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Design of Block Transceivers with Decision
Feedback Detection

Fang Xu, Timothy N. Davidson, Jian-Kang Zhang, and K. Max Wong

Abstract— This paper presents a method for jointly designing
the transmitter-receiver pair in a block-by-block communication
system that employs (intra-block) decision feedback detection.
We provide closed-form expressions for transmitter-receiver pairs
that simultaneously minimize the arithmetic mean squared error
(MSE) at the decision point (assuming perfect feedback), the
geometric MSE, and the bit error rate of a uniformly bit-
loaded system at moderate-to-high signal-to-noise ratios. Sep-
arate expressions apply for the “zero-forcing” and “minimum
MSE” (MMSE) decision feedback structures. In the MMSE
case, the proposed design also maximizes the Gaussian mutual
information and suggests that one can approach the capacity
of the block transmission system using (independent instances
of) the same (Gaussian) code for each element of the block.
Our simulation studies indicate that the proposed transceivers
perform significantly better than standard transceivers, and that
they retain their performance advantages in the presence oferror
propagation.

Index Terms— block precoding; decision feedback detection;
zero-forcing; minimum mean-square error; bit error rate; m utual
information; channel capacity.

I. I NTRODUCTION

Block-by-block communication is an effective scheme for
the transmission of data over dispersive media; e.g., [28]–
[30], [41], [42]. In such “vector” communication schemes,
blocks of data are transmitted in a manner that avoids inter-
ference between the received blocks, and hence the detector
need only operate on a block-by-block basis. Two popular
examples of block-by-block communication schemes are or-
thogonal frequency division multiplexing (OFDM) [5] and
discrete multi-tone modulation (DMT) [8]. In addition, certain
multiple antenna systems operate in a block-by-block fashion
(e.g., [18], [20], [26], [36], [43], [45]), and block-by-block
detection schemes appear in some multiuser detectors for
synchronous CDMA systems [14], [15], [47]. In general, an
optimal detector for a block transmission system must make
a decision on the received data block as a whole, although
in certain cases, such as OFDM and DMT, the elements of
that block can be decoupled and simpler detection schemes
obtained. Unfortunately, maximum likelihood detection ofthe
transmitted vector can be rather computationally expensive,
and simpler detectors based on linear equalization and (dis-
joint) symbol-by-symbol detection may incur a significant
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performance loss. A useful compromise between performance
and complexity can be obtained by employing intra-block
decision feedback detection [4], [10], [14], [15], [18], [20],
[22], [28], [44], [47], [51]. In an intra-block decision feedback
detector the individual symbols which constitute a given block
are detected sequentially, with the “intra-block interference”
from previously detected symbols being subtracted before
the decision on the current symbol is made. Such schemes
fall into the class of generalized decision feedback equaliz-
ers [10]. In multiple antenna communication schemes intra-
block decision feedback is sometimes referred to as “nulling
and cancelling” [4], [18], [20], and in multi-user detection the
corresponding concept is sometimes referred to as “successive
interference cancellation” [14], [15], [22], [47].

The goal of the present paper is to jointly design the linear
transmitter matrix and the receiver feedforward and feedback
matrices so as to optimize the performance of a block-by-block
communication system with an intra-block decision feedback
detector (BDFD). The design is based on knowledge of the
channel, and hence is an appropriate choice for systems in
which there is timely, reliable feedback from the receiver to
the transmitter. The proposed approach provides closed-form
expressions for transceivers that minimize the arithmeticmean
(over the block) of the expected squared errors (MSE) at the
input to the (scalar) decision device that is implicit in the
BDFD, under the standard assumption [3], [9], [10], [17], [40],
[52] that the previous decisions were correct. The expressions
depend on the nature of the BDFD, and separate expressions
are provided for the zero-forcing (ZF) and minimum mean
square error (MMSE) BDFDs. In order to help distinguish
our designs from previous work, we point out that if one is
given a transmitter matrix, the design of the feedforward and
feedback matrices of a ZF or MMSE-BDFD that minimize the
MSE is well known; e.g., [2], [4], [9], [10], [17], [20], [40].
However, the joint minimum MSE design of the transmitter
and receiver matrices has previously been deemed to be
difficult (e.g., [52, p. 1338]), and hence several authors have
suggested minimizing a particular lower bound on the MSE,
namely the geometric mean of the expected squared errors;
e.g., [9], [10], [52]. We will minimize the geometric MSE
as the first step in our approach, but we will also show how
the unitary matrix that parameterizes the set of transceivers
which minimize the geometric MSE can be chosen so that the
(arithmetic) MSE attains its minimized lower bound.

Transceivers designed in the manner we propose have
several additional desirable properties. In particular, the inputs
to the (scalar) decision device are uncorrelated and have equal
signal-to-interference-and-noise ratios (SINRs). In fact, the
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minimum SINR over the elements of the block is maximized.
As a result, the average bit error rate (BER) is (essentially)
minimized. More precisely, for systems with a ZF-BDFD our
design minimizes the average BER for (uncoded) uniform
QPSK signalling at moderate-to-high signal-to-noise ratios
(SNRs), and also minimizes the dominant components of the
BER for uniformM-ary QAM signalling.1 For systems with
an MMSE-BDFD, our design minimizes the average BER
under an assumption that the residual intra-block interference
is Gaussian.

For the MMSE-BDFD, it is reasonably well known [9], [10],
[17], [40], [52] that any transmitter that minimizes the geo-
metric MSE (including the proposed design) also maximizes
the mutual information between the transmitter and receiver
for Gaussian signals. However, the standard choice from the
set of transmitters that minimize the geometric MSE does not
minimize the (arithmetic) MSE and produces inputs to the
decision device that have potentially different SINRs for each
element of the block. Therefore, in order to achieve reliable
communication at rates which approach the capacity of the
block transmission system, different codes (and constellations)
may need to be applied for each element of the block [10]. An
advantage of the proposed design is that from within the set of
transmitters that minimize the geometric MSE (and maximize
the Gaussian mutual information), we obtain a transceiver that
also minimizes the arithmetic MSE, minimizes the BER, and
provides uncorrelated inputs to the decision device that have
identical (and maximized) SINRs. Since the MMSE-BDFD is
a “canonical” receiver [9], [10], [23], this suggests that by
using the proposed design, reliable communication at rates
approaching the capacity of the block transmission system
can be achieved by using independent instances of the same
(Gaussian) code in each element of block.

As mentioned earlier, our designs are based on the standard
assumption [3], [9], [10], [17], [40], [52] that the previous
symbols were correctly detected. However, error propaga-
tion is not catastrophic in block-by-block communication
schemes because errors can only propagate within a single
block (e.g., [10] and Section II). Bounds for the conventional
symbol-by-symbol decision feedback equalizer (DFE) [1], [16]
also suggest that good performance should be maintained in
the presence of error propagation, and our simulations confirm
this prediction. Furthermore, our simulation studies indicate
that the proposed transceivers perform significantly better than
standard transceivers, and that they retain their performance
advantages in the presence of error propagation.

Notation: The notation adopted in this paper is fairly
standard. We conform to the following conventions: scalars
are denoted by lower case letters; vectors by bold lower
case letters; and matrices by bold upper case letters. The
symbolIN denotes the identity matrix of sizeN , and0N×M

denotes theN ×M matrix of zeros. The symbol|A| denotes
the determinant of a matrixA, and tr(A) denotes its trace.
The symbolE[·] denotes the expectation operator;(·)H the
complex-conjugate transpose operation;(·)T the transpose

1Our design for the ZF-BDFD coincides with the one that minimizes the
block error rate [56], [57], but the design approach taken inthe present paper
is substantially different from that taken in [56], [57].

operation; and[·]ij denotes the element at the intersection of
the ith row andjth column of a matrix.

