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Design of Block Transceivers with Decision
Feedback Detection

Fang Xu, Timothy N. Davidson, Jian-Kang Zhang, and K. Max @/on

Abstract— This paper presents a method for jointly designing performance loss. A useful compromise between performance
the transmitter-receiver pair in a block-by-block communication gnd complexity can be obtained by employing intra-block
system that employs (intra-block) decision feedback detéon. decision feedback detection [4], [10], [14], [15], [18],0[

We provide closed-form expressions for transmitter-receier pairs L ’ R ’

that simultaneously minimize the arithmetic mean squared gor [22], [28], [44]’ [_4,7]’ [51]. Inan |ntr§\-block d§C|Slon f_dback
(MSE) at the decision point (assuming perfect feedback), (3] deteCtOI‘ the |nd|V|dUa| Symb0|s Wh|Ch constitute a g|th|
geometric MSE, and the bit error rate of a uniformly bit- are detected sequentially, with the “intra-block integfere”
loaded system at moderate-to-high signal-to-noise ratiosSep- from previously detected symbols being subtracted before
arate expressions apply for the “zero-forcing” and “minimum s gecision on the current symbol is made. Such schemes

MSE” (MMSE) decision feedback structures. In the MMSE fall into the cl f lized decision feedback i
case, the proposed design also maximizes the Gaussian mutua'@!! INtO the class of generalized decision teedback eguall

information and suggests that one can approach the capacity €S [10]. In multiple antenna communication schemes intra-
of the block transmission system using (independent instaes block decision feedback is sometimes referred to as “rmillin

of) the same (Gaussian) code for each element of the block.and cancelling” [4], [18], [20], and in multi-user detectithe

Our simulation studies indicate that the proposed transceiers ., regponding concept is sometimes referred to as “stiveess
perform significantly better than standard transceivers, and that . terf lation” 1141, 1151, [221. [47

they retain their performance advantages in the presence afrror  Interference cancellation” [14], [15], [22], [47]. _
propagation. The goal of the present paper is to jointly design the linear

.. . . transmitter matrix and the receiver feedforward and feeklba
Index Terms— block precoding; decision feedback detection; . o
zero-forcing; minimum mean-square error; bit error rate; m utual matr'ces_so _aS to Opt'm'ze_the pe_rformance of a_b_IOCk-b};szbIO
information; channel capacity. communication system with an intra-block decision fee#tbac
detector (BDFD). The design is based on knowledge of the
channel, and hence is an appropriate choice for systems in
which there is timely, reliable feedback from the receiver t
Block-by-block communication is an effective scheme fathe transmitter. The proposed approach provides closed-fo
the transmission of data over dispersive media; e.g., [28xpressions for transceivers that minimize the arithnmagan
[30], [41], [42]. In such “vector” communication schemes(over the block) of the expected squared errors (MSE) at the
blocks of data are transmitted in a manner that avoids intémput to the (scalar) decision device that is implicit in the
ference between the received blocks, and hence the dete&DFD, under the standard assumption [3], [9], [10], [17D]4
need only operate on a block-by-block basis. Two populfs2] that the previous decisions were correct. The expoessi
examples of block-by-block communication schemes are atepend on the nature of the BDFD, and separate expressions
thogonal frequency division multiplexing (OFDM) [5] andare provided for the zero-forcing (ZF) and minimum mean
discrete multi-tone modulation (DMT) [8]. In addition, ¢t&in square error (MMSE) BDFDs. In order to help distinguish
multiple antenna systems operate in a block-by-block &ashiour designs from previous work, we point out that if one is
(e.g., [18], [20], [26], [36], [43], [45]), and block-by-btk given a transmitter matrix, the design of the feedforward an
detection schemes appear in some multiuser detectors flm@dback matrices of a ZF or MMSE-BDFD that minimize the
synchronous CDMA systems [14], [15], [47]. In general, aMSE is well known; e.g., [2], [4], [9], [10], [17], [20], [40]
optimal detector for a block transmission system must makiwever, the joint minimum MSE design of the transmitter
a decision on the received data block as a whole, althoughd receiver matrices has previously been deemed to be
in certain cases, such as OFDM and DMT, the elements difficult (e.g., [52, p. 1338]), and hence several authongeha
that block can be decoupled and simpler detection schenseggested minimizing a particular lower bound on the MSE,
obtained. Unfortunately, maximum likelihood detectiontioé namely the geometric mean of the expected squared errors;
transmitted vector can be rather computationally expensie.g., [9], [10], [52]. We will minimize the geometric MSE
and simpler detectors based on linear equalization and (dis the first step in our approach, but we will also show how
joint) symbol-by-symbol detection may incur a significanthe unitary matrix that parameterizes the set of transcgive
. . . , . which minimize the geometric MSE can be chosen so that the
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by the Canada Research Chairs program. Transceivers designed in the manner we propose have
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minimum SINR over the elements of the block is maximizedperation; and:];; denotes the element at the intersection of
As a result, the average bit error rate (BER) is (essenliallthe ith row and;jth column of a matrix.

minimized. More precisely, for systems with a ZF-BDFD our

design minimizes the average BER for (uncoded) uniform

QPSK signalling at moderate-to-high signal-to-noise osati
(SNRs), and also minimizes the dominant components of th
BER for uniform M-ary QAM signalling? For systems with
an MMSE-BDFD, our design minimizes the average BE
under an assumption that the residual intra-block interfee

Il. BLOCK-BY-BLOCK TRANSMISSION

&e consider the generic block-by-block transmission syste

with intra-block decision feedback detection illustrated

Eig.[]]. In this system, a block dff data symbolss, is linearly

) i precoded to construct a block & > M channel symbols,

is Gaussian. L u = Fs, which is transmitted over the channel. The receiver
For the MMSE-BDFD, it is reasonably well known [9], [10],,jenendently processes a blockBf> M received samples

[17], [40], [52] that any transmitter that minimizes the 9€%n order to detect the data vectarThe received blocky, can
metric MSE (including the proposed design) also maximiz%% written as

the mutual information between the transmitter and receive

for Gaussian signals. However, the standard choice from the y = HFs +v, 1)
set of transmitters that minimize the geometric MSE does no .

minimize the (arithmetic) MSE and produces inputs to th\ghéare FhEPTK migantcaptlerejdt-fgle eﬁeqts of the Than\r;\(/al,
decision device that have potentially different SINRs facte andv IS a leng vector of additive noise samples. We

element of the block. Therefore, in order to achieve rediabYVi" assume that the noise is circularly symmetric [37] (or,

communication at rates which approach the capacity of tRECPET [35]) and Gaussian, with zero mean and positive defi-

block transmission system, different codes (and consitatis) nite correlation matrix[vv™] = R.,. We will also assume
may need to be applied for each element of the block [10]. A{Hat the data symbols have ZEro mean .and are \&Lufe,umt
advantage of the proposed design is that from within thefsetq'€'9Y: agd not correlated W't_h the noise, ('E[SS .] =1
transmitters that minimize the geometric MSE (and maximi d_E[S_V ) - 0). The model in QL) is appl!cable_m many
the Gaussian mutual information), we obtain a transcehar t applications, including zero-padded or cyclic-prefixedd

also minimizes the arithmetic MSE, minimizes the BER, antaansmission overa scala_r finite impulse response chahael t
provides uncorrelated inputs to the decision device thaeh Is constant over the duration of the block; e.g., [6], [12B]-

identical (and maximized) SINRs. Since the MMSE-BDFD i 3_01’ [41], [42], [44]. In the zero-padded ca;;]as a tall, lower
a “canonical” receiver [9], [10], [23], this suggests that btrlangular, full column rank Toeplitz matrix whose columns
' ’ ' {é%ntain the impulse response of the channel, and in theceycli

using the proposed design, reliable communication at ra fixed o i irculant matrix wh |
approaching the capacity of the block transmission systé%e Ixed casel 1S a square circufant matfix Whose coiumns

can be achieved by using independent instances of the sa%@}?'n;re. channtel |;npulse. response. The modflmd(l)luxft.als
(Gaussian) code in each element of block. applicable in: vector transmission over a narrowband pielti

