ) and F1(¢,0 = 7/2|r,4) in @) by Ft(¢|r,+) for simplicity.

By assumption, the node locatiofis;, 1;.) follow the uniform distribution over the disk of radius.
Thus, the probability density functions (pdfs) qf and, are given by

fm(r):z O0<r<R, and fy, )=

R27 %7 -7 é TIZ) <.
From [8), we have (with) = 00 =7/2)
—rk sm sm ¢°+¢ T sm rk sin 1y,
F(glr.ap NZé (v NZW o, ®)

where7, £ /R andiy, £ 1y, — 252, The compound random variable

2k =S 7% sin sza (9)

has the following pdf: 0
falz)=2V1-22, —1<z<1. (10)

T

Note that since the above model is symmetric with respechéoazimuth directionp, any particular
choice of ¢y does not change the results in the following. Thereforehavit loss of generality, we
assume thap, = 0, and the parametet simply corresponds to the difference angle between thetarg
direction and the reference. Also, note thalt < .

The array factor of[{8) can then be rewritten as

— T Sln Q
N Z jimfsin(3) (11)

whereR £ % is the radius of the disk normalized by the wavelength.
Finally, the far-field beampattern can be defined as

. 2 .
P(¢l2) 2 |F(9l2)| = F(9]2)F" (4]2)
AR i
=— e—j47rRsin(%)(zk—zl)
k=1 I=1
11 N
— N 4+ m Z e—JOl(¢)Zk Z eJOl(¢)ZL (12)
k=1 =1
I£k
where
a(p) £ 4rRsin % (13)
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Fig. 3. Average beampattern with differeRtand N = 16, 256.

I1l. AVERAGE PROPERTIES OFBEAMPATTERN OF UNIFORMLY DISTRIBUTED SENSORARRAY WITH
PERFECTPHASE INFORMATION

A. Average Far-Field Beampattern

We start by investigating the average beampattern of theoramarray resulting from the distributed
sensor network model in the previous section. Here, theageeis taken over all realizations of and
from (I2) the average beampattern is expressed as

Pa(9) £ E. {P(ol2)}, (14)

where E,.{-} denotes expectation with respect to the random variablégom [12) and[{T0), it can be

readily shown that
Pav((b):%"" <1_%> ‘2%

whereJ,, (z) is thenth order Bessel function of the first kind. Although the fuoot/; (x)/z is oscillatory,
the local maxima of oscillation tend to decrease with insieguz. In (I3), the first term represents the
average power level of the sidelobe, which does not depentth@mode location, whereas the second
term is the contribution of the mainlobe factor. Since, dbaded ong, the array factor of the forni.{11)
is an average of bounded independent and identically oliged (i.i.d.) complex random variables, by the
weak law of large numbers the beampattérd (12) convergdset@risemble average15) in probability
as N — oo.

The average beampattern Bf15) is plotted in Hig. 3 for s#werlues ofR with N = 16 and 256. As
can be observed, the sidelobe approadh@$ as the beam angle moves away from the target direction.

To gain further insight, consider the asymptotic expansibthe Bessel functiow; (x) for x > 1 as

T (z) ~ \/% cos <ac - %) . (16)
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We then have

Ji(@) [ o8 of 3
'2 . —gcost(z -7, a7
and [I5) becomes, fak(¢) = 47 R sin (%) > 1,
1 1 8 9 3
Pav(¢) ~ N + <1 - N) o (@) cos <oz(qz5) - Zw) . (18)
The nth peak of the average sidelobe will appear aroud,,) ~ (n — %) m,n=12... and its
corresponding value becomes
3
1 1\ 1 2
peaky =~ R T D

which does not depend oR. The nth peak andnth zero positions (in the sense of the second term in
(@I3)) can then be expressed asymptotically as

_1

PP . 2 arcsin <n4]§4 ) (20)
1

@2 ~ 2 arcsin <n4—;4 ) . (22)

Since the peak sidelobe value does not depen# and is less sensitive to the value Mt it is apparent
that the only way one can avoid high peaks in the sidelobeneigi to increaser such that most of the
major peaks are relatively concentrated around the manldbhis phenomenon will be further examined
in the following subsections.