II. B LOCK-BY-BLOCK TRANSMISSION

We consider the generic block-by-block transmission system
with intra-block decision feedback detection illustratedin
Fig. 1. In this system, a block ofM data symbols,s, is linearly
precoded to construct a block ofK ≥ M channel symbols,
u = Fs, which is transmitted over the channel. The receiver
independently processes a block ofP ≥ M received samples
in order to detect the data vectors. The received block,y, can
be written as

y = HFs+ v, (1)

where theP×K matrixH captures the effects of the channel,
and v is a lengthP vector of additive noise samples. We
will assume that the noise is circularly symmetric [37] (or,
proper [35]) and Gaussian, with zero mean and positive defi-
nite correlation matrixE[vvH ] = Rvv. We will also assume
that the data symbols have zero mean and are white,2 of unit
energy, and not correlated with the noise, (i.e.,E[ssH ] = I

and E[svH ] = 0). The model in (1) is applicable in many
applications, including zero-padded or cyclic-prefixed block
transmission over a scalar finite impulse response channel that
is constant over the duration of the block; e.g., [6], [12], [28]–
[30], [41], [42], [44]. In the zero-padded caseH is a tall, lower
triangular, full column rank Toeplitz matrix whose columns
contain the impulse response of the channel, and in the cyclic-
prefixed caseH is a square circulant matrix whose columns
contain the channel impulse response. The model in (1) is also
applicable in: vector transmission over a narrowband multiple
antenna channel (e.g., [18], [20]), in which caseH has no
deterministic structure; in space-time block transmission over a
(quasi-static) narrowband multiple antenna channel (e.g., [26],
[45]), in which caseH has a block diagonal structure; and
in block transmission over a (quasi-static) frequency-selective
multiple antenna channel (e.g., [36], [43]), in which caseH

is either block Toeplitz or block circulant.
The intra-block decision feedback detector first pre-

processes the received blocky with an M × P feedforward
matrix W to form z = Wy. (The functional form ofW
depends on whether the ZF- or MMSE-BDFD is implemented;
see Section III.) The detection of the transmitted symbols
sm = [s]m then proceeds sequentially, starting fromm = M ,
by making a scalar decision on̂sM = zM and then̂sm = zm−
s̆m, m = M−1,M−2, . . . , 1, wheres̆m =

∑M
ℓ=m+1 bmℓs̃ℓ is

the output of the feedback filter, withbmℓ being its coefficients.
The states of that filter,̃sℓ, are the previously detected symbols
in the block and the filter coefficients are different for each
element of the block (indexed bym). Once a given block has
been detected, the states of the feedback filter are reset to zero.
That is, the symbols are detected on a block-by-block basis
and hence error propagation between blocks is avoided.

2In the case whereE[ssH ] is not a scaled identity matrix, a data whitening
matrix can readily be absorbed into the precoder, so long as the data covariance
matrix is known (and full rank).
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Fig. 1. A generic block-by-block communication system withintra-block decision feedback detection. TheP/S block denotes parallel-to-serial conversion
with the last element of the input block becoming the first output, and theS/P block denotes serial-to-parallel conversion with the firstinput becoming the
last element of the output block.
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Fig. 2. A convenient conceptual model for Fig. 1.

If the filter coefficientsbmℓ are arranged in a strictly upper
triangularM ×M matrix
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,

the operation of the block transceiver in Fig. 1 is equivalent
to successively making decisions on the elements of

ŝ = WHFs+Wv −Bs̃, (2)

starting from theM th row. That interpretation leads to the
convenient conceptual model in Fig. 2. We observe that when
B = 0, the system in Fig. 2 reduces to a block transmission
system with linear equalization and disjoint detection; e.g., [6],
[12], [36], [41]–[43]. In fact, many of the results for the linear
case can be obtained by settingB = 0 in the expressions we
will derive herein.

If we denote the error between the input to the detector and
the transmitted data symbols bye = ŝ− s, then

e = (WHF− I)s−Bs̃ +Wv. (3)

Under the assumption of correct past decisions (i.e., when
decidingsm, s̃ℓ = sℓ for all m+1 ≤ ℓ ≤ M ), e simplifies to

e = (WHF− I−B)s +Wv. (4)

The covariance of this error will play a key role in our designs.
Under our statistical models fors andv, the covariance matrix
of the error is

Ree = E[eeH ] = (WHF−B− I)(WHF−B− I)H

+WRvvW
H . (5)

The (arithmetic) MSE of the detector input is simplȳe2 =

tr
(

E[(ŝ − s)(ŝ− s)H)]
)

/M = tr(Ree)/M .

III. M INIMUM MSE TRANSCEIVERS

In this section, our goal is to jointly design the transceiver
elementsF, B, and W so that the (arithmetic) MSE is
minimized, subject to a bound,p0, on the average transmitted
power, and constraints which ensure that the receiver performs
either ZF or MMSE decision-feedback detection. The average
transmitted power is given byE

[

tr
(

Fs(Fs)H
)]

= tr(FFH),
and hence the design problem can be stated as

min
F,B,W

tr
(

(WHF−B− I)(WHF−B− I)H

+WRvvW
H
)

(6a)

subject to tr(FFH) ≤ p0, and (6b)

a functional relationship betweenF, B andW.
(6c)

The functional relationship betweenF, B andW determines
whether the BDFD is of the ZF type or the MMSE type.
This optimization problem is rather difficult to solve directly
because it is not convex, and hence is subject to the standard
difficulties associated with the potential for multiple local
minima. However, we will use the following stages to find
a solution(F,B,W) whose performance is optimal:

1) Obtain a (tight) lower bound on the MSE, and minimize
that lower bound, subject to the constraint on transmis-
sion power.

2) Derive a triple(F,B,W) whose performance achieves
the minimized lower bound.

In the following subsections, we will perform the above stages
to obtain the minimized lower bounds on the MSE and optimal
transceivers for the ZF and MMSE BDFDs, respectively.

The matrixHHR−1
vv H will play a key role in our designs.

For later convenience we let

VΛVH = HHR−1
vv H (7)

represent the eigenvalue decomposition ofHHR−1
vv H, with

eigenvaluesλi arranged in non-increasing order along the
diagonal ofΛ. For an integer1 ≤ k ≤ K, we also define
Ṽk to be the firstk columns ofV andΛ̃k to be the upper left
k× k block of Λ. In the development of our designs, we will
find it convenient to parameterize theK×M precoder matrix
F of rank q in terms of its singular value decomposition,

F = Θ
[

Φ 0q×(M−q)

]

Ψ (8)
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whereΘ containsq columns of aK×K unitary matrix,Φ is
a diagonal positive definiteq× q matrix, andΨ is anM ×M
unitary matrix.

A. Zero-forcing BDFD

The zero-forcing criterion imposes the following relation-
ship betweenW,F andB (see (4)):

WHF = B+ I. (9)

Given aP × K matrix H and an integerM ≤ min{P,K},
there exists aK × M matrix F, an M × P matrix W and
anM ×M strictly upper triangular matrixB such that (9) is
satisfied if and only ifrank(H) ≥ M , and we will make the
assumption that this condition holds.3 In order to satisfy (9),
F must be chosen so that it has rankM and thatrank(HF) =
M .

