346

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 1, JANUARY 2006

A Robust Maximin Approach for MIMO
Communications With Imperfect Channel
State Information Based on
Convex Optimization

Antonio Pascual-Iserte, Student Member, IEEE, Daniel Rérez Palomar, Member, IEEE,
Ana 1. Pérez-Neira, Senior Member, IEEE, and Miguel Angel Lagunas, Fellow, IEEE

Abstract—This paper considers a wireless communication
system with multiple transmit and receive antennas, i.e., a mul-
tiple-input-multiple-output (MIMO) channel. The objective is to
design the transmitter according to an imperfect channel estimate,
where the errors are explicitly taken into account to obtain a robust
design under the maximin or worst case philosophy. The robust
transmission scheme is composed of an orthogonal space-time
block code (OSTBC), whose outputs are transmitted through the
eigenmodes of the channel estimate with an appropriate power
allocation among them. At the receiver, the signal is detected
assuming a perfect channel knowledge. The optimization problem
corresponding to the design of the power allocation among the
estimated eigenmodes, whose goal is the maximization of the
signal-to-noise ratio (SNR), is transformed to a simple convex
problem that can be easily solved. Different sources of errors are
considered in the channel estimate, such as the Gaussian noise
from the estimation process and the errors from the quantization
of the channel estimate, among others. For the case of Gaussian
noise, the robust power allocation admits a closed-form expres-
sion. Finally, the benefits of the proposed design are evaluated and
compared with the pure OSTBC and nonrobust approaches.

Index Terms—Antenna arrays, beamforming, convex optimiza-
tion theory, maximum optimization problems, multiple-input
multiple-output (MIMO) systems, saddle point, space-time
coding, worst-case robust designs.

I. INTRODUCTION

ULTI-ANTENNA multiple-input-multiple-output
(MIMO) channels have become a popular means to
increase the spectral efficiency and the quality of wireless
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communications by means of spatial diversity at both sides of
the link. The design of the communication system depends on
the quantity and the quality of the channel state information
(CSI) available at both the transmitter and the receiver. In case
that the transmitter does not have any information about the
channel, then space-time coding techniques should be applied
[1]-[5]. The optimum exploitation of the benefits provided by
MIMO systems can be achieved when a perfect CSI is available
at both the transmitter and the receiver. In such a case, the
optimum solution consists in the joint design of the transmitter
and the receiver taking into account the channel response and
the noise plus interference profile. In some works such as [6]
and [7], and references therein, the design is done according
to several performance criteria and using the tools and the
potential provided by convex optimization theory [8].

In a realistic scenario, however, the channel knowledge is
generally imperfect. In such a situation, the design should take
into account explicitly the errors in the channel estimate, leading
to robust designs less sensitive to these errors. The first applica-
tions of robust designs were not for wireless communications,
but for control theory (see [9] and [10] and references therein).
Indeed, the concepts of signal state space and MIMO were origi-
nally used in that area. Afterwards, all these techniques and con-
cepts were extended to other fields due to their potential benefits.
Some works such as [11]-[14] analyzed the performance degra-
dation of several nonrobust solutions for multi-antenna systems,
in which the errors in the CSI were considered negligible in the
design process. The conclusion was that this degradation in-
creases rapidly with the error level and, hence, robust designs
are needed.

Regarding the CSI in a communication system, the receiver
usually estimates the channel using a training sequence (pilot
symbols). At the transmitter, the CSI can be obtained through a
feedback channel or from previous received signals, exploiting
the channel reciprocity in time division duplexing (TDD) (see
[15] for an overview of different channel estimation strategies).
Different sources of errors can be identified depending on the
CSI acquisition method. In case of exploiting the channel reci-
procity, the Gaussian noise from the estimation and the outdated
estimate due to the channel variability have to be considered. If
a feedback channel is used, additional effects arise, such as the
quantization of the estimate and the errors in the communica-
tion through the feedback channel.
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The robust techniques can be classified into Bayesian (or sto-
chastic) and maximin (or worst case) approaches, depending on
the way the errors in the CSI are modeled [8], [16]. Bayesian
techniques optimize a stochastic measure of the system perfor-
mance, such as the mean or the outage values, assuming that
the statistics of the error are known. On the other hand, max-
imin techniques consider that the error belongs to a predefined
uncertainty region (with no inherent statistical assumption) and
the final objective is the optimization of the worst system per-
formance for any error in this region.

The Bayesian philosophy has been applied to systems with
multi-antenna transmitters and single-antenna receivers in
works such as [17]-[19] to optimize the signal-to-noise ratio
(SNR), the bit error rate (BER), the mean square error (MSE),
or the mutual information. The more general case of MIMO
channels was considered in [20]-[22], and references therein.
In some of these works, the transmitter was composed of an or-
thogonal space—time block code (OSTBC) and a beamforming
stage, which was designed, for example, to minimize an upper
bound of the BER. Two more examples are provided in [23] and
[24], in which a statistical approach is taken to design a trans-
mitter combining an Alamouti’s code [1], a power allocation,
and two beamformers to minimize an upper bound of the BER
according to the knowledge of the channel correlation matrix
and the channel mean, respectively. An overview of the analysis
of the capacity of a MIMO system from an information theory
point of view is given in [25]. There, a statistical approach is
taken assuming that either the actual channel response or only
its statistics are known at the transmitter and/or the receiver.

Regarding the maximin philosophy, [26] and [27] provide a
general insight using a game theoretic formulation [28] and de-
scribing several applications in signal processing. This approach
has been recently used in the classical problem of designing a
receive beamformer under mismatches in the presumed model,
as in [29], where the errors were assumed to be in the esti-
mated steering vector and to belong to a spherical uncertainty
region. This was afterwards generalized in [30] to embrace un-
certainties both in the array response and the covariance ma-
trix. The classical Capon’s beamformer [31] was extended to its
robust version in [32]-[34] taking generic uncertainty regions
and different formulations. In some of these examples, the ro-
bustness was obtained by minimizing the output power of the
beamformer while guaranteeing a minimum gain for any direc-
tion modeled by the uncertainty region. A linear receiver for
a MIMO channel was derived in [35] to minimize the MSE,
whereas in [36], the receivers for a multiuser scenario using
OSTBC at the transmitters were obtained using a similar phi-
losophy to that in [29]. A maximin design of a transmitter in
a MIMO channel was proposed in [37] for the concrete case
of spherical uncertainty regions. Finally, several applications of
this robust approach to multiuser systems with multi-antenna
base stations can also be found in [15], [38], [39].

In this paper, the objective is to obtain a robust maximin de-
sign of a communication system, where the channel estimate
at the transmitter is imperfect. A MIMO channel is assumed,
generalizing and improving other previous maximin designs,
that considered, for example, multiple antennas only at one side
of the system. The robust design problem is first formulated
and, afterwards, is simplified to a convex optimization problem,

for which global solutions can always be found, either analyti-
cally or numerically with a polynomial complexity [8]. Thanks
to this transformation, the efficient software packages available
for convex problems can be directly applied, obtaining the ro-
bust design (see [8] and [40] for a description of different tech-
niques for solving convex problems). In some cases of prac-
tical interest, the simplified problem is quadratic and a simple
closed-form solution can be found (see [8]).