B. 3dB Beamwidth of the Average Beampattern

One of the important figures of merit in directional antenmsign is the 3dB beamwidth. In the
deterministic antenna, the 3 dB beamwidth is the threshofdeaat which the power of the beampattern
drops 3dB below that in the target directi@g. In our scenario, the 3dB beamwidth itself is a random
variable and it is not easy to characterize analyticallyjughas an alternative measure, we may define
the 3dB beamwidth of thaverage beampattern denoted b8 as the angle that satisfies

Pad(28) — % (22)

In the limit asN — oo, one may obtain
12
348 — 9 arcsin <%> , (23)

by numerically solving[[II5). Foz >> 1, (Z3) can be approximated agd® ~ 0.26/R. Therefore, the
beamwidth is asymptotically independent/éfand is mainly determined by the inverse of the disk radius
of the cluster. Consequently, sparsely distributed senfasm a narrow beam on average provided that
the cluster radius is sufficiently large.

This sharp mainbeam property may be desirable, but if théidht destination node has mobility, it
should be designed carefully; the calibration should tdkegbefore the mobile node moves out of the
mainbeam, but the mainbeam width is inversely proportitaahe normalized radiu® as observed in
Fig.[d. Therefore, calibration should be performed morguemntly if the destination node moves rapidly
or whenR is increased.
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Fig. 4. Definitions of 3dB beamwidth and 3 dB sidelobe region.

C. 3dB Sdelobe Region

Similar to the 3 dB beamwidth concept, it may also be convari our subsequent analysis to define
the region within which the average of the sidelobe bearapatfalls below some threshold level. As
we have seen, for larg®, the sidelobe of the average beampattern is giveri By asymptotically.
Therefore, we shall define tH2dB sidelobe region as the region in which neither neighboring sidelobe
peak in the average beampattern exceeds 3dB abVelLet n, denote the minimum index of the peak
position such that the corresponding peak value satisfies3ttiB condition. Specifically, fronT{19)
is the minimum integer. that satisfies

peak 3
av(Pn ) 1 2
——— ~14+(N-1)— | ——=| <2 24
I/N +( )W[W(n—i)] = 4y ( )
and it can be bounded by
n021+3<N_1>3. (25)
4 7 s

Let ¢7°° > 0 denote the angle corresponding to the zero point next taftte peak sidelobe which can
be obtained from[{21) witlh = ny. Consequently, in this paper, the 3 dB sidelobe region imddfas

Ssas £ {¢ |7 > |¢| > 55} (26)
Fig.[4 illustrates the definitions of the 3dB sidelobe regiogether with that of the 3dB beamwidth.
As will be shown in Sectiol IV-IC, the idea behind the introtioie of 3dB sidelobes is that in this
region one may assume that the mean value of the random arcéyr fof [8) sampled ap € Ssqp
becomes a random variable with approximately zero means Tl may reasonably assume that the

array factor has zero mean in this region, and this assumptgmnificantly simplifies the analysis of the
statistical distribution in the following sections.
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Fig. 5. Threshold of 3dB beamwidth and 3dB sidelobe regioth wéspect tak and number of nodea/.

Fig.[d shows the threshold angle above which the 3dB sidelep®n begins. The asymptotic 3dB
beamwidth [[ZB) is also shown for reference. As can be obdewhereas the 3dB beamwidth is less
sensitive to the number of nodag the 3 dB sidelobe region will be considerably reducedascreases.
This means that a& increases the dominant non-negligible sidelobe peak meyradth high probability
unlessR is also increased. This trade-off will be clarified by thedstwf directivity in the following
subsection.

D. Average Directivity

The directivity or directional gain is the parameter thatrtterizes how much radiated energy is
concentrated in the desired direction, relative to a sifggiropic antenna. Specifically, it may be defined

as .
a J", P(0)do _ 27
5. P(o)de [T P(¢)d¢’
where P(¢) is the radiated power density in the directiongofln the scenario of this paper, siné¥¢)

depends on the particular realization of the corresponding gain may be expressed, by substituting
P(¢|z) of (@) into the above, as

(27)

-1

N N
1 1 -
D(z) = N + m ; lz_; Jo (47TR(Zk — Zl)> (28)
ik
The mean value of(28) is given by
Dy 2 E. {D(2)} (29)
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Unfortunately, direct calculation of.{R9) does not resaltai closed-form or insightful expression. Thus,
we shall consider the following as an alternative measure:

2 2T
JT Bz {P(¢lz)}do [T Pa(¢)de’

Note that by Jensen’s inequality, we have

Dy 2 (30)

Day < Day, (31)

which means thaD,, in @0) is a lower bound o,,. However, since by the law of large numbers the
denominator ofD(z) may approach its average value with high probabilityNasncreases, the above
bound is expected to become tight Asincreases. This will be verified in the numerical resultsobel
Substituting [Ib) into[{30), we obtain

Dy = (32)

N
L+ (N = 1)2Fs (5,45 1.2,3; —(4nR)2)
where o F} (%, % ;1,2,3; —3:2) is a generalized hypergeometric function which monotdlyickecreases
with increasingz and converges to 0 as — oo. Therefore, unlike well-designed deterministic linear
arrays, the gain of a given realization is very likely to bssl¢han/V, and the limitN can be approached
only by increasingR. This agrees with the previous observation that the avenagiabeam becomes
narrow ask increases and thus improves the directivity.