By substituting (9) into (4) and (5), the covariance matrix
of the error can be written as

Ree,ZF = WRvvW
H . (10)

If we defineW̆ = WR
1/2
vv , then the design problem (6) can

be re-written as

min
W̆,B,F

tr
(

W̆W̆H
)

(11a)

subject to tr(FFH) ≤ p0, (11b)

W̆H̆F = B+ I, (11c)

whereH̆ = R
−1/2
vv H. From (11) it is clear that for a givenF

for which there exists a solution to (11c) and a givenB, the
optimal W̆ is W̆ = (B + I)(H̆F)+, where(·)+ denotes the
(minimum-norm) Moore-Penrose pseudo-inverse. Therefore,
the optimal receiver feedforward matrix can be written as

WZF = (B+ I)(H̆F)+R−1/2
vv . (12)

SinceH̆F has at least as many rows as it has columns and
has full column rank,

(H̆F)+ = (FHH̆HH̆F)−1FHH̆H . (13)

If we let U = B + I, the design problem in (11) has been
reduced to

min
U,F

tr
(

U(H̆F)+
(

(H̆F)+
)H

UH
)

(14a)

subject to tr(FFH) ≤ p0, (14b)

Ubeing a unit-diagonal upper-triangular matrix.
(14c)

The first stage in our solution of (14) is to derive and
minimize a lower bound on the objective function (14a).
The lower bound that we will use is a simple consequence
of the arithmetic-geometric mean inequality [27, p. 535]. In
particular, for anM ×M positive semidefinite matrixX,

tr(X)/M ≥ |X|1/M , (15)

3If M were a design variable, rather than a parameter of the problem, one
could guarantee that this condition holds by simply choosing M ≤ rank(H).

with equality holding if and only ifX = αI for someα ≥ 0.
For convenience, we will refer to (15) as the trace-determinant
inequality.

Applying (15) to (14a), a lower bound on the mean-square
error is

ē2ZF = tr(WZFRvvW
H
ZF)/M ≥

∣

∣

∣
U(H̆F)+

(

(H̆F)+
)H

UH
∣

∣

∣

1/M

(16a)

= |FHH̆HH̆F|−1/M , (16b)

where we have used the fact thatU is a unit-diagonal upper-
triangular matrix and thus|U| = 1, and the expression
for (H̆F)+ in (13). Observe that (16b) depends only on
the transmitterF and is independent ofU = B + I. It
is also of interest to point out that the bound in (16a) is
equivalent to stating that the arithmetic MSE is bounded below
by the geometric MSE; i.e.tr(Ree,ZF)/M ≥ |Ree,ZF|1/M .
Therefore, the problem of minimizing the lower bound in (16a)
corresponds to minimizing the geometric MSE.

The lower bound in (16) can be minimized simply by
maximizing |FHH̆HH̆F|; i.e., by solving

max
F

|FHHHR−1
vv HF| (17a)

subject to tr(FFH) ≤ p0. (17b)

Using the ordered eigen-decomposition ofHHR−1
vv H in (7),

and applying the trace-determinant inequality (15), we have
that

|FHHHR−1
vv HF| = |Φ2| |ΘHHR−1

vv HΘH | (18a)

≤
(

tr(Φ2)

M

)M M
∏

i=1

λi (18b)

≤
( p0
M

)M M
∏

i=1

λi. (18c)

Therefore, for any ZF-BDFD system, the (arithmetic) MSE is
bounded below by

ē2ZF ≥ M

p0

(

M
∏

i=1

λi

)−1/M

. (19)

This bound depends only on the parametersM and p0, and
theM largest eigenvalues ofHHR−1

vv H.
The second stage of the derivation of the proposed design

is to determine matricesF andB so that the minimized lower
bound on the arithmetic MSE in (19) is achieved, To do so,
we point out that according to the trace-determinant inequality
(15) and the eigenvalue decomposition ofHHR−1

vv H in (7),
the bound in (18b) holds with equality if and only ifΦ = αI
for someα > 0 andΘ = ṼMP, whereṼM was defined after
(7) andP is an arbitrary permutation matrix. According to the
power constraint in (17b), the bound in (18c) is achieved if
and only if α =

√

p0/M . Therefore, precoders of the form
F =

√

p0/M ṼMΨ, whereΨ is an arbitraryM ×M unitary
matrix, minimize the geometric MSE of a ZF-BDFD system.
The remaining task is to determine matricesΨ such that the
bound in (16a) holds with equality. To do so, we observe that
the trace-determinant inequality (15) holds with equalityif and
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only if X = αI for someα ≥ 0. Therefore, (16a) holds with
equality if and only if we can chooseΨ such thatRee,ZF =

σ2
eI, whereσ2

e = (M/p0)
(
∏M

i=1 λi

)−1/M
. That is, we can

achieve the minimized lower bound on the arithmetic MSE if
and only if we can find aΨ such that

M

p0
UΨHΛ̃

−1

M ΨUH = σ2
eI, (20)

where Λ̃M was defined after (7). By taking the Cholesky
factor, solving (20) is equivalent to solving

√

M

p0
UΨHΛ̃

−1/2

M = σeQ
H , (21)

whereQ is anM ×M unitary matrix. That is, we can reduce
the search for a pair(F,B) such that the minimized lower
bound on the MSE is achieved to the search for a unit-diagonal
upper-triangular matrixU, and unitary matricesΨ andQ that
satisfy (21). Substitutingσe into (21), we get:

Λ̃
1/2

M Ψ = QŪ, (22)

whereŪ =
(
∏M

i=1 λi

)1/(2M)
U. The following result, which

is a special case of a more general result in [56], [57], indicates
that a solution to (22) exists.

Lemma 1:Let Γ be a diagonal non-singularM×M matrix.
There exists a unitary matrixS such thatΓS has an equal-
diagonal ‘R-factor’ in its (standard) QR decomposition; i.e.∃S
such thatΓS = QR, whereQ is anM×M unitary matrix and
R is an upper-triangular matrix with equal diagonal elements

[R]ii =
(

∏M
k=1 γk

)1/M

for i = 1, 2, · · · ,M , whereγk is the
kth diagonal element ofΓ. ✷

The matrix S in Lemma 1 can be obtained by suitably
modifying Algorithm 5 in [57]. The modified algorithm is
provided in Appendix I. Using that algorithm, we can obtainΨ

in (22). By performing the QR decomposition ofΛ̃
1/2

M Ψ, we
obtain an upper triangular matrix̄U whose diagonal elements
are all equal to

(
∏M

i=1 λi

)1/(2M)
. Finally, we obtainU using

U =
(
∏M

i=1 λi

)−1/(2M)
Ū. Thus, we have established the

following proposition:
Proposition 1: The (arithmetic) mean-square error

tr(Ree)/M of a block-by-block transceiver with a
ZF-BDFD achieves its minimized lower bound of
(M/p0)

(
∏M

i=1 λi

)−1/M
when the precoder F =

√

p0

M ṼMΨZF, where ΨZF is obtained by applying the

algorithm in Appendix I to Λ̃
1/2

M . The corresponding
feedback matrixB = U − I, whereU is the unit-diagonal
upper-triangular matrixU =

(
∏M

i=1 λi

)−1/(2M)
Ū, and Ū is

obtained from the QR decomposition in (22). Substituting
suchF andB into (12) yields the feedforward matrixW. ✷

From the above derivation it is apparent that the precoder
in Proposition 1, which minimizes the arithmetic MSE, also
minimizes the geometric MSE. However, a precoder that
minimizes the geometric MSE does not necessarily minimize
the arithmetic MSE.

B. MMSE-BDFD

In this subsection, we consider joint transmitter-receiver
design for a system based on the MMSE-BDFD. The approach
is similar to that for the ZF-BDFD in the previous subsection,
but the details are substantially different.

