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Gaussian Cramer-Rao bound for direction estimation of

non-circular signals in unknown noise fields

Habti Abeida, Jean-Pierre Delmas ∗

Abstract

This paper focuses on the stochastic Cramer-Rao bound (CRB) on direction of arrival (DOA)
estimation accuracy for non-circular Gaussian sources in the general case of an arbitrary unknown
Gaussian noise field parameterized by a vector of unknowns. Explicit closed-form expressions of the
stochastic CRB for DOA parameters alone are obtained directly from the Slepian-Bangs formula for
general non-circular complex Gaussian distributions. As a special case, the CRB under the nonuniform
white noise assumption is derived. Our expressions can be viewed as extensions of the well-known
results by Stoica and Nehorai, Ottersten et al, Weiss and Friedlander, Pesavento and Gershman, and
Gershman et al. Some properties of these CRBs are proved and finally, these bounds are numerically
compared with the conventional CRBs under the circular complex Gaussian distribution for different
unknown noise field models.

Index terms: Direction of arrival estimation, Stochastic Cramer-Rao bound, Deterministic Cramer-Rao
bound, colored noise, non-circular signals, nonuniform noise.
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1 Introduction

DOA estimation has been an intensive research field since the introduction of so-called high resolution
DOA estimation methods. The performance of such methods are often evaluated using the stochastic and
deterministic CRBs. Although the deterministic CRB is known not to be achievable in the general case
[1, 2], the stochastic CRB can be achieved asymptotically (in the number of measurements ) by several
high resolution methods, such as stochastic maximum likelihood (ML). The stochastic and deterministic
CRBs for the DOA parameters alone have been derived for circular complex Gaussian sources under
uniform white noise field in [2, 3, 4, 5] and [1] respectively. Then the stochastic CRB has been derived
under nonuniform white and arbitrary unknown parametrized noise fields in [6] and [7] respectively. The
general case of an arbitrary unknown noise covariance is particularly important in mobile communications
because the dominant noise is external in radio frequency systems [8] and consequently its presence
introduces correlation between the noise processes of the different sensors and because there is normally no
signal-free samples available that could be used for estimating the noise covariance. In these applications,
non-circular complex signal with discrete distributions are frequently encountered (e.g. binary phase shift
keying and offset quadrature phase shift keying are frequently encountered), but the associated stochastic
CRB appears to be prohibitive to compute. Because under rather general conditions, the non-circular
complex Gaussian CRB matrix is the largest of all CRB matrices among the class of arbitrary non-
circular complex distributions with given covariance matrices (see e.g., [9, p. 293]), we need an explicit
expression of the stochastic CRB under non-circular Gaussian distributions of the sources and arbitrary
unknown noise fields which can be used as an upper bound of the stochastic CRB under these discrete
distributions. Consequently this expression appears to be both an extension of results [6] and [7] to
general non-circular complex Gaussian distributions and result [10] to nonuniform white and arbitrary
unknown parametrized noise fields.

In this paper, we derive closed-form expressions of this stochastic CRB for DOA parameters alone.
Our derivation is inspired by the proof presented in [6, 7] applied to the extended Slepian-Bangs formula
[10]. But, due to the non-circularity of the sources, the key point of this proof, i.e., that the number
of terms of the extended source covariance matrix is equal to the number of real and imaginary parts
of both sources covariance matrices, is not valid. Consequently to retain the main features of the proof
given in [6, 7], we must first prove that the stochastic CRB for the DOA parameter is insensitive to the
constraints on this extended covariance matrix. This points will be derived from the study of the ML
DOA estimation.

This paper is organized as follows. The array signal model is formulated in Section 2. Based on this
model, explicit closed-form expressions of the stochastic CRBs are derived in Section 3. Then we consider
parameter identifiability and analyze some properties of the obtained bounds in Section 4. Finally, Section
5 presents some illustrative examples, and Section 6 concludes the paper.

The following notations are used throughout the paper. Matrices and vectors are represented by bold
upper case and bold lower case characters, respectively. Vectors are by default in column orientation,
while T , H and ∗ stand for transpose, conjugate transpose and conjugate respectively. Symbols ⊙ and
⊗ stand for the Hadamard and the Kronecker product, respectively. vec(.) is the vectorization operator
that turns a matrix into a vector by stacking the columns of the matrix one below another, the vec-
permutation matrix K transforms vec(.) to vec(.T ) for any square matrix and ⊥ is the ortho-complement
of a projector matrix. Tr(.), Det(.), ln(.), ℜ(.) and ℑ(.) denote the trace, the determinant, the logarithm,
the real and the imaginary part operators, respectively.

2



2 Array signal model

Let an array of M sensors receive K (K < M) narrowband signals impinging from the sources with
unknown DOAs. The M × 1 array snapshot complex vectors can be modeled as

yt = A(θ)st + nt, t = 1, . . . , T

where A(θ) = [a1, . . . ,aK ] is the full column rank steering matrix where each vector ak is parameterized

by the scalar DOA parameter θk and θ
def
= (θ1, . . . , θK)T . st = (st,1, . . . , st,K)T and nt model signals

transmitted by K sources and additive measurement noise respectively. st and nt are multivariate
independent, complex zero-mean. nt is assumed circular complex Gaussian, spatially uncorrelated or
correlated with unknown covariance matrix E(ntn

H
t ) = Qn, while st is non-circular complex Gaussian,

and possibly spatially correlated or even coherent with Rs
def
= E(sts

H
t ) and R′

s
def
= E(sts

T
t ). This leads to

the covariance matrices of yt:

Ry(α) = ARsA
H +Qn and R′

y(α) = AR′
sA

T , (2.1)

where the vector α of unknown real parameters collects the DOAs and nuisance parameters. These covari-

ance matrices are classically estimated by Ry,T
def
= 1

T

∑T
t=1 yty

H
t and R′

y,T
def
= 1

T

∑T
t=1 yty

T
t , respectively.