It should be noted that although{32) has a simple form aret®@§ome insight into the asymptotic be-
havior of directivity, the calculation of the generalizeghergeometric function involved iL{B2) becomes
numerically unstable a®& increases, and it is much easier to numerically integragedémominator of

@30) directly.
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Fig.[d shows the relationship between the normalized diigcbound Da,/N and R. Also shown in
the figure as diamond-shaped points are the correspondaty axerage directivitie®,,/N obtained by
the simulation of 1000 realizations. As can be observedpthend is very tight compared to the exact
performance. Thus, it follows that in order to achieve higitnmalized directivity (i.e. directivity close
to V) with N nodes, the distribution of the nodes should be as sparsessibfe In fact, we have the
following theorem:

Theorem 1 (Normalized Directivity Lower Bound): For largeR and N, Da,/N is lower bounded by

Day S 1
~ 2T & (33)
N 1+u%
where is a positive constant independentfand R (1 ~ 0.09332).
Proof: See AppendiXil. [ |

Note that the factotV/R which appears in[{33) can be seen asna-dimensional node density. To
verify the above theorem, Fig. 7 shows the relationship betwD,,/N and the node densityW/R, as
well as the lower bound if_(83).

The above theorem indicates that there is a simple reldtiprizetween directivity and node density.
It can be seen that the node density almost uniquely detesttlre normalized directivitp,,/N. It is
important to note that in order to achieve a certain norredlidirectivity with large numbers of nodes
N, the node density should be maintained to the desired valugpteading the nodes as sparsely as
possible. Alternatively, if the normalized regidR is fixed, it is not efficient in terms of normalized
directivity to increase the number of sensor nodes.

The above theorem also indicates that if the sensor nodegnéfiamly distributed and if we are to
chooseN nodes out of them, in terms of normalized directivity it mag better to choose them as
sparsely as possible.
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Fig. 8. Average and realization of beampattern with= 2 and N = 16.

IV. DISTRIBUTION OF FAR-FIELD BEAMPATTERN OF COLLABORATIVE BEAMFORMING WITH
PERFECTPHASE INFORMATION

In the previous section, we have seen that random arrays riiegeaverage beampatterns with low
sidelobes. However, the average behavior does not netgsgagroximate a beampattern of any given
realization unlessV — oo. In fact, even though the average beampattern has a sharbeaan and
sidelobes always close N, there is a large dynamic range of sidelobes among randoerigrgted
beampatterns. As an example, the average beampattern anphdicular realization of randomly gen-
erated sensor locations is shown in Elg. 8. The mainbeameofdhlization closely matches the average,
but sidelobes may fluctuate with a large dynamic range anity eaeed the average level.

Therefore, in practice, the statisticdistribution of beampatterns and sidelobes in particular, is of
interest. By approximating the beampattern sidelobes asrgplex Gaussian process, Lo [3] has derived
the distribution of the beampattern in the case of lineadoam arrays.

In the following, we first derive a numerical method that a#ocalculation of the exact distribution
of the beampattern without applying Gaussian approximatidVe then derive a convenient asymptotic
form of the sidelobe distribution using a Gaussian appratiom similar to [3], and evaluate its validity
in our framework.

A. Exact Evaluation of Distribution

Since the array factor is a sum of i.i.d. random variablasdistribution can be computed numerically
by the characteristic function method. To this end, frénj) (&t

B — 3o 2+ (X =37), (34)
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where

Ty, = cos (zpa(9)),  Ur = sin (zpa(0)) (35)
anda(¢) is defined in[(IB). The joint characteristic functionif and ;. is written as
Dz, i (w7 1/) = Fj;, i {ej(w:ik+l/§k)} =FE, {ej[w Cos(zka(¢))+zxsin(zwz(d)))}} ) (36)

For a given pair ofwv and v, the above expectation is a single integral of a well-betiduaction and
can be calculated numerically. .
_ Since F'(¢|z) is a sum ofN i.i.d. complex random variables, the joint probability dity of X and

Y in (34) is given by

2 oo 00
f*y(x,y) = <%> /_ /_ [¢5k7gk(w,u)]Ne_j(m+”y) dw dv. (37)

The above integral can be computed efficiently using thedimmensional Fast Fourier Transform (FFT).
Finally, the complementary cumulative distribution fupoat (CCDF) of the beampattern, i.e., the proba-
bility that the instantaneous power of a given realizatiorthe directiong exceeds a threshold power,
Py, is given by

X24+Yv?