Recall from Section II and Fig. 2 that the received vector
is y = HFs + v. Hence, the error between̂s and s is
e = Wy − (B + I)s. The covariance matrix ofy is Ryy =
(HF)(HF)H +Rvv, and cross-correlation matrix ofs andy
is Rsy = (HF)H = RH

ys. In order to determine the minimum
MSE feedforward matrix,WMMSE, we exploit the standard
first-order necessary condition for optimality known as the
orthogonality principle [39], namelyE[eyH ] = WRyy−(B+
I)Rsy = 0. Therefore,

WMMSE = (B+ I)RsyR
−1
yy . (23)

Substituting (23) into (5), and invoking the Matrix Inver-
sion Lemma (A + CB−1D)−1 = A−1 − A−1C(B +
DA−1C)−1DA−1, [32], the covariance matrix of the error
can be written as

Ree,MMSE = (B+I)
(

I+ FHHHR−1
vv HF

)−1
(B+I)H . (24)

Our goal is to design theF and B to minimize the MSE
subject to the power constraint. LettingU = B+I, the design
problem (6) can be rewritten as

min
F,U

tr
(

U
(

I+ FHHHR−1
vv HF

)−1
UH

)

(25a)

subject to tr(FFH) ≤ p0, and (25b)

U being a unit-diagonal upper-triangular matrix.
(25c)

Following the first stage outlined at the beginning of Sec-
tion III, we now obtain and minimize a lower bound on the
MSE. According to the trace-determinant inequality (15), we
have that

tr
(

U
(

I+ FHHHR−1
vv HF

)−1
UH

)

≥ M
∣

∣U
(

I+ FHHHR−1
vv HF

)−1
UH

∣

∣

1/M

= M
∣

∣I+ FHHHR−1
vv HF

∣

∣

−1/M
. (26)

Therefore, the lower bound on the MSE can be minimized by
solving:

max
F

|I+ FHHHR−1
vv HF| (27a)

subject to tr(FFH) ≤ p0. (27b)

As in the ZF case, the problem of minimizing the lower bound
depends only on the transmitter. We point out that the objective
in (27a) is equivalent to minimizing the geometric MSE
implicit in (26). Furthermore, the logarithm of the objective
in (27a) is the mutual information between the transmitter and
receiver for Gaussian signals. (An analogous observation has
been made in several similar contexts [9], [10], [17], [40],
[52].) Hence, minimizing the lower bound on the arithmetic
MSE in (26) is equivalent to maximizing the Gaussian mutual
information.
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Given that the problem in (27) is equivalent to maximizing
the mutual information for Gaussian signals, the solution in-
volves a “waterfilling” power allocation over the eigenvectors
of HHR−1

vv H, [50]. More formally, the solution depends on
a parameterr ≤ K which is the largest integer satisfying
1/λr <

(

p0 +
∑r

j=1 λ
−1
j

)

/r. If we defineq = min{r,M},
then the following set of precoders4 minimize the lower
bound [50],F = Ṽq

[

Φ 0q×(M−q)

]

Ψ, whereΦ is a q × q
diagonal matrix with diagonal elements satisfying

|φii|2 =
1

q

(

p0 +

q
∑

j=1

λ−1
j

)

− λ−1
i , (28)

andΨ is an arbitraryM × M unitary matrix.5 In that case,
the minimal value of the lower bound on the MSE generated
by (26) and (27) is

ē2MMSE ≥ qq/M
(

p0 +

q
∑

j=1

λ−1
j

)−q/M
q
∏

j=1

λ
−1/M
j , (29)

which is independent of our design parametersF andB.
Moving to the second stage of our general approach, we

now determine a transceiver that achieves the minimized
lower bound in (29). For ease of exposition, we defineΦ̆ =
[Φ 0q×(M−q) ]. SubstitutingF = ṼqΦ̆Ψ into (24) and (25a),
the arithmetic MSE istr(Ree,MMSE)/M , where

Ree,MMSE = UΨH(IM + Φ̆
T
Λ̃qΦ̆)−1ΨUH . (30)

Using the trace-determinant inequality (15), for the MSE
to achieve its minimized lower bound, we must chooseU

and Ψ so thatRee,MMSE = σ̌2
eI, where σ̌2

e = qq/M
(

p0 +
∑q

j=1 λ
−1
j

)−q/M ∏q
j=1 λ

−1/M
j . That is, a system of the form

in (28) achieves the minimized lower bound on the MSE in
(30) if and only if we can findǓ = (1/σ̌e)U and unitary
matricesΨ andQ so that

(IM + Φ̆
T
Λ̃qΦ̆)1/2Ψ = QǓ. (31)

According to Lemma 1, there exists a unitary matrixΨ

such that the QR decomposition of(IM + Φ̆
T
Λ̃qΦ̆)1/2Ψ

has an upper triangular “R-factor” with diagonal elements all

equal to |(IM + Φ̆
T
Λ̃qΦ̆)1/2Ψ|1/(2M). This unitary matrix

can be obtained by applying the algorithm in Appendix I to

(IM+Φ̆
T
Λ̃qΦ̆)1/2. We summarize this result in the following

proposition.
Proposition 2: The mean-square errortr(Ree)/M for a

block-by-block transceiver with an MMSE-BDFD achieves
its minimized lower bound (29) when the precoderF =
Ṽq [Φ 0q×(M−q) ]ΨMMSE , whereΦ satisfies (28), andΨMMSE

is obtained by applying the algorithm in Appendix I to(IM +

Φ̆
T
Λ̃qΦ̆)1/2. The corresponding feedback matrixB = U− I,

whereU is the unit-diagonal upper-triangular matrixU =
σ̌eǓ andǓ is obtained from the QR decomposition in (31).

4If M = K and r = K, or if λq > λq+1, this set is the set of all
precoders that minimize the lower bound.

5The rank of the resulting productHF is q, and hence ifM were a design
variable rather than a parameter of the problem, a natural choice forM would
beM = r.

Substituting suchF andB into (23) yields the feedforward
matrix W. ✷

As was the case for the ZF-BDFD in Section III-A, the
precoder in Proposition 2, which minimizes the arithmetic
MSE, lies within the set of precoders that minimize the
geometric MSE, but a precoder chosen arbitrarily from the
set of precoders that minimize the geometric MSE does not
necessarily minimize the arithmetic MSE. This observation
provides a connection between the proposed design and an
earlier design for a more general overlapping block transmis-
sion system in which the transmitter was designed to minimize
the geometric MSE [52]. In the context of the block-by-block
transmission schemes that we have considered, the design
in [52] corresponds to choosingΨ = IM , rather than choice
of Ψ = ΨMMSE in Proposition 2. While the choice ofΨ = IM
results in a system that minimizes the geometric MSE, it
does not minimize the arithmetic MSE in the general case.
In addition, the SINR for each element of the block may be
different. In contrast, the choice ofΨ = ΨMMSE minimizes
the geometric MSE and the arithmetic MSE, and provides an
equal SINR for each element of the block.