As mentioned earlier, our designs are based on the stan ’P{F””f”‘ _c?_an?el t(E.g:,_ [18], [2?.])’ Irl]t)IWhI::th ca&hgs no
assumption [3], [9], [10], [17], [40], [52] that the previsu eterministic structure; in space-time block transmissiger a

symbols were correctly detected. However, error propa%lgas'fﬁat? rr:arrowl}alar;]d mU“l'jFl"e E”(;?””a Clhartmelt'@g], .
tion is not catastrophic in block-by-block communicatior: D, in which case as a block diagonal structure, an

schemes because errors can only propagate within a sin h?lpck transmission over a (quas-static) frgqueqcxe{stale
block (e.g., [10] and Sectidnlll). Bounds for the convengibn. ul_t|ple antenna chgnnel (eg. [.36]’ [43]), in which cdge
symbol-by-symbol decision feedback equalizer (DFE) [1§][ IS elther. block Toeplitz (?r.block circulant. i

also suggest that good performance should be maintained "Zl'he intra-block _deC|S|on fgedback detector first pre-
the presence of error propagation, and our simulationsronfiPf0Cesses the received blogkwith an A/ x P feedforward
this prediction. Furthermore, our simulation studies sage Malrix W to form z = Wy. (The functional form ofW
that the proposed transceivers perform significantly bétgn depends on whether the ZF- or MMSE-BDFD is !mplemented;
standard transceivers, and that they retain their perfltmsmaSee Sectiori)l.) The detection Qf the trapsmnted symbols
advantages in the presence of error propagation. sm = [s]m then proceeds sequentially, starting fram= 17,

Notation: The notation adopted in this paper is fairyPY Making a scalar decision cmé = zu and thers,, = 2, —
standard. We conform to the following conventions: scalafg: 7 = M —1, M =2,...,1, wheres,, = >~ bineSe IS

; . Lab=m+1 e
are denoted by lower case letters; vectors by bold IOV%OUtpUt of the feedback filter, with,, being its coefficients.
case letters; and matrices by bold upper case letters.

states of that filteg,, are the previously detected symbols
symbolIy denotes the identity matrix of siz¥, andOy « ys

in the block and the filter coefficients are different for each
denotes theV x M matrix of zeros. The symbdA| denotes element of the block (indexed by). Once a given block has
the determinant of a matriA, andtr(A) denotes its trace.

been detected, the states of the feedback filter are resetdo z
The symbolE[] denotes the expectation operat¢n? the

That is, the symbols are detected on a block-by-block basis
complex-conjugate transpose operatidn)? the transpose and hence error propagation between blocks is avoided.

1our design for the ZF-BDFD coincides with the one that mimiesi the ?In the case wher@[ss’!] is not a scaled identity matrix, a data whitening
block error rate [56], [57], but the design approach taketheépresent paper matrix can readily be absorbed into the precoder, so lonigeaddta covariance
is substantially different from that taken in [56], [57]. matrix is known (and full rank).
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Fig. 1. A generic block-by-block communication system wiittra-block decision feedback detection. TR block denotes parallel-to-serial conversion
with the last element of the input block becoming the firstpatit and theS/P block denotes serial-to-parallel conversion with the fingtut becoming the
last element of the output block.

M I1l. MINIMUM MSE TRANSCEIVERS
s F % H X In this section, our goal is to jointly design the transceive

elementsF, B, and W so that the (arithmetic) MSE is
minimized, subject to a boungy, on the average transmitted
power, and constraints which ensure that the receiver pasfo
Fig. 2. A convenient conceptual model for Fg. 1. either ZF or MMSE decision-feedback detection. The average
transmitted power is given bi [tr (Fs(Fs)f)| = tr(FF"),

i - : ) and hence the design problem can be stated as
If the filter coefficientsh,,, are arranged in a strictly upper

triangularM x M matrix min tr((WHF ~B-I)(WHF - B-D)¥
F,B.W
0 b2 bz --- bim H
0 0 by - bow +WR,, W) (6a)
B=|: -~ . - : , subject to tr(FF¥) < py, and (6b)

0 0 0 - bm-1nm a functional relationship betwedn, B and W.

o 0 0 --- 0 (6¢c)
the operation of the block transceiver in Fig. 1 is equivalefrhe functional relationship betwedn, B and W determines
to successively making decisions on the elements of whether the BDFD is of the ZF type or the MMSE type.

§ — WHFs + Wv — B, @) This optimization problem is rather difficult to solve ditlc

because it is not convex, and hence is subject to the standard
starting from theMth row. That interpretation leads to thedifficulties associated with the potential for multiple &c
convenient conceptual model in FI§. 2. We observe that wherinima. However, we will use the following stages to find
B = 0, the system in Figd2 reduces to a block transmissi@solution(F, B, W) whose performance is optimal:

system with linear equalization and disjoint detectiog;,e[t_S], 1) Obtain a (tight) lower bound on the MSE, and minimize
[12], [36], [41]-[43]. In fact, many of the results for theéar that lower bound, subject to the constraint on transmis-
case can be obtained by settiBy= 0 in the expressions we sion power.

will derive herein. 2) Derive a triple(F, B, W) whose performance achieves

If we denote the error between the input to the detector and = the minimized lower bound.

the transmitted data symbols ley= s — s, then . . .
y y=5-5 In the following subsections, we will perform the above stag

e=(WHF —I)s — Bs + Wv. (3) to obtain the minimized lower bounds on the MSE and optimal
] o . transceivers for the ZF and MMSE BDFDs, respectively.
Und_er the a§sumpt|on of correct past deC|S|(_)ns _(!.e., whenp o matrix H” R/ H will play a key role in our designs.
decidings,,, 5, = s¢ forall m+1 < ¢ < M), e simplifies t0 £ |ater convenience we let

e=(WHF —1-B)s + Wv. (4) VAV = HIR'H (7

The covariance of this error will play a key role in our design represent the eigenvalue decompositionEBF R 'H, with
Under our statistical models ferandv, the covariance matrix eigenvalues); arranged in non-increasing oréér along the
of the error is diagonal of A. For an integerl < k < K, we also define
V. to be the firstc columns ofV and A to be the upper left
_ Hy _ _B_ _B-1¥
Rec = Elee”] = (WHF — B —I)(WHF — B ;) k x k block of A. In the development of our designs, we will
+ WR,,W™. (5) find it convenient to parameterize té x M precoder matrix

The (arithmetic) MSE of the detector input is simg§ — F of rank ¢ in terms of its singular value decomposition,

tr(E[(8 = 8)(5 = )")] ) /M = tr(Rec) /M. F=©[® 0, p] ¥ ®)
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where® containsg columns of aK x K unitary matrix,® is
a diagonal positive definite x ¢ matrix, and® is an M x M
unitary matrix.