PT[P(¢)>P0]:PI' T>P@

-/ fx5(2,y) du dy. (38)
2+y2>N2P,

B. Gaussian Approximation of Distribution

The exact evaluation of the CCDF outlined above is compratly demanding, especially if the
desired numerical precision is high. Considering that thayafactor consists of a sum ¥ statistically
independent random variables, &sincreases, by the central limit theorem we may expect theaathay
factor with any given direction, except at the determigisingle¢ = 0, approaches a complex Gaussian
distribution. This approximation may typically result insampler distribution formula. To this end, we

write (34) as

F(olz) = o= (X =) (39)

where
X £ L N y &£ 1 N i 40
L \/—N kz::l cos (zxa(®)) , = \/—N ; sin (zpa()) . (40)

Since thez,’'s are i.i.d. random variables, @$ increases the distribution of andY at the direction
m > |¢| > 0 may approach that of a Gaussian random variable with

E{X}= 2%;?))@ 2 m, (41)
2

var() = L (14 20D _[ple@) ] @)

E{Y}=0 (43)

Var(Y) = % <1 - %) 200, (44)
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Note thatE {X Y} =0, i.e.,, X andY are orthogonal and thus statistically uncorrelated. Tl jodf
of X andY is then given by

Ixy(z,y) = ! exp <

2wo 0y

e—me? > . (45)

202 E

The CCDF of Py can be expressed as

X% +Y?
N

2 2

o T o lrcosw —mg|?  r?sin®w
= —exp | — 5 — 5 dw dr
VNP, J—n 2TO30y 20% 203
T 1

Pr[P(¢) > Py] = Pr [ > Po} = Pr [\/X2 TYZ> \/NPO]

_ / e (VAL erfo (W, V) + e, (@6)
g Ano,o U2
where
2 102
A COS“ W Sin- w é:7nmCOSQJ ;é
Uw_\/—%% R R JNRUL. (47)

For a(¢) > 1, the termsJ; (2a(¢))/a(¢) and|Ji(c(¢))/a(¢)|? in the variance expressioris142) and
@3) rapidly decrease and their contribution to the resgltvariances becomes minor. Therefore, it is
very likely that both variances are approximately equalhie sidelobe region. When this is the case,
i.e., if 02 ~ UZ ~ 1/2, the distribution of the complex envelope becomes a Nakagace distribution.
Consequently, the resulting integral can be expressedimmstef the first-order Marcum-Q function

Pe(P(o) > 7 = Q (22,500 ) — (V. ONTE). as)

Furthermore, if the mea®’ { X'} is zero, the envelope follows a Rayleigh distribution andsiveply
have

Pr[P(¢) > Py = e NP, (49)

C. Mean Value of Array Factor within 3dB Sdelobe Region

As we have seen, if the mean value of the array factor can haressto be zero, the distribution
can be significantly simplified and thus analysis becomedilsetractable. From[{41) it is apparent that
under the constant variance constraint the mean valueaseseasV increases. Therefore, whew is
large, the zero mean assumption may not be guaranteed inageineSectior II-C, we have introduced
the 3 dB sidelobe region, and in the following we derive praps of the mean value of the array factor

in this region.
From the definition of[(24), the sidelobe in the 3 dB regiorisfiats
NPa(¢) < 2. (50)
It follows that
Var(X) + Var(Y) + |E{X}]* < 2. (51)
From [41), [4R), and(44), we have
- B (X +E (X} <2 52)
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Fig. 9. CCDF of beampattern with = 7/4, andR = 2.

and thus we get

1
EAX}* < (53)
- N
Therefore, in the 3dB sidelobe region, the square of the nigdsounded by unity in the larga-
asymptote and thus the mean does not grow unbounded withuthber of nodesV.

D. Numerical Comparison

In Fig.@, the CCDF’s computed with various formulae are shawth R = 2 and ¢ = /4, which
corresponds to the sidelobe region. The exact formulB_df (B8 equal variance Gaussian approximation
of @8), and the zero-mean Gaussian approximatiof_df (49khown in the figure. Note that the precise
Gaussian case of_(46) was also calculated by numericalratieg, but it is almost identical to the
Marcum-Q function approximation if_(#8) for this case andstlis not shown. As observed from Hij. 9,
even the zero-mean Gaussian approximation may be validhif®isidelobe region, but fav = 1024 the
Gaussian approximation will have some noticeable disergpavith the exact value. This is due to the
fact that the zero-mean approximation does not hold for ¢aise. In fact, Fidl5 indicates that for this
value of N, the angle falls between the 3dB sidelobe region and theloisregion and thus the zero
mean assumption may not be accurate.