The choice ofΨ also has an impact on the nature of coding
strategies for approaching the capacity of the block-by-block
transmission system. From the discussion following (27) itis
evident that the Gaussian mutual information is maximized
by choosingM = r and employing a transmitter matrix of
the formF = ṼrΦΨ, whereΦ satisfies (28) andΨ is an
arbitrary r × r unitary matrix. Since the MMSE-BDFD is
a “canonical” receiver6 for Gaussian signals [9], [10], [23],
this suggests that by using sufficiently powerful codes, reliable
communication at rates approaching the capacity of the block
transmission system can be achieved by employing anyF of
this form and the MMSE-BDFD [9], [10], [23]. The choice
Ψ = Ir results in a “vector coding” scheme [10], [29], [30],
[36], [41] in which the feedback component of the MMSE-
BDFD is inactive; i.e.,B = 0. Vector coding induces an
equivalent system withr parallel Gaussian subchannels, each
with a possibly different SNRρi. (Standard discrete multitone
(DMT) modulation schemes [5], [8] are a class of vector
coding schemes.) Therefore, one can approach the capacity
of the block transmission scheme by choosing the code for
the ith element of the block to be one that approximates the
ideal Gaussian code of ratebi = log2(1+ ρi) bits per channel
use. (Such approximations will often involve the selectionof
a constellation for each element of the block.) The choice
Ψ = ΨMMSE results in a system in which the feedback
component of the MMSE-BDFD is active, and the inputs
to the decision device are uncorrelated and have identical
SINRsρ. Since the MMSE-BDFD is a canonical receiver, this
suggests that one can also approach the capacity of the block
transmission system by employing an independent instance
of the same approximation of the ideal Gaussian code of
rate b = log2(1 + ρ) for each element of the block. The
MMSE-BDFD used whenΨ = ΨMMSE is more complicated

6The term “canonical” is used to denote the fact that in the absence of error
propagation, employing an MMSE-BDFD in place of the optimaldetector
does not reduce the achievable data rate [9], [10]. Methods for exploiting this
property of the MMSE-BDFD were described in [24], [48].
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to implement than the linear detector of the vector coding
scheme because of the need to compute the feedback signal.
However, the vector coding approach requires the design (and
implementation) of (up to)r codes, one for each element of
the block, whereas the proposed design requires the design of
only one code.

IV. B IT ERROR RATE PERFORMANCE

In this section, we show that the(F,B) pairs designed in
Section III to minimize the arithmetic MSE also minimize the
(dominant components of the uncoded) bit error rate (BER)
of a block transmission system with uniform bit loading at
moderate-to-high block SNRs. We define the average BER of
the detected signal to be the average of the probability of error
of each element of the block; i.e.,

Pe =
1

M

M
∑

i=1

Pe,i, (32)

wherePe,i denotes the BER of theith symbolsi. For ease
of exposition, we will deal with the ZF and MMSE-BDFDs
separately. We will begin with the case of the ZF-BDFD.

A. ZF-BDFD

For the ZF-BDFD7 and for square8 QAM signalling with
2bi bits per symbol, if all the previous decisions are correct
Pe,i is closely approximated9 by [7]

Pe,i ≈ P̃e,i = αi erfc
(
√

βiρi,ZF

)

+ ζi erfc
(

3
√

βiρi,ZF

)

,
(33)

where erfc(x) = (2/
√
π)

∫∞
x

e−z2

dz is the error function
complement,ρi,ZF is the decision point SNR for theith symbol
in the block,αi =

√
4bi−1

bi
√
4bi

, βi =
3bi

(4bi−1)
, and ζi =

√
4bi−2

bi
√
4bi

.
Hence,

Pe ≈ P̃e =
1

M

M
∑

i=1

P̃e,i.

Under the assumption that all the previous symbols were
correctly detected, we have that

ρi,ZF =
E[s2i ]

E[|ŝi − si|2]
, (34)

and under our assumptions thatE[ssH ] = I andE[svH ] = 0,
this expression simplifies to

ρi,ZF =
1

[Ree,ZF]ii
. (35)

Therefore, the average BER can be closely approximated by

Pe ≈ P̃e =
1

M

M
∑

i=1

αi erfc

(

√

βi/[Ree,ZF]ii

)

+ ζi erfc

(

3
√

βi/[Ree,ZF]ii

)

. (36)

7We implicitly assume thatrank(H) ≥ M so that the ZF-BDFD exists.
8For notational simplicity we have restricted our attentionto square QAM

constellations. The extension to rectangular QAM constellations can be
derived in a straightforward manner using the BER expressions in [7], [53].

9In the case of QPSK signalling, the expression in (33), in which ζi = 0,
is exact.

Since our precoders generate equal decision point SNRs for
each element of the block, we will assume uniform bit-loading
in the remainder of this section, and therefore we will drop the
element index,i, in αi, βi and ζi. When [Ree,ZF]ii < 2β/3,
which corresponds to moderate-to-high SNRs,P̃e is a convex
function of [Ree]ii, [12], [13], [36]. By applying Jensen’s
inequality [11] to (36), we obtain the following lower bound
on the average BER

P̃e ≥ α erfc
(
√

βM/ tr(Ree,ZF)
)

+ ζ erfc
(

3
√

βM/ tr(Ree,ZF)
)

. (37)

Equality in (37) holds if and only if the diagonal elements of
Ree,ZF are equal.

Equation (37) exposes an intriguing relationship between
the (arithmetic) MSE and the BER. Since minimizing
tr(Ree,ZF) simultaneously minimizes both terms in the sum-
mation on the right hand side of (37), minimizing the lower
bound onP̃e in (37) is equivalent to minimizing the MSE;
i.e., it is equivalent to minimizingtr(Ree,ZF). Therefore, the
lower bound onP̃e achieves its minimum value if the MSE is
minimal. However, for the actual̃Pe to achieve its lower bound
(i.e., for (37) to hold with equality), the diagonal elements of
Ree,ZF must be identical.10 Fortunately, the design proposed in
Proposition 1 results inRee,ZF = σ2

eI, and hence the proposed
design, which minimizes the (arithmetic) MSE of a ZF-BDFD,
also minimizes the BER of the ZF-BDFD at moderate-to-high
SNRs, in the sense that it minimizes̃Pe in (36).

B. MMSE-BDFD

The analysis of the previous section can be extended to
the case of the MMSE-BDFD if the residual intra-block
interference on each element of the block is approximated
by a Gaussian random variable. For large block sizes, this
approximation is (almost surely) sufficiently accurate forall
but the last few elements of the block (c.f., [25], [38], [54]),
and hence it is appropriate for our analysis. In order to account
for the bias in the MMSE-BDFD (e.g., [9]), we can express
the BER as a function of the decision point SINR of theith
element of the block [9], [10], [36],

ρi,MMSE =
1

[Ree,MMSE ]ii
− 1. (38)

(Note that0 ≤ [RMMSE]ii < 1.) By replacingρi,ZF in (33) by
ρi,MMSE, the BER of the MMSE-BDFE can be approximated
by

Pe ≈ P̃e =
1

M

M
∑

i=1

αi erfc
(
√

βi

(

([Ree,MMSE ]ii)−1 − 1
)

)

+ ζi erfc
(

3
√

βi

(

([Ree,MMSE ]ii)−1 − 1
)

)

. (39)

As was the case for the ZF-BDFD, this function is convex in
[Ree,MMSE ]ii when [Ree,MMSE ]ii is below a (reasonably large)
threshold [6], [36], and hence for a system in which uniform

10The alternative analysis in [47] generates a related observation.
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bit loading is applied, Jensen’s inequality can be used to show
that

P̃e ≥ α erfc
(
√

β
(

M/ tr(Ree,MMSE)− 1
)

)

+ ζ erfc
(

3
√

β
(

M/ tr(Ree,MMSE)− 1
)

)

, (40)

with equality holding when the diagonal elements ofRee,MMSE

are equal. Hence, using similar arguments to those used in the
case of the ZF-BDFD, the design proposed in Proposition 2,
which minimizes the arithmetic MSE of the MMSE-BDFD
and results inRee,MMSE = σ̌2

eI, also minimizes the BER of the
MMSE-BDFD at moderate-to-high SNRs, in the sense that it
minimizesP̃e in (39).11

