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Abstract—In this paper, we revisit the problem of fusing de-
cisions transmitted over fading channels in a wireless sensor
network. Previous development relies on instantaneous channel
state information (CSI). However, acquiring channel information
may be too costly for resource constrained sensor networks. In this
paper, we propose a new likelihood ratio (LR)-based fusion rule
which requires only the knowledge of channel statistics instead of
instantaneous CSI. Based on the assumption that all the sensors
have the same detection performance and the same channel
signal-to-noise ratio (SNR), we show that when the channel SNR
is low, this fusion rule reduces to a statistic in the form of an
equal gain combiner (EGC), which explains why EGC is a very
good choice with low or medium SNR; at high-channel SNR, it
is equivalent to the Chair–Varshney fusion rule. Performance
evaluation shows that the new fusion rule exhibits only slight
performance degradation compared with the optimal LR-based
fusion rule using instantaneous CSI.

Index Terms—Decision fusion, diversity combining, fading chan-
nels, wireless sensor networks.

I. INTRODUCTION

WITH the significant advances in the fields of net-
working, wireless communications, microfabrication

and microprocessors, wireless sensor networking has become a
fast-growing research area. A typical wireless sensor network
(WSN) is made up of a large number of small, inexpensive,
and low-power sensors, which are deployed in the environment
to collect observations. Each sensor node preprocesses and
extracts information from the raw observations. Each sensor
node also has the ability to communicate with other sensor
nodes or a central node (fusion center) via wireless channels.
Usually, there is a fusion center that jointly processes data from
local sensors and forms a global and more precise situational
assessment. Because sensors are connected via a wireless
communication network, WSNs can be deployed rapidly and
in a flexible manner. This flexibility, along with the enhanced
surveillance coverage and sensing performance, makes WSNs
particularly appealing for a number of applications, such as
battlefield surveillance, security, monitoring of traffic and
environment.
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Many aspects of WSNs have been investigated recently, such
as efficient routing protocols [1], distributed data compression
and transmission, and collaborative signal processing [2]. We
are particularly interested in the information processing task
at the fusion center, and more specifically, in the decision
fusion task. For a distributed detection system, the conventional
wisdom is to consider communication and decision fusion as
independent entities and design these two functions separately.
For systems employing high signal-to-noise ratio (SNR) and/or
effective channel error correction coding, communication may
have extremely low error rates and can be assumed lossless,
meaning that the local decisions can be transmitted to the fu-
sion center without errors. Based on this assumption, numerous
results on the classical distributed detection (decision fusion)
problem have been presented in the literature. In [3] and [4],
optimum fusion rules have been obtained under the conditional
independence assumption. Decision fusion with correlated
observations has been studied in [5]–[8]. There also exist
many papers dedicated to the problem of distributed detection
with constrained system resources [9]–[15]. Specifically, these
papers have proposed solutions to optimal bit allocation (or
sensor selection) given a constraint on the total amount of
communications. While many of the obtained results are quite
enlightening, the lossless communication assumption, however,
should be subject to careful scrutiny. Increasing power and/or
employing powerful error correction codes may not always
be possible as most WSN are resource constrained (in both
energy and bandwidth). Furthermore, in a hostile environment,
the power of transmitted signal should be kept to a minimum
to attain a low probability of intercept/detection (LPI/LPD).
Therefore, it may be necessary in many situations to tolerate the
loss during data transmission to some extent. To overcome this
loss, it is highly desirable to integrate the communication and
decision fusion functions intelligently to achieve an acceptable
system performance without spending extra system resources.
This motivates the study of fusion of local decisions corrupted
during the transmission process due to channel fading/noise
impairment. In [16], Thomopoulos and Zhang have investi-
gated decision fusion with nonideal channels. They derived the
optimum tests and corresponding thresholds both at the fusion
center and at the local sensors. Their method, however, was very
complex and required global knowledge of the entire system.
In addition, the binary channel assumption did not allow the
full integration of transmission into the decision fusion stage.