The paper is organized as follows. In Section II, the system
model is presented and the problem is formulated. The solu-
tion to the maximin problem is given in Section III based on
convex optimization. Different uncertainty regions for the error
in the channel estimate are described in Section IV, providing
also a closed-form solution for the case of spherical uncertainty
regions. An application of the robust design to adaptive modula-
tion is presented in Section V. Finally, some simulations results
and conclusions are provided in Sections VI and VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider the transmission through a multi-antenna flat
fading wireless MIMO channel with ng transmit and np
receive antennas. The (4, j)th component of the channel matrix
H € C"#*™" represents the channel gain between the jth
transmit and the ith receive antenna. At the receiver, it is
assumed that there is additive white Gaussian noise (AWGN)
with power o2.

The objective in this work is to obtain a maximin robust de-
sign of the transmitter for an imperfect channel estimate H e
C"rX"T which is modeled according to

H=H+A 1)

where A € C"#*"7 is the error in the estimate. The CSI at the
receiver is assumed to be perfect.

Consider, for illustrative purposes, that one symbol has to be
transmitted at one time instant. In case that a perfect CSI is
available, it has been shown in [6], [11] that the optimum so-
lution maximizing the SNR is based on single beamforming,
consisting in the transmission through the eigenvector of H H
associated to the maximum eigenvalue (the superscript H stands
for conjugate transpose). In case that the channel knowledge
is imperfect, transmitting through the maximum eigenmode of
H¥ H constitutes the nonrobust or naive solution, which may be
quite sensitive to errors. Therefore, a robust design is expected
to use more eigenmodes than the maximum one. See [37], for
example, for a robust design using more estimated eigenmodes
than the maximum one. Also in [41], a transmitter is designed
according to different degrees of channel knowledge, showing
that in some situations, the capacity achieving solution may
need to use multiple beamforming.

The design of the transmitter will be based on a linear pro-
cessing or beamforming scheme, whereas at the receiver, a max-
imum likelihood (ML) detector will be employed assuming a
perfect channel knowledge. The proposed architecture for the
robust transmitter is composed of an OSTBC block,AwhcA)se out-
puts are transmitted through all the eigenmodes of H” H using
an adequate power distribution among them, as opposed to the
nonrobust design, which uses only the maximum eigenmode.
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Fig. 1. General architecture for the transmitter based on the concatenation of
an OSTBC block, a power allocation, and multiple beamforming.

The proposed architecture is shown in Fig. 1, where the OSTBC,
the power allocation, and the beamforming stages are explicitly
shown (similar transmitter architectures have been proposed in
other works, such as [20], [22]-[24]).

Consider that an OSTBC block is used, such that R indepen-
dent complex symbols are transmitted simultaneously over T’
periods of time, i.e., the code rate is R/T'. According to this,
the transmitted signal can be formulated as follows (similarly to
linear dispersion codes [42] and OSTBC [4], [5]):

)) € CnTXT

2

R
S = Udiag({ypi) > (T " + jT(af’
=1

where each of the ny rows of S corresponds to the 7' signal
samples that are transmitted through each antenna, a:l(r) and
l(z) are the real and imaginary parts of the complex symbol xl,
which is assumed to have a normalized energy E[|z;]?] =
and T(T) and T(L) € C"7*T are the matrices belonging to the
Hurw1tz Radon famlly of matrices used in OSTBC (see [4] and
[5]). The unitary matrix U = Lﬁl s lp,] € CrrXnT con-
tains the np eigenvectors of H H with eigenvalues {\; } sorted
in decreasing order, p; is the power allocated to the transmis-
sion through the ith estimated eigenmode, and diag({,/pi}) is
a diagonal matrix whose elements are {,/p; }. According to this
signal model, the ML detector reduces to a set of linear opera-
tions, as happens with OSTBC.

The design objective is to calculate the optimum power allo-
cation strategy {p; } subject to a transmit power constraint under
an adequate performance criterion. If the transmit power budget
is Py, the power constraint can be expressed in terms of the fac-

tors {p;} as

1 -
—EISIF] =) p <P, pi>0 3)
=1

where ||S]|F = /Tr(SHS) represents the Frobenius norm of
matrix S and Tr( - ) is the trace operator. Note that the set of fea-
sible power distributions is convex in {p; }, since the constraints
detailed in (3) are linear and, hence, convex [8]. Note also that,
according to this notation, the nonrobust design corresponds to
p1 = Py,p; =0,0 =2,...,np,ie., only the maximum eigen-
mode is used for transmission [11]. Note that, regardless of the
CSI, the symbol rate is always equal to the rate of the OSTBC
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R/T, which means that the multiple beamforming architecture
is used to provide robustness, but not for increasing the trans-
mission rate of the code.

For the considered system (2) using OSTBC with ML detec-
tion, the performance can be measured by the SNR, which is
equal for all the symbols and can be expressed as (see [4] and
(5D

SNR =

Tr(UPHYHUdiag(p)) 4

n

where p = [p1 -+ pn,]T (the superscript 7" stands for trans-
pose) and diag(p) is a diagonal matrix with elements {p;}.
Based on this, the performance function f in this system can
be defined as

= Tr(UXHY HUdiag(p))
Te(UH(H + A7 (H + A)Udiag(p))

f(p,A)
(5)

whose maximization with respect to p is the design objective
and where the error model (1) has been used. Note that f is linear
and, therefore, concave in p; and convex-quadratic in A.! The
application of quasi-orthogonal space—time block codes [43] is
not possible since they lead to nonlinear ML detectors whose
performance cannot be directly measured by the SNR.

The maximin approach has been chosen to include robust-
ness in the design of the power allocation. According to it, an
uncertainty region R for the error in the estimate A has to be
chosen, which, in the following, will be assumed to be a convex
set? [8] and to have a nonempty interior. This region models the
imprecise knowledge of the channel and, therefore, the size of
the region should be larger as the quality of the CSI decreases.
The objective of the maximin design is to look for the power
allocation p that optimizes the worst performance for any error

in the uncertainty region, expressed as infa ¢ f(p, A). There-
fore, the robust approach can be formulated as [44]
imi inf S A
maximize inf f(p,A)
subject to 1Tp <P
pi 20, Vi (6)

where 1 = [1---1]T € R"7 X! s the all-one vector.

III. SOLVING THE MAXIMIN PROBLEM

The direct way to solve the maximin problem is to obtain the
minimization of f analytically and then solve the outer maxi-
mization, either numerically or analytically. Such an approach,
however, is difficult because it is not clear what is the mini-
mizing A for a given p in closed-form.

A function f is convex if its domain domf is a convex set, i.e., if x =
0x1 4+ (1 — )%, € domf,Vx;.x» € domf, V6 € [0, 1], and the following
is fulfilled: f(fx1 + (1 — O)x2) < 0f(x1) + (1 — 6)f(x2),Vx1,x2 €
domf, V6 € [0, 1]. The function f is concave if — f is convex. See the chapter
devoted to convex functions in [8] for a complete description of convex func-
tions.