V. PERFORMANCEANALYSIS

In Section IV it was shown that the precoders that we
designed in Section III (essentially) minimize the BER of the
BDFD, under the assumption that the decisions that are fed
back in the receiver are correct. It can also be shown (see
Appendix II) that under the same assumption the optimized
system for an MMSE-BDFD provides a lower BER than the
optimized system for a ZF-BDFD, and that each optimized
BDFD system provides a lower BER than the optimized
system for the corresponding linear detector; c.f., [6], [12],
[36]. That said, an incorrect decision in a BDFD can make it
more likely that subsequent errors will occur by feeding back
incorrect decisions. This may lead to error propagation across
the block. (Recall that error propagation between blocks is
explicitly avoided in block-by-block communication systems.)
A standard bound on the probability of error of a conven-
tional decision feedback equalizer in the presence of error
propagation is a simple multiple of the probability of error
in the absence of error propagation [16]. This suggests that
the systems designed in Section III should perform well in
the presence of error propagation. (A bound that is sometimes
tighter [1] generates similar insight.) In this section, we
seek to verify these suggestions by analyzing, via simulation,
the (uncoded) BER performance of the system when error
propagation may occur.

We will consider two communication scenarios: zero-
padded block transmission [41], [42], [44] through a (quasi-
static) scalar finite impulse response (FIR) frequency-selective
fading channel that is constant over the length of the block;
and transmission through a narrowband (i.e., frequency-flat)
multiple antenna fading channel with at least as many receive
antennas as transmit antennas [18]. In the first scenario,
the channel matrixH is a tall, lower triangular, Toeplitz
matrix, but in the second scenarioH does not possess any
deterministic structure. We will evaluate the average BER
performance of various transceivers for these channels in the
presence of additive white Gaussian noise at the receiver; i.e.,
Rvv = σ2I. We will plot the BER performance curves as
a function of the (system) SNR, which we define as being

11Note that ifM > r, thenrank(F) < M and hence the lower bound on
the BER in (40) will be quite high. IfM were a design variable, rather than
a parameter of the problem, reducing the symbol rate toM = r would result
in a substantial reduction in the error rate of the optimizedsystem.

the ratio of the transmitted energy per symbol to the noise
variance; i.e.,(p0/M)/σ2.

In addition to the transceivers we designed for the ZF-BDFD
and MMSE-BDFD in Section III, for which the precoders are
denoted byFOPT-ZF-BDFD andFOPT-MMSE-BDFD , respectively, when
M = K we will also consider the direct transmission scheme,
for which the precoder is

FI =
√

p0/M IM , (41)

and the discrete Fourier transform (DFT) precoded scheme,
for which the precoder is

FDFT =
√

p0/M DH , (42)

where D is the normalizedM × M DFT matrix. For the
precoders in (41) and (42), the receiver matricesB andW are
chosen according to the (separate) design procedures for the
ZF-BDFD and MMSE-BDFD in [44]. (Note that the precoders
in the direct and DFT schemes are channel independent.) For
all these precoders, we provide BER curves for the idealized
detector, in which the decisions that are fed back are correct,
and for the practical detector, in which the actual decisions
are fed back (and hence error propagation may occur).

In order to assess the extent of the performance gains
(derived in Appendix II) of the optimized BDFD systems over
the optimized system for the corresponding linear detector,
we will include the performance of systems with linear ZF
and MMSE detection and precoders designed so that the
BER at moderate-to-high block SNRs is minimized [6], [12],
[36]. Using the notational conventions in Sections II and III,
in particular the ordered eigen decompositionHHR−1

vv H =
VΛVH , a minimum BER precoder for the linear ZF detector
is [12]

FOPT-ZF-L =

√

p0/ tr(Λ̃
−1/2

M ) ṼM Λ̃
−1/4

M D, (43)

and one for the linear MMSE detector is [6], [36]

FOPT-MMSE-L = Ṽk

[

Υ 0k×(M−k)

]

D, (44)

where the integerk = min{ℓ,M}, where ℓ is the largest
integer such that

λ
−1/2
ℓ

(

ℓ
∑

j=1

λ
−1/2
j

)

−
ℓ

∑

j=1

λ−1
j < p0,

and Υ is a k × k diagonal matrix with diagonal elements
satisfying

|υii|2 =

(

p0 +
∑k

j=1 λ
−1
j

∑k
j=1 λ

−1/2
j

)

λ
−1/2
i − λ−1

i .

A. Scalar frequency-selective fading channel

In this section we consider the case of zero-padded block
transmission through a (quasi-static) scalar FIR frequency-
selective fading channel. In this case, the direct transmission
scheme in (41) is sometimes referred to as the “single-carrier
zero-padded” (SCZP) scheme [49], and the DFT precoded
scheme is sometimes called the “zero-padded OFDM” (ZP-
OFDM) scheme [34]. We consider a scenario in which the
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channel is of lengthL + 1 = 5 andL zeros are appended to
each block of channel symbolsu. The symbol blocks is of
lengthM = 16, and we consider square precodersF. (Hence,
K = 16 and P = K + L = 20.) Each element ofs is an
independently selected symbol from the 4–QAM constellation,
with each constellation point being equally likely. In Fig.3 we
plot the BER for the ZF-BDFD transceivers, averaged over ten
thousand channel realizations. (In the optimized designs,the
transceiver was re-designed for each channel realization.) For
each channel realization the tap coefficients were generated
independently from a zero-mean circular complex Gaussian
distribution and then normalized so that the impulse response
had unit energy. It is clear from the solid curves in Fig. 3 that
in the absence of error propagation, the design proposed in
Proposition 1 performs better than all the other transmission
schemes,12 although the SNR gain over the direct transmission
(SCZP) scheme is rather small (around 0.5 dB at a BER
of 10−4). Furthermore, the dashed curves demonstrate that
this performance advantage is maintained in the presence
of error propagation. In particular, the performance of the
proposed scheme in the presence of error propagation is
as good as the performance of the SCZP scheme in the
absence of error propagation. The combination of the DFT
transmitter (ZP-OFDM) and the ZF-BDFD performs poorly
at moderate-to-high block SNRs. In fact, it is apparent from
Fig. 3 that the linear ZF detection scheme with its minimum
BER precoder [12] performs better than the combination of
the DFT transmitter and the ZF-BDFD. However, as predicted
by the analysis in Appendix II, the optimal precoder for the
ZF-BDFD provides substantially better performance than the
combination of the linear ZF detector and its minimum BER
precoder.

The corresponding results for the MMSE-BDFD are pro-
vided in Fig. 4. The same trends are observed and the SNR
gains are at least as large. Furthermore, the improved BER
performance of the optimized MMSE-BDFD system over
the optimized ZF-BDFD system predicted by the analysis in
Appendix II can be clearly observed. In both Figs 3 and 4,
the performance of the optimized scheme in the absence of
error propagation is indistinguishable from the corresponding
bound onP̃e in Section IV; c.f., (37) and (40), respectively.

An interesting by-product of the above performance eval-
uation is the good performance provided by the (channel
independent) direct transmission scheme (SCZP). In fact, the
SCZP scheme is an optimal channel independent transmission
scheme for systems that employ linear [31] or maximum
likelihood [49], [55] detection, and it approaches the diversity-
multiplexing trade-off for a standard class of FIR channelsas
the block length grows [21]. These desirable characteristics
are due, in part, to the fact that the SCZP scheme preserves
the good conditioning properties implicit in the tall lower-
triangular Toeplitz structure of the channel matrix.