In our previous work [17], the problem of fusing decisions
transmitted over fading and noisy channels in a WSN was
investigated. The system model adopted in [17], which rep-
resents the process of multiple-sensor decision fusion with
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Fig. 1. Parallel fusion model in the presence of fading and noisy channels
between local sensors and the fusion center. u is the binary decision made
by the kth sensor, h is the fading channel gain, n is a zero-mean Gaussian
random variable with variance � , and y is the observation received by the
fusion center from the kth sensor, where k = 1; . . . ; K .

fading channels, is illustrated in Fig. 1. A number of sensors
collect and process raw measurements, make local decisions,
and transmit them over fading and noisy channels to a fusion
center. The fusion center fuses the received local decisions
according to a certain fusion rule and thus obtains a global
decision about the presence/absence of a target. Based on this
model, an optimal likelihood ratio (LR)-based fusion rule is
developed in [17], which requires the maximum amount of
information regarding the system, including instantaneous
channel state information (CSI) and local sensors’ detection
performance indices. Starting from the optimal LR fusion rule,
three suboptimal methods—the Chair–Varshney fusion rule,
the maximum ratio combiner (MRC), and equal gain combiner
(EGC) are also presented in previous work. In [17], it is shown
that for low-channel SNR, MRC is near-optimal; for high SNR,
the Chair–Varshney rule is near-optimal. Interestingly, the
very simple EGC statistic, which requires minimum amount
of information, outperforms both MRC and Chair–Varshney
fusion rules for most practical SNR values.

The optimal LR-based fusion rule requires instantaneous CSI.
Acquiring channel knowledge, however, may be too costly in
resource constrained applications. Our goal here is to develop
a new fusion rule that does not require instantaneous CSI and
yet provides robust performance. In particular, we derive a new
LR-based fusion rule that requires only channel statistics. This
fusion rule is optimal when only local sensor performance in-
dexes and channel statistics are available. We also show that
EGC and Chair–Varshney rules are its approximations at low-
and high-channel SNR, respectively. The new LR-based fusion

rule consistently outperforms EGC and Chair–Varshney rules. It
also has better performance than the MRC fusion rule for most
practical SNR values.

In Section II, we formulate the parallel fusion problem that in-
cludes the fading channel layer and review various fusion rules
developed in previous work. In Section III, we derive the new
LR-based fusion rule assuming only the knowledge of fading
statistics. Based on the assumption that all the sensors have
the same detection performances and the same channel SNRs,
we show that EGC and Chair–Varshney fusion statistics are
high- and low-SNR approximations of the new LR-based fu-
sion statistic, respectively. Performance analysis is contained in
Section IV. There, closed-form results for the performance of
the two stage approach using the Chair–Varshney rule are de-
rived. Using the so-called deflection coefficient, we show that
the new fusion rule is better than both EGC and Chair–Varshney
rules. Simulation results are also provided to confirm our anal-
ysis. In addition, we show that the new fusion rule is robust and
outperforms both EGC and Chair–Varshney fusion rules when
the assumption of identical sensor detection performances and
identical channel SNRs is relaxed. We present some concluding
remarks in Section V.

II. PROBLEM FORMULATION AND PREVIOUS RESULTS

A. Three-Layer System Model

The three-layer model for a distributed detection system in
the presence of fading channels is illustrated in Fig. 1. There
are two hypotheses, and , under test. Each sensor obtains
its own observations, processes them and makes a local deci-
sion. These local decisions are transmitted via fading and noisy
channels to a fusion center. In a traditional distributed detection
system model, all local decisions are assumed to be recovered
perfectly at the fusion center. For WSNs operating in a fading
environment, channel fading and noise impairment may render
the received decisions at the fusion center unreliable, especially
in resource constrained applications. Toward this end, a channel
layer must be incorporated into our model to allow for the devel-
opment of channel aware decision fusion rules that have proved
to be more energy efficient [17]. The model shown in Fig. 1 is
described below.