Let us consider the following general noise model introduced in [13] and used in [7]

Qn = Qn(σ)

where σ
def
= (σ1 . . . , σN )T is the vector of real unknown coefficients which are used to parame-

terize the noise covariance matrix. If no a priori information is available concerning the spatial
covariance of the sources, Rs and R′

s are generically parameterized by the real parameters ρ =
((ℜ([Rs]i,j),ℑ([Rs]i,j),ℜ([R′

s]i,j),ℑ([R′
s]i,j))1≤j<i≤K , ([Rs]i,i,ℜ([R′

s]i,i),ℑ([R′
s]i,i))i=1,...,K)T . Thus the

vector of L = K +K2 +K(K + 1) +N unknown real parameters can be written as α
def
= (θT ,ρT ,σT )T .

This parameter is supposed identifiable from
(
Ry(α),R′

y(α)
)
, in the following sense:

Ry(α) = Ry(α
′) and R′

y(α) = R′
y(α

′) ⇒ α = α′.

The probability density function (PDF) of yt presented in the case of uniform white noise in [10] is

preserved, and expressed as a function of ỹt
def
=

(
yt

y∗
t

)
as

p(ỹt) = (π)−M [Det(Rỹ(α))]−1/2exp[−1

2
ỹH
t R−1

ỹ (α)ỹt] (2.2)

where
Rỹ(α)

def
= E(ỹtỹ

H
t ) = Ã(θ)Rs̃Ã

H(θ) +Qñ

with

Rs̃ =

[
Rs R′

s

R′∗
s R∗

s

]
, Ã(θ)

def
=

[
A(θ) O
O A∗(θ)

]
and Qñ

def
=

[
Qn O
O Q∗

n

]
. (2.3)

3 Stochastic Cramer-Rao bounds

To derive the stochastic CRB of the parameter θ alone, two approaches could be considered. One of them
consists in computing the asymptotic covariance matrix of the ML estimator, and the other is obtained
directly from the extended Slepian-Bangs formula derived in [10]. The first approach has been successfully
used in the case of uniform white noise fields in [2] and [10], where a closed-form expression of the log-
likelihood function concentrated with respect to the full set of the signal and noise nuisance parameters
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was available [11]. In the case of nonuniform white and linearly parameterized noise fields, such property
has appeared to be impossible to obtain in [6] and [14] respectively. Consequently, we concentrate on
the second approach. To adapt the proofs given in the circular Gaussian case in [3], [6] and [7] in
the uniform white, nonuniform white and arbitrary unknown parameterized noise field respectively, to
the non-circular case, the key point vec(Rs̃) = Jρ where J is a constant nonsingular matrix must be
preserved. Because Rs̃ is structured (see eq. (2.3)), we must first prove that the stochastic CRB for the
DOA parameter is insensitive to the constraints on Rs̃. To prove such a property, we consider the ML
estimation of (θ,ρ,σ).

3.1 Maximum likelihood estimation

We first note that the log-likelihood function associated with the PDF (2.2) can be classically written
(see e.g. [12],[2]) after dropping the constants as

L(θ,ρ,σ) = −T

2

(
ln[Det(Rỹ)] + Tr(R−1

ỹ Rỹ,T )
)

(3.1)

with Rỹ,T
def
= 1

T

∑T
t=1 ỹtỹ

H
t where the parameter (θ,ρ,σ) is embedded in the covariance matrix Rỹ.

Due to the structures of Rs̃ and Qñ in Rỹ (see eq. (2.3)), the ML estimation of (θ,ρ,σ) becomes a
constrained optimization problem which is not standard. Despite this difficulty, we prove in Appendix A
the following lemma

Lemma 1 If the sample covariance matrix Rỹ,T is positive definite, the joint constrained and uncon-
strained ML estimates which maximize the log-likelihood function (3.1) coincide.

3.2 Stochastic Cramer-Rao bound expressions

From the previous lemma, the stochastic CRB for the signal DOAs associated with the con-
strained and unconstrained array signal models coincide. Using the unconstrained model, let α =
(θT ,ρT ,σT )T with here ρ contains the 4K2 real parameters of the unconstrained matrices Rs̃, i.e.,

ρ
def
= ((ℜ([Rs̃]i,j),ℑ([Rs̃]i,j))1≤j<i≤2K , ([Rs̃]i,i))i=1,...,2K)T . With this unconstrained model, we can fol-

low along the lines of the derivation given in [7] where Ry = ARsA
H + Qn is replaced here by

Rỹ = ÃRs̃Ã
H + Qñ because the key point of the derivation, i.e., the relation vec(Rs̃) = Jρ where

J is a constant nonsingular complex matrix is preserved. By adapting the proof given in [7], the following
result is proved in Appendix B.