Fig.[T0 shows the distribution at 3dB beamwidth of the averagampattern defined by {23). In this
case, the exact forfi(B8), the precise Gaus§idn (46), afddahaum-Q approximatiori.{48) show different
results even for relatively largd’, since at this angle the variance of the array factor is saralla large
number of random variables must be summedZd (40) for a nam+oean Gaussian random variable to
adequately approximate the sum. As observed, as the nurhbedes increases, the mainbeam variance
becomes small and approaches the mean value of -3 dB, agedpElberefore, for largé&/ the mainbeam
can be made stable. This observation agrees with a simsaitrior linear arrays in [3].
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Fig. 10. Distribution of beampattern at= ¢5,- with exact, precise Gaussian, and Marcum-Q formulas.

V. DISTRIBUTION OF THEMAXIMUM OF THE SIDELOBES

It is well known that unlike periodic or equally-spaced amte arrays, many arrays with unequal
spacing will yield no grating lobes for a large number of eterts. This property is also preserved for
random arrays [3, 7], but in order to verify this, one may ne&eind the distribution of the maximum
power of the sidelobes. In this section, we develop an ajpmae upper bound on the distribution of
the peak sidelobes for random sensor networks.

In the previous section, we have seen that the distributibth® beampattern samples within the
sidelobe region can be characterized by a zero mean Gauwas@dom variable if the zero-mean condition
is satisfied. In the following, we further assume that themygattern is a Gaussian randgmocess. In this
case, any two samples taken from the beampattern shouldaractérized by jointly Gaussian random
variables. In the linear random array framework, the digtion of peak sidelobes has been studied in
[4-6], assuming the array factor is a Gaussian process.ifplisity, only the 3 dB sidelobe region is
considered and it will be assumed that the process is sationith zero mean. The extension to the
non-stationary case is studied in [6].

In the following, the CCDF of the maximum peak sidelobe, vihig the probability that the maximum
peak sidelobe exceeds a given power level, will also be nedeto asoutage probability and denoted by
Pout-

A. Upper Bound on the Distribution of Peak Sdelobe

Let v(a) denote the random variable representing the number of uperassings at a given level
per interval in the 3dB sidelobe regiags. As shown in Appendixdl, assuming that the array factor
in this region can be approximated as a zero-mean Gaussargs, the mean of(a) is given by

Zero

E{v(a)} =4 <1 — sin —¢ ) VrRae . (54)
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Fig. 11. Comparison of CCDF and upper bound of the sidelolaé&gp®iith the node densitW/R =2.

Note that the above function monotonically decreases witheiasing: only for a > 1/1/2, and thus is
meaningful only in this region. Finally, noticing that thatage probability is the probability that at least
one peak exceeds leveland is given by [6]

Pou="Prlv(a) > 1] => Prlv(a) =k <> kPrlv(a) = k] = E{v(a)}, (55)
k=1 k=1

then [53) serves as an upper bound for the outage probafslitthe maximum sidelobe peak for
a > 1/\/5. Thus, we obtain the CCDF upper bound as
¢zero ~ 1
Pr |max X?4+Y?> PO] <4 <1 — sin "T> VTR\/NPye NP, for NR> . (56)

B. Numerical Results

Fig.[1d shows a comparison between simulation results amdipper bound{36). For the simulation,
the outage probability is calculated based on 10 000 rangganerated realizations with the node density
N/R = 2 and only the peaks within the 3dB sidelobe region are exaiiAéso, in order to capture
peak values accurately, the entire 3dB sidelobe region isf sampled at a rate as large BsrR. As
can be observed, the bound is in good agreement with sironl&r large N.

Let Py = NP, denote the threshold of the maximum peak valig) (normalized by the average
sidelobe level 1/N). Since from [2IL)»?°™ approaches zero &8 increases[{36) reduces to

No

Pout < 47 R\ Poe™ 10, Py >1/2. (57)

The above inequality illuminates the relationship betwéen outage probability an® (assuming that
o7 Is negligibly small). Fig IR shows the maximum possibleueabf 1 for a given outage probability
and R. As can be observed, the maximum sidelobe may grouk &screases, but the amount is below
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Fig. 12. Bound on sidelobe maximum with a given outdgg.