A. Zero-forcing BDFD

The zero-forcing criterion imposes the following relationéZ. = tr(WzcR,, W) /M > ‘U (HF)* ((fIF)*)HUH‘

ship betweerW , F andB (see [}})):

WHF =B + L 9)

Given aP x K matrix H and an integed < min{P, K},

there exists ak x M matrix F, an M x P matrix W and
an M x M strictly upper triangular matriB such that[{p) is
satisfied if and only ifrank(H) > M, and we will make the
assumption that this condition holésn order to satisfy[P),
F must be chosen so that it has rahkand thatrank(HF) =

M.

with equality holding if and only ifX = oI for somea > 0.
For convenience, we will refer t§{IL5) as the trace-deteamin
inequality.

Applying (I3) to [14h), a lower bound on the mean-square
error is
1/M

(16a)

= |[FFHTHF|" VM, (16b)

where we have used the fact tHdtis a unit-diagonal upper-
triangular matrix and thugU| = 1, and the expression
for (HF)* in (@d). Observe that[{Ibb) depends only on
the transmitterF and is independent otJ B+ LIt

is also of interest to point out that the bound [@_{16a) is
equivalent to stating that the arithmetic MSE is boundedwel
by the geometric MSE; i.etr(Reezr)/M > |Reeze|'/M.

By substituting ED) |nt0m4) an(ﬂS) the covariance matrixherefore, the problem of minimizing the lower boundm)lGa

of the error can be written as

Ree,ZF = WR’UUWH' (10)

If we defineW = WRL.?, then the design problerll (6) can

be re-written as

min tr(WWH) (11a)

W,B,F
subject to tr(FF) < po, (11b)
WHF =B +1, (11c)

whereH = R.,,”/*H. From [11) it is clear that for a giveR

for which there exists a solution t{11c) and a giBnthe
optimal W is W = (B + I)(HF)*, where(-)* denotes the

corresponds to minimizing the geometric MSE.
The lower bound in [[16) can be minimized simply by
maximizing |FYH”HF|; i.e., by solving

max [FPHYR,'HF| (17a)

(17b)

Using the ordered eigen-decompositionf'R_.'H in (@),
and applying the trace-determinant mequaIIE] (15), weehav
that

subject to tr(FF) < po.

(minimum-norm) Moore-Penrose pseudo-inverse. Therefore

the optimal receiver feedforward matrix can be written as

W = (B+I)(HF)*R /2. (12)

[FTHYR,HF| = |®?| |®HHR—1H®H| (18a)
2
(”q’ ) H/\ (18b)
po\M
< (= i
<( M) 1}1& (18¢)

Therefore, for any ZF-BDFD system, the (arithmetic) MSE is

Since HF has at least as many rows as it has columns ahdunded below by

has full column rank,

(HF)* = (FTHYHF)'F7HYT (13)

1/A{
(19)

=)

i=1

If we let U = B + I, the design problem if{11) has beerrhis bound depends only on the parametMsand po, and

reduced to

: T (P T UuHE

min (U(HF) (ar)H)"u ) (14a)
subject to tr(FF) < po, (14b)

U being a unit-diagonal upper-triangular matrix.

(14c¢)

the M largest eigenvalues iR,/ H.

The second stage of the der|vat|on of the proposed design
is to determine matriceE andB so that the minimized lower
bound on the arithmetic MSE ifL{IL9) is achieved, To do so,
we point out that according to the trace-determinant inktyua
‘@) and the eigenvalue decompositioni&f'R,'H in (@),
the bound in[[I8b) holds with equality if and onlyfﬁ =al

The first stage in our solution of{ll4) is to derive andor somea > 0 and® = V,P, whereV ,; was defined after

minimize a lower bound on the objective function_{lLl4a){d) andP is an arbitrary permutation matrix. According to the
The lower bound that we will use is a simple consequenpewer constraint in[(I1b), the bound i{18c) is achieved if
of the arithmetic-geometric mean inequality [27, p. 53%]. land only if & = /po/M. Therefore, precoders of the form
particular, for anM x M positive semidefinite matriX, = +/po/M V¥, whereW is an arbitraryM x M unitary
matrix, minimize the geometric MSE of a ZF-BDFD system.
The remaining task is to determine matric&ssuch that the
bound in [I8h) holds with equality. To do so, we observe that
the trace-determinant inequalify{15) holds with equafignd

tr(X)/M > |X['/M, (15)

SIf M were a design variable, rather than a parameter of the proldae
could guarantee that this condition holds by simply chapgif < rank(H).
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only if X = oI for somea > 0. Therefore,[[I8a) holds with B. MMSE-BDFD

equality if and only if we can choos# such thatRee 2 = In this subsection, we consider joint transmitter-receive

y —1/M .
0?1, whereo? = @UPO)(H?L Ai) ™M, That is, we can design for a system based on the MMSE-BDFD. The approach
achieve the minimized lower bound on the arithmetic MSE § similar to that for the ZF-BDFD in the previous subsection

and only if we can find al such that but the details are substantially different.
o . Recall from Sectiofidl and Fidl] 2 that the received vector
—UwAA,, U =52, (20) is y = HFs + v. Hence, the error betwee# and s is
po e = Wy — (B + I)s. The covariance matrix of is R, =

HF)(HF)” +R,,, and cross-correlation matrix afandy

s Ry, = (HF)# = R/.. In order to determine the minimum
MSE feedforward matrix, Wyuse, We exploit the standard
first-order necessary condition for optimality known as the

where A,; was defined after[]7). By taking the Cholesk
factor, solving [2D) is equivalent to solving

M

- U\I;H[x;;m =0.Q", (21) orthogonality principle [39], namelfey”] = WR,,— (B+
Po I)R,, = 0. Therefore,
whereQ is anM x M unitary matrix. That is, we can reduce Wunse = B+ I)RsyR;yl. (23)

the search for a paifF, B) such that the minimized lower o . ] ) ]
bound on the MSE is achieved to the search for a unit-diagormyPstituting [2B) into [5), and invoking the Matrix Inver-
upper-triangular matrisU, and unitary matrice® andQ that Sion Lemma(A + CB™'D)~' = A~! — A7!C(B +
satisfy [21). Substituting.. into (1), we get: DA—lc)‘_lDA—l, [32], the covariance matrix of the error
can be written as
~1/2 _
Ay'¥ = QU, (22) R, s = (B+T) (1+ FYHIRHF) ' (B+D)Y. (24)

where U = ([T, A)"/®") U. The following result, which Our goal is to design th& and B to minimize the MSE
is a special case of a more general result in [56], [57], iaidis Subject to the power constraint. Lettiig = B +1I, the design
that a solution to[{d2) exists. problem [B) can be rewritten as