Result 1 The normalized (i.e., for T = 1) DOA-related block of CRB for non-circular complex Gaussian
(NCG) sources in the presence of an arbitrary unknown (AU) noise field is given by the following explicit
expression:

CRBNCG
AU (θ) =

1

2

{
ℜ

[(
D̆HΠ⊥

Ă
D̆
)
⊙
(
[RsĂ

H ,R′
sĂ

T ]R̄−1
ỹ

[
ĂRs

Ă∗R
′∗
s

])T
]
−MNCG

AU TNCG
AU

−1
MNCG

AU
T

}−1

(3.2)
using real matrices

MNCG
AU = 2ℜ

{
QT

[
(D̆HΠ⊥

Ă
)⊗ (GĂRs)

T
]
P∗
}
+ 2ℜ

{
QT

[
(D̆HΠ⊥

Ă
)⊗ (G

′
Ă∗R

′∗
s )

T
]
P∗
}

(3.3)

TNCG
AU = 4ℜ

{
PH

[
GT ⊗Π⊥

Ă

]
P
}
− 2

(
PH

[
(Π⊥

Ă
)
T ⊗Π⊥

Ă

]
P
)

(3.4)

with
Q def

=
[
vec(e1e

T
1 ), vec(e2e

T
2 ), . . . , vec(eKeTK)

]
, P def

=
[
vec(Q̄1

n), vec(Q̄
2
n), . . . , vec(Q̄

N
n )
]
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where the vector ei contains one in the ith position and zeros elsewhere and Qk
n

def
= dQn(σ)

dσk
, Q̄k

n
def
=

Q
−1/2
n Qk

nQ
−1/2
n , Ă

def
= Q

−1/2
n A, D̆

def
= dĂ

dθ , D
def
= [d1, . . . ,dK ]

def
=
[
da1
dθ1

, . . . , daK
dθK

]
, R̄ỹ

def
= Q

−1/2
ñ RỹQ

−1/2
ñ ,

R̄y
def
= Q

−1/2
n RyQ

−1/2
n , R̄′

y
def
= Q

−1/2
n R′

yQ
−1/2
n , G =

(
R̄y − R̄

′
yR̄

∗−1
y R̄

′∗
y

)−1
and G

′
= −GR̄

′
yR̄

∗−1
y .

When the noise is spatially uncorrelated with different sensor noise variances (nonuniform white
noise), i.e., Qn(σ) = Diag(σ2

1, . . . , σ
2
M ). Result 1 takes the following form that is proved in Appendix C.

Result 2 For non-circular complex Gaussian sources, the normalized DOA-related block of CRB under
the nonuniform (NU) white noise assumption is given by the following explicit expression:

CRBNCG
NU (θ) =

1

2

{
ℜ

[(
D̆HΠ⊥

Ă
D̆
)
⊙
(
[RsĂ

H ,R′
sĂ

T ]R̄−1
ỹ

[
ĂRs

Ă∗R
′∗
s

])T
]
−MNCG

NU TNCG
NU

−1
MNCG

NU
T

}−1

(3.5)
using real matrices

MNCG
NU = 2ℜ

[
(D̆HΠ⊥

Ă
)⊙ (GĂRs)

T + (D̆HΠ⊥
Ă
)⊙ (G

′
Ă∗R

′∗
s )

T
]

(3.6)

TNCG
NU = 2

(
GT ⊙G− (ΠĂG)T ⊙ (ΠĂG)

)
. (3.7)

3.3 Single source case

In the particular case of one signal source, it is shown in Appendix D that the stochastic CRB given by
Result 2 can be simplified to

Result 3 The CRB of θ1 for a non-circular complex Gaussian source corrupted by nonuniform white
noise field is given by the expression

CRBNCG
NU (θ1) =

1

α1

[
2r−1

1 + ∥a1∥−2r−2
1 + ∥a1∥2 − ∥a1∥2ρ21

∥a1∥2r1 + 1 + (1− ∥a1∥2r1)ρ21

]
(3.8)

where the non-circularity rate ρ1 is defined by E(s2t,1) = ρ1e
iϕ1E|s2t,1| and satisfies 0 ≤ ρ1 ≤ 1 (ϕ1 is the

circularity phase of st,1). The SNR is defined as in [6, rel. (48)] by r1
def
=

σ2
s1
M aH1 Q−1

n a1 =
σ2
s1
M

∑M
i=1

1
σ2
i

where σ2
s1

def
= E|s2t,1|, and α1 is the noise dependant factor 2M

(∑M
i=1

1
σ2
i

)−1
d̆

H

1 Π
⊥
ă1
d̆1 with ă1 = Q

−1/2
n a1

and d̆1 =
dă1
dθ1

.

Expression (3.8) is similar to those given in the uniform white noise case [10, rel. (3.14)], except that
here, the term α1 given in Result 3 is not a purely geometric factor. Consequently, similarly as in the
uniform white noise case [10, Result 5], the stochastic CRB decreases monotonically as the SNR increases

and as the non-circularity rate ρ1 increases from CRBCG
NU(θ1) =

1
α1r1

(
1 + 1

∥a1∥2r1

)
(ρ1 = 0, circular case)

to CRBNCG
NU (θ1) =

1
α1r1

(
1 + 1

2∥a1∥2r1

)
(ρ1 = 1). We note that an expression of CRBCG

NU(θ1) has already

been given [6, rel. (46)], but with a more intricate expression.
We note, that Result 1 cannot be simplified in the case of one signal source because here the expression

of the product MNCG
AU TNCG

AU
−1

MNCG
AU

T
is very intricate.