Local Sensor Layer: All local sensors collect observa-
tions generated under a specific hypothesis. In this paper, we as-
sume that the observations are independent of each other across
sensors conditioned on any hypothesis. After receiving its ob-
servation, each sensor makes a hard (binary) decision:
is sent if is decided, and is sent otherwise, where

. The detection performance of each local sensor
node can be characterized by its corresponding probability of
false alarm and detection, denoted by and , respectively,
for the th sensor:

(1)

In general, these pairs need not be identical and they
are functions of SNR’s as well as thresholds at local sensors.

Fading Channel Layer: Decisions at local sensors, denoted
by for are transmitted over parallel channels
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that are assumed to undergo independent fading. In this paper,
we assume flat fading channels between local sensors and the fu-
sion center. This assumption is reasonable because most WSNs
operate at short range (hence small delay spread) and low bit
rate (long symbol duration) due to power and energy limitations.
We further assume phase coherent reception, thus the effect of
a fading channel is further simplified as a real scalar multipli-
cation given that the transmitted signal is assumed to be binary
[18]. This phase coherent reception can be either accomplished
through limited training for stationary channels, or, at a small
cost of SNR degradation, by employing differential encoding
for fast fading channels which results in the same signal model.
The statistics of the real scalar, denoted by , is determined by
the fading type. For example, for homogeneous scattering back-
ground, Rayleigh distribution best describes the envelope of a
fading signal. In the development of fusion rules, the gain of the
fading channel is considered as a (possibly unknown) constant
during the transmission of a single local decision. We assume
that the channel noise is additive white Gaussian and uncorre-
lated from channel to channel. For simplicity, we assume that
the noise variances are identical for different channels. To sum-
marize, each local decision is transmitted through a fading
channel and the output of the channel (or input to the fusion
center) for the th sensor is

(2)

where is the fading channel gain and is a zero-mean
Gaussian random variable with variance .

Fusion Center: Based on the received data for all , the
fusion center decides which hypothesis is more likely to be true.
This is done by constructing and evaluating a fusion statistic
using the observations as well as some system parameters, if
available.

B. Review of Previous Fusion Rules

To facilitate our comparisons later, here we give a brief re-
view of the fusion rules proposed in [17]. It is noteworthy that
all of them involve the comparison of the corresponding fusion
statistic with a threshold.

1) Optimal LR-Based Fusion Rule: By assuming instanta-
neous channel state knowledge regarding the fading channel
and the local sensor performance indices, i.e., the and
values, the optimal LR-based fusion rule has been derived in
[17], with the fusion statistic (LR) given by

(3)

where is a vector containing data received
from all the sensors, and is the variance of additive white
Gaussian noise for all channels. This fusion rule requires both
local sensor performance indexes and instantaneous CSI. Sev-
eral suboptimum fusion rules that relax the requirements on a
priori knowledge have been also proposed in [17].

2) Chair–Varshney Fusion Rule: In [17], the following
statistic, termed as the Chair–Varshney fusion statistic [3] has
been shown to be a high-SNR approximation to

(4)

does not require any knowledge regarding the channel
gain but does require and for all . This approach,
however, suffers significant performance loss at low to moderate
channel SNR.

3) MRC Fusion Rule: It has been shown in [17] that for
small values of channel SNR, in (3) reduces to

(5)

Further, if the local sensors are identical, i.e., and
for all ’s, then further reduces to a form analogous

to a MRC [19] statistic

(6)

in (6) does not require the knowledge of and pro-
vided . Knowledge of the channel gain is, however,
required.

4) EGC Fusion Rule: Motivated by the fact that resem-
bles a MRC statistic for diversity combining, a third alternative
in the form of an EGC has been proposed, which requires min-
imum amount of information:

(7)

Interestingly enough, this simple alternative outperforms both
and for a wide range of SNR in terms of its detection

performance [17].