Lemma 1:LetT be a diagonal non-singuldd x M matrix. . HetHa 1 1y
There exists a unitary matri§ such thatl'S has an equal- o (U (I+F"HYR,HF) " U ) (25a)
diagonal ‘R-factor’ in its (staljdard) QR decqmpositiog;ﬂs subject to tr(FF?) < po, and (25b)
such thal’'S = QR, whereQ is anM x M unitary matrix and
R is an upper-triaqg}y{lar matrix with equal diagonal elements
[R];; = (H,ﬁiﬂk) / fori=1,2,---, M, where, is the _ _ _ o
kth diagonal element oF. O Following the first stage outlined at the beginning of Sec-

The matrix S in Lemmal[l can be obtained by suitabl)}ionm we nc_>w obtain and minimizg a onver bound on the
modifying Algorithm 5 in [57]. The modified algorithm is MSE. According to the trace-determinant inequallil (15 w

provided in Appendifll. Using that algorithm, we can obtdin have that

in (Z2). By performing the QR decomposition f&f}f\lﬂ we tr (U (I + FHHHR;}HF)—l UH)

obtain an upper triangular matrid whose diagonal elements 1

are all equal tof [T, A;)"/**. Finally, we obtainU using > M|U (I+F"H"R;/HF) U"|
U = (1Y, 0) /@0, Thus, we have established the = M1+ FPEIR,HEF|

following proposition: heref he | bound h be minimized b
Proposition 1: The  (arithmetic) mean-square errorT erefore, the lower bound on the MSE can be minimized by

U being a unit-diagonal upper-triangular matrix.
(25¢)

1/M

(26)

tr(Ree)/M of a block-by-block transceiver with a Solving:

ZF-BDFD achieyle%{ its minimized lower bound of max |I+FHHHR;}HF| (27a)
(M/po) (TT2E, M) ™ when the precoder F = F

VI V¥, where ¥, is obtained by applying the subject to tr(FF”) < py. (27b)

algorithm in Appendix Ol to Ay,”. The corresponding As in the ZF case, the problem of minimizing the lower bound
feedback matrixB = U — I, whereU is the unit-diagonal depends only on the transmitter. We point out that the object
upper-triangular matrixU = (T], /\i)fl/(QM)fT, andU is in @da) is equivalent to minimizing the geometric MSE
obtained from the QR decomposition iB22). Substitutingnplicit in 28). Furthermore, the logarithm of the objeeti
suchF andB into (I2) yields the feedforward matriW. O in Z3a) is the mutual information between the transmittet a

From the above derivation it is apparent that the precoderceiver for Gaussian signals. (An analogous observatisn h
in PropositionIL, which minimizes the arithmetic MSE, alsbeen made in several similar contexts [9], [10], [17], [40],
minimizes the geometric MSE. However, a precoder thf2].) Hence, minimizing the lower bound on the arithmetic
minimizes the geometric MSE does not necessarily minimi2dSE in (Z8) is equivalent to maximizing the Gaussian mutual
the arithmetic MSE. information.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, to appear 6

Given that the problem if{27) is equivalent to maximizin@ubstituting suchF and B into (Z3) yields the feedforward
the mutual information for Gaussian signals, the solution i matrix W. O
volves a “waterfilling” power allocation over the eigenverst ~ As was the case for the ZF-BDFD in Sectibn1ll-A, the
of HAR_H, [50]. More formally, the solution depends onprecoder in Propositiofil 2, which minimizes the arithmetic
a parameterr < K which is the largest integer satisfyingMSE, lies within the set of precoders that minimize the
1/A < (po + Z;Zl /\j_l)/r. If we defineq = min{r, M}, geometric MSE, but a precoder chosen arbitrarily from the
then the following set of precodéraminimize the lower set of precoders that minimize the geometric MSE does not
bound [50],F = V, [® 044 (v—q)| ¥, where® is agq x ¢ necessarily minimize the arithmetic MSE. This observation

diagonal matrix with diagonal elements satisfying provides a connection between the proposed design and an
q earlier design for a more general overlapping block traesmi
|pii|? = l(po + Z /\j—l) _ )‘fla (28) sion system in which the transmitter was designed to mirémiz
q = the geometric MSE [52]. In the context of the block-by-block

_ _ _ . transmission schemes that we have considered, the design
and ¥ is an arbitraryM x M unitary matrix> In that case, in [52] corresponds to choosim§i = I, rather than choice
the minimal value of the lower bound on the MSE generatef ¢ — U,use in Propositio 2. While the choice o = I,
by (28) and [(27) is results in a system that minimizes the geometric MSE, it
q —gM A does not minimize the arithmetic MSE in the general case.
Ese > qVM (po + Z/\;l) [T ", (29 In addition, the SINR for each element of the block may be
=1 =1 different. In contrast, the choice aF = Wyyse Minimizes
which is independent of our design parametErand B. the geometric MSE and the arithmetic MSE, and provides an

Moving to the second stage of our general approach, \ﬁg_:fﬁl SthR forf‘(Ia’aclh elﬁment .Of the bIocI:]. f codi
now determine a transceiver that achieves the minimized' '€ ¢N0ICE OM alSo has an Impact on the nature of coding

lower bound in [2B). For ease of exposition, we defibe- strategies for approaching the capacity of the block-mgckl

[& 0, o) |. SubstitutingF — Vq‘inIl into (23) and [Z5a), tra_nsmission system. Fr_om the disc_ussion f_ollov_v (2_7$ _it
the arithmetic MSE isr(Rec wwse) /M, Where evident that the Gaussian mutu_al mformatlo_n is max!mlzed
’ by choosingM = r and employing a transmitter matrix of
Recmse = U1, + (i,TAq(i,)—lq,UH. (30) the_formF = V,@\Il, Wher§‘1> ;atisfies [[@8) andP is an
arbitrary » x r unitary matrix. Since the MMSE-BDFD is
Using the trace-determinant inequaliizX(15), for the MSE “canonical” receivér for Gaussian signals [9], [10], [23],
to achieve its minimized lower bound, we must chodde this suggests that by using sufficiently powerful codesabét
and ¥ so thatRecuwse = 621, wheres? = ¢¥M(py + communication at rates approaching the capacity of thekbloc
;1_:1 ,\j—l)_q/M ngl )\Jfl/M_ That is, a system of the form transmission system can be achieved by employingFamyf
in @9) achieves the minimized lower bound on the MSE ithis form and the MMSE-BDFD [9], [10], [23]. The choice
@0) if and only if we can findU = (1/5.)U and unitary ¥ = I, results in a “vector coding” scheme [10], [29], [30],

matrices® andQ so that [36], [41] in which the feedback component of the MMSE-
T 5 BDFD is inactive; i.e.,B = 0. Vector coding induces an
(I + @ A,®)/*T = QU. (31) equivalent system with parallel Gaussian subchannels, each