4 Discussion

In this section, we consider parameter identifiability and comparisons of our derived expressions to well
known results on the stochastic and deterministic CRBs.
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4.1 Parameter identifiability

An issue of great importance is the parameter identifiability. That is, how many parameters, can be
uniquely estimated from Ry and R′

y. Naturally, the necessary condition (see e.g., [7, rel. (45)]) derived
from the non singularity of the Fisher information matrix associated with the unconstrained model, i.e.,
K + (2K)2 + N ≤ (2M)2 is not sufficient. For example, a more severe necessary condition is that the
number of unknown real-valued parameters is no more than the number of independent equations. It
follows from (2.1), that this is equivalent to

K +K2 +K(K + 1) +N ≤ M2 +M(M + 1).

Consequently in the case of non-circular signals, the number N of real-valued unknown coefficients which
are used to parameterize the noise covariance Qn can be larger than in the standard circular case.

4.2 Comparisons between CRBs

Consider the situation when the source signals are circular complex Gaussian (CG) while yet, not using

this, therefore R′
s = O and consequently Rỹ

def
=

[
Ry O
O R∗

y

]
, G′ = O and G = R̄−1

y . Then our general

stochastic CRB formulae given by Results 1 and 2 simplify to the well known bounds in the circular
complex case

CRBCG
AU(θ) =

1

2

{
ℜ
[(

D̆HΠ⊥
Ă
D̆
)
⊙
(
RsĂ

HR̄−1
y ĂRs

)T]
−MCG

AUT
CG
AU

−1
MCG

AU
T
}−1

where

MCG
AU = 2ℜ

{
QT

[
(D̆HΠ⊥

Ă
)⊗ (R̄−1

y ĂRs)
T
]
P∗
}

TCG
AU = 4ℜ

{
PH

(
R̄−T

y ⊗Π⊥
Ă

)
P
}
− 2

(
PH

(
(Π⊥

Ă
)
T ⊗Π⊥

Ă

)
P
)

(4.1)

in the case of arbitrary unknown noise field and

CRBCG
NU(θ) =

1

2

{
ℜ
[(

D̆HΠ⊥
Ă
D̆
)
⊙
(
RsĂ

HR̄−1
y ĂRs

)T]
−MCG

NUT
CG
NU

−1
MCG

NU
T
}−1

where

MCG
NU = 2ℜ

[
(D̆HΠ⊥

Ă
)⊙ (R̄−1

y ĂRs)
T
]

TCG
NU = 2

(
R̄−T

y ⊙ R̄−1
y − (ΠĂR̄−1

y )
T ⊙ (ΠĂR̄−1

y )
)

(4.2)

in the case of nonuniform white noise field, both derived from the circular complex Slepian-Bangs formula
in [7] and [6] respectively. Consequently

CRBNCG
AU (θ)|CG = CRBCG

AU(θ) and CRBNCG
NU (θ)|CG = CRBCG

NU(θ).

Next, let us consider the situation when the noise is uniform and spatially white (U) while yet,
not using this, the noise is modeled using N > 1 parameters. Comparing (3.2) and (3.5) under these
conditions with

CRBNCG
U (θ) =

σ2
n

2

{
ℜ

[(
DHΠ⊥

AD
)
⊙
(
[RsA

H ,R′
sA

T ]R−1
ỹ

[
ARs

A∗R
′∗
s

])T
]}−1

(4.3)
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obtained in [10], we have because MNCG
(×) TNCG

(×)

−1
MNCG

(×)

T
is nonnegative definite

CRBNCG
AU (θ)|Qn=σ2

nIM
≥ CRBNCG

U (θ) and CRBNCG
NU (θ)|Qn=σ2

nIM
≥ CRBNCG

U (θ).

For uniform white noise field and now if this a priori knowledge is taken into account Qn = σ2
nIM .

Hence MNCG
AU becomes an K × 1 vector (m1, . . . ,mK)T and Q1

n = IM . From (B.5) we obtain

mk = 2ℜ
{
Tr
(
DH

k Π⊥
Ã
R−1

ỹ ÃCk

)}
= 0

because the column space of R−1
ỹ Ã is generated by the column space of Ã. Therefore, as expected, our

general stochastic CRB formulae (3.2) and (3.5) simplifies to rel. (4.3) in the uniform noise case.
The next result compares the CRBs CRBNCG

AU (θ) [resp. CRBNCG
U (θ)] and CRBCG

AU(θ) [resp.
CRBCG

U (θ)] associated with Gaussian sources with the same first covariance matrix Rs.

Result 4 The DOA-related block of CRB for non-circular complex Gaussian sources is upper bounded
by the associated CRB for circular complex Gaussian sources corresponding to the same first covariance
matrix Rs and the same arbitrary noise covariance matrix Qn.

CRBNCG
Qn

(θ) ≤ CRBCG
Qn

(θ). (4.4)

Proof: For Qn = σ2
nIM , this result is proved in [10] and for a single source corrupted by nonuniform

white noise, this result is a consequence of Result 3. For an arbitrary number of sources and an arbitrary
noise covariance matrix Qn, we have to elaborate a little bit because the structure of the matrices M
and T (see eqs. (3.3) (3.4), (3.6) (3.7) and (4.1) (4.2)) are very intricate.