2The set R is convex if A = §A; + (1 —0)A, € R,VA,. A, € R and
V6 € [0,1].
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One can also consider the inner minimization numerically for
a given p

f(p) = inf f(p,A) ©)

AER
and then solving again the outer maximization sup,, f(p) nu-
merically. Note that the inner minimization is a convex problem,
since f is convex in A and the constraint set R is also convex.3
The outer maximization is also convex, since the constraint set
for p is convex (the constraints in (3) are linear) and f is concave
[45]. This procedure allows to find the robust power allocation
pP*, although it is computationally very costly. This is because
each iteration in the outer maximization requires an evaluation
of f (p) (and possibly also of its gradient), which in turns re-
quires solving the inner minimization numerically with as many
iterations as needed to converge.

Other numerical methods can be used, such as the algorithm
proposed in [46] to find saddle points of maximin problems
based on a modified steepest descent over p and A simulta-
neously. In [47], an alternative algorithm for the same problem
is derived based on the interior point method.

In the following, a much more efficient and elegant way to
solve the problem is shown, based on a transformation of the
original maximin problem (6) into a simple convex optimization
problem.

A. Reformulating the Original Maximin Problem as a
Simplified Convex Minimization Problem

In this subsection, the original problem (6) is transformed
into a simplified convex problem consisting of a single opti-
mization stage, instead of the two stages defined originally (this
equivalence was sketched in [45]). Thanks to this transforma-
tion, the powerful numerical algorithms available in software
packages for solving convex problems can be applied to find
the optimum solution to the design problem in a polynomial
time, requiring much less computational effort than the algo-
rithms previously mentioned. Some examples of these software
packages are the optimization toolbox of MATLAB and Se-
DuMi [48]. This problem transformation is described in the fol-
lowing proposition:

Proposition 1: The original maximin problem (6) can be
transformed into the following simplified convex optimization
problem:

minimize ¢
t,A

subjectto ¢ > Poall (H+ A)H(H + Ay, Vi
AeR (®)

where ¢ is a dummy variable and w; is the normalized
eigenvector of HPH associated to the ith eigenvalue (the
eigenvalues are sorted in decreasing order). The optimum
robust power allocation p* = [p}---p} ]* is equal to the
optimum dual variables {v}} associated to the inequali-
ties t > Pouf(H + A)Y(H + A)dy; in (8) multiplied

3A constrained minimization problem is convex when both the objective func-
tion to be minimized and the constraint sets are convex (see [8]).

by the power budget Py, i.e., pf = Pyvy*. Besides, the op-

timum primal variable A* of (8) minimizes f(p*,A), i.e.,
" N

e = fp*,Aa%) = f(p*).

Proof: Consider the original maximin problem
maximize Aln% Tr(UY(H + A7 (H + A)Udiag(p))
P €
subject to 1Tp <P
pi 20, Vi ©))

where the optimum solution is attained when the transmit power
constraint inequality is fulfilled with equality: 1Tp = P,.
This problem can be rewritten in terms of the variables
p: = pi/Py, so that the constraints are formulated as
1" =1 (P = [p1...Pnr]T) and p; > 0,Vi. The problem is
then

maximize
P

nr
inf P,y paZ(H+ AT H+ Ay
Juf o;put( +A)"(H+A)a
subject to le) =1
pi >0, Vi (10)
Let us include a dummy variable ¢, which, as will be shown
in the following, is the same as the dummy variable ¢ in (8),
obtaining

maximize
P t

nr
i o Poi (F H(f G
qufntfz;pz (Poui H+A)TH + Ay t)
1=
subjectto 17p =1
pi >0, Vi (11)
It turns out that the constraint 17p = 1 can now be removed
since, if it is not satisfied, the inner minimization with respect
to ¢ would be unbounded below (simply by looking at the term
t(1 — > p;)). Note that this constraint can be also derived
as one of the Karush-Kuhn-Tucker (KKT) conditions [8] for the
inner minimization in the previous problem. Hence, the original
problem can be rewritten as

maximize
p t

nr
. _ ~H H /1 N
inf i+ Zl:pi (Poui (H+ A) (H—|—A)ui—t)

subjectto p; >0, Vi. (12)
This problem can be recognized as the maximization of the dual
function (which in turn is defined as the minimization of the
Lagrangian, as explained in [8]) associated to the problem
minimize ¢
t,AER

subjectto ¢ > Poall (H+ AT (H+ A, Vi (13)

which is the same problem as (8) and, therefore, the dual vari-
ables or Lagrange multipliers ~y; associated to the constraints
t > Pouf (H 4+ A)T(H + A)d, coincide with f;, i.e., p; =
Py7yi, proving Proposition 1. Note that the constraint A € R is
implicitly included in both problems (12) and (13) by defining
the domain of the functions in the variable A as R. [ |
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From this proof, it can be seen that the fundamental reason
why the relationship p} = Fyy* holds is that the original func-
tion f is linear in the power distribution variables {p;} and,
hence, they can be interpreted as the Lagrange multipliers.

In Appendix A, a completely different proof is given based on
the application of the necessary and sufficient KKT conditions
to the optimization problem (see [8] for a description of these
conditions) and using the concepts of concave—convex functions
and saddle points, also defined in the appendix.

Summarizing, the original maximin power allocation
problem (6) can be solved by considering the simplified convex
problem (8). The values of the optimum Lagrange multipliers
for this problem provide the normalized power distribution to be
applied among the estimated eigenmodes. Currently, there exist
many software packages implementing very efficient numerical
algorithms, such as the primal-dual interior point methods, that
are able to solve convex optimization problems and give, not
only the value of the optimum primal variables, i.e., t* and
A* in problem (8), but also the optimum value of the dual
variables, i.e., the Lagrange multipliers {~}}. Consequently, by
using these algorithms, the worst case error and the optimum
robust power allocation can be calculated efficiently (see, for
example, the function fmincon in the optimization toolbox of
MATLAB). In addition, it can be shown that, for some concrete
uncertainty regions R, problem (8) simplifies to a quadratic
problem and, even in some cases, a closed-form solution exists.

B. An Application to Minimum Transmit Power With an
Instantaneous Performance Constraint

From the KKT conditions (37)—(40) in Appendix A for the
reformulated convex problem (8), it can be shown that the op-
timal dual variables {7} and the worst case error A* do not
depend on the power budget P,. Consequently, the optimum ro-

bust power allocation (pf = Pyy}) scales linearly with Py, and
also f* £ f(p*, A*), which is given by

Y2 f(pt,A%)
= PyTr(UP (H + AP (H + A*)Udiag({7})).
(14)

This result can be used to calculate the solution to the problem
consisting in minimizing the transmit power, while still guaran-
teeing that the instantaneous performance, in terms of the SNR,
is better than a minimum target SNR for any error in the uncer-
tainty region. This problem is the complementary as that solved
previously, in which the performance was optimized subject to a
power constraint, although both problems are essentially equiv-
alent. The solution to this new problem is also attained by taking
the robust power allocation given by {~;}, where the required
transmit power is calculated as

0.2

Py = SNRg————— - - :
T (U (B 4+ A (H + A*) Uding({7)))
(15)

The results in this paper can be straightforwardly extended to
multicarrier systems assuming independent uncertainty regions
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for the channel estimate at each subcarrier and applying an ad-
equate power allocation policy among the frequencies [11].