. . . with a possibly different SNR;. (Standard discrete multitone
According to Lemmalll, therg exists a uvn:;ta}ryv matrik (DMT) modulation schemes [5], [8] are a class of vector
such that the QR decomposition éfy + @ A @) /2w coding schemes.) Therefore, one can approach the capacity
has an upper trlavnqglfla[ “R-factor” with diagonal elemerits &y the plock transmission scheme by choosing the code for
equal to|(Iy; + ® A,®)'/2®|V/M)_ This unitary matrix theith element of the block to be one that approximates the
can be obtained by applying the algorithm in Apperldix | tijeal Gaussian code of rabe = log, (1 + p;) bits per channel
(I +®" A,®)"/2. We summarize this result in the followinguse. (Such approximations will often involve the selectign
proposition. a constellation for each element of the block.) The choice
Proposition 2: The mean-square erra(R..)/M for a ¥ = Wyuse results in a system in which the feedback
block-by-block transceiver with an MMSE-BDFD achievesomponent of the MMSE-BDFD is active, and the inputs
its minimized lower bound[{29) when the precodér = to the decision device are uncorrelated and have identical
V, [® 0gxn—) | Wyuse, Where @ satisfies [28), andPyyse  SINRsp. Since the MMSE-BDFD is a canonical receiver, this
is obtained by applying the algorithm in Appendix | {b, + suggests that one can also approach the capacity of the block

<i>T[xq«i>)1/2. The corresponding feedback matiix= U —1, transmission system by employing an independent instance
where U is the unit-diagonal upper-triangular matrf = Of the same approximation of the ideal Gaussian code of

5.U and U is obtained from the QR decomposition [I31)fate b = logy(1 + p) for each element of the block. The
MMSE-BDFD used when? = ¥,,,sc is more complicated
4If M = K andr = K, or if Ay > Ag11, this set is the set of all
precoders that minimize the lower bound. 6The term “canonical” is used to denote the fact that in theabs of error
5The rank of the resulting produ#fF is ¢, and hence if\/ were a design propagation, employing an MMSE-BDFD in place of the optindakector
variable rather than a parameter of the problem, a natumitetior M/ would  does not reduce the achievable data rate [9], [10]. MethodexXploiting this
be M =r. property of the MMSE-BDFD were described in [24], [48].
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to implement than the linear detector of the vector codirgince our precoders generate equal decision point SNRs for
scheme because of the need to compute the feedback sigeath element of the block, we will assume uniform bit-logdin
However, the vector coding approach requires the design (én the remainder of this section, and therefore we will diwog t
implementation) of (up to) codes, one for each element oklement indexj, in «;, 8; and ;. When [Ree 7] < 28/3,

the block, whereas the proposed design requires the desigimvhich corresponds to moderate-to-high SNRs,is a convex

only one code. function of [R..]:, [12], [13], [36]. By applying Jensen’s
inequality [11] to [36), we obtain the following lower bound
IV. BIT ERRORRATE PERFORMANCE on the average BER

In this section, we show that th@, B) pairs designed in
Sectior{Ill to minimize the arithmetic MSE also minimize the p, > aerfc( BM/ tr(Reeyzp))
(dominant components of the uncoded) bit error rate (BER)
of a block transmission system with uniform bit loading at + Cerfc(&/ﬂM/ tr(Ree’ZF)). (37)
moderate-to-high block SNRs. We define the average BER of _ _ )
the detected signal to be the average of the probabilityref er Equality in [3T) holds if and only if the diagonal elements of

of each element of the block; i.e., Rec 7 are equal. S _ _
M Equapon [{3]7) exposes an intriguing rela_\tlonshlp_ pepyeen
p - LZP ‘ (32) the (arithmetic) MSE and the BER. Since minimizing
T M — o tr(Ree,z¢) Simultaneously minimizes both terms in the sum-

mation on the right hand side df{37), minimizing the lower

where P, ; denotes the BER of thé&h symbols;. For ease L . ) . )
of exposition, we will deal with the ZF and MMSE-BDFDS!OounOI onP. in @1) is equivalent to minimizing the MSE;

. o i i.e., it is equivalent to minimizingr(R.. z). Therefore, the
separately. We will begin with the case of the ZF-BDFD. lower bound onP, achieves its minimum value if the MSE is

minimal. However, for the actudt. to achieve its lower bound
A. ZF-BDFD . . . :
5 & OAM sianalii i (i.e., for 3T) to hold with equality), the diagonal elemzof
For the ZF-BDFD and for square QAM signalling with g~ must be identical® Fortunately, the design proposed in
2b; bits per symbol, if all the previous decisions are Corregropositiod:ll results iiR.. ;- = 21, and hence the proposed

P, is closely approximatétby [7] design, which minimizes the (arithmetic) MSE of a ZF-BDFD,
P, ~P,; =aqerfc (V/Bipize) + G erfe (3v/Bipize), also minimizes the BER of the ZF-BDFD at moderate-to-high

(33) SNRs, in the sense that it minimizés in (G8).

where erfc(z) = (2/v/7) [° e~* dz is the error function
complementp; ;¢ is the decision point SNR for thigh symbol B. MMSE-BDFD

in the block,; = \5474\/%1 Bi = (42611), and¢; = \17/474\/%2 The analysis of the previous _section can be _extended to
Hence, the case of the MMSE-BDFD if the residual intra-block
. 1 & interference on each element of the block is approximated
Pe = P = M ZPe,i- by a Gaussian random variable. For large block sizes, this
=1

approximation is (almost surely) sufficiently accurate &tlr
Under the assumption that all the previous symbols wepgt the last few elements of the block (c.f., [25], [38], [B4]

correctly detected, we have that and hence it is appropriate for our analysis. In order to asto
E[s?] for the bias in the MMSE-BDFD (e.g., [9]), we can express
Pz = e s’ (34) the BER as a function of the decision point SINR of tite
element of the block [9], [10], [36],
and under our assumptions thafss”’] = I and E[sv] = 0,
this expression simplifies to Dinmse = v 1. (38)
1 ’ [Ree,MMSE]ii

(35) (Note that0 < [Rwwmse]ii < 1.) By replacingp; z in 33) by

the BER of the MMSE-BDFE can be approximated

Pizr = [Ree,ZF]ii .
Therefore, the average BER can be closely approximated gyMMSE'
y

M
.
P.~P.=— ) qoerfc ( Bi/[Ree, ]”) . | M
M ; ” PomPe= 17 ;ai erfc(\/ﬁi(([Ree,MMSE]ii)_l - 1))

+ ¢ erfe (3\/5i/[Ree,ZF]ii) . (36) e eI‘fC(?)\/ﬁi(([Ree,MMSE]ii)_l _ 1)) (39)

’We implicitly assume thatank(H) > M so that the ZF-BDFD exists. Ag was the case for the ZF-BDFD, this function is convex in

8 ; S .
For notational simplicity we have restricted our attenttorsquare QAM .
constellations. The extension to rectangular QAM coratielhis can be [Reemmse]ii When [Ree wwselii is below a (reasonably large)

derived in a straightforward manner using the BER expressio [7], [53].  threshold [6], [36], and hence for a system in which uniform
%In the case of QPSK signalling, the expression[d (33), incWigi; = 0,
is exact. 10The alternative analysis in [47] generates a related ohterv
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bit loading is applied, Jensen’s inequality can be used ¢wshthe ratio of the transmitted energy per symbol to the noise

that variance; i.e.{po/M) /o>
~ In addition to the transceivers we designed for the ZF-BDFD
P.> aerfc(\/ﬁ(M/ tr(Reemuse) — 1)) and MMSE-BDFD in Sectiofll, for which the precoders are

denoted byF oprze-or0 @ANAF oprumse-sorn, FE€SPECtively, when
+ (erfc (3\/5(1\4/ tr(Ree,umse) — 1)), (40) M = K we will also consider the direct transmission scheme,
for which the precoder is

with equality holding when the diagonal elementRaf, ywse
are equal. Hence, using similar arguments to those useein th F, = /po/M I, (42)
case of the ZF-BDFD, the design proposed in Proposfilon
which minimizes the arithmetic MSE of the MMSE-BDFD
and results iR wuse = 521, also minimizes the BER of the
MMSE-BDFD at moderate-to-high SNRs, in the sense that it Forr = /po/M DX (42)
minimizes P, in @9)1

a2nd the discrete Fourier transform (DFT) precoded scheme,
for which the precoder is

where D is the normalizedM x M DFT matrix. For the
precoders in[{41) an@{#2), the receiver matriBeandW are
V. PERFORMANCEANALYSIS chosen according to the (separate) design procedureséor th

