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A Robust Past Algorithm for Subspace
Tracking in Impulsive Noise
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Abstract—The PAST algorithm is an effective and low com-
plexity method for adaptive subspace tracking. However, due to
the use of the recursive least squares (RLS) algorithm in estimating
the conventional correlation matrix, like other RLS algorithms,
it is very sensitive to impulsive noise and the performance can be
degraded substantially. To overcome this problem, a new robust
correlation matrix estimate, based on robust statistics concept, is
proposed in this paper. It is derived from the maximum-likelihood
(ML) estimate of a multivariate Gaussian process in contaminated
Gaussian noise (CG) similar to the -estimates in robust statis-
tics. This new estimator is incorporated into the PAST algorithm
for robust subspace tracking in impulsive noise. Furthermore,
a new restoring mechanism is proposed to combat the hostile
effect of long burst of impulses, which sporadically occur in
communications systems. The convergence of this new algorithm
is analyzed by extending a previous ordinary differential equation
(ODE)-based method for PAST. Both theoretical and simulation
results show that the proposed algorithm offers improved ro-
bustness against impulsive noise over the PAST algorithm. The
performance of the new algorithm in nominal Gaussian noise is
very close to that of the PAST algorithm.

Index Terms—DOA estimation, impulsive noise, PAST algo-
rithm, robust statistics, subspace tracking.

I. INTRODUCTION

MANY signal processing applications involve the com-
putation of eigenvalues and eigen-basis of symmetric

or Hermitian matrices. In some applications, only part of the
eigen-structure needs to be updated. Instead of updating the
whole eigen-structure, a subspace-tracking algorithm only
works with the signal or noise subspace. The computation and
storage requirements can therefore be significantly reduced.
This advantage makes subspace-tracking algorithm very at-
tractive and it has emerged recently as a valuable tool in array
signal processing [12], [32], [42], blind system identification
[22], [24], [34], [38], and a variety of applications in com-
munications such as multiuser detection [35], [37], [39] and
coherent combining in space-time processing [5]. A number of
fast subspace tracking algorithms have been proposed [1], [3],
[4], [7]–[9], [16], [17], [30], [32], [41], [42]. One very attractive
subspace tracking algorithm is the PAST algorithm [42], which
continuously estimates the signal subspace by minimizing the
least square errors between the observation and an estimate
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derived from the subspace estimated. Using projection approxi-
mation, the subspace vectors can be determined by minimizing
an approximation of this distortion measure using the RLS
algorithm.1 Unfortunately, the RLS algorithm is extremely vul-
nerable to impulsive noise in nature. Such interference, which is
either man-made or occurring naturally [2], significantly affects
the performance of RLS-based subspace tracking algorithm.
Simulation results, to be presented in Section V, show that
the estimation error of RLS-based PAST algorithm increases
significantly and becomes very large when the ambient noise
exhibits impulsive characteristics. Any other RLS-based sub-
space tracking algorithms are therefore likely to suffer from
the same problem. The reason is that the conventional auto-
correlation matrix estimate: ,
where is the forgetting factor and is the
input signal vector, is not a robust estimate of the underlying
autocorrelation , if the “noise free” signal
vector is corrupted by noise with impulsive charac-
teristics [36]–[39]. It is therefore not surprising that RLS-based
subspace tracking and other least squares-based algorithms
are sensitive to impulsive or non-Gaussian noise [6], [18],
[19], [36]–[39], [46], as we shall see later from the simulation
results. In fact, this problem has been studied in the area of
robust statistics [15] and the minimum volume ellipsoid (MVE)
or other more robust estimators should be used. However,
their computational complexities are usually prohibitive for
real-time applications. We notice that, in recursive subspace
estimation, a rough prior knowledge of the subspace estimate is
available from previous iterations. Therefore, it is easier to de-
tect whether the incoming signal vector is potentially corrupted
by impulsive noise or not. This idea happens to coincide with
the -estimators or Maximum likelihood-like estimators of
the correlation matrix [15]. This motivates us to consider in this
paper the problem of robust subspace tracking under impulsive
noise. First of all, a new robust estimate of the correlation matrix
in contaminated Gaussian (CG) noise is proposed. It is derived
from the maximum-likelihood (ML)2 estimate of a multivariate
Gaussian process in CG noise and the -estimates in robust
statistics. This new estimator is incorporated into the PAST
algorithm to obtain a new robust PAST algorithm for robust
subspace tracking in impulsive noise. More precisely, a robust
statistic-based adaptive filters [6], [46]–[49], called the recur-
sive least -estimate (RLM) algorithm for matrix parameters,
is derived in Appendix B for the efficient implementation of the

1Readers are referred to the textbook [14] for more details of the RLS
algorithm.