IV. CONVEX UNCERTAINTY REGIONS

The definition of the uncertainty region R may impact impor-
tantly on the system performance. The size and the shape of this
region should take into account the quality of the channel esti-
mate and the imperfections that generate the error, linking the
mathematical optimization problem and the physical phenom-
enon producing the error.

In the following, two sources of errors are identified and three
different uncertainty regions, jointly with their sizes, are de-
scribed. In all the cases, the proposed uncertainty regions are
convex, as required to solve the optimization problem in Propo-
sition 1. Afterwards, a more general list of possible uncertainty
regions is given.

A. Estimation Gaussian Noise

A wusual error in the channel estimate comes from the
Gaussian noise, especially in TDD systems, where the trans-
mitter can estimate the channel using the signals received in the
reverse link, and use it as an estimate in the forward link, due
to the channel reciprocity principle.

In this subsection, the objective is to derive the expression
of an uncertainty region according to an unbiased estimate of
the channel and taking into account that the error is Gaussian
distributed. Let the unbiased channel estimate be formulated as
H=H-+ E, where E is the zero-mean estimation noise, in-
dependent from the actual channel realization. Note that a dif-
ferent notation is used for the unbiased channel estimate H and
the estimation error E when compared to H and A, as used in
the previous sections. In the following, the relationship between
H H, A, and E is shown, and the corresponding uncertainty re-
gion for A is obtained.

Letusdefineh = vec(H) and e = vec(E), where h and e are
column vectors resulting from stacking the columns of H and
E, respectively, using the vec( - ) operator. Frequently, h and e
are assumed to be jointly Gaussian distributed with mean values
and covariance matrices given by my, and Cy, and 0 and C,,
for h and e, respectively. According to this, the distribution of
the actual channel conditioned to the unbiased channel estimate
follows also a Gaussian distribution [49]:

h|h ~CN(my ;. C 5,

1 —(h—-m )IIC (h—m, ;)
by, L(h|h) — ¢ hih |k h|h (16)
" |7rCh|h|
where
my; =my +Cu(Cr+Co) Hh—m;)  (7)
Ch|h (C + C ) (18)

Consequently, from (16) it is concluded that the actual channel
h can be assumed to be in a region centered at my, 7, ie., at
the conditional mean of the actual channel, also known as the
MMSE Bayesian channel estimate [49]. Based on this, h =
vec(H) is defined as my, ;, and, therefore, the error § = vec(A)
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Fig. 2. Different uncertainty regions for the case of a scalar error A, where
A, = Re{A} and A; = Im{A}: (a) Estimation Gaussian noise, (b)
quantization errors, and (c) combined estimation and quantization errors.

is equal to h—m, ;. According to these results, the uncertainty
region for the error can be defined as the following ellipsoid
(and, consequently, problem (8) is quadratic):

R = {A .8 = vec(A),67C L8 < r2} . 19)

h|h
See Fig. 2(a) for an example of an ellipsoidal uncertainty region.
As the error é is Gaussian distributed, it will be inside the
uncertainty region R with a certain probability P;,, lower than
1, ie, Prob(A € R) = P, < 1. This probability will
be equal to the probability of providing the required QoS to
the user (i.e., the probability of having a SNR higher than the
target SNRq or, equivalently, a BER lower than a maximum
target BER(). The mathematical relationship between the size
of the uncertainty region, measured by 72, and P, is given by
r2 = ¢$~1(P;,), where ¢ is the cumulative density function (cdf)
of the chi-square distribution with 2ngny degrees of freedom
and normalized variance 1/2 (this result can be easily obtained
taking into account the statistical distribution (16) and that the
vector C;ﬁ;/ ?§ is Gaussian distributed with zero-mean and iden-
tity covariance matrix).
For the concrete case where both the channel H and the error
E matrices have independent identically distributed (i.i.d.) com-
ponents with zero-mean and variances o and o2, respectively,
the uncertainty region for the channel reduces to a sphere of ra-
dius /€ centered at the Bayesian channel estimate, obtaining

2
b } (20)

R=LA:|A|IZ<ee=r>—Th
{acnam<ae=r g

where SNRs; = 07 /o2 is the received SNR during the trans-
mission of the training sequence and 72 is calculated as ex-
plained previously.

B. Quantization Errors

In frequency division duplexing (FDD) systems, the estimate
of the channel at the transmitter has to be obtained through a
feedback channel from the receiver to the transmitter. Since this
feedback channel has a finite capacity, the channel response has
to be quantized introducing an error in the CSI available at the
transmitter. Assuming that the receiver has a perfect knowledge
of the channel response H, it can quantize uniformly the real
and imaginary parts of all the components of H using a quanti-
zation step equal to A, obtaining H as aresult. Taking this pa-
rameter, the quantization SNR is defined as SNR, = 607 /A2,
where o7 is the variance of each component of H assuming i.i.d.
Gaussian components. Consequently, the uncertainty region for

the channel can be defined as a hypercube centered at H and,
therefore, R is defined as follows (leading to a convex quadratic
optimization problem):

R={a:Re(ial) < S mial) < 5. @n

See Fig. 2(b) for an example of a cubic uncertainty region.

Usually, the assumed dynamic range for the quantization is
equal to 6 times the standard deviation. If this approach is taken,
the relationship between SNR, and the number of bits IV, to be
fed back is N = nonglog,(3SNRy). Obviously, as the ca-
pacity of the feedback channel increases, more bits can be used
in the quantization and, therefore, the size of the uncertainty re-
gion can be reduced.

C. Combined Estimation and Quantization Errors

In a realistic scenario, the two effects considered previously,
i.e., the Gaussian noise from the estimation process and the
quantization errors, are expected to be combined. This can be
modeled mathematically by defining an appropriate uncertainty
region for the error, which can be expressed as

A=A+ Ar: A} <
R= A, A,
[Re{[Az]i; } < F* Mm{[Aq]i;}] < F*

(22)
and is convex. See Fig. 2(c) for an example of this uncertainty
region. Note that in this case, white Gaussian noise and uncor-
related MIMO channels have been considered, although the
extension to ellipsoidal regions combined with quantization
is straightforward. According to this region, the optimization
problem (8) can be rewritten as the following convex quadratic
problem:

minimize ¢
t,Aq1,An
subjectto ¢ > Poa (H + A1 + A7
x (H+ Ay + Ay)q,, Vi
Tr(AFA)) <e
A A
[Re{[AalijH < 52, tm{[Aqi} < 52
which comprises the previous uncertainty regions and the cor-
responding optimization problems as particular cases.

(23)

D. Other Uncertainty Regions

In addition to the previous uncertainty regions, there are
many other possibilities and feedback strategies, whose error
and imperfection models also lead to convex uncertainty re-
gions. The regions described previously make sense when
the whole channel matrix H is estimated or each element of
H is independently quantized. In the case of SIMO chan-
nels, a possible approach is to represent the channel in terms
of the modes of the channel correlation matrix, as in the
Karhunen-Loeve transform (see [50] and references therein).
Consider the channel h, where this column vector represents
the response of the SIMO channel with fixed covariance matrix
Elhh®] = UDUZX. Given this eigen-decomposition, the
actual channel response and the estimate can be coded taking
the eigenvectors as the basis vectors for the representation,
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obtaining: a; = u’h, so thath = 3", a;u; and h= > Gy
(the eigenvectors are assumed to be known both at the trans-
mitter and the receiver, and the only parameters that have to be
fed back are the coefficients «;).