III. LIKELIHOOD RATIO TEST BASED ON CHANNEL STATISTICS

The optimal LR-based fusion rule presented in Sec-
tion II-B-1) requires instantaneous CSI. However, for a
WSN with very limited resources (energy and bandwidth), it
is prohibitive to spend resources on estimating the channel
every time a local sensor sends its decision to the fusion center.
Thus, it is imperative to avoid channel estimation and conserve
resources at the possible cost of relatively small performance
degradation. This is the reasoning behind our exploration of
new fusion rules that do not require instantaneous CSI. In many
WSN scenarios, the statistics of the fading (random) channel
and the additive Gaussian noise can be estimated in advance,
and used as prior information. It is our goal to develop a new
LR-based fusion rule with only the prior information regarding
the channel statistics instead of the instantaneous CSI.

Assuming a Rayleigh fading channel with unit power (i.e.,
), the pdf of is:

(8)
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From (8) and using the fact that , it is easy to
obtain

(9)

where is a step function defined as follows:

.
(10)

Further, we have the following result:

(11)

where the identity , which is obtained
due to the fact that , and form a Markov chain, has been
used. Combined with the fact that is a zero-mean Gaussian
random variable with variance , we have Lemma 1.

Lemma 1: The conditional pdf of , the observation from
sensor , given local decision is

where , and is the complementary
distribution function of the standard Gaussian, i.e.,

Proof: See Appendix I.
Once we have , it is easy to obtain

and hence the likelihood ratio, as stated in the fol-
lowing theorem.

Theorem 1: The log-likelihood ratio based on the knowledge
of channel statistics and local detection performance indexes is

(12)

Proof: Under hypothesis , we have

(13)

where (1), Lemma 1, and the identity
have been used.

Following the same procedure and replacing with ,
we obtain as follows:

(14)

Obviously, the likelihood ratio is

(15)

where assumptions of the conditional independence of local de-
cisions and the independence of different fading channels have
been used. Taking logarithm of the above equation on both sides,
we obtain the log-likelihood ratio given in (12). Q.E.D.

As we can see, this fusion statistic requires the knowledge
of channel statistics and local sensor detection performance
indices. To distinguish this new fusion rule from the optimal
LR-based fusion rule that requires instantaneous CSI, we call it
the likelihood ratio test based on channel statistics (LRT-CS).

Next, we determine the high- and low-SNR approximations
of the LRT-CS fusion statistic. These approximations are de-
rived and stated in the following two propositions.

Proposition 1: As the channel noise variance , i.e.,
SNR defined in (12) reduces to defined in (4), i.e.,

Proof: As . Define
and , and we rewrite

as

Given that (high SNR assumption), we have, for
, and ; while for

, and . Hence,
the assumption can be used to obtain

which is exactly the Chair–Varshney decision fusion statistic.
Q.E.D.

Proposition 2: As in (12) reduces to

(16)
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Further, if the local sensors are identical, i.e., and
for all , and , then further reduces to a

form analogous to an EGC statistic

(17)

Proof: For low SNR, i.e.,
. The Taylor series expansion of

is

(18)

Therefore, . In addition,
can be approximated by the first-order Taylor series

expansion, i.e., . Hence

where higher order terms have been ignored.
Similarly

With the above results, it is straightforward to see that

where we have used the fact .
This statistic is equivalent to . Further, if and

for all , the fusion statistic can be further reduced to
as in (7). Q.E.D.

Thus, under the identical local sensor assumption, the EGC
statistic is a low-SNR approximation to the LRT-CS decision
fusion statistic. Therefore, we have a theoretical justification of
the EGC statistic which was proposed as a heuristic alternative
to the MRC statistic in [17].