2Readers are referred to textbooks such as [27] for an introduction to ML
estimation.
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robust PAST algorithm. The impulse-corrupted data vectors are
detected using the robust -estimator and are prevented from
corrupting the subspace estimate. Furthermore, to handle long
burst of impulsive interference, a restoring mechanism is also
devised so that the tracking algorithm can recover more quickly
from the hostile effect of the impulses. These new mechanisms
prevent the impulsive noise from spoiling the fragile subspace
tracking process. The convergence of the proposed algorithm is
analyzed by extending a previous ordinary differential equation
(ODE)-based method for PAST [43]. Both theoretical and
simulation results show that the proposed algorithm offers
improved robustness against impulsive noise over the PAST
algorithm. On the other hand, the performance of the new
algorithm in nominal Gaussian noise is very close to that of
the PAST algorithm. The layout of the paper is as follows:
Section II is a brief introduction to subspace tracking and
the PAST algorithm. The proposed robust subspace tracking
algorithm is then discussed in Section III. Section IV is devoted
to the convergence analysis of the robust PAST, followed by
simulation results in Section V. Finally, conclusions are drawn
in Section VI.

II. SUBSPACE TRACKING AND THE PAST ALGORITHM

Subspace estimation plays an important role in a wide va-
riety of signal processing applications. Two famous and suc-
cessful examples are the multiple signal classification algorithm
(MUSIC) [28] and the ESPRIT algorithm [26], [33]. They are
used to estimate directions of arrival (DOA) or frequencies of si-
nusoidal plane waves from the sample data vectors of an antenna
array [31]. Since the implementation of these techniques, which
is based on classic eigenvalue decomposition (ED) or singular
value decomposition (SVD), is computationally very expensive,
adaptive subspace tracking algorithms have been proposed re-
cently to reduce the computational complexity. One of them is
the PAST (and PASTd) algorithm [42], which is based on RLS
technique. We assume that there are narrow-band incoherent
complex sinusoidal signals impinging an array of sensors,
thus is the data vector observed at the -th snapshot.

consists of the samples of the
sensors. Taking into account the additive noise, we have

(1)

where is a deterministic
matrix of the steering vectors,
is a random source vector, and is a zero-mean spa-
tially-white noise vector which is uncorrelated with and
has a covariance matrix of . In the case of a uniform
linear array, the steering vector takes the special form of

, where is the angular
frequency of the th sinusoid. It can be shown that is
a complex-valued random vector process with autocorre-
lation matrix ,
where is the auto-correlation matrix
of . Let and be respectively the -th largest eigen-
value of and its corresponding eigenvector, then
can be written in matrix notation as: , where

and . If is less than
, then , and the

corresponding column span of eigenvectors:
and are called, respectively, the signal
subspace and noise subspace. The PAST algorithm [1] con-
tinuously estimates the signal subspace by minimizing the
following cost function of

(2)

where is a forgetting factor, and
is called the projection approxima-

tion. When is close to
. It

has been proved in [42] that has a unique global
minimum at which the column span of equals the signal
subspace and there are no other local minima. Therefore, the
signal subspace of can be reliably estimated by minimizing

, say using some iterative methods. Meanwhile, the
minimization of will automatically result in a so-
lution of with orthonormal columns. Due to the use of
the projection approximation, (2) can be solved recursively
using the RLS algorithm and it leads to the PAST algorithm in
Table I [42]. The superscript denotes Hermitian transpose
and the operator indicates that only the upper (or lower)
triangular part of the matrix argument is calculated and its
Hermitian transposed version is copied to the lower (or upper)
triangular part.

For each input vector , the algorithm computes a new
estimate of the signal subspace from the previous
estimate . As mentioned earlier, the performance of
this algorithm, like the RLS algorithm, is extremely sensitive
to impulsive noise. Suppose that is modeled as a contami-
nated Gaussian noise given by , where

and are uncorrelated zero-mean white Gaussian
processes with covariance matrices and , respec-
tively. represents the impulsive component with .

is a random binary sequence independent of
, which indicates the presence (absence) of an impulse at

time if . It can be shown that the correlation matrix
becomes .