In a general setup for a MIMO channel, this strategy could
also be used and, therefore, the representation of the MIMO
channel in terms of its coordinates {«;} could be expressed as

H= ZO@Hl

where the matrices {H;}, which are fixed and known at both
sides of the system, form the basis for the expression of the
channel estimate. The estimated/quantized channel available at

the transmitter is
H=> aH,
i

where the error in the coefficients is represented by §; = a; —&;.
If the set defined for the error vector § = [§; ... 6x]7 is convex,
then the uncertainty region for the error in the channel estimate
A=H-H-= >, 0;H; is also convex, since the channel is
expressed as a linear combination of the matrices of the basis
multiplied by the coefficients {«a;} [8].

The imperfections and uncertainty regions described previ-
ously can also be adopted for the coordinates {«;} as follows:

(24)

(25)

1) spherical/ellipsoidal regions for the coordinates—repre-
sented by Y, w;|6;|* < 7%

2) quantization regions for the coordinates—represented by
[Re{6:}| < Ag/2,|Im{5,}] < A,/2:

3) combination of 1) and 2).

Previously, the quantization has been assumed to be a
scalar quantization; however, a vector quantization is usually
preferred. Consider a space with N points {H;}, each one
representing the region given by H; + R, i.e.,if H € H; +R;,
the sth index corresponding to H; is sent (the number of bits
for the feedback is equal to log,(NN)). Each region R; is a
polyhedron defined by the intersection of a finite number of
half-spaces (see Fig. 3 for an example). The region is then as
follows:

4) vector quantization—ﬂ = H, and A € R;, where i
is the received index; observe that in this case, the un-
certainty regions depends on the channel estimate, as op-
posed to the previous cases where it was fixed.

See [51], and references therein, for a general overview of
different vector quantization strategies with limited feedback.

E. A Closed-Form Solution for Spherical Uncertainty Regions

The general convex problem presented in (8) can be ex-
tremely simplified for the case of spherical uncertainty regions.
In this subsection, a closed-form solution is given for this re-
gion, improving the results given in [44], in which the solution
was not exact and an iterative method had to be applied. The
solution provided in this subsection is similar to that obtained
in the independent work [37] but using a completely different
proof. There, a maximin approach has also been taken to find
a solution to the problem of the maximization of the SNR
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Fig. 3. Uncertainty regions resulting from the intersection of half-spaces in
vector quantization. In this example, the channel is in the indicated region and
the index ¢ is fed back to the transmitter.

assuming spherical uncertainty regions with a prefixed size,
where no discussion is given on how to calculate the value
of the radius of the region. That paper assumes a different
transmitter architecture from the one presented in this paper,
proposing the use of a spreading sequence at each antenna
instead of an OSTBC and, therefore, leading to transmission
rates much lower than those obtained by our proposal.

Proposition 2: Consider the maximin problem (6) and the
uncertainty region R = {||A||% < e}. If |[H||% < e, then
supp, infa f (p,A) = 0 and no SNR can be guaranteed, i.e., no
robust power allocation exists. Otherwise, the optimum robust
power allocation is given by

07 % > Tmax
where 5\, is the sth eigenvalue of HIH (with the eigenvalues
sorted in decreasing order), 4 is a normalization factor such that
S pf = Py, imax is the maximum index such that the fol-
lowing inequality is fulfilled:

max 2
> (Vi Vi) <
=1

and « is the minimum solution to the following second degree
equation:

27)

Tmax

i @2 — 22 by a—l—zj\i—e:(). (28)
=1 =1

Proof: See Appendix B. |

tmax

V. APPLICATION TO ADAPTIVE MODULATION
WITH BER CONSTRAINTS

The previous robust design can be combined with adaptive
modulation strategies [52] to maximize the throughput subject
to BER constraints, i.e., the objective is to maximize the trans-
mission rate by employing high level modulations while still
guaranteeing a minimum quality in terms of a maximum BER
for any possible error in the uncertainty region.

Consider that the transmit power is bounded by Pj"** and
let BERL(SNR) be the function that relates the SNR with the
BER for an L-QAM modulation. Obviously, given a certain
SNR, the BER increases as the number of constellation points
L in the modulation also increases. Taking this into account, the
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proposed robust adaptive modulation is based on the following
steps, in which all the symbols are assumed to be taken from the
same signal constellation:

1) Define the desired QoS in terms of a maximum allowed
BERy.

2) Given the channel estimate H and the uncertainty region
'R, calculate the robust normalized power allocation given
by the optimum Lagrange multipliers {~y?} and the worst
case error given by the optimum primal variables A*.

3) Calculate the guaranteed achievable SNR for any error in
the uncertainty region similarly as in (15), as follows:

SNRnlaX

B (07 (AL AT O (1))

n

(29)

4) Calculate the maximum number of constellation points
L* fulfilling BER 7, (SNR™**) < BER|. This can be triv-
ially done by using a look-up table in which the values of
the SNR required for each BER and signal constellation
size are saved. If the previous constraint cannot be fulfilled
for any value of L, set L* = 0. In this case, no signal is
transmitted since the QoS requirement cannot be satisfied
for all the possible errors in the uncertainty region while
still fulfilling the maximum transmit power constraint.

5) For the selected value L*, calculate the necessary instan-
taneous transmit power as in (15). Note that the transmit
power required to fulfill the BER constraint with equality
may be lower than the maximum available transmit power
Py since the number of constellation points L is dis-
crete.

Summarizing, this algorithm proposes a robust adaptive mod-
ulation technique, in which the throughput is maximized while
a certain QoS can be guaranteed to the user given a channel es-
timate and a transmit power constraint.

VI. SIMULATIONS RESULTS

In this section, several simulations results are presented
to show the robustness capabilities of the already presented
technique and compare its performance with other classical
solutions, such as the nonrobust approach and the pure OSTBC
approach. In all the simulations in this section, the OSTBC
matrices given in [4] for complex symbols are used, attaining a
symbol rate R/T, according to the notation used in (2), equal to
1 for np=2,3/4 for np =3 and ny = 4, and 1/2 for any other
number of transmit antennas. In the simulations, the optimum
robust power allocation has been obtained simply using the
function fmincon of the optimization toolbox of MATLAB,
that provides simultaneously the optimum values of the primal
and dual variables of problem (8).

As presented in Section III, the robust maximin technique
distributes the available power among the estimated eigenmodes
taking into account the errors in the channel estimate. If the
channel estimate is perfect, the robust solution should be equal
to the nonrobust beamforming, i.e., to the power allocation given
byps = Po,pi =0, =2,..., ny. When the uncertainty in the
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Fig. 4. Mean value of the power distribution for different sizes of the
uncertainty region.

actual channel increases, the robust design tends to distribute
the power in a more uniform way.

In the first simulations we analyze a system with 4 transmit
and 6 receive antennas. We consider Gaussian noise in the
channel estimate and spherical uncertainty regions with a
radius equal to /e = g||H||,0< g < 1. Note that for these un-
certainty regions, H = H+A # 0,YA € R. This condition
has to hold since, otherwise, the saddle value, i.e., f(p*, A*),
would be equal to O.