12As predicted by the derivation in Section IV-A, the proposedprecoder
performs better than all other transmission schemes for each realization of the
channel.
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Fig. 3. Average BER performance of the ZF-BDFD for the various precoders
and the linear ZF detector with its optimal precoder in the scalar frequency-
selective fading channel scenario in Section V-A. The solidcurves denote
performance achieved in the absence of error propagation, and the dashed
curves incorporate the effects of error propagation. Legend—∗: optimized
scheme,FOPT-ZF-BDFD ; ◦: direct (SCZP),FI ; ×: DFT (ZP-OFDM),FDFT; ⋄:
optimized linear ZF scheme,FOPT-ZF-L .

B. Multiple antenna systems

In this example, we consider the case of narrowband trans-
mission over a multiple antenna channel with at least as many
receiver antennas as transmitter antennas. In this scenario, the
combination of the direct transmission scheme and a BDFD is
sometimes referred to as (uncoded) V-BLAST with a (fixed-
order) “nulling and cancelling” receiver [4], [18], [20]. We
consider a standard Rayleigh model for the channel in which
the paths between antennas are modelled as independent zero-
mean circular Gaussian random variables of unit variance.

We will focus on scenarios withK = 3 transmitter antennas
and P = 3 or 4 receiver antennas in whichM = K =
3 symbols are transmitted per channel use. Each element
of s is an independent and equally-likely 4–QAM symbol.
Therefore, the bit rate of each scheme is 6 bits-per-channel-
use (bpcu). In Figs 5 and 6, we plot the average BER
performance over ten thousand channel realizations of the
various transmission schemes with the ZF receivers, and in
Figs 7 and 8 we plot the corresponding curves for the MMSE
receivers. While most of the basic trends from the case of
the scalar frequency-selective channels are maintained inthe
multiple antenna scenario, the performance advantages of the
precoders designed in Section III are much greater. (The
SNR gains are of the order of 6–8 dB at a BER of10−4.)
This can be attributed to the fact that the channel matrixH

does not possess any deterministic structure. In particular, the
probability of encountering a channel matrix that does not
haveM substantial singular values is not negligible. Since
the proposed designs provide significantly better performance
in those cases, the average performance is also substantially
improved.

As expected, the performance of the optimized ZF-BDFD
scheme in the absence of error propagation in Figs 5 and 6
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Fig. 4. Average BER performance of the MMSE-BDFD for the various
precoders and the linear MMSE detector with its optimal precoder in the
scalar frequency-selective fading channel scenario in Section V-A. The solid
curves denote performance achieved in the absence of error propagation, and
the dashed curves incorporate the effects of error propagation. Legend—
△: optimized scheme,FOPT-MMSE-BDFD ; ◦: direct (SCZP),FI ; ×: DFT (ZP-
OFDM), FDFT; ✷: optimized linear MMSE scheme,FOPT-MMSE-L .

is equal to the lower bound oñPe in (37). (Recall that we
are using 4-QAM signalling.) However, in the MMSE-BDFD
case, the lower bound oñPe in (40) is distinguishable from
the simulated BER in the absence of error propagation. This is
due to the fact that the block size (M = 3) is small enough for
the inaccuracy of the Gaussian approximation of the residual
interference to result in a discernible difference betweenthe
BER andP̃e. That said, even for this small block size,P̃e is
an accurate approximation of the BER in the absence of error
propagation.

A few other features of Figs 5–8 are worthy of note. First,
the average performance of the direct and DFT transmission
schemes are essentially the same. This is to be expected
because the statistics ofH are unitarily invariant. Second, the
increase in the diversity provided by the channel when using
P = 4 receiver antennas rather thanP = 3 is clear from
the different slopes of the BER curves at high SNR. Finally,
the performance advantage of the optimized MMSE-BDFD
scheme over the optimized ZF-BDFD scheme is significant in
the case ofP = 4 receiver antennas and is substantial in the
case ofP = 3. The performance advantage of the optimized
MMSE-BDFD scheme is due, in part, to the fact the power
allocated to the firstM eigenmodes ofHHR−1

vv H depends on
the corresponding eigenvalues. In particular, weak eigenmodes
might not be allocated any power at all. In contrast, the
optimized ZF-BDFD scheme allocates power uniformly over
these eigenmodes. The larger performance advantage of the
optimized MMSE-BDFD scheme in the case ofP = 3 is due
to the larger probability of encountering a channel matrix such
thatHHR−1

vv H does not haveM = 3 significant eigenvalues.
For reference, we have included the performance of a stan-

dard orthogonal space-time block coding (OSTBC) scheme in
Figs 5–8. (Like the direct and DFT transmission schemes, OS-

TBC schemes were designed to be applied without knowledge
of the channel at the transmitter.) We have used the (symbol)
rate 3/4 code in [19] (which is a simplified version of that
in [45]), and hence in order to achieve a bit rate of 6 bpcu, a
natural choice for the underlying constellation is 256–QAM.
(We assume that the channel is constant for the four channel
uses that are required to transmit the codewords.) As expected,
at high SNR, the OSTBC scheme provides better BER per-
formance than that direct transmission (V-BLAST) scheme.
However, the proposed precoder (which exploits knowledge
of the channel) provides substantially better performancewhen
P = 4 receiver antennas are employed, and whenP = 3 and
the MMSE-BDFD receiver is used.

WhenP = 3 receiver antennas are employed and the ZF-
BDFD is used, the OSTBC scheme performs better than the
optimized scheme at high SNRs. This does not contradict the
optimality of the proposed transceiver design, because the
values ofM , K and P , and the structure of the channel
matrix, are different for the OSTBC scheme.13 The good
performance of the OSTBC scheme at high SNRs is simply a
manifestation of the trade-off between error rate (achievable
diversity) and symbol rate in multiple antenna fading channels
without outer codes [46]. (That trade-off is related to the fun-
damental diversity-multiplexing trade-off [58].) The symbol
rate of the OSTBC scheme is significantly lower than that
of the proposed scheme.14 Hence, in the range of SNRs in
which noise dominates the error performance, the proposed
scheme provides better performance than the OSTBC scheme,
but in the SNR range in which the channel condition dominates
the error performance, the OSTBC scheme provides better
performance. To illustrate that point, in Fig. 5 we plotted
with unmarked curves the performance of the proposed ZF-
BDFD scheme with a symbol rate ofM = 2 (as distinct
from the scheme withM = 3 described above). In order
to maintain a bit rate of 6 bpcu, the elements ofs were
taken, in an independent and equally-likely fashion, from an 8–
QAM constellations, and for consistency, the SNR was defined
to be (p0/3)/σ

2. Over the range of SNRs considered, the
performance of the proposed ZF-BDFD scheme withM = 2
is substantially better than that of the OSTBC scheme, with
SNR gains of over 7 dB.

VI. CONCLUSION

In this paper, we have jointly designed the precoder and
the feedback matrix of a block-by-block transmission scheme
equipped with a zero-forcing or minimum mean-square error
(MMSE) intra-block decision feedback detector (BDFD). The
designs minimize the arithmetic mean of the expected squared
errors at the decision point, under the standard assumptionthat
the previous symbols were correctly detected. The covariance
matrix of the minimized error is white, and hence the proposed

13In this example, the channel matrix for the OSTBC scheme isI4 ⊗ H,
where⊗ denotes the Kronecker product andH is the channel matrix for the
other schemes. The corresponding block sizes areP = 12, K = 12, and
M = 3.