Consider the ML estimate of θ derived under the circular Gaussian distribution for an arbitrary
noise covariance matrix Qn. By the asymptotic efficiency of the ML estimator, its asymptotic covariance
matrix CovML.CG

Qn
(θ) satisfies:

CovML.CG
Qn

(θ) = CRBCG
Qn

(θ).

This ML.CG estimator is given by a second-order algorithm built from Ry,T . To proceed, we need the
following lemma that is proved in Appendix E.

Lemma 2 All DOAs consistent estimates given by second-order algorithms based on Ry,T only, that do
not suppose explicitly the sources to be spatially uncorrelated, are robust to the non-circularity of the
Gaussian sources; i.e., the asymptotic performances are those of the standard complex circular Gaussian
case.

Consequently, if the ML.CG estimator is used under non-circular Gaussian sources with the same
noise covariance Qn, the asymptotic covariance matrix CovML.NCG

Qn
(θ) of its DOAs estimate which is

based on Ry,T only, is preserved.

CovML.NCG
Qn

(θ) = CovML.CG
Qn

(θ).

This observation, along with the general CRB inequality, implies that:

CovML.NCG
Qn

(θ) ≥ CRBNCG
Qn

(θ),

and the proof is complete.
Let us now compare the stochastic and asymptotic deterministic CRBs in the case of colored or

nonuniform white noise field for non-circular complex source signals. First, we note that the following
expression of the asymptotic deterministic CRB proved in [6] in the circular case remains valid in the
non-circular case as well

CRBDET
Qn

(θ) =
1

2

{
ℜ
[
(D̆HΠ⊥

Ă
D̆)⊙RT

s

]}−1
. (4.5)

We prove in Appendix F, the following result

7



Result 5 If Rs̃ is nonsingular
CRBDET

Qn
(θ) ≤ CRBNCG

Qn
(θ).

We note that Rs̃ may be singular when Rs and R
′
s are nonsingular, for example when the sources are

uncorrelated with non-circularity rate equals to 1. We prove in Appendix E that this result extends to
this particular case.

5 Illustrative examples

The purpose of this section is to illustrate Results 1-4 and to compare these stochastic CRBs to the
stochastic CRBs under circular complex Gaussian distributed source signals as well with the deterministic
CRB. We consider throughout this section one or two independent and equipowered sources with identical
non-circularity rate (ρ1 = ρ2). These sources impinge on a uniform linear array of M = 10 sensors
separated by a half-wavelength for which ak = (1, eiθk , . . . , ei(M−1)θk)T where θk = π sin(αk) with αk,
the DOAs relative to the normal of the array. We assume that the noise field is modeled by the three

following covariance matrices Q
(i)
n , i = 1, 2, 3. The first two models and the third model come from [7]

and [6] respectively.

Q(1)
n (k, l) = σ2

n exp(−(k − l)2ζ)

Q(2)
n (k, l) = σ2

n exp(−|k − l|ζ)
Q(3)

n = Diag(σ2
1, . . . , σ

2
M ).

In the first two colored noise field models, σT = (σ2
n, ζ) where ζ is the ‘color’ parameter and the

SNR is defined by
σ2
s1
σ2
n

and in the nonuniform white noise field model σT = (σ2
1, σ

2
2, . . . , σ

2
10) =

(10.0, 2.0, 1.5, 0.5, 8.0, 0.7, 1.1, 3.0, 6.0, 3.0) and the SNR is defined by
σ2
s1
10

∑10
i=1

1
σ2
i
.

In Figs. 1 and 2, we consider two sources and compare the stochastic CRBs under circular and
non-circular (with ρ1 = ρ2 = 1) complex Gaussian distributed source signals to the deterministic CRB.
The first two and the third noise field models are used in Figs. 1 and 2 respectively. Fig. 1 shows the
bounds CRBNCG

AU (θ1), CRB
CG
AU(θ1) and CRBDET

AU (θ1)
1 plotted against ζ for ∆θ = θ2 − θ1 = 0.1rd and

SNR = 0dB. Compared to [7, Fig. 1], we note a similarity of behavior of these CRBs. We note that
when ζ decreases all the CRBs approach zero because Qn becomes singular. When ζ ≫ 1, the two first
noise model transform to the uniform white noise model and each of the three CRBs associated with
the two models merges. Fig. 2 that displays these bounds versus the SNR for two DOA separations
shows that the difference between CRBNCG

NU (θ1), CRB
CG
NU(θ1) increases as the DOA separation and the

SNR decrease. In these two figures, we see that the stochastic CRB under non-circular complex Gaussian
distributed sources is visibly larger that the deterministic CRB. From Fig. 2, this difference between
these bounds is more prominent for low DOA separations and SNRs and these bounds coincide for high
SNRs.

In Figs. 3, 4 and 5, we compare the non-circular Gaussian CRB with the circular Gaussian CRB

by means of the ratio r
def
=

CRBNCG
NU (θ1)

CRBCG
NU(θ1)

for the third noise model. Fig. 3 illustrates Result 3 where a

single source is considered. It shows that CRBNCG
NU (θ1) decreases monotonically as the non-circularity

rate increases but is relatively insensitive to this increase except for very low SNR (r1 ≤ ∥a1∥−2).