Since np = 4, the total transmit power has to be distributed
among the 4 estimated eigenvectors. In Fig. 4, the mean value
of the normalized robust power allocation {7} is shown as a
function of g. As seen, for g = 0 the power distribution corre-
sponds to the nonrobust approach, as expected. As g increases,
the power allocation profile changes and tends to distribute the
power in a more uniform way. Note that the pure OSTBC ap-
proach is equivalent to a uniform power allocation p; = 1/4 =
0.25,1 < ¢ < 4. As can be seen in Fig. 4, this uniform distribu-
tion is not attained by the robust approach, even when g — 1.
In [5], it is shown that OSTBC is optimum in a robust maximin
sense when the channel is completely unknown. This can be ex-
pressed mathematically as the following nonconvex uncertainty
region for the actual channel: R = {H:|H||% > p}, where p
is a positive real value that avoids the channel H = 0 to belong
to the uncertainty region. Note that, when g = 1, the spherical
uncertainty region is different from that for which OSTBC is the
robust maximin solution and, consequently, the robust power al-
location policy for g = 1 does not have to be necessarily uni-
form.

As stated in Subsection III-B, the maximin design can be
used to guarantee a minimum target SNRy with the minimum
required transmit power for any error in the uncertainty region.
In Fig. 5, the cdf of the minimum required transmit power is
shown for SNRy = 10 dB. This cdf is represented for np = 2
and ng = 2 and for three different transmission techniques:
the robust approach, the nonrobust classical beamforming, and
a pure OSTBC strategy. The uncertainty regions that are con-
sidered are spherical with a radius equal to \/¢ = g||H]||z and
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Fig. 5. Cumulative density functions of the minimum required transmit power

assuming different sizes for the spherical uncertainty regions, and according to
a target SNR equal to SNR; = 10 dB.
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Fig. 6. Mean value of the minimum required transmit power in a TDD system
(Gaussian noise, spherical uncertainty regions) according to a target SNR equal
to SNR, = 10 dB.

taking four different values for the parameter g: 0.1, 0.65, 0.8,
and 0.9. As can be seen, for small uncertainty regions, both the
robust and the nonrobust approaches have a similar performance
and need less transmit power than OSTBC, as expected. When
the size of the uncertainty region increases, the nonrobust ap-
proach increases the necessary transmit power to fulfill the QoS
requirements. Note that, for an extreme case corresponding to
big uncertainty regions, the nonrobust technique may need even
more power than OSTBC. This means that in case that the CSI
may have high errors, it is more convenient to use an OSTBC
approach than to assume that the channel estimate is perfect,
despite not being true. Note also that, in all cases, the robust so-
lution is the technique requiring the least transmit power.

Figs. 6 and 7 show some results on the mean value of the min-
imum required transmit power to attain a SNRy=10 dB when
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Fig.7. Mean value of the minimum required transmit power in a FDD system
(quantization errors, cubic uncertainty regions) according to a target SNR equal
to SNRy = 10 dB.

considering spherical (TDD systems) and cubic (FDD systems)
uncertainty regions. The sizes of the regions are directly related
to the estimation and quantization SNR, as described in Sec-
tion IV. For the case of spherical uncertainty regions, two dif-
ferent QoS probabilities (as defined in Section IV-A) have been
used: P, = 0.85 and P, = 0.6. The same conclusions can be
obtained from the observation of both figures. If the estimation
or quantization SNR is high, OSTBC needs more power than
the nonrobust and the robust designs, since it does not exploit
the channel knowledge available at the transmitter. As the esti-
mation or quantization SNR decreases, all the techniques need
more power to fulfill the instantaneous SNR requirements, since
the size of the uncertainty region increases. Note that for all the
cases, the technique requiring the least transmit power is the ro-
bust approach. Also, as previously pointed out, if the estima-
tion or quantization SNR is low enough, the nonrobust solu-
tion needs more power than OSTBC, concluding that in case
of having a very low quality channel estimate, it is not conve-
nient to use it without taking into account explicitly the errors
in the estimate, i.e., in a nonrobust way. In the case of spherical
regions, increasing the probability P;, of providing a QoS im-
plies an increase of the minimum required transmit power, since
the size of the uncertainty region also increases. From the fig-
ures it is also concluded that very important savings in terms of
transmit power can be obtained when using the robust approach
instead of the nonrobust beamforming. For example, for np = 2
and ng = 2 and SNRs= 11 dB, a saving of almost 4 dB can be
obtained, whereas for ny = 6 and np = 6 and SNR, = 5 dB,
a saving of 3 dB is achieved.

As explained at the beginning of this section, an instantaneous
SNR can be guaranteed to the user only in case that H = 0
does not belong to the uncertainty region for the actual channel.
In Figs. 8 and 9 the service provision probability is shown, i.e.,
Pr(H+ A # 0,YA € R), as a function of the QoS probability
P, required by the user in the case of TDD, and the quantiza-
tion SNR in the case of FDD. These results have been obtained
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Fig. 9. Probability of service provision versus quantization SNR, assuming
quantization errors and cubic uncertainty regions.

for different number of transmit and receive antennas. As a gen-
eral conclusion, it can be observed that increasing the number
of antennas and the quantization SNR implies an increase of the
service provision probability, as expected. On the other hand, if
the user demands for a higher QoS probability, the service pro-
vision probability decreases, since an increase of the required
QoS implies an increase of the uncertainty region R and, there-
fore, it is not always possible to guarantee that QoS since the
actual channel H = 0 may be possible.

As explained in Section V, the throughput, i.e., the number of
transmitted bits per channel use, can be maximized while guar-
anteeing a maximum BER for any possible error in the channel
estimate by using the robust power allocation. Fig. 10 shows
the throughput (averaged over many channel realizations) that
can be achieved in order to guarantee a maximum BER equal to
103 for any possible error in the uncertainty region, which is

Normalized System Throughput with Maximum BER Constraints

-o- Robust AM, n= =8, nFi_B g=0.4

-0~ Non-robust AM, n,=8, n=8, g=0.4
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Fig. 10. Average throughput (i.e., average number of transmitted bits
per channel use) for the robust and the nonrobust approaches combined
with adaptive modulation taking a maximum allowed BER, = 10~3. The
throughput has been normalized with respect to the code rate of the employed
OSTBC.

considered to be spherical with a radius equal to /e = g||H| z.
This throughput has been normalized with respect to the code
rate R/T so that the gains provided by the robust technique it-
self for different number of transmit antennas can be compared
directly. The techniques that are compared are the robust ap-
proach and the nonrobust classical beamforming solution. For
both techniques, the mean throughput is shown as a function
of the maximum available power at the transmitter. Besides,
the plots regarding the application of fixed modulation formats
corresponding to QPSK and 16-QAM are also given. From the
figure it is concluded that, thanks to the use of the robust max-
imin design, very important savings in terms of transmit power
can be obtained when compared to the nonrobust solution, spe-
cially when the size of the uncertainty region is high, as ex-
pected. In the same figure, the improvement of the system can
also be observed when the number of antennas increases.