Any subspace tracking or eigen-decomposition methods
for estimating the subspaces from
will be significantly affected by the impulsive component

. Here, we define the robust correlation matrix to
be , where is a weight function
which should ideally be zero when an impulse is detected
in vector and 1 otherwise. This definition of can
be justified more formally using maximum likelihood (ML)
estimation. In Appendix A, the ML estimate of the mean and
covariance of a multivariate Gaussian process under contami-
nated Gaussian (CG) noise are derived. It was found that the
corresponding ML estimate in (A-7) of Appendix A has the
same form as defined above, except that the weighting
function becomes a rather complicated function of the
underlying processes. Since impulsive noise is usually of short
time duration and time varying, its statistics are rather difficult
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TABLE I
PAST AND THE ROBUST PAST ALGORITHMS

to estimate accurately. Instead of estimating these quantities in
real-time, the basic idea of our robust statistics-based estimator
is to choose as a function of the residual error of the PAST
algorithm, so that a more robust algorithm against impulsive
noise can be developed [36].

III. THE ROBUST PAST SUBSPACE TRACKING ALGORITHM

We’ll see from the simulation results to be presented in Sec-
tion V that the conventional correlation matrix and hence the
PAST algorithm is extremely sensitive to impulsive noise in the
data vector . This is also apparent by examining the PAST
algorithm given in Table I. If is corrupted by additive im-
pulsive noise, then , and will be
affected in turn by the impulse in . The corrupted matrices,

and , will be used to compute the new ’s and
’s, causing hostile effects on the subspace estimate, which

require many iterations to recover (see Figs. 3 and 4). We now
consider the proposed robust PAST algorithm using the concept
of robust statistics. First of all, we note that the purpose of in
the robust correlation matrix estimate is to deemphasis
the impulse-corrupted observation . A similar approach can
be applied to the PAST algorithm by defining the following ro-
bust distortion measure:

(3)

and is the Frobenious norm of .
If the process is ergodic, we are minimizing

and the weight function
is chosen as the derivative of an -estimate function [15].
The principle of the proposed robust measure is detailed in
Appendix B. In particular, the nonzero mean of the Frobenious
norm of the residual error vector when the PAST algorithm

is still converging is taken into account by including in
. For the modified Huber -estimate that

will be used in this paper, when and 0
otherwise, where is a threshold to be estimated continuously.

is the robust location or mean estimator of . The
reason for choosing the modified Huber -estimate function is
because of its reasonably good performance and simplicity in
implementation. Other M-estimate functions can also be used.
Simulation results in [49] show that the Hampel three-part
redescending function [13] gives slightly better results than the
modified Huber function in CG and alpha stable noises. The
latter however is simpler to analyze [6]. Note, (3) is a nonlinear
system of equations, because in is also a func-
tion of , and it should be solved iteratively. To reduce the
arithmetic complexity, is assumed to depend
weakly on . By treating it as a constant and using the mul-
tivariate recursive least M-estimate algorithm (RLM) derived
in Appendix B, a robust PAST algorithm for approximately
minimizing (3) is obtained in Table I. Furthermore, it will be
shown later in Section IV that this approximated algorithm also
converges to the robust covariance matrix . The principle
of the robust distortion measure can be seen more clearly by
considering the situation where is corrupted by impulses.
Under these circumstances, the Frobenius norm of the error
vector , will become very large (and likely to ex-
ceed the threshold ). will become zero and
the impulse-corrupted measurement is prevented from entering
into the minimization. A similar approach has been success-
fully applied to develop robust adaptive filters under impulsive
noise [6], [46]–[49]. We now consider the estimation of the
threshold and the robust mean estimator (for simplicity,
the subscript in will be dropped in subsequent discus-
sion). Though the exact distribution of is unknown,
for simplicity, it is assumed to be Gaussian distributed but
corrupted by additive impulsive noise (note also that
is always positive). Under this approximation, the probability
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that the deviation of the “impulse free error” from its mean,
, is greater than a given threshold

is

(4)

where is the complementary
error function. and are the estimated mean and stan-
dard deviation of the Frobenius norm of the “impulse free” error
vector. Using different threshold parameter , we can de-
tect the presence of the impulsive noise with different degrees
of confidence. In this work, is chosen to be 0.05 so that
we have approximately 95% confidence in saying that the cur-
rent error vector is corrupted by impulsive noise. The corre-
sponding threshold parameter is determined to
be . A commonly used estimate for and

are respectively:
and , where and
are some forgetting factors. It is, however, not robust to impul-
sive noise. In fact, a single impulse with large amplitude can
substantially increase the value of and , and hence the
values of . Better estimates for and are [47]3

(5a)

and

(5b)

where is the length
of the estimation window, and is the median operator.

and are the forgetting factors. In practice, the value of
can be chosen to lie between 5 and 11 in order to reduce

the number of operations required by the median filter. For large
values of , the pseudo median [25] instead of the median can
be computed to reduce the arithmetic complexity. Therefore, the
arithmetic complexity of the proposed robust PAST algorithm
is comparable to that of the conventional PAST algorithm. Our
robust PAST algorithm updates and

at each iteration. If , both the signal sub-
space and the intermediate matrix will not be up-
dated, preventing the impulse from affecting the subspace es-
timate. Using the weight function: when

, and 0 otherwise, the robust PAST algorithm
in Table I is obtained.