In Section[d¥ it was shown that the precoders that wéF-BDFD and MMSE-BDFD in [44]. (Note that the precoders
designed in Sectiopll (essentially) minimize the BER of thin the direct and DFT schemes are channel independent.) For
BDFD, under the assumption that the decisions that are felll these precoders, we provide BER curves for the idealized
back in the receiver are correct. It can also be shown (séetector, in which the decisions that are fed back are cprrec
Appendix[l) that under the same assumption the optimizedd for the practical detector, in which the actual decision
system for an MMSE-BDFD provides a lower BER than thare fed back (and hence error propagation may occur).
optimized system for a ZF-BDFD, and that each optimized In order to assess the extent of the performance gains
BDFD system provides a lower BER than the optimizetlerived in AppendiX]l) of the optimized BDFD systems over
system for the corresponding linear detector; c.f., [6R]{1 the optimized system for the corresponding linear detector
[36]. That said, an incorrect decision in a BDFD can make e will include the performance of systems with linear ZF
more likely that subsequent errors will occur by feedingkba@nd MMSE detection and precoders designed so that the
incorrect decisions. This may lead to error propagationser BER at moderate-to-high block SNRs is minimized [6], [12],
the block. (Recall that error propagation between blocks [i86]. Using the notational conventions in Sectidds Il &l 11
explicitly avoided in block-by-block communication syste.) in particular the ordered eigen decompositBf R 'H =
A standard bound on the probability of error of a conveiVAV#, a minimum BER precoder for the linear ZF detector
tional decision feedback equalizer in the presence of eriisr[12]
propagation is a simple multiple of the probability of error )
in the absence of error propagation [16]. This suggests that Foprze- = \/ o/ tr(Ayy,
the systems designed in Sectibd Il should perform well in , .
the presence of error propagation. (A bound that is sometinfé'd one for the linear MMSE detector is [6], [36]
tighter [1] generates similar insight.) In this section, we o
seek to verify these suggestions by analyzing, via simrati Forruser = Vi [X Opx(ar—iy] D, (44)
the (uncoded) BER performance of the system when ernghere the integetc = min{¢, M}, where? is the largest

~—1/4

2~
VA, D, (43)

propagation may occur. integer such that
We will consider two communication scenarios: zero- ) )
padded block transmission [41], [42], [44] through a (quasi A1/ (Z )\fl/Q) — Z,\.—l <o
. L . 4 J J ?
static) scalar finite impulse response (FIR) frequencgetisie i=1 =

fading channel that is constant over the length of the blocghd Yis ak x k ldiagonal matrix with diagonal elements

and transmission through a narrowband (i.e., frequend:)/—fl'g\ L
. ) . atisfying
multiple antenna fading channel with at least as many receiv

. . . k _

antennas as transmit antennas [18]. I_n the first scenario, ol = Po+ Y A 1 12y

the channel matrixH is a tall, lower triangular, Toeplitz Vi Zk \T1/2 i i
J=17

matrix, but in the second scenarld does not possess any
deterministic structure. We will evaluate the average BER
performance of various transceivers for these channelken fA‘
presence of additive white Gaussian noise at the receieey; i In this section we consider the case of zero-padded block
R,, = ¢2I. We will plot the BER performance curves adransmission through a (quasi-static) scalar FIR frequenc

a function of the (system) SNR, which we define as bei,ﬁflectlve fading channel. In this case, the direct trarsions
scheme in[{41) is sometimes referred to as the “singleararri
Note that if M > r, thenrank(F) < M and hence the lower bound on zero-padded” (SCZP) scheme [49], and the DFT precoded
the BER in [4D) will be quite high. If\/ were a design variable, rather than . . “ B
a parameter of the problem, reducing the symbol ratd/te= » would result scheme is sometimes called the zero-padded OFDM (ZP'
in a substantial reduction in the error rate of the optimisgstem. OFDM) scheme [34]. We consider a scenario in which the

. Scalar frequency-selective fading channel
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channel is of length. + 1 = 5 and L zeros are appended to ™
each block of channel symbols The symbol blocks is of
length M = 16, and we consider square precodBrgHence, ol
K =16 and P = K + L = 20.) Each element o is an
independently selected symbol from the 4—-QAM consteltatio
with each constellation point being equally likely. In Hgjwe
plot the BER for the ZF-BDFD transceivers, averaged over te
thousand channel realizations. (In the optimized desitires, %w'
transceiver was re-designed for each channel realizatta.
each channel realization the tap coefficients were gerteral
independently from a zero-mean circular complex Gaussii
distribution and then normalized so that the impulse respon
had unit energy. It is clear from the solid curves in Ely. 3tthe
in the absence of error propagation, the design proposed
Propositiondl performs better than all the other transmissi ‘

schemed? although the SNR gain over the direct transmissio ~ °  * * °© ® g0 2 e 8 %
(SCzP) scheme is rather small (around 0.5 dB at a BER

of 10~%). Furthermore, the dashed curves demonstrate th¥af 3. Average BER performance of the ZF-BDFD for the vasipuecoders

this performance advantage is maintained in the preser@eé the linear ZF detector with its optimal precoder in thalacfrequency-
selective fading channel scenario in SectionV-A. The salidves denote

of error propagatlor_L In part'CUIar' the performance Of. tr‘}ﬁ;rformance achieved in the absence of error propagatiwh,ttee dashed
proposed scheme in the presence of error propagationcusres incorporate the effects of error propagation. Ldgen optimized

as good as the performance of the SCZP scheme in fif8émeForrzreoro; o: direct (SCZP)Fi; x: DFT (ZP-OFDM), Forr; o
absence of error propagation. The combination of the ppepiimized linear ZF schemdoer ze-.

transmitter (ZP-OFDM) and the ZF-BDFD performs poorly

at moderate-to-high block SNRs. In fact, it is apparent fro
Fig.[d that the linear ZF detection scheme with its minimu
BER precoder [12] performs better than the combination of In this example, we consider the case of narrowband trans-
the DFT transmitter and the ZF-BDFD. However, as predictedission over a multiple antenna channel with at least as many
by the analysis in Appendixlll, the optimal precoder for thegceiver antennas as transmitter antennas. In this sogtiaei
ZF-BDFD provides substantially better performance tham tigombination of the direct transmission scheme and a BDFD is
combination of the linear ZF detector and its minimum BERometimes referred to as (uncoded) V-BLAST with a (fixed-
precoder. order) “nulling and cancelling” receiver [4], [18], [20]. &V
consider a standard Rayleigh model for the channel in which