VII. CONCLUSION

In this paper, a robust design strategy has been proposed for
a wireless multi-antenna MIMO channel. The transmitter is de-
signed based on a channel estimate that may have errors from
different origins, such as the Gaussian noise from the estimation
process, or the errors from the quantization of the channel esti-
mate, among others. These errors have been taken into account
explicitly in the design, obtaining a robust solution less sensitive
to these errors. In particular, a maximin philosophy has been
adopted to include robustness. This approach is characterized
by attaining the best worst case performance, in terms of SNR,
for any channel response in an uncertainty region centered at the
channel estimate. This uncertainty region models the error in the
estimate, whose shape and size have to be chosen according to
the origin and amount of imperfection in the estimate.

The transmitter architecture that has been proposed is based
on the concatenation of an OSTBC block, a power allocation,
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and a set of beamformers, each one connected to one of the
outputs of the OSTBC and corresponding to an eigenmode of
the MIMO channel estimate. The robustness has been included
according to an adequate power distribution of the total transmit
power among the estimated channel eigenmodes. Thanks to this
optimum robust power allocation, the necessary transmit power
is minimized while guaranteeing a minimum instantaneous
SNR for any possible estimation error in the uncertainty region.

The mathematical optimization problem corresponding to the
maximin robust power allocation has been transformed into a
simple convex optimization problem that can be solved effi-
ciently by existing software packages. For many uncertainty re-
gions, the convex problem is quadratic and, for the case of a
spherical uncertainty region, a closed-from solution exists.

Finally, this robust solution has been compared with a pure
OSTBC strategy and also with the classical nonrobust beam-
forming strategy, corresponding to the use of only the maximum
estimated channel eigenvector. From the simulations results, it
has been observed that the gains in terms of saving in transmit
power are quite important when compared to the nonrobust and
the pure OSTBC techniques, especially when the estimation and
the quantization SNR are low.

APPENDIX A
PROOF OF PROPOSITION 1 BASED ON THE KKT CONDITIONS

In this appendix, an alternative proof of Proposition 1 is pro-
vided using the KKT conditions. First, some mathematical pre-
liminaries on saddle points and concave—convex functions are
given and, afterwards, the proof is provided.

A. Mathematical Preliminaries

In this subsection, the concept of saddle point is defined and
two basic results are then given, since they will be useful in the
following.

Definition 1: A point (x*,y*) € X x Y is a saddle point of
the function f : X x Y — R with respect to maximizing over
X and minimizing over ) if

fxy") < f(x*,y") < f(x,y), VxeX,Vye). (30)

Given a saddle point (x*,y*), the saddle value is defined as
2 fy).

Lemma 1 [53, Corollary 37.6.2]: Let X and ) be nonempty
closed bounded (compact) convex sets and let f be a real con-
tinuous finite concave—convex function on X' x ).4 Then, f has
a saddle point with respect to X' x ).

Lemma 2 [53, Lemma 36.2]: Let f be any function from a
nonempty product set X x Y to [—oo, +oc]. If a saddle point
(x*,y*) € X x Y of f exists (with respect to maximizing over
X and minimizing over ))), then

f(x*,y*) = sup inf f(x,y) = inf sup f(x,y) (3D
xeX YEY

f
Y€V xeXx
and both sup, ¢y infycy f(x,y) and infycy sup,cr f(X,y)
are attained at (x*,y*). In other words, if a saddle point ex-
ists, the order of the supremum and infimum operators can be
interchanged.

4The function f : X X Y — Ris concave-convex if f(x,y) is concave with
respect to x for any y € Y, and is convex with respect to y for any x € X'.
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B. Proof of Proposition 1

The function f(p, A) (5), which is concave—convex, and the
optimization sets satisfy the conditions required by Lemma 1.
Consequently, there exists a saddle point (see Definition 1) of
the maximin problem (6), i.e., there exist p* and A* fulfilling
the constraints and satisfying

f(p,A%) < f(p*, A7) < f(p™, A) (32)

for any feasible p and A. The solution to the original problem
(6) is p* and the saddle value f* £ f(p*, A*)is f(p*) (see
Lemma 2). The existence of the saddle point permits to inter-
change the outer and inner optimizations in the original max-
imin problem, obtaining the minimax problem

minimize sup f(p,A)
17p<Py,p; >0

subjectto A E€TR (33)

with the advantage that the inner maximization is a linear pro-
gram with linear constraints, as follows:

nr
maximize Zp, [UHH+ AT H+ AU,
P

i=1
subject to 1Tp <P
pi >0, Vi (34)

It can be shown that the optimum value of this maximization is
the maximum element of the diagonal of the matrix UH(H +
A)H (H + A)U multiplied by the power budget Py, i.e.,

sup f(p,A)=Pymax[UF (H + A)T(H+ A)0U];

17p<Py,pi >0
— Pymax {ﬁ{f(ﬂ + AT (H + A)ﬁ,;}

where the power allocation p achieving this optimum value is
not unique if the maximum value is attained by more than one
element of the diagonal of the matrix U7 (H+A)7 (H+A)U.
As a consequence of this result, the original problem (6) can be
written as the convex problem (8) shown in Proposition 1, where
the dummy variable ¢ has been introduced.

Solving the convex problem (8) gives the saddle value t* =
f* = f(p*, A*) and the worst case error A* of the saddle point
of the problem (see Lemma 2); however, the optimal robust
power distribution p* is still unknown. It turns out that the op-
timum Lagrange multipliers -y} associated to the inequality con-
straints ¢ > Poa” (H+A)# (H+ A)i; in problem (8) provide
the optimum normalized power distribution, i.e., p} = Fyy}, as
proved below.

The problem (8) can be solved by formulating the necessary
and sufficient KKT conditions (Slater’s condition holds since R
has a nonempty interior),’ which, according to Lemma 2, are sat-
isfied by the worst case error A* along with the optimum dual
variables. On the other hand, it is clear that A* is also the so-
lution to the convex problem mina f(p*, A) (from the second
inequality in (32)), where p* is the robust power distribution,
and, therefore, the worst case error A* must satisfy the KKT
conditions for the problem mina f(p*, A) as well. By a simple
comparison between both sets of KKT conditions, it can be seen

5The KKT conditions are necessary and sufficient conditions for optimality
in a convex optimization problem if Slater’s condition holds (see [8]).
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that, for p; = Py}, the worst case error A* satisfies both sets
of conditions and, hence, that is an optimal power allocation.