IV. PERFORMANCE ANALYSIS

A. The Distribution of the Chair–Varshney Statistic

In the development of the LRT-CS fusion rule, we have al-
ready obtained the pdf of and . With these
pdfs available, it is possible to derive the closed-form distribu-
tion of the Chair–Varshney statistic, which is very helpful for
performance analysis. Define , where

, i.e., is the cardinality of , and , where
. Thus, . With these defi-

nitions and assuming that all the sensors are identical, meaning
and for all , (4) becomes

(19)

which is an affine function of . When
(or ), the statistic is equivalent

to . When all the sensors are identical, all ’s are inde-
pendent and identically distributed (i.i.d.). Therefore, is a
binomial distribution, where the success probability is
defined as

(20)

We denote and as the success probabilities under
and , respectively. The closed-form solutions are provided in
the following Lemma.

Lemma 2: The probabilities of a nonnegative observation
under hypotheses and are, respectively

(21)

and

(22)

Proof: See Appendix II.
System-level detection performance can be evaluated exactly

by using the Binomial distribution, namely

(23)

where is the threshold. For the same , the corresponding
is

(24)

As we can see, there are a total of pairs of and
as takes values from to . The receiver operating

characteristic (ROC) curve obtained by (23) and (24) is indis-
tinguishable from that obtained by Monte Carlo simulations.
In this paper, we do not give the figure containing these ROC
curves due to limited space.
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B. Performance Analysis Using Deflection Coefficient

If we assume that all the sensors are identical (thus
and for all ), all the decision statistics we have dis-
cussed in Sections II.B and III are sums of i.i.d. random vari-
ables which allows a direct application of the central limit the-
orem (CLT). Therefore, if the number of sensors is large, all
these statistics can be approximated by Gaussian distributions.
This makes the comparisons and analysis much easier.

However, the accuracy of the Gaussian approximation is di-
rectly related to the number of sensors employed. When the
number of sensors is small, there is always a discrepancy be-
tween the ROC curves obtained by Monte Carlo simulation and
those by analytical approximation using the CLT. In addition,
we have found through extensive simulations that the accuracy
of the CLT approximation not only depends on the number of
sensors involved, but also on other system parameters, such as
the sensor performance indexes ( and ) and the channel
SNR. In addition to using the ROC curve for performance com-
parison, one can also resort to the so-called deflection coefficient
[20], [21], especially when the statistical properties of the signal
and noise are limited to moments up to a given order. The de-
flection coefficient is defined as

(25)

In the case of , this is in essence the
SNR of the detection statistic. It is worth noting that the use of
deflection criterion leads to the optimum LR receiver in many
cases of practical importance [20]. For example, in the problem
of detecting a Gaussian signal in Gaussian noise, an LR detector
is obtained by maximizing the deflection measure.

In order to calculate the deflection coefficient, we need the
first and second order statistics of the fusion statistic (mean and
variance). In the case of the LRT-CS fusion statistic, the mean
is found in (26), shown at the bottom of the page, where

(27)

Note that whenever it does not cause confusion, the subscript
is dropped for simplicity. Similarly

(28)

where

(29)

While it is nearly impossible to obtain closed-form solutions
of (26) and (29), numerical integration can be employed for the
computation of these expressions. The mean and variance under

can be calculated following a similar procedure.
With regard to the Chair–Varshney statistic, we have shown

in Section IV.A that is equivalent to , which is binomial
distributed. Therefore, can be viewed as the sum of i.i.d.
Bernoulli random variables with success probabilities and ,
under hypothesis and , respectively. Given and , it
is easy to show that

(30)

and

(31)

Similarly

(32)

and

(33)

(26)
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TABLE I
COMPARISON AMONG FIVE DIFFERENT FUSION RULES

Fig. 2. Deflection coefficient for different statistics. There are eight sensors
with P = 0:5 and P = 0:05.

The closed-form mean and variance for EGC and MRC sta-
tistics are available in [17]. Given these statistics, we calculate
the deflection coefficient at different channel SNR for different
fusion statistics. This helps us understand how the detection per-
formance varies for different values of channel SNR. As we can
see from Fig. 2, at very low channel SNR, the performance of the
LRT-CS statistic reduces to the EGC statistic; for high-channel
SNR, the Chair–Varshney statistic has the same performance as
the LRT-CS statistic. The LRT-CS fusion rule is optimal when
only channel statistics and sensor performance indexes are avail-
able. The LRT-CS fusion statistic has a larger deflection coef-
ficient than other suboptimal fusion statistics. The only excep-
tion is when SNR is very low (less than 8 dB). In this case, the
MRC statistic outperforms the LRT-CS statistic. Again, this is
because the MRC statistic uses more prior information, namely
the instantaneous CSI.