The corresponding results for the MMSE-BDFD are pro; .
vided in Fig.[3. The same trends are observed and the S paths between ar_ltennas are modelled as |nd_eper_1de~nt zero
" an circular Gaussian random variables of unit variance.

gains are at least as large. Furthermore, the improved B . . . .
performance of the optimized MMSE-BDFD system over e will focus on scenarios Wit = ?)_trans_mltter antennas
the optimized ZF-BDFD system predicted by the analysis fnd P = 3 or 4 receiver antennas in which/ = K =
Appendix[l can be clearly observed. In both FIgs 3 &hd symbols are transmitted per chan_nel use. Each element
the performance of the optimized scheme in the absenceX f:rtla?o?; EEgeg?r:gting?ggcﬁq:ﬂgﬁteg : _t)?iMeith;nor:él
error propagation is indistinguishable from the corresliog ' : : 5-p

=9, . i . use (bpcu). In Figdl5 anfll 6, we plot the average BER
bound on in Sectiorll¥; c.f., [3) and({40), respectively. performance over ten thousand channel realizations of the

An interesting by-product of the above performance evalarious transmission schemes with the ZF receivers, and in
uation is the good performance provided by the (channeigs[Z andB we plot the corresponding curves for the MMSE
independent) direct transmission scheme (SCZP). In faet, teceivers. While most of the basic trends from the case of
SCZP scheme is an optimal channel independent transmissig# scalar frequency-selective channels are maintainéiein
scheme for systems that employ linear [31] or maximumaultiple antenna scenario, the performance advantagdsof t
likelihood [49], [55] detection, and it approaches the @s#y- precoders designed in Sectignl Il are much greater. (The
multiplexing trade-off for a standard class of FIR chanras SNR gains are of the order of 6-8 dB at a BER16f*.)
the block length grows [21]. These desirable charactesistiThis can be attributed to the fact that the channel maiFix
are due, in part, to the fact that the SCZP scheme preserdegs not possess any deterministic structure. In partjdhie
the good conditioning properties implicit in the tall lower probability of encountering a channel matrix that does not
triangular Toeplitz structure of the channel matrix. have M substantial singular values is not negligible. Since

the proposed designs provide significantly better perfocea
in those cases, the average performance is also subdiantial

12as predicted by the derivation in Secti@iIV-A, the propogeecoder improved, .
performs better than all other transmission schemes fdr eadization of the As expected, the performance of the optimized ZF-BDFD
channel. scheme in the absence of error propagation in Elgs 5Cand 6

E. Multiple antenna systems
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TBC schemes were designed to be applied without knowledge
of the channel at the transmitter.) We have used the (symbol)
rate 3/4 code in [19] (which is a simplified version of that
in [45]), and hence in order to achieve a bit rate of 6 bpcu, a
natural choice for the underlying constellation is 256—QAM
(We assume that the channel is constant for the four channel
uses that are required to transmit the codewords.) As exgect
at high SNR, the OSTBC scheme provides better BER per-
formance than that direct transmission (V-BLAST) scheme.
However, the proposed precoder (which exploits knowledge
of the channel) provides substantially better performaviven
P = 4 receiver antennas are employed, and whea 3 and
the MMSE-BDFD receiver is used.
When P = 3 receiver antennas are employed and the ZF-

. ‘ ‘ BDFD is used, the OSTBC scheme performs better than the
Coor R - ®® optimized scheme at high SNRs. This does not contradict the

optimality of the proposed transceiver design, because the
Fig. 4. Average BER performance of the MMSE-BDFD for the eas Vvalues of M, K and P, and the structure of the channel
precoders and the Iine_ar MMSE detector with i;s _o_ptimal pdec in the matrix, are different for the OSTBC scherle The gOOd
scalar frequency-selective fading channel scenario ini®@g§=A] The solid . LT
curves denote performance achieved in the absence of eopagation, and performance of the OSTBC scheme at hlgh SNRs is 5|mply a
the dashed curves incorporate the effects of error projagategend— manifestation of the trade-off between error rate (achikva
4: optimized schemeFoprumse-soro; o: direct (SCZP)F; x: DFT (ZP- diversity) and symbol rate in multiple antenna fading credsin
OFDM), Forr; 0 optimized finear MMSE schemdfopruse. without outer codes [46]. (That trade-off is related to tha-f
damental diversity-multiplexing trade-off [58].) The spoi
_ . rate of the OSTBC scheme is significantly lower than that
is equal to the lower bound of. in (). (Recall that we ot the proposed schemé.Hence, in the range of SNRs in
are using 4-QAM signalling.) However, in the MMSE-BDFDyhich noise dominates the error performance, the proposed
case, the lower bound oft. in (@0) is distinguishable from geheme provides better performance than the OSTBC scheme,
the simulated BER in the absence of error propagation. Bhisyj¢ in the SNR range in which the channel condition dominates
due to the fact that the block sizé/(= 3) is small enough for e error performance, the OSTBC scheme provides better
the inaccuracy of the Gaussian approximation of the resm%rformance. To illustrate that point, in Figl 5 we plotted

interference to result in a discernible difference betw#®n \\ith unmarked curves the performance of the proposed ZF-
BER andP.. That said, even for this small block sizB, is BpED scheme with a symbol rate ¥/ = 2 (as distinct

an accurate approximation of the BER in the absence of er¢fy, the scheme with/ = 3 described above). In order

propagation. to maintain a bit rate of 6 bpcu, the elements sofwere

A few other features of Figs b-8 are worthy of note. Firstaken, in an independent and equally-likely fashion, fran8a
the average performance of the direct and DFT transmissiQiAM constellations, and for consistency, the SNR was defined
schemes are essentially the same. This is to be expedi®the (p,/3)/02. Over the range of SNRs considered, the
because the statistics f are unitarily invariant. Second, theperformance of the proposed ZF-BDFD scheme wlith= 2

increase in the diversity provided by the channel when usiig substantially better than that of the OSTBC scheme, with
P = 4 receiver antennas rather thdh = 3 is clear from SNR gains of over 7 dB.

the different slopes of the BER curves at high SNR. Finally,
the performance advantage of the optimized MMSE-BDFD
scheme over the optimized ZF-BDFD scheme is significant in
the case ofP = 4 receiver antennas and is substantial in the In this paper, we have jointly designed the precoder and
case of P = 3. The performance advantage of the optimizethe feedback matrix of a block-by-block transmission sohem
MMSE-BDFD scheme is due, in part, to the fact the powequipped with a zero-forcing or minimum mean-square error
allocated to the firsf/ eigenmodes oH” R_,'H depends on (MMSE) intra-block decision feedback detector (BDFD). The
the corresponding eigenvalues. In particular, weak eigefes designs minimize the arithmetic mean of the expected square
might not be allocated any power at all. In contrast, thefrors at the decision point, under the standard assuniptédn
optimized ZF-BDFD scheme allocates power uniformly ovdhe previous symbols were correctly detected. The covegian
these eigenmodes. The larger performance advantage of nkarix of the minimized error is white, and hence the propose
optimized MMSE-BI-D-FD scheme in Fhe case of=3 is d-ue 13In this example, the channel matrix for the OSTBC schemk, i H
to the larger probability of encoumermg ?‘_Chann_el matuiets where® denotes th’e Kronecker product akflis the channel matrix for t’he
that H R,'H does not havé/ = 3 significant eigenvalues. other schemes. The corresponding block sizesfre 12, K — 12, and

For reference, we have included the performance of a staMl-; 3 ar in 4 e channel n b
dard orthogonal space-time block coding (OSTBC) schemeyj n paricular, In 4 consecufive channel uses, the proposstense

‘ X X s BhsmitsaM = 12 symbols, whereas the OSTBC scheme transmits only
Figs[3E8. (Like the direct and DFT transmission schemes, OSsymbols.