The choice of the threshold parameter for and
has been studied in [48]. It was found that the performances

of the robust algorithms are not sensitive to the selection of ,
provided they are not at the tail part of the distribution. Their
values can however be adjusted to provide different tradeoff
between robustness and accuracy, as mentioned previously. In
addition, a value of between 5 to 11 usually gives little
degradation in tracking and sufficient robustness to individual

3The constant 1.483 is a correction factor, which ensures that �̂ (i) in (5a) is
identical to the variance of the input, if it is Gaussian distributed.

and consecutive impulses of limited duration. There is however
one problem that remains unsolved, which occurs when a long
burst of impulses is encountered. In this case, due to the finite
length of the median filter , the system might misinterpret
the series of error vectors with large Frobenius norm as being
created from a sudden system change in the signal subspace,
e.g., sudden DOA change. To solve this problem, the differences
in statistical properties of during sudden system change
and a series of impulses are exploited. For the former case, if
the system continues to adapt, the Frobenius norm of the error
vector will continue to decrease, reaching a steady state when
the algorithm converges. While for a long burst of consecutive
impulsive noise, the impulses will also produce a sequence of
error vector with large Frobenius norm. However, it remains
at a certain level without a deterministic trend of decreasing in
its magnitude. Therefore, the following buffering mechanism is
adopted to distinguish between the two different situations of
sudden system changes and corruption by a series of consecu-
tive impulsive noise.

Suppose that at , which indicates
that the input vector might be corrupted by an impulse.

and will be buffered, and the system
continues to adapt. After an observation window of length ,
which is chosen as a certain fraction of the initial convergence
time of the tracking system to provide a sufficient decrease in

in case of a system change, is compared
to . If is close to , this means
that there is a system change or the system has started to recover
from the impulses. The restoring mechanism will not be invoked
and the system will continue to adapt as normal. On the other
hand, if is much greater than , consecu-
tive impulsive noise is expected and and
will be reinitialized to and , respectively.
It might happen, though very rarely, that many system changes
suddenly happen during the observation window, after a series
of impulses, and give rise to a relatively high . To avoid
the restoring mechanism from disturbing this normal adaptation,
we suggest to disable the restoring mechanism for a certain pe-
riod of time, say 100 symbols, after its last activation. The ro-
bustness of the system to very long burst of impulse is therefore
weakened. But simulation result shows that this scheme causes
very little degradation in sudden system change scenarios and
is able to suppress the adverse effect of long burst of impulses
by periodic reinitialization. To differentiate the two situations
at the end of the observation window, the relative discrepancy

is adopted as a measure. If ,
a certain threshold, it is recognized as a system change. Other-
wise, it will be treated as the consecutive noise case. is chosen
as 2 in the simulation section,4 which means that the restoring
mechanism will be invoked if . More
sophisticated system change detection algorithms are available
and interested readers are referred to [11] for more details. The
proposed algorithm was chosen because of its implementation
simplicity and reasonable reliability.

4This value is experimentally determined to combat hostile effects of long
burst of impulses, while avoiding excessive interruption to the adaptation
process. Slightly different values can be used to provide different sensitivity to
impulse train.
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IV. CONVERGENCE ANALYSIS

The convergence analysis of the PAST algorithm was first
studied by B. Yang [43]–[45] using the ODE approach [21],
[23]. The basic idea is to associate a continuous time determin-
istic ordinary differential equation with the discrete time sto-
chastic approximation algorithm. Our analysis is an extension of
the work in [43] to the robust statistics framework. Due to page
limitation, only the key results will be outlined. Assume that
the observed signal vector is corrupted by additive noise, which
is modeled as a contaminated Gaussian process with

. Hence, . Further, for
simplicity, and are assumed to be real-valued. The ro-
bust PAST algorithm in Table I can also be written as follows:

Choose and suitably.
For Do

(6a)

(6b)

(6c)

(6d)

where is a weighting function, which is equal
to the derivative of an -estimate distortion function (See Ap-
pendix B). is the inverse of in Table I. If , we
obtain the conventional PAST algorithm. Let
and . Multiplying both sides of (6c) by

and choosing , we have

(7)

Similarly, we can rewrite (6d) as

(8)