1All the CRBs are computed for T = 1. Note that you find by simulation that the different CRBs depend on θ1, θ2, ϕ1,
ϕ2 by only ∆θ = θ2 − θ1 and ∆ϕ = ϕ2 − ϕ1 for two equipowered sources with identical non-circularity rates.
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Fig.1 CRBNCG
AU (θ1), CRBCG

AU(θ1) and CRBDET
AU (θ1) as a function of ζ for the first and second models with ∆θ = 0.1rd,

SNR= 0dB and ∆ϕ = 0.52rd.
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Fig.2 CRBNCG
NU (θ1), CRBCG

NU(θ1) and CRBDET
NU (θ1) as a function of the SNR for two values of the DOA separation with

∆ϕ = 0.52rd .
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Fig.3 Ratio r
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=

CRBNCG
NU (θ1)

CRBCG
NU(θ1)

as a function of the non-circularity rate ρ1 for different values of the SNR.
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Fig.4 Ratio r
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=
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NU (θ1)

CRBCG
NU(θ1)

as a function of the non-circularity rate for different values of DOA separation with

SNR= −5dB and ∆ϕ = 0.52rd .
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Fig.5 Ratio r
def
=

CRBNCG
NU (θ1)

CRBCG
NU(θ1)

as a function of the DOA separation for different values of SNR with ρ2 = ρ1 = 1 and

∆ϕ = 0.52rd .

Figs. 4 and 5 consider two sources and examine the dependence of the ratio r with the non-circularity
rate ρ2 = ρ1, the DOA separation ∆θ = θ2−θ1 and the SNR. Fig. 4 shows that CRBNCG

NU (θ1) decreases as
the non-circularity rate increases (this extends to two equipowered and independent sources a property
proved in the one source case). Furthermore this decrease is more prominent for low DOA separation.
Fig. 5 shows that r decreases as the DOA separation and the SNR decreases and the difference of order
of magnitude between CRBNCG

NU (θ1) and CRBCG
NU(θ1) is quite significant for low DOA separations and

SNRs.

6 Conclusion

In this paper, the stochastic CRBs of the DOA parameter estimates for non-circular complex Gaussian
sources in the general case of an arbitrary unknown Gaussian noise field is considered. New closed-
form expressions of these bounds have been presented. Compared with the deterministic CRB and the
circular complex Gaussian CRB, some properties have been proved and some numerical examples with
particular noise fields have been exhibited. They show that the difference between the non-circular and
circular complex Gaussian CRB may be quite significant, particularly for low DOA separations and
SNRs. Consequently our derived non-circular complex Gaussian CRB provides a tighter upper bound
on the CRB under non-circular complex discrete distribution compared to the standard circular complex
Gaussian CRB.
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A Appendix: Proof of Lemma 1

Maximizing the log-likelihood (3.1) without any constraint on the Hermitian matrix Rs̃ reduces to a
standard maximization problem, whose derivation follows the steps in [12] . A necessary condition for an
extremum of (3.1) with respect to Rs̃ is that the partial derivatives of (3.1) with respect to the entries
of Rs̃ be equated to zero. Jaffer [12] shows that this condition is equivalent to [12, rel. (4)], which is
preserved here, where Ry is replaced by Rỹ. It yields here

ÃH(θ)R−1
ỹ (Rỹ,T −Rỹ)R

−1
ỹ Ã(θ) = O. (A.1)

In order to obtain an expression of R̂s̃,ML, we need an expression for the inverse of Rỹ. We omit the
dependence of A(θ) on θ to simplify the notation and define

R̄ỹ
def
= Q

−1/2
ñ RỹQ

−1/2
ñ = ĀRs̃Ā

H + I2M with Ā
def
= Q

−1/2
ñ Ã =

[
Ă O

O Ă∗

]

where Ă
def
= Q

−1/2
n A. From the matrix inversion lemma (see e.g., [2, lemma A.3]), we obtain

R̄−1
ỹ = I2M − Ā

(
I2K +Rs̃Ā

HĀ
)−1

Rs̃Ā
H and R−1

ỹ = Q−1
ñ −Q

−1/2
ñ Ā

(
I2K +Rs̃Ā

HĀ
)−1

Rs̃Ā
HQ

−1/2
ñ

and after some straightforward calculations

R−1
ỹ Ã = Q

−1/2
ñ Ā

(
I2K +Rs̃Ā

HĀ
)−1

.

Using this relation, the condition (A.1) becomes

ĀHQ
−1/2
ñ (Rỹ,T −Rỹ)Q

−1/2
ñ Ā = O. (A.2)

Inserting the expression of Rỹ in (A.2) we get

ĀHQ
−1/2
ñ Rỹ,TQ

−1/2
ñ Ā = ĀHĀRs̃Ā

HĀ+ ĀHĀ.

Consequently the ML estimates of Rs̃ is given by

R̂s̃,ML = [ĀHĀ]−1[ĀHR̄ỹ,T Ā− ĀHĀ][ĀHĀ]−1 (A.3)

with
R̄ỹ,T

def
= Q

−1/2
ñ Rỹ,TQ

−1/2
ñ .