12dB for many cases of interest. Consequently, the maximidelobe level (in the 3dB region) of
randomly generated arrays may be written/as= Py/N, where the required margif, depends on
the parameter& and Py, but not onN. Thus, increasingV always results in a reduction of maximum
sidelobe level.

VI. PERFORMANCE OFDISTRIBUTED BEAMFORMING WITH IMPERFECTPHASE

So far, we have evaluated the beampattern assuming perfeatiddge of the initial phase for each
node. In this section, we analyze the effect of the phase @uiilas in the closed-loop scenario as well
as location estimation errors in the open-loop scenario.daeh of the two scenarios, we derive the
average beampattern and calculate the amount of mainbegiraddgion.

A. Closed-loop Case

In the closed-loop case, the effects of imperfect phase neagasily derived, following the approach
developed by Steinberg [7]. The initial phase of ndad® @) will now be given by

N 27
Uy = —Tdk(%,@o) + (58)

where ¢, corresponds to the phase offset due to the phase ambiguisedey carrier phase jitter or
offset between the transmitter and receiver nodes. In thewing, the phase offsep,’s are assumed to
be i.i.d. random variables. Then, frold (3} (4), (5), dnd)(1e far-field array factor (with = 6y = 7/2)
will be given by

N N

Z ej(—zk47rﬁisin%+<pk) — i Ze—jzk47r}~fsin§ej<pk. (59)
N
k=1 k=1

F(olz, ) = -
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The average beampattern £f114) will be replaced by

Pav(¢) = E. o {P((b‘za ‘P)} . (60)
Similar to [I%), direct calculation of (60) results in
2
Pal@) =+ (17 3 ) PR o)
where
Ay 2 B, {9}, (©2)

Thus, asN — oo, the average beampattern will simply become a version ofotigginal scaled by a
factor of |A,|2.

Let us now assume that the phase offset follows a Tikhonavilalision, a typical phase jitter model
for phase-locked loop (PLL) circuits given in [9],

fo(x) ) exp (cos(x)/ai) , |z| <, (63)

~ 2n, (1/02

whereo—?a is the variance of the phase noise aipds thenth order modified Bessel function of the first
kind. The corresponding attenuation factor is given by

]i(l/Ui)
Ay = To(i/02) Jo2) (64)
The variance of the phase noisé is related to the loop SNR of the PLL by
pp=1/0. (65)

Fig. I3 shows the degradation facfot, |> with respect to the loop SNR. As observed from the figure,
a loop SNR of at least 3dB may be necessary for each node im rdeduce the overall beampattern
degradation to less than 3dB.

B. Open-loop Case

In the open-loop case, our model of the initial phase is give@@) with 6y = 7, and if there are
estimation errors in the location parametegsand 1y, the initial phase will be replaced by

W) = 2+ 07) cos(0 — (9 + 69
= 27777% cos(do — (Y + oY) + 277157% cos(po — (Vr + 6¢y)), (66)

wheredr, anddiy,, are the corresponding error random variables, each senassto be i.i.d. and also
independent of, and, for simplicity. With the far-field approximation, we have

i (0,5) + ] ST (A = i feos(6 — ) — cosl — b — 8Y)] + 07 cos(do — (i + 50)))

A
= 2{/1 + 4771-7"1@ {Sin <¢k — —¢0 + ¢2_ 5¢k> sin <—¢0 _ ¢2_ &bk)}

+ b cos(ur — (9o — 6). 67)
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Fig. 13. Mainbeam degradation due to the phase noise in tsediloop scenario.

Let ¢y, £ 1y, — 2122-% Then, the right-hand side (RHS) &167) is given by

277714 — 4;7% sin ¢, sin <w> Térk cos (1;1@ + w> . (68)

The resulting far-field array factor dfl(7) will then be giveg

¢*¢02+57l)k )

N ~ ~
Fl(¢|r, ¢, 89, 0r) = ej%A% Z o~ d 5 sin gy sin(( L2000 ) 4 28 5y cos (i +

(69)
and the beampattern is expressed as
1 1 NN 5 =051 b—do—5%
—j4mR1 2 sin +ﬂ —z;sin +ﬂsl 27" VR —V;
P(dlz,v,09) = W;;ej {zsin( ) ( i v (70)
= ¥k
where
zké%sini}k:fksin (zl)k—l—%ﬁ—(b—;(%) (71)
~ 0
v = 97y, CoS <¢k + ¢ +2 wk) = dr cos (Y + 0 — ¢p) - (72)