Following [43] and the ODE approach in [21], the asymptotic
behavior of the asymptotic behavior of the robust PAST algo-
rithm given by (7) and (8) can be described by the following
ODEs:

(9a)

(9b)

where and are con-
tinuous time version of the discrete time estimate , and

. For the PAST algorithm, is given by the conventional
covariance estimate . Using the result in [43],
the asymptotic convergence of the robust PAST algorithm to the
subspace spanned by can then be established. Note,
the robust PAST algorithm will converge to the eigensubspace
spanned by the dominant eigenvectors of . In case
of Gaussian noise, there is a small penalty in using in-
stead of , since the trailing part of the distribution is re-
moved through the choice of the threshold . The
value , which is chosen as 1.96 in this work, determines the
tradeoff between accuracy of estimation and immunity to im-
pulsive noise. Fortunately, from the simulation results to be pre-
sented in Section V, it is observed that such penalty is indeed
very small (usually the error norm of the matrix is within 1 to 2%
of without the impulsive noise). On the other hand, if the

input is corrupted by impulsive noise, the proposed algorithm
will converge to , instead of for the PAST algorithm.
Since is a better estimator of than
under impulsive noise, the robust PAST algorithm is expected to
be less sensitive to contaminated Gaussian noise. Although the
above ODE analysis yields the subspaces to which the PAST
and robust PAST algorithms will converge, it does not provide
us the convergence speed and the error covariance of the algo-
rithms. In [43], [44], two convergence measures are proposed to
evaluate the convergence rate of the PAST algorithm

(10)

(11)

where is the true signal subspace and
for . is a measure-

ment of deviation of from orthonormality. mea-
sures the difference between the projected estimate and the true
signal subspaces. Apparently, one would expect that the rate of
convergence of robust PAST algorithm is ,
where and are respectively the convergence rate of
the PAST measures in Gaussian noise, and the occurrence prob-
ability of the impulses. However, it is shown in the next section
that the impulses will further slow down the adaptation of the
algorithm.

V. SIMULATION RESULTS

A. DOA Tracking

The performance of the proposed robust subspace-tracking
algorithm is evaluated in a DOA tracking application. In gen-
eral, the DOA can be estimated by the ESPRIT [26], [33] and the
MUSIC [28], [31] algorithms. The problem of estimating DOA
under Gaussian mixtures was recently studied using the EM al-
gorithm [20]. The example considered here mainly focused on
efficient and robust subspace tracking using the PAST-based
algorithms in impulsive noise. The TLS-ESPRIT [26] is em-
ployed in our simulation to compute the DOA from the signal
subspace estimate. In order to compare the proposed robust sub-
space tracking algorithm with PAST, the simulation settings are
similar to those adopted in [42]. We investigate a uniform linear
array with sensors impinged by three plane sinusoidal
waves. Data vectors are generated according to the signal model
in (1). Both PAST and robust PAST are employed to track the
signal subspace of the same set of data vectors. Then, the DOAs

of these three plane sinusoidal waves are esti-
mated by TLS-ESPRIT, based on the signal subspace estimates
of the PAST and robust PAST algorithms. is set to vary lin-
early from 20 to 40 , while varies linearly from 40 to 20 .

is set to be a constant of 10 when there is no subspace system
change. For the system change case, changes from 10 to 0
at the time instant of 200th snapshot. Background noise is as-
sumed to be an additive white Gaussian noise (AWGN) with a
variance of 1, i.e., 0 dB. Both individual and consecutive im-
pulsive noises are modeled as Gaussian noise with a power of
20 dB and a probability of occurrence of . They intrude
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Fig. 1. Estimated DOA of the PAST subspace tracking algorithm in Gaussian
noise. (a) One realization of normalized Frobenious-norm of error vector
ke(i)k =

p
N . (b) Estimation of DOA (degree). (c) Estimation error of DOA

(degree) with impulsive noise power of 20 dB.

Fig. 2. Mean principle angle between the true and the PAST estimated
subspace in Gaussian noise.

the background noise at the 200th and 600th symbols, and last
for 50 and 100 symbols, respectively. The first two sinusoidal
waves have relative power of 3 dB, and the third one has a rel-
ative power of 0 dB, all with respect to the background noise.
The forgetting factors , and are all set to be 0.98 while

is set to 11. The number of Monte Carlo simulation is 100.
Fig. 1 shows the estimated DOA of the PAST algorithm in