14In particular, in 4 consecutive channel uses, the proposed scheme
transmits4M = 12 symbols, whereas the OSTBC scheme transmits only
3 symbols.
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Fig. 5. Average BER performance of the ZF-BDFD for the various precoders
and the linear ZF detector with its optimal precoder in the narrowband
multiple antenna scenario in Section V-B with3 transmitter antennas,3
receiver antennas andM = 3 symbols per block. The solid curves denote
performance achieved in the absence of error propagation, and the dashed
curves incorporate the effects of error propagation. Legend—∗: optimized
scheme,FOPT-ZF-BDFD ; ◦: direct, FI ; ×: DFT, FDFT; ⋄: optimized linear ZF
scheme,FOPT-ZF-L ; ▽: OSTBC. For later reference, the unmarked curves are
for the optimized scheme withM = 2.

designs also minimize the (dominant components of the) bit
error rate of a uniformly bit-loaded transmission system. In
our simulations, the proposed systems performed significantly
better than standard precoding systems, and retained their
performance advantages in the presence of error propaga-
tion. In the case of the MMSE-BDFD, the proposed design
also maximizes the Gaussian mutual information. Since the
MMSE-BDFD is a “canonical” receiver [9], [10], [23], this
suggests that by using the proposed transceiver design, one
can approach the capacity of the block transmission system
using (independent instances of) the same (Gaussian) code for
each element of the block.

APPENDIX I
ALGORITHM FOR LEMMA 1

To state the algorithm succinctly, we make the following
definitions:g =

(
∏M

k=1 γ
2
k

)1/M
; [S]·k denotes thekth column

of S and sℓk denotes its elements;Zk denotes the firstk
columns ofS and Z⊥

k denotes its orthogonal complement;
PA = I − A(AHA)−1AH . The recursion will be based on
the (M − k)× (M − k) matrix

A(k) =
(

ΓZ⊥
k

)HP(ΓZ⊥

k
)ΓZ

⊥
k . (45)

For convenience, we assume that the elements ofΓ are
arranged in non-increasing order. The algorithm proceeds as
follows:

1) Initialization: Setk = 1. An explicit solution for the

first column ofS is s11 =

√

g−γ2
M

γ2
1−γ2

M

,

sM1 =
√

γ2
1−g

γ2
1−γ2

M

, sℓ1 = 0 for ℓ = 2, 3, · · · ,M − 1.
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Fig. 6. Average BER performance of the ZF-BDFD for the various precoders
and the linear ZF detector with its optimal precoder in the narrowband multiple
antenna scenario in Section V-B with 3 transmitter antennasand 4 receiver
antennas. The legend is the same as that in Figure 5.

2) ConstructA(k) in (45) and its eigen decomposition,
A(k) = V(k)Λ(k)

(

V(k)
)H

.
3) Set the(k + 1)th column ofS to be

[S]·k+1 = Z⊥
k V

(k)y(k), wherey(k)1 =

√

g−λ
(k)
M−k

λ
(k)
1 −λ

(k)
M−k

,

y
(k)
M−k =

√

λ
(k)
1 −g

λ
(k)
1 −λ

(k)
M−k

, y
(k)
ℓ = 0 for

ℓ = 2, 3, · · · ,M − k − 1.
4) Incrementk. If k ≤ M − 2 return to 2. Otherwise, set

[S]·M = Z⊥
M−2V

(M−2)y(M−1), where

y
(M−1)
1 = −

√

g−λ
(M−2)
2

λ
(M−2)
1 −λ

(M−2)
2

,

y
(M−1)
2 =

√

λ
(M−2)
1 −g

λ
(M−2)
1 −λ

(M−2)
2

.

APPENDIX II
ANALYTIC PERFORMANCECOMPARISONS

It was shown in Section IV that the precoders designed
in Section III achieve the minimized value of the lower
bound onP̃e; c.f., (37) and (40). Therefore, the relative BER
performance of the optimized ZF-BDFD and MMSE-BDFD
systems in the absence of error propagation can be determined
by simply comparing the optimal values of the MSE,ē2 =
tr(Ree)/M . (A preliminary version of this appendix appeared
in [33], and related results on the MSEs of conventional
decision feedback equalizers appear in [2, Chapter 8].)

In order to ensure that the ZF systems exist, we will assume
that rank(H) ≥ M , and to simplify the comparisons, we will
also assume that the transmitted powerp0 is large enough that
q = M in (28) for the MMSE-BDFD andℓ = M in (44)
for the linear MMSE detector.15 Proposition 1 states that the

15The assumption thatrank(H) ≥ M ensures that there is a threshold
value forp0 above whichq = M and ℓ = M .
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Fig. 7. Average BER performance of the MMSE-BDFD for the various
precoders and the linear MMSE detector with its optimal precoder in the nar-
rowband multiple antenna scenario in Section V-B with 3 transmitter antennas
and 3 receiver antennas. The solid curves denote performance achieved in the
absence of error propagation, and the dashed curves incorporate the effects of
error propagation. Legend—△: optimized scheme,FOPT-MMSE-BDFD ; ◦: direct,
FI ; ×: DFT, FDFT; ✷: optimized linear ZF scheme,FOPT-MMSE-L ; ▽: OSTBC.
The dotted curve denotes the lower bound onP̃e in (40).

minimum value of the MSE for a ZF-BDFD system is

ē2OPT-ZF-BDFD =
M

p0
|Λ̃M |−1/M ,

and Proposition 2 states that the minimum value of the MSE
for an MMSE-BDFD system is

ē2OPT-MMSE-BDFD =
M

p0 + tr(Λ̃
−1

M )
|Λ̃|−1/M .

Since Λ̃M is positive definite,̄e2OPT-MMSE-BDFD < ē2OPT-ZF-BDFD ,
and hence, in the absence of error propagation, the optimized
MMSE-BDFD system will provide a lower BER than the
optimized ZF-BDFD system. While it is intuitively obvious
that for a given precoder, the MMSE-BDFD will provide
a lower MSE than the ZF-BDFD, in the case of optimized
precoders, this lower MSE leads directly to a lower BER.

The analysis of Section IV remains valid for systems
with linear detectors, so long as the constraintB = 0 is
enforced. Therefore, we can compare the BER performance
of an optimized BDFD system with that of the system that
is optimized for the corresponding linear detector by simply
comparing their minimum MSEs. The minimum MSE of a
system with a linear ZF detector is [12]

ē2OPT-ZF-L =
1

Mp0

(

tr(Λ̃
−1/2

M )
)2
,

≥ M

p0
|Λ̃M |−1/M = ē2OPT-ZF-BDFD ,

where we have used the trace-determinant inequality (15).
Therefore, in the absence of error propagation the optimized
system for the ZF-BDFD will provide a lower BER than the
optimized system for the linear ZF detector. Similarly, the
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Fig. 8. Average BER performance of the MMSE-BDFD for the various
precoders and the linear MMSE detector with its optimal precoder in the
narrowband multiple antenna scenario in Section V-B with 3 transmitter
antennas, 4 receiver antennas. The legend is the same as thatin Figure 7.

minimum MSE of a system with a linear MMSE detector
is [6], [36]

ē2OPT-MMSE-L

=
1

M
(

p0 + tr(Λ̃
−1

M )
)

−
(

tr(Λ̃
−1/2

M )
)2

(

tr(Λ̃
−1/2

M )
)2
,

>
M

p0 + tr(Λ̃
−1

M )
|Λ̃M |−1/M = ē2OPT-MMSE-BDFD ,

and hence the optimized system for the MMSE-BDFD pro-
vides a lower BER than the optimized system for the linear
MMSE detector. As observed in [6],̄e2OPT-MMSE-L ≤ ē2OPT-ZF-L ,
and hence the optimized system for the linear MMSE detector
provides a lower BER than the optimized system for the linear
ZF detector.
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