Conditioned onp, ¢, anddy,, the angley;, can be seen as a uniformly distributed random variable, and
thus the pdf ofz; is given by [ID). Considering the fact that and o7, are assumed to be statistically
independent, we further assume for analytical purposdsthandv;, are statistically independent. Then,
again, the beampattern does not depend on the particul&cecbb¢y. Furthermore, on modelingry
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as being uniformly distributed overrmax, rmay and assuming the phase term «@f to be uniformly
distributed over0, 27], the probability density function ofy, will be given by

1 2
fo.(0) = |:1n (1 +4/1— <L> ) —In v] , [v] < rmax- (73)
T max T'max Tmax

Consequently, the average beampattern can be written as

Pa(@) = 5+ (1= 3 ) Au(@R 14, 74)

where

2 [t 2 1 1—t2
A, = E,, {637“’“} = —/ cos <—7T7“maxt> In ;dt
T 0 /\ t

_ L3 ( Tmax)?
—1F2<271727 (ﬂ-)\)> (75)

J1 <47TRsin ¢_T(Sw’”) } 76)

. ~ . 03—
A £E. 5 {634WRZ’“SIH(¢+2 )}:Eg =
¢(¢) 256,00 Vi or Rsin ¢_§¢k
and without loss of generalityy = 0 was assumed. IHC(¥5),F5 ( 1, g ; —x2) denotes a generalized
hypergeometric function which has an oscillatory tail butmerges to zero as increases.
Also, assuming that thé&y;, are uniformly distributed ovell-max, ¥'max] @and using the approximation
sin (¢ + 0Yy) =~ ¢ + oY which is valid for the beampattern around the mainbeam, waiob

a3 (1- 2 ) m (5 5 <wR<¢>+wmax>>)

2 Ymax 2’ 2’
1 1 3
+5 (1452 ) 15 (55 32~ - vna?) @)
Ymax 2’ 2
Since the hypergeometric functionf, (; ; 2,2 ) has a maximum peak value of 1 at= 0, the

above expression indicates that regardless of the value diere may be two symmetric peaks around
the mainbeam ab = +1max resulting in apointing error. Therefore, the mainbeam may spread over by
a factor ofymax At the center of the mainbeam, we have

2
Aw(O) = 1F2 (; 2 2, - (WRT]Z/)\maX> ) . (78)

Fig. 12 shows the degradation factpt,|* and [4,(0)|* for a given 232 and %. As observed
from the figure and discussion above, the angle estimatiar bas two effects, i.e., pointing error and
mainbeam degradation. In particular, if we wish to supptesgnainbeam degradation below 3 dB, from
the figure, we should choosBymax/A < 1/2. This means that the maximum angle estimation error
should satisfy

A 1
< — = —
1/Jmax_2R 2R

and asR becomes large, the requirement of minimum angle ambiguity f{Z9) becomes severe.

(79)

)
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VIlI. CONCLUSION

In this paper, we have analyzed the stochastic performana@mdom arrays for distributed collaborative
beamforming, in the framework of wireless ad hoc sensor oidsv It has been shown that under ideal
channel and system assumptions, directivity of ortfecan be achieved asymptotically wifii sensor
nodes, as long as the sensor nodes are located sparselyheMdadrave studied the average and the
distribution of the beampattern as well as the distributidrthe sidelobe peaks. Several forms of the
CCDF of the beampattern have been derived and compared paiticular emphasis on the Gaussian
approximation of the array factor. We have considered twenados of distributed beamforming and
investigated the effects of phase ambiguity and locatidimesion error upon the resultant average
beampatterns.

Our main conclusion is that, given a number of nodes randafigyributed over a large disk, one
may form a nice beampattern with narrow mainlobe and sidslads low as /N plus some margin
for maximum sidelobe peaks. Also, the directivity appraaN if the nodes are located as sparsely as
possible. However, our analysis is based on a number of mEsaimptions on the system and channel
model. In practice, a number of open issues remain, such plgcalplity of beamforming when the
destination or nodes in the cluster are in rapid motion ordhannel suffers severe multipath fading.
Also, specific algorithms should be developed for frequeoifyet correction of each node as well as
methods for initial phase or location estimation. Finadifficient protocols for sharing the transmit as
well as calibration information among nodes are required.