C. Simulation Results

In the last section, we have compared the performance of dif-
ferent fusion rules in terms of the deflection coefficient. Even
though it is an interesting metric and it completely character-
izes the detection performance under the Gaussian assumption,
in general, it can not be proved that a greater deflection al-
ways leads to a better performance in terms of ROC curves.
Therefore, in this section, simulations are employed to obtain

Fig. 3. ROC curves for various fusion statistics for the Rayleigh fading channel
with average channel SNR = 5 dB. There are eight sensors with P = 0:5 and
P = 0:05.

the ROC curves for different fusion rules. Note that each fu-
sion rule requires different amount of prior information about
the sensor performance and the fading channels, as summarized
in the second column of Table I.

Fig. 3 gives the ROC curves corresponding to different fusion
statistics at channel SNR of 5 dB. Each sensor’s false alarm rate
is assumed to be while the detection probability is

. The total number of sensors is fixed at eight.
The optimal LR-based fusion rule provides the uniformly

most powerful detection performance, however it requires in-
stantaneous CSI. On the other hand, its performance can be ap-
proached closely by the LRT-CS fusion rule. The performance
of the LRT-CS fusion rule is slightly worse than the optimal
LR-based fusion rule with instantaneous CSI and is better than
the three suboptimal schemes.

To better understand the performance difference as a func-
tion of channel SNR, Fig. 4 gives the probability of detection
as a function of the average channel SNR for a constant system
false alarm rate of . The parameter setting is iden-
tical to the above example. From this figure, it is clear that
performances of EGC and the Chair–Varshney fusion rules ap-
proach that of the LRT-CS fusion rule at very low and very
high SNR respectively, which is consistent with the results of
Fig. 2 using the deflection coefficient for the same set of param-
eters. The jumpy behavior of the Chair–Varshney approach can
be explained easily. As we have discussed in Section IV-A, ,
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Fig. 4. System-level probability of detection as a function of average channel
SNR for Rayleigh fading channels with eight sensors whose P = 0:5 and
P = 0:05. The system false alarm rate is fixed at P = 0:01.

Fig. 5. System-level probability of detection as a function of number of
sensors K . P = 0:5; P = 0:05, and the average channel SNR is 5 dB.
The system false alarm rate is fixed at P = 0:01.

which is equivalent to the Chair–Varshney statistic, is binomial
distributed. With a local performance index set as 0.5, from
(21), it is clear that the success probability of the Binomial distri-
bution under hypothesis is a constant (0.5) and indepen-
dent of channel SNR. Therefore, in this special case, according
to (23), the system level is only a function of the threshold

. As we know, there are only finite integer numbers (from
to ) from which can take values. The value of is
determined by the average channel SNR and the system level
false alarm rate (see (22) and (24)). Even for different SNR
values, and hence different values, could still be the same
due to its finite alphabet property. Thus, with the same
remains constant for a certain range of channel SNRs.

The system performance (probability of detection) as a func-
tion of total number of sensors is shown in Fig. 5. As we

can see, when is very large, the probability of detection at the
fusion center approaches 1, even when the local sensors have a
modest detection performance with and ,
and the average channel SNR is very low (5 dB). This is due
to the accumulation of information from a large number of sen-
sors. Note that no matter how many sensors are employed, the
LRT-CS fusion rule outperforms the other three sub-optimum
fusion rules. With the specific system parameters in this ex-
ample, the performance of the EGC fusion rule is quite robust
and outperforms both MRC and Chair–Varshney fusion rules,
regardless of the scaling factor .