V1. CONCLUSION
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Fig. 5. Average BER performance of the ZF-BDFD for the vasipuecoders Fig. 6. Average BER performance of the ZF-BDFD for the vasipuecoders
and the linear ZF detector with its optimal precoder in theroweband and the linear ZF detector with its optimal precoder in theavaband multiple
multiple antenna scenario in Sectifi_V-B with transmitter antennas3 antenna scenario in Secti@i_¥-B with 3 transmitter anteraras 4 receiver
receiver antennas and/ = 3 symbols per block. The solid curves denoteantennas. The legend is the same as that in Flgure 5.

performance achieved in the absence of error propagatioh,ttee dashed

curves incorporate the effects of error propagation. Ldgesn optimized

scheme Foprze-sorp; ©: direct, Fy; x: DFT, Fper; ©: optimized linear ZF

schemeFoprze; V: OSTBC. For later reference, the unmarked curves are 2) ConstructA ) in @E) and its eigen decomposition,
for the optimized scheme with/ = 2. Ak — (k) AR) (V(k))H

3) Set the(k + 1)th column ofS to be
_\®

designs also minimize the (dominant components of the) bit  [S].411 = ZF V®y®), wherey(®) = W
error rate of a uniformly bit-loaded transmission system. | 0 tooTMek
our simulations, the proposed systems performed signtfican yg;)_k = A(,ffik’(,f), y§k) =0 for

better than standard precoding systems, and retained their , _ 2.3, ,1M R

performance advantages in the presence of error propagaﬂ) Incrementk. If & < M — 2 return to 2. Otherwise, set
tion. In the case of the MMSE-BDFD, the proposed design [S].as = Zt V(X{,Q)y(M,l) where
M = Lpr—2 '

also maximizes the Gaussian mutual information. Since the =)
MMSE-BDFD is a “canonical” receiver [9], [10], [23], this y§M71) = —UW,
suggests that by using the proposed transceiver design, one 1(M72)— 2

can approach the capacity of the block transmission system yéM_l) = ,/M.
using (independent instances of) the same (Gaussian) oode f M 2

each element of the block.

APPENDIXII
APPENDIX | ANALYTIC PERFORMANCE COMPARISONS

ALGORITHM FORLEMMA I
It was shown in Sectiofi IV that the precoders designed

To state the algorithm succinctly, we make the following, Section[D achieve the minimized value of the lower
definitions:g = (IT;", v2)"/""; [S].x denotes thé:th column  poung onP.; c.f., 81) and[0). Therefore, the relative BER
of S and s¢x denotes its elementZ; denotes the firsk  performance of the optimized ZF-BDFD and MMSE-BDFD
columns of S and Z; denotes its orthogonal complementsystems in the absence of error propagation can be detetmine
Pa =1- A(ATA)~"AM. The recursion will be based onpy simply comparing the optimal values of the MSE, —
the (M — k) x (M — k) matrix tr(Ree)/M. (A preliminary version of this appendix appeared

H in [33], and related results on the MSEs of conventional
AW = (I‘ZkL) P(FZ?)FZ’CL‘ (45) dec[isic]m feedback equalizers appear in [2, Chapter 8].)

For convenience, we assume that the elementd oére In order to ensure that the ZF systems exist, we will assume
arranged in non-increasing order. The algorithm procesdstatrank(H) > M, and to simplify the comparisons, we will
follows: also assume that the transmitted powgis large enough that

g = M in @8) for the MMSE-BDFD and = M in #34)

1) Initialization: Setk = 1. An explicit solution for the
) P for the linear MMSE detectdf Propositior]l states that the

93

first column ofS is s11 = 4/ 5%,
RS Vs

B 15The assumption thatank(H) > M ensures that there is a threshold

_ i _ _ !
SM1 = m, sp=0for=23,--- ,M—1. value forpg above whichg = M and?¢ = M.
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Fig. 7. Average BER performance of the MMSE-BDFD for the emsi Fig. 8. Average BER performance of the MMSE-BDFD for the oas
precoders and the linear MMSE detector with its optimal pdec in the nar- precoders and the linear MMSE detector with its optimal pdec in the
rowband multiple antenna scenario in SecfionlV-B with 3¢naitter antennas narrowband multiple antenna scenario in SecliondV-B withr@nhgmitter
and 3 receiver antennas. The solid curves denote perfoeranitieved in the antennas, 4 receiver antennas. The legend is the same as Higtire[T.
absence of error propagation, and the dashed curves inatephe effects of

error propagation. Legend: optimized schemeF oprmuse-soro; ©: direct,

F; x: DFT, Fper; O: optimized linear ZF schem& oprmvse-L ; V: OSTBC.

The dotted curve denotes the lower boundnin EI). minimum MSE of a system with a linear MMSE detector
is [6], [36]
52
minimum value of the MSE for a ZF-BDFD system is CoprmmsE-L
1 ~—1/2.\2
_ M ~ i = o p— (tr(Ay 7)),
egPT—ZF—BDFD = P_O |Ans] 1/M’ M(po + tr(AMl)) - (tr(AMl/Q))Q
M < _
and Propositiol]2 states that the minimum value of the MSE > ———— |[Aum| VM = &2 rvise-sor0s
for an MMSE-BDFD system is po+ tr(Ay)
M _ and hence the optimized system for the MMSE-BDFD pro-
CopraMSE-80FD = ||/ vides a lower BER than the optimized system for the linear

E——

po + tr(Ay,) MMSE detector. As observed in [6820cyuset. < €oprze-L s

and hence the optimized system for the linear MMSE detector
ovides a lower BER than the optimized system for the linear

F detector.

Since Ay is positive definite 22orymse-sor0 < Coprzrpsorn,

and hence, in the absence of error propagation, the optimi
MMSE-BDFD system will provide a lower BER than the
optimized ZF-BDFD system. While it is intuitively obvious
that for a given precoder, the MMSE-BDFD will provide ACKNOWLEDGMENT

a lower MSE, than the ZF-BDFD, .in the case of optimized 1pe gthors gratefully acknowledge the assistance of Scar-
precoders, this lower MSE leads directly to a lower BER. ot chan of McMaster University in the preparation of the
The analysis of Sectiol ]V remains valid for systemsjmyation results reported in Sectifm¥-A, and that of Qian

with linear detectors, so long as the constrai®it= 0 is Meng of McMaster University in the preparation of Ap-
enforced. Therefore, we can compare the BER performal dixI.

of an optimized BDFD system with that of the system that
is optimized for the corresponding linear detector by simpl
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