Because R̄ỹ,T and [ĀHĀ]−1 are partitioned as

R̄ỹ,T =

[
R̄y,T R̄′

y,T

R̄′∗
y,T R̄∗

y,T

]
, [ĀHĀ]−1 =

[
[ĂHĂ]−1 O

O [ĂT Ă∗]−1

]

with R̄y,T
def
= Q

−1/2
n Ry,TQ

−1/2
n and R̄′

y,T
def
= Q

−1/2
n R′

y,TQ
−1/2
n , the unconstrained ML estimates of Rs̃

(A.3) is partitioned as well. Consequently the joint constrained and unconstrained ML estimate of
(θ,ρ,σ) coincide.
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B Appendix: Proof of Result 1

Based on the Fisher information matrix given here by the extended Slepian-Bangs formula derived in
[10],

(IF )k,l =
1

2
Tr

[
∂Rỹ

∂αk
R−1

ỹ

∂Rỹ

∂αl
R−1

ỹ

]
all the steps of the derivation of [7] apply where the [7, rel. (19)] is replaced by

Rs = [c1, . . . , cK ] =

 cH1
...
cHK

 and R′
s =

[
c′1, . . . , c

′
K

]
=

 c′1
T

...

c′K
T

 .

Then [7, rels. (20),(22)] become respectively

dRỹ

dθk
= DkC

H
k ÃH + ÃCkD

H
k with Dk

def
=

(
dk 0
0 d∗

k

)
, dk

def
=

dak
dθk

and Ck
def
=

(
ck c′k
c′∗k c∗k

)
and

Zk = R
−1/2
ỹ ÃCkD

H
k R

−1/2
ỹ .

Consequently [7, rels. (17), (31), (39), (40)] become

CRBNCG
AU (θ) = 2

(
F−MNCG

AU TNCG
AU

−1
MNCG

AU
T
)−1

(B.4)

with

(F)k,l = 2ℜ
{
Tr
[
(D̄H

k Π⊥
ĀD̄l)(C

H
l ĀHR̄−1

ỹ ĀCk)
]}

(MNCG
AU )k,l = 2ℜ

{
Tr
(
D̄H

k Π⊥
ĀQ̌l

nR̄
−1
ỹ ĀCk

)}
(B.5)

(TNCG
AU )k,l = 2ℜ

{
Tr
(
Q̌k

nΠ
⊥
ĀQ̌l

nR̄
−1
ỹ

)}
− Tr

(
Q̌k

nΠ
⊥
ĀQ̌l

nΠ
⊥
Ā

)
(B.6)

with Q̌k
n

def
= Q

−1/2
ñ Qk

ñQ
−1/2
ñ =

[
Q̄k

n O
O Q̄k∗

n

]
, D̄k

def
=

(
d̆k 0

0 d̆∗
k

)
and Ā

def
= Q

−1/2
ñ Ã =

[
Ă O

O Ă∗

]
where Qk

ñ
def
= dQñ

dσk
, d̆k

def
= Q

−1/2
n dk. Exploiting the similar structure of R̄−1

ỹ
def
=

[
G G

′

G
′∗ G∗

]
and Π⊥

Ā
, we

obtain

(F)k,l = 2ℜ

[
Tr

((
d̆H
k 0

0 d̆T
k

)(
Π⊥

Ă
O

O Π⊥
Ă∗

)(
d̆l 0

0 d̆∗
l

)
(

cHl c′Tl
c′Hl cTl

)(
ĂH O

O ĂT

)
R̄−1

ỹ

(
Ă O

O Ă∗

)(
ck c′k
c′∗k c∗k

))]
.

This gives, after some straightforward calculations

F = 4ℜ

[(
D̆HΠ⊥

Ă
D̆
)
⊙
(
[RsĂ

H ,R′
sĂ

T ]R̄−1
ỹ

[
ĂRs

Ă∗R
′∗
s

])T
]
. (B.7)

Finally, adapting the same calculations used to derive the closed-form expression of F, to matrices MNCG
AU

(B.5) and TNCG
AU (B.6). [7, rels. (43), (44)] are replaced by rels. (3.3) and (3.4) respectively.
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C Appendix: Proof of Result 2

All the steps of the derivation of [7, Sec. 5.1] apply where here:

Q̌k
n = Q

−1/2
ñ

(
eke

T
k O

O eke
T
k

)
Q

−1/2
ñ , Ck = Rs̃

(
ek 0
0 ek

)
and D̄k =

(
D̆ O

O D̆∗

)(
ek 0
0 ek

)
with D̆ = [d̆1, . . . , d̆K ]. Inserting this into (B.5) and (B.6), [7, rels. (54), (56)] and [7, rel. (55)] are
replaced respectively by

(M)k,l = 2ℜ

[
Tr

((
eTk D̆

H 0T

0T eTk D̆
T

)(
Π⊥

Ă
O

O Π⊥
Ă∗

)(
Q

−1/2
n ele

T
l Q

−1/2
n O

O Q
−T/2
n ele

T
l Q

−T/2
n

)
(

G G
′

G
′∗ G∗

)(
Ă O

O Ă∗

)(
Rs R′

s

R′∗
s R∗

s

)(
ek 0
0 ek

))]
= 4ℜ

[
Tr
(
eTk D̆

HΠ⊥
Ă
Q−1/2

n ele
T
l Q

−1/2
n GĂRsek + eTk D̆

HΠ⊥
Ă
Q−1/2

n ele
T
l Q

−1/2
n G

′
Ă∗R∗

sek

)]
M = 4ℜ

[
(D̆HΠ⊥

Ă
Q−1/2

n )⊙ (Q−1/2
n GĂRs)

T + (D̆HΠ⊥
Ă
Q−1/2

n )⊙ (Q−1/2
n G

′
Ă∗R

′∗
s )

T
]

and

(T)k,l = 4ℜ
[
Tr
(
eTkQ

−1/2
n Π⊥

Ă
ele

T
l Q

−1/2
n GQ−1/2

n ek

)]
− 2

(
eTkQ

−1/2
n Π⊥

Ă
Q−1/2

n ele
T
l Q

−1/2
n Π⊥

Ă
Q−1/2

n ek

)
T = 4ℜ

[
(Q−1/2

n Π⊥
Ă
Q−1/2

n )⊙ (Q−1/2
n GQ−1/2

n )T
]
− 2

(
(Q−1/2

n Π⊥
Ă
Q−1/2

n )⊙ (Q−1/2
n Π⊥

Ă
Q−1/2

n )T
)
.