The tradeoff between detection performance and the require-
ment on a priori information for each of the fusion schemes is
summarized in Table I. The summary is also based on the as-
sumption that all sensors’ performance indexes are identical to
each other.

D. Sensors With Different Detection Performances and
Channel SNRS

In Sections IV-A, IV-B, and IV-C, we gave examples where
the channel SNR and the detection performance are assumed
identical for all sensors. In practice, however, it is often the case
that different sensors have different channel SNRs and different
detection performances. In this section, we investigate and com-
pare the performances of different fusion rules in these more
complicated and practical scenarios.

First, we assume that all the wireless channels between local
sensors and the fusion center have the same average SNR.
There are totally 8 sensors. All the sensors have the
same probability of false alarm, and . However,
they have different probabilities of detection. In this particular
example, we assume that , where

. The simulation results are shown in
Fig. 6.

Next, we assume that all the sensors have the same detection
performance indexes ( and ). However,
different sensors have different average channel SNRs for their
channels to the fusion center. We assume that there are 8
sensors, and
dB, where SNR SNR SNR dB, and is the
arithmetic mean of all the average channel SNRs (in decibels).
For example, if 10 dB, then
dB. Note that there are significant variations for the average
channel SNRs. There is 12-dB difference between the largest
and the smallest average channel SNRs. In Fig. 7, the system-
level probability of detection is plotted as a function of the mean
value of the average SNRs of all the channels .

From both Figs. 6 and 7, we can see that the LRT-CS
fusion rule has much better performance than EGC and
Chair–Varshney rules. It outperforms MRC except when the
channel SNR is very low (see Fig. 6). With low-channel SNR
(or average channel SNR) values, the MRC fusion rule has
the best performance among the three suboptimal fusion rules.
With high-channel SNR (or average channel SNR) values, the
Chair–Varshney fusion rule has the best performance among
the three suboptimal fusion rules. The EGC has a very robust
performance when channel SNR is low or medium.



1026 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

Fig. 6. System-level probability of detection as a function of average
channel SNR for Rayleigh fading channels with eight sensors whose detection
performances are different. The system false alarm rate is fixed at P = 0:01.

Fig. 7. System-level probability of detection versus the mean value of average
SNRs of the Rayleigh fading channels with eight sensors, whose average
channel SNRs are different. P = 0:5 and P = 0:05. The system false alarm
rate is fixed at P = 0:01.

V. SUMMARY

The problem of fusing binary decisions transmitted over
fading and noisy channels in a WSN was revisited in this
paper. Along with various fusion rules obtained previously, we
presented a new LR-based test (LRT-CS) which requires only
the knowledge of the statistical characteristics of the wireless
channel instead of instantaneous CSI. The Chair–Varshney
fusion statistic provides high SNR approximation to the new
fusion statistic, while the statistic in the form of an EGC gives a
low SNR approximation. The new fusion rule outperforms both
the EGC and Chair–Varshney fusion rules, has better perfor-
mance than the MRC fusion rule for most practical SNR values
(except for very low SNR values), and degrades performance
slightly compared with the optimal LR-based fusion rule that re-
quires instantaneous CSI. In addition, we derived a closed-form

solution to the distribution of the Chair–Varshney statistic,
which facilitates the performance analysis and comparison.

Analysis based on deflection coefficient was carried out to in-
tuitively illustrate the performance advantage of the new fusion
rule over the other suboptimal rules. Simulation results were
given for performance comparison and were consistent with the
analysis. Cases where different sensors have different detection
performances or different channel SNRs were also investigated
to illustrate the robustness of the proposed LRT-CS fusion rule.

APPENDIX A
PROOF OF LEMMA 1

Substituting (9) into (11), setting and considering that
is a Gaussian random variable with zero mean and variance

, we have

(34)

By plugging into the above equation, we
obtain

(35)

where .
Similarly, for the case of , we have

(36)

APPENDIX B
PROOF OF LEMMA 2

(37)
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Following a similar procedure and replacing with , it is
easy to obtain

(38)
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