Gaussian noise, which is identical to those reported in [42].
Fig. 1(a) shows one realization of the normalized error vector
norm . Fig. 2 is the corresponding mean principle
angle between the true and the PAST estimated subspaces. Fig. 3
shows the DOA estimate of the PAST algorithm in impulsive
noise. It is evident from Fig. 3 that the PAST algorithm is
vulnerable to the presence of individual or consecutive impul-
sive noise. The tracking of the signal subspace is substantially
interfered and the estimation error of the DOA is very large. The
discrepancy between the true subspace and the PAST estimate
can be seen more clearly from the mean principle angle plot
in Fig. 4. The PAST subspace estimate deviates substantially
from the true subspace when impulsive noise is present. Similar

Fig. 3. Estimated DOA of the PAST subspace tracking algorithm in
impulsive noise. (a) One realization of normalized Frobenious-norm of error
vector ke(i)k =

p
N . (b) Estimation of DOA (degree) (true—dotted line,

estimated—solid line). Estimation error of DOA (degree) with different power
of impulsive noise: (c) 15 dB, (d) 20 dB, and (e) 25 dB.

Fig. 4. Mean principle angle between the true and the PAST estimated
subspace in impulsive noise.

results also occur when the power of the impulsive noise is
changed to 15 dB and 25 dB. Fig. 5 shows the DOA estimate of
the proposed robust PAST algorithm in impulsive noise. It can
be seen that the robust PAST algorithm is much more robust to
the impulsive noise than the conventional PAST algorithm. This
demonstrates its robustness over its conventional counterpart for
the contaminated Gaussian impulsive noise model. From Fig. 6,
we can also see that the robust PAST subspace estimate is very
close to the true subspace with a small principle angle even when
excessive impulsive noise is experienced. Its performance is
also less sensitive to the variation of the power of the impulsive
noise. Due to page limitation, a power of 20dB is chosen for the
impulsive noise in the following simulations for evaluating the
performance of various algorithms during system change. The
DOA estimation and mean principle angle errors of the proposed
robust PAST algorithm in Gaussian noise are shown in Fig. 7
and Fig. 8, respectively. They are approximately equal to those
of the PAST in Gaussian noise, as shown in Figs. 1 and 2. This
demonstrates the robustness of the proposed algorithm in both



CHAN et al.: ROBUST PAST ALGORITHM FOR SUBSPACE TRACKING IN IMPULSIVE NOISE 111

Fig. 5. Estimated DOA of the robust PAST subspace tracking algorithm in
impulsive noise. (a) One realization of normalized Frobenious-norm of error
vector ke(i)k =

p
N . (b) Estimation of DOA (degree) (true—dotted line,

estimated—solid line). Estimation error of DOA (degree) with different power
of impulsive noise: (c) 15 dB, (d) 20 dB, and (e) 25 dB.

Fig. 6. Mean principle angle between the true and the robust PAST estimated
subspace in impulsive noise.

Fig. 7. Estimated DOA of the robust PAST subspace tracking algorithm in
Gaussian noise. (a) One realization of normalized Frobenious-norm of error
vector ke(i)k =

p
N . (b) Estimation of DOA (degree) (true—dotted line,

estimated—solid line). (c) Estimation error of DOA (degree) with impulsive
noise power of 20 dB.

Fig. 8. Mean principle angle between the true subspace and the robust PAST
estimated subspace in Gaussian noise.

Fig. 9. Estimated DOA of PAST subspace tracking algorithm in impulsive
noise with system change. (a) One realization of normalized Frobenious-norm
of error vector ke(i)k =

p
N . (b) Estimation of DOA (degree) (true—dotted

line, estimated—solid line). (c) Estimation error of DOA (degree) with
impulsive noise power of 20 dB.

Gaussian and impulsive noise environment. Fig. 9 shows the per-
formance of the PAST algorithm under both system change (at
200 snapshot) and impulsive noise (from 600 to 700 snapshot).
It can be seen that the PAST algorithm is able to track the system
change at the 200th snapshot. The 1st and 2nd DOA estimates
are less affected. Its behavior under impulsive noise, however, is
quite different. All DOA estimates are significantly interfered.
Also, the estimation error does not seem to converge in the pres-
ence of impulsive noise. Such behavior can be seen more clearly
from the principle angles in Fig. 10. Fig. 11 shows the perfor-
mance of the proposed algorithm under both system change and
impulsive noise. It suggests that the proposed algorithm is also
capable of tracking the system change with approximately the
same speed while providing improved robustness to impulsive
noise over the conventional PAST algorithm. This is also sup-
ported by the principle angles as shown in Fig. 12. Due to page
limitation, simulation results of using different values of are
omitted. The performances are very similar if are not chosen at
the tail part of the distribution (i.e., too large or too small).
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Fig. 10. Mean principle angle between the true and the PAST estimated
subspace in impulsive noise with system change.