The Lagrangian of the problem (8) (characterizing for con-
venience and without loss of generality the uncertainty convex
region R as the intersection of a set of convex constraints of the
form f;(A) < 0)is

Ll(t*, Aa 7 I"’)

nr

=+ m (Poa (B + A)7 (F + A)it; — 1)

1=1
+ > wifi(A) (35)

(5

+ PyTr ((ﬂ + A (H+ A)ﬁdiag({'yi})ﬂH)

+ ) nifi(A) (36)

where the equality /7, v; (0 = Udiag({7;})U¥ has been
used. Therefore, the KKT conditions for this problem are

fi(A*) <0, t*>Puall(H+ AT H+ A%y (37)
py >0, 47 >0 (38)
nr
> o=t
=1
Po(H+A*)Udiag({; U7 +> " i VFi(A*) =0 (39)
W Fi(A7) =0
v (Poﬁf{(fl—i—A*)H(fI—i—A*)m - t*) =0. (40)

Now the Lagrangian for the problem mina f(p*, A) is
La(Aja) = Tr (fJH(fI TNLG: A)ﬁdiag(p*))
+ Z a;fi(A) (4D

and the KKT conditions for the optimal error and multipliers are

fi(A*) <0 (42)

af >0 (43)

(I:I + A*)ﬁdiag(p*)ﬁH + Z a;Vfi(A*) =0 (44)
W fi(AF) =0, (45)

From the comparison of both sets of KKT conditions
(37)—(40) and (42)—(45), it is clear that they are satisfied by the
same worst case error A* taking of = p’ and pf = Pyvy}.
Besides, from (40) it is concluded that the saddle value is f* =
£ = S Pyt 0 (H + AMF(H + A, = f(p*, A%).
In other words, given a solution to (37)—(40), a solution to
(42)—(45) is automatically obtained, which means that A* is
the worst case error for p*; moreover, the pair (p*, A*) is a
saddle point of the problem and, consequently, p* is a robust

6An arbitrary intersection of convex sets is also a convex set. In addition, the
sublevel sets S, f of a convex function f, defined as ., f = {x : f(x) < a},
are also convex.

power allocation. Note that the transmit power constraint is
fulfilled, since the optimum dual variables {~}} are required to
satisfy v > 0 (see (38)) and Y7, ¥ = 1 (see (39)). [ |

APPENDIX B
PROOF OF PROPOSITION 2

This proof is based on the proof of Proposition 1, which
uses the KKT conditions, shown in Appendix A. The con-
cave—convex function f(p, A) in (5) can be rewritten in terms
of the matrices H and A, which are obtained by performing a
linear transformation of the original channel estimate and error
matrices using the unitary matrix of estimated eigenvectors:

H=HU, A=AU (46)
and, therefore
f(p,A) = Te(UH(H + A)¥(H + A)Udiag(p))

= Tr((H+ A)?(H + A)diag(p)). (47)

Note that the uncertainty region defined for A as ||A||% < €
can be equivalently written in terms of the transformed error
Aas R = {A : ||A||% < €}, since the multiplication by
the unitary matrix U does not modify the value of the norm.
Besides, the norms of the columns of the transformed channel
matrix H are related to the estimated eigenvalues by ||h;|| =

Ai.

The original maximin problem (6) can be rewritten as a min-
imax problem (the order of the inner and outer optimizations can
be interchanged according to Lemma 2 and as used in the proof
of Proposition 1, since a saddle point of the problem exists) that
can be formulated as

minimize max Po[(H+ A)? (H+ A)];
A i

1Al < e. (48)
The elements of the diagonal can be written as [(H+ A)" (H+
A)lii = |[h; + 6;]|*. Consider now the minimization with re-
spect to each §,, i.e., to each column of the maErix é The
vector 8; with norm ||é;]| = ¢; that minimizes [[h; + &;||* is
8; = —c;h;/||hy]|. Using this result, the minimized ith compo-
nent of the diagonal can be written as

[(H+ A" (H+ A")];

_ 1

h(1-—¢
( ||h1-||c>
_ 1 2 ~

= IRl <1 - m0> = (|hs]l — )% (49)

According to this, the problem (48) can be equivalently ex-
pressed as

subject to

2

minimize ¢
t,c

subjectto ¢ > Po(||h;|| — ci)?, Vi

nr

Yo =llelP<e

i=1

(50)

where ¢ = [e1 -+ ¢, )T
It is now clear how to find the optimum solution to this
problem according to the points below, taking into account that
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Fig. 11. Representation of the optimal solution for the case of a spherical
uncertainty region.

the eigenvalues {;\z} are sorted in decreasing order and that

Ihill = Vi,

1) Detection of saddle value equal to 0: In case that
T b2 = H||% = ||IA{“2F < ¢, then the worst-error
is attained when ¢ = |/h;||, which corresponds to
A* = —ﬂ, and the saddle value t* is 0, which means
that no SNR can be guaranteed for any power allocation.

2) Detection of the number of active eigenmodes: When the
saddle value is different from 0, some of the inequality
constraints in (50) are fulfilled with equality, whereas the
value of ¢; for the other constraints is 0. This is the op-
timum solution, since, in case that there exists an index j
such that ¢; > 0 but the corresponding constraint is not
fulfilled with equality (i.e., ¢ > Py(||h;|| — ¢;)?), then the
value of ¢ can be reduced by decreasing the value of ¢; and
increasing c;, Vi # j, while still fulfilling ||c||? < e. Con-
sequently, the optimum solution is attained when || ;|| —c;
is constant for the active constraints and the value of ¢
cannot be further reduced since ||c||? = ¢ (see Fig. 11 for
an example of an optimal solution). Taking all this into
account, the number of active constraints is the maximum
index %,ax such that the following inequality is fulfilled:

Tmax

S (Il - || B

i=1

\)2 < €.

(G

Once this index has been calculated by a simple finite
iteration, the optimum values of the coefficients {c;} for
the active constraints can be expressed as a function of the
constant for the last active constraint ¢;, (note that for
the other constraints, the optimum constants are equal to
0,i.e., ¢ = 0,7 > imax), as follows:

*

Lll‘l ax

\-i-c

[hi|| ¢ = ||h

1’!’]]21)(

| || Tmax Tmax ’
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Using this result, ¢} can be easily calculated by taking
the positive solut1on to the following second degree equa-

tion resulting from the constraint -7, ¢?

=16 = €+

imax

ZC*z = > (Il = i+ 5 ) =€ (53
=1
= () imax +2 Y (el = [[hi.]]) €
=1
3 (Il = [[Rie]))? = € = 0. (54)
=1

Collecting all these results, the worst case error A* can be
finally calculated as

A* = [—c; b, ...—C;T|h“'f” } U, (55)

By

The optimal robust power allocation can be obtained as
the power p* such that the worst case error is a solution to
mina f(p*,A), ie., A* satisfies the corresponding KKT
conditions. The Lagrangian associated to the problem is

L(A;p) = Tr (fJH(fI + A (H+ A)ﬂdiag(p*)>
+u(Tr(ATA) =€) (56)

and, therefore, one of the KKT conditions is

(H+A*)Udiag(p*)U" + n*A* =0
= (H+ A*)Udiag(p*) + p*A*U =0 (57)
(H + A*)diag(p*) + p*A* =0 (58)

which has to be satisfied at the worst case error A* and for the
robust power allocation {p}}. From this equation, the power to
be allocated to the ith estimated eigenmode can be calculated as

(h;+87)p} + 1*6; =

:>h1'<1—

* VAi=V Ximax Hei 0
= \/5\2 —C ’
max a0 . .
0, % > Tmax

1 <4 <imax

(59)

where £/* is a normalization factor such that 1", p¥ = P.

~
*

By defining the constant & = 1/ \; c;. _, absorbing the

Tmax Tm

factor 1/avin p*, and introducing the change of variable c; =

A/ X — @ in (54), the results in Proposition 2 are directly

obtained, including (28). [ |
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