APPENDIX |
PROOF OFTHEOREM[I

We first prove the following lemma:
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Lemma 1: A generalized hypergeometric functied’ (3, 3 ; 1,2,3; —2?) with z >> 1 can be bounded
as

1
wherecy is a constantdy ~ 1.1727).
Proof: We start with the integral form
T K x 2
fla) = l/ T (Es3) |y _ l/ p 1Ll 2__at. (81)
T Jo :Esing T Jo t vV —t2

Since the asymptotic form of; (x) given by [I6) is valid forz > 1, we have the following inequalities

A®ff

'2 < cos®(apt), for t <z (82)

2

2 t+A
qui“) du < / S qu, fort> (83)
t

Tud

/t-i-A
t

for some threshold value, which should be determined numerically, and for some imtletv > 0. The
parameteky, is chosen to be the smallest non-negative value such that

[ 8
cos(apzp) = - (84)
0

should hold, and this guarantees a continuity of the funcéibthe threshold = (. Fig.[I3 illustrates
the relationship of[{82) and(B3) withy chosen as a cross point ofbetween the functiond; (¢) and
\/2/(mt), yielding xy = 2.4445. The corresponding value ef, is 0.4664. Substitutind (82) anfi(83)
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into @1), we get forz > xg

2 (% cos? (apt) 16 1
< — 7dt 85
fla) = T /0 Va2 —t2 w2 o t3\/x2 - t (85)

The first term on the RHS of(85) is given by

/ o aOt =2 [Tl (L 2+O(1/ 1) ¢ cos® (aot)dt
_mc ; 5\ T cos” (o

_ 1 <w0 N Sin(2a0$0)> +0(1/2%) . (86)

T 2aq
The second term on the RHS &f185) is given by

1 — (&2)? x x
16/ t3\/:£127 1_2 %%JFQ_;{m(H 1—(?0)2>+1n<$—0>}
= 28 %(1_<@>2+O(1/m4)>—I—O(ln(az)/x?’)

+0 (ln(:n)/:ng) . (87)

Consequently, we may write

1 sin(2apx) 8 \1 3
< = — | = 1 88
f(oc)_7T <wo+ 200 +7mc8 x—i—O(n(m)/x ) (88)
and the second term on the RHS [6fl(88) drops: d&comes large. Wity = 2.4445 anday = 0.4664,
the coefficient ofl /= can be calculated to bg = 1.1727. [ |
Proof: [Proof of Theorenill] From{31)[{82), and Lemida 1, we have
Day ij/ 1 1
= 2 - 2 o = (89)
N N 71+ N-1)2 = 1+(1_L)4_0%
For large N, the RHS of [8P) converges tb7{33) Wlm_ 0 2 0.09332. [ |
APPENDIX Il

THE MEAN NUMBER OF UPWARD LEVEL CROSSINGS OF AGAUSSIAN PROCESS

In this appendix, we obtain the mean number of upward crgssif a given level of the zero mean
Gaussian process based on the approach of Rice [10, 11]m&sthatX andY are uncorrelated zero-
mean Gaussian processes with variang¢e= 05 = 1/2. Letu = sin %) and X’ andY” denote the
corresponding processes differentiated <byBy assumption X’ andY’ become zero mean Gaussian
processes. In order to calculate the variance, first consligeautocorrelation function ok at instants

u = u; andus given by

px(ui,ug) = E, {cos <z47r]§u1> cos (z4w]:3u2)} + other terms

- %EZ {cos (z47rf2 (u1 + u2)>} + %EZ {cos (z4w1§? (ur — U2)>} , (90)
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where the other terms become zero by the zero mean assumptsnfor the same reason, the first
term of the RHS of[{d0) may be approximated by zero. Therefeténg v = u; — uy, we obtain

px(v) =~ %EZ {cos (24771:22))} . (91)

Differentiating the above with respect totwice, settingv = 0, and carrying out the statistical average
with respect toz, the variance ofX’ is given by [12]

02 = —p%(0) = 2n° R%. (92)

Likewise, one may obtaing, = 02, and the joint pdf ofX, X', Y, Y" is given by

x’

1 $2 +y2 :E/Z +y/2
’ ’ ! ! - 5 - - . 93
fX,Y,X Y (JL',:U,:E 'Y ) (271_)20_:%0_3:/ exp < 20_% 20_92:/ ( )
On changing the random variables in the polar coordinaeXvi= 2 cos ©, Y = Q2 sin © and integrating
out ® and®’, we obtain

2 1 w2
(w,w') = we™ e In7RZ 94
foo(w, W) N (94)
The number of positive (upward) crossings of the process levela per intervaldu is given by [10,
11]

v(a)du = du/ W fo.o(a,w)do’ = du2y/mTRae™® . (95)
0
Consequently, the mean number of upward crossings for teeval Ssys is given by

OO N Tl (96)

which results in[(54).
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