Fig. 11. Estimated DOA of the robust PAST subspace tracking algorithm
in impulsive noise with system change. (a) One realization of normalized
Frobenious-norm of error vector ke(i)k =

p
N . (b) Estimation of DOA

(degree) (true—dotted line, estimated—solid line). (c) Estimation error of
DOA (degree) with impulsive noise power of 20 dB.

Fig. 12. Mean principle angle between the true and the robust PAST estimated
subspace in impulsive noise with system change.

B. Convergence Performance

The convergence rate of the proposed robust PAST algo-
rithm is evaluated by comparing with the measures
and for the PAST under Gaussian noise described in

Fig. 13. Averaged Learning Curve of robust PAST. Curve A: Theoretical curve
of f (i) of PAST under Gaussian noise. Curve A1, A2, A3: Experimental
learning curves f (i) of robust PAST under impulsive noise with occurrence
probabilities of 3%, 5%, and 10%, respectively. Curve B: Theoretical curve
of f (i) of PAST under Gaussian noise. Curve B1, B2, B3: Experimental
curves of f (i) of robust PAST under impulsive noise with occurrence
probabilities of 3%, 5%, and 10%, respectively.

Section IV. Fig. 13 shows the curves for and
(the corresponding measures obtained from
mentioned in Section IV-A for the occurrence probabilities
considered are similar because the plot is in log scale) and
those for the robust PAST algorithm under impulsive noise with
3%, 5%, and 10% occurrence probabilities. The simulation
setting is similar to [43], where the input data vector is a
stationary Gaussian stochastic process with correlation matrix

. The first three signals are the
signals of interest, and the corresponding signal subspace is
tracked by the robust PAST algorithm. The forgetting factor
is set to be one. The initial value of is chosen to be the
leading submatrix of the identity matrix. The result is averaged
over 100 Monte Carlo trials. Though the convergence rates of
the robust PAST algorithm are slowed down by the sporadic
impulsive noise, the trend of convergence does not seems to
be disturbed. It is because, accordingly to the convergence
analysis in Section IV, the robust PAST algorithm will converge
to . This substantiates the convergence analysis presented
in Section IV. However, because of the impulsive noise, the
rate is now much lower than and . In fact, the
higher the occurrence probability of impulsive noise, the lower
will be the convergence rate.

VI. CONCLUSION

A new robust PAST algorithm for robust subspace tracking
in impulsive noise environment is presented. It is based on a
new robust autocorrelation matrix estimate, called the -es-
timator, which is derived from the maximum likelihood esti-
mation of a multivariate Gaussian process under CG noise. A
systematic method for incorporating this new estimator into the
PAST algorithm is developed. Moreover, a new restoring mech-
anism is proposed to combat the hostile effect of long burst
of impulses. The convergence of the robust PAST algorithm is
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analyzed using the ODE method. Both theoretical and simu-
lation results show that the robust PAST algorithm offers im-
proved robustness over the conventional PAST algorithm. On
the other hand, the performance of the new algorithm in nom-
inal Gaussian noise is very close to that of the PAST algorithm.

APPENDIX A
ML-ESTIMATION IN CONTAMINATED GAUSSIAN NOISE

The probability density function (pdf) of a multivariable
normal distribution is

(A-1)

where is the mean vector, and is
the covariance matrix. The pdf of the contaminated Gaussian
model is given by the weighted sum of two (or in general more)
Gaussian distributions with means and covariances given by

and as follows:

(A-2)

where and
. In other

words, the random variable is generated from the Gaussian
distributions and with a probability
of and , respectively. In the CG model, the
additive impulsive noise is modeled by . is
usually much larger than to emulate the impulsive nature
of the impulsive noise, while represents the probability of
occurrence of the impulsive noise. Given a set of observations

, our goal is to estimate the parameters of the
process , i.e., . First of all, note that the
probability of observing these observations is

(A-3)

which is called the likelihood function of the CG model. The
principle of ML estimation is to choose the unknown parameter

(i.e., in our case) for which is maximized. If
is a differentiable function of , a necessary condition for to
have a maximum (not at the boundary) is . Note
also depends on . The solution of (A-3), which
depends on , is called the maximum likelihood
(ML) estimate. We may replace the condition by

, because , the log-likelihood function, is
a monotonic increasing function of . To estimate , we take
the logarithm of (A-3) and obtain

(A-4)

Taking the partial derivatives of with respect to yields
the equation shown at the bottom of the page. Here, the deriva-
tive of a scalar function with respect to an matrix
of independent variable is an matrix with the
entry given by . Setting and noting
that is nonsingular, one gets

(A-5)

where

.
This is a nonlinear equation in . Also, note that the ML

estimate of is a weighted sum of the observed samples. For
estimating , we again take the partial derivatives of with
respect to and get (A-6) shown at the bottom of the page.