Following the last steps of [7, Sec. 5.1] and rewriting [7, rel. (59)] as MNCG
NU = MQ−1

n and TNCG
NU =

Q−1
n TQ−1

n , Result 2 is proved.

D Appendix: Proof of Result 3

In the single source case, the two covariance matrices must be rewritten as

Ry = σ2
s1a1a

H
1 +Qn and R

′
y = σ2

s1ρ1e
iϕ1a1a

T
1 .

Consequently thanks to the matrix inversion lemma, we get

G = IM − β

1 + βăH1 ă1
ă1ă

H
1 and G′ = −

σ2
s1ρ1e

iϕ1

(1 + σ2
s1(1− ρ21)∥ă1∥2)(1 + σ2

s1(1 + ρ21)∥ă1∥2)
ă1ă

T
1 (D.8)

with ă1 = Q
−1/2
n a1 and where β

def
=

σ2
s1

(1+σ2
s1

(1−ρ21)∥ă1∥2)
1+σ2

s1
∥ă1∥2 is a real constant. In the case of nonuniform

white noise field, the proof follows along the lines of [6, Appendix D]. Using d̆1 = iΛă1 with Λ is a
real-valued diagonal matrix, the matrix MNCG

NU (3.6) becomes

MNCG
NU = 2ℜ

[
(σ2

s1Gă1 + σ2
s1ρ1e

−iϕ1G
′
ă∗1)

T ⊙ (d̆H
1 Π⊥

ă1
)
]

= −2ℜ
[

iσ2
s1

1 + σ2
s1(1 + ρ21)∥ă1∥2

ăT1 ⊙ (ăH1 (Λ− ăH1 Λă1
∥ă1∥2

IM ))

]
= 0T

because Λ − ăH
1 Λă1

∥ă1∥2 IM is a real-valued diagonal matrix and consequently ăT1 ⊙ (ăH1 (Λ − ăH
1 Λă1

∥ă1∥2 IM )) is

a real row vector. Using the structure of R̄−1
ỹ and (D.8), (3.8) follows thanks to straightforward but

tedious calculations.
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E Appendix: Proof of Lemma 2

Based on the assumptions of the lemma, the Jacobian matrix DAlg
θ of the mapping that associates the

estimate θT to Ry,T satisfies the constraint (see [15])

DAlg
θ (A∗ ⊗A) = O,

and because the covariance matrix Covry of the asymptotic distribution of vec(Ry,T ) is given by simple
algebraic manipulations of Covry = E

(
(y∗

t ⊗ yt − vec(Ry(α)))(y∗
t ⊗ yt − vec(Ry(α)))H

)
which is a sim-

ple extension of the expression of Covry given in [16] for Qn = σ2
nIM and for an arbitrary second-order

distribution:

Covry = (A∗ ⊗A)Covrs(A
T ⊗AH) +Q∗

n ⊗Qn +Q∗
n ⊗ARsA

H +A∗R∗
sA

T ⊗Qn

with Covrs = R∗
s ⊗ Rs + K(R′

s ⊗ R
′∗
s ), the first term of Covry which contains R′

s disappears in the

expression of the covariance CovAlg
θ = DAlg

θ Covry

(
DAlg

θ

)H
of the asymptotic distribution of θT .

F Appendix: Proof of Result 5

Applying [2, rel.(4.3)] to the relation R̄ỹ = ĀRs̃Ā
H + I2M , we have

Rs̃ −Rs̃Ā
HR̄−1

ỹ ĀRs̃ =
(
R−1

s̃ + ĀHĀ
)−1

is positive definite (F.9)

and the left upper K ×K block of (F.9)

Rs − [RsĂ
H ,R′

sĂ
T ]R̄−1

ỹ

[
ĂRs

Ă∗R
′∗
s

]
is positive definite as well.

Consequently CRBDET
AU (θ) ≤ 2F−1 thanks to (4.5) and (B.7). Because T−1 is positive definite (see [7,

rel. (18)]), Result 4 follows from F−1 ≤ (F−MT−1MT )−1 applied to (B.4).
In the particular case where the sources are uncorrelated with non-circularity rate equals to 1, R

′
s =

RsΦ where Rs and Φ are diagonal with Φ = Diag(eiϕ1 , . . . , eiϕK ) and

[RsĂ
H ,R′

sĂ
T ]R̄−1

ỹ

[
ĂRs

Ă∗R
′∗
s

]
= Rs

[
ĂH ,ΦĂT

]
R̄−1

ỹ

[
Ă

Ă∗Φ∗

]
Rs.

Result 4 extends by applying now [2, rel. (4.3)] to the relation

R̄ỹ =

[
Ă

Ă∗Φ∗

]
Rs

[
ĂH ,ΦĂT

]
+ I2M .
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