(A-6)
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Setting the derivative to zero and noting is symmetric, we
have

(A-7)

Again it can be seen that this is a nonlinear equation in
and the ML estimate is a weighted sum of the esti-

mates . Careful examination review
that the weight , which depends
on and , gets smaller and smaller as the
magnitude of increases. This is reasonable as
extra-ordinary large value of indicates that the
observation become more and more unreliable and the weight
should decrease accordingly to de-emphasis their effects on
the estimates. For , (A-5) and (A-7) reduces to the ML
estimates of the mean and variance of a scalar process
as follows:

(A-8)

where
. Further, if the dis-

tribution is Gaussian, i.e., , then (A-5) and (A-7)
reduce to the familiar estimates:

(A-9)

for multivariate Gaussian distributions. In robust statistics,
is chosen as a fixed function so that the sensitivity of

the estimate to variation of the nominal pdf is minimized.
This is the basic motivation of our robust correlation ma-
trix introduced in Section II. The details of choosing
is explained in Appendix B. For complex Gaussian process
with pdf:

in (A-5) and (A-6) can be shown
to be

and the matrix transpose
in (A-7) will be replaced by the Hermitian transpose .

APPENDIX B
MULTIVARIATE RECURSIVE LEAST M-ESTIMATE (RLM)

ALGORITHM

Let be the estimation error in fitting the observations
, by a model with input and pa-

rameter vector , which is to be determined. The log-likelihood
function is then

(B-1)

For simplicity, we have assumed that are independent. Max-
imizing the log-likelihood function is equivalent to the mini-
mization of . Denote

, the ML estimate of is

(B.2)

If is Gaussian distributed, (B-2) reduces to the conventional
least squares estimation

(B-3)

On the other hand, if the residual error is modeled as a contami-
nated Gaussian distribution, because of the presence of additive
impulsive noise, then one should minimize (B-2). Since impul-
sive noise is usually of short time duration and time varying, its
statistics are rather difficult to estimate accurately. Instead of es-
timating these quantities in real-time, the basic idea of the robust
statistic-based estimator is to choose as a fixed function
such as the Cauchy or Lorentzian distribution:

(see [40, pp. 700–702]). The solution to (B-2) is then re-
ferred to as the -estimator, or Maximum likelihood-like esti-
mator, of . Since is a vector, let’s assume
that is equal to , where is an -esti-
mate function such as the Cauchy, Huber, or modified Huber
function. For linear estimation, we have .
Differentiating (B-2) with respect to yields the following nec-
essary condition for as follows:

(B-4)

where is the derivative of , and is a forgetting factor
introduced to enable tracking of time varying systems. In what
follows, we shall assume that the observations and inputs are
derived from a time series and we shall replace and by

and , and vice versa. This yields

(B-5)

where , and
. Note, (B-5)

is a nonlinear system of equation and, in principle, an iterative
algorithm like some kind of gradient or Newton method is re-
quired to solve for the optimal -estimator. Fortunately in re-
cursive estimation, as mentioned in the introduction, a rough
prior knowledge of (say the subspace estimate in the cur-
rent paper) is usually available from previous iterations. For the
modified Huber function, is equal to one when is less
than , and zero otherwise. In other words, when the estima-
tion error is abnormally large, the current observation will be
discarded (similar to a hard decision). Other M-estimate func-
tions might lead to slightly different weighting of the observa-
tion. Using the recurrent relations

(B-6)
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and the matrix inversion lemma,
, one gets the following robust

multivariate RLM algorithm:

(B-7)

where we have write as to save notation. (B-7)
is a generalization of the RLM algorithm in [46], [47], [49]
for matrix parameters. Therefore, by assuming that
depends weakly on , we can solve (B-5) using (B-7), by
treating as a constant. This amounts to the relax-
ation of (B-5). helps to determine whether the in-
coming signal vector is potentially corrupted by impulsive noise
or not. In the proposed robust PAST algorithm, the resulting ro-
bust algorithm, after removing these corrupted measurements, is
able to converge eventually to the subspace of the robust covari-
ance matrix, though with a slower convergence speed. This is
supported theoretically by the convergence analysis and simula-
tion results in Sections IV and V, respectively. For the proposed
robust PAST algorithm, is chosen as .
It is because the error vector might not be zero mean when the
algorithm is still converging. For notation convenience, we also
denote by . The matrix transpose in (B-7) can be
replaced by the Hermitian transpose if the input is complex.
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