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A Generalized Weighted Linear Predictor Frequency
Estimation Approach for a Complex Sinusoid

H. C. So, Member, IEEE, and Frankie Kit Wing Chan

Abstract—Based on linear prediction and weighted least
squares, three simple iterative algorithms for frequency estima-
tion of a complex sinusoid in additive white noise are devised. The
proposed approach, which utilizes the first-order as well as higher
order linear prediction terms simultaneously but does not require
phase unwrapping, can be considered as a generalized version of
the weighted linear predictor frequency estimator. In particular,
convergence as well as mean and variance analysis of the most
computationally efficient frequency estimator, namely, GWLP 2,
are provided. Computer simulations are included to contrast the
performance of the proposed algorithms with several conventional
computationally attractive frequency estimators and Cramér–Rao
lower bound for different frequencies, observation lengths, and
signal-to-noise ratios.

Index Terms—Frequency estimation, iterative algorithm, linear
prediction, low complexity.

I. INTRODUCTION

PARAMETER estimation of sinusoids in noise has been a
classical problem for more than 200 years [1] and is still an

important research topic because of its numerous applications in
multiple disciplines such as control theory, signal processing,
digital communications, biomedical engineering, instrumenta-
tion and measurement. Estimation of the frequencies is often the
crucial step in the problem because they are nonlinear functions
in the received data sequence. Once the frequencies have been
determined, the remaining parameters, namely, amplitudes and
phases, can then be computed straightforwardly [2]. It is note-
worthy that for exponentially damped sinusoids, we also need to
determine the extra parameters of damping factors, which can
be estimated jointly with the frequencies [3]. For comprehen-
sive readings on frequency estimation and tracking, the inter-
ested reader is referred to [2] and [4]–[6].

In this paper, we consider the most basic form of the fre-
quency estimation problem, namely, finding the frequency of a
pure complex tone in additive white noise. Mathematically, the
single tone model is

(1)

where

(2)
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The sinusoidal amplitude, frequency, and phase are denoted by
, and , respectively, and they are considered as de-

terministic but unknown constants. While the noise is as-
sumed to be a zero-mean complex white process of the form

, where and are zero-mean real
white processes with identical but unknown variances of
and uncorrelated with each other. Although estimating the single
frequency is a fundamental and well-studied problem, efforts
have continually been made [7]–[16] to derive estimators that
can attain high estimation performance but with low computa-
tional cost. Our objective is also to estimate ac-
curately in a computationally simple manner, from the dis-
crete-time noisy measurements of .

In the presence of white Gaussian noise, the maximum-like-
lihood (ML) estimate of frequency is obtained from the
periodogram maximum [17] but it involves extensive computa-
tions. To avoid high computational requirement, autocorrelation
or linear prediction [7], and phase-based [8] approaches are
widely used choices. Although they are similar in the sense
that they both extract angle information, their basic distinction
is that the former utilizes the phase of the autocorrelation
function of , denoted by , where is the lag, while
the latter considers the signal phase to achieve frequency
estimation. Founded on [7] and [8], many computationally
efficient frequency estimators with suboptimal performance
have been proposed in the literature, to name but a few [9]–[11],
[13]–[16]. Kay [9] has proposed the so-called weighted linear
predictor (WLP) frequency estimator [18], which introduces
different weights in computing a generalized version of .
Frequency estimation from a set of has been inves-
tigated in [10], [13], [15]. Recently, Brown and Wang [16]
have suggested to use linear prediction together with low-pass
filtering, decimation and heterodyning iteratively for single
frequency estimation. On the other hand, an alternative to the
phase-based approach [8] is devised by using the differenced
phase data, which is known as the weighted phase averager
(WPA), and this technique has been extended via the use of
simple low-pass filtering and a set of filter banks in [11] and
[14], respectively. However, as discussed in [16], most of these
computationally attractive schemes have the demerits of poor
threshold performance, nonuniform estimation performance
across the admissible frequency range, limited frequency op-
eration range, and/or requirement of phase unwrapping which
becomes prone to errors at low signal-to-noise ratio (SNR).

The primary motivation of this work is to develop compu-
tationally simple and accurate frequency estimators which do
not have the above drawbacks. Based on the linear prediction
property of a complex tone, we have devised three frequency
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estimators which can be considered as a generalization of the
WLP approach [9], [18]. All the algorithms, namely, GWLP 1,
GWLP 2, and GWLP 3, can be easily programmed on com-
puters and their computational requirement is comparable to
that of the autocorrelation and phased-based methods. In par-
ticular, we have proved the convergence of GWLP 2 and have
derived its variance, which can attain Cramér-Rao lower bound
(CRLB) for white Gaussian noise.

The rest of the paper is organized as follows. The develop-
ment of the generalized weighted linear predictor (GWLP) fre-
quency estimation approach is given in Section II. The basic al-
gorithm GWLP 1 is first devised via the use of linear prediction
and weighted least squares (WLS). Two alternative realizations,
namely, GWLP 2 and GWLP 3, are then proposed. Further-
more, the relationships between the proposed estimators and ex-
isting approaches are discussed. In Section III, a detailed study
of GWLP 2 is provided, which includes its computational re-
quirement, convergence as well as mean and variance analysis.
Numerical examples are presented in Section IV to corroborate
the analytical development and to evaluate the performance of
the proposed algorithms by comparing with the minimal order
linear predictor (LP) [7], WPA and WLP [9], as well as CRLB.
Finally, conclusions are drawn in Section V.

II. ALGORITHM DEVELOPMENT

In this section, three GWLP frequency estimators for a com-
plex noisy sinusoid will be developed and their relationships
with several well-known frequency estimation methods will also
be illustrated.

A. Basic Algorithm

The linear prediction property of can be expressed as

(3)

Based on (3), the linear prediction error is

(4)

where is a variable corresponds to , which is to be deter-
mined. Expressing (4) into vector form yields

(5)

where

and denotes the transpose operation. The WLS cost function
constructed from the linear prediction error is then

(6)

where represents the conjugate transpose and
is a weighting matrix which satisfies

. An ideal choice of is obtained from the
Markov estimate [13], [19]

(7)

where

...
...

...
...

...
...

(8)

with is
the expectation operator, represents conjugate, and denotes
matrix inverse. Differentiating with respect to and then
setting the resultant expression to zero, we get the estimate of

, denoted by

(9)

As the ideal is a function of the unknown parameter , we
propose to use a relaxation algorithm [20] for iterative frequency
estimation, which is denoted as GWLP 1, and the procedure is
summarized as follows.

i) Find a coarse estimate of from the WLP frequency
estimate, denoted by . The initial is given by

. The WLP is used because it belongs to the
GWLP approach and their relationship will be shown
clearly in Section II-C. It is noteworthy to mention that
other simple frequency estimators such as the minimal
order LP and discrete Fourier transform (DFT) [21] can
be used for initialization as well.

ii) Use to construct from (7) and (8).
iii) Compute an updated version of using (9).
iv) Repeat Steps ii) and iii) until parameter convergence.
v) The frequency estimate of GWLP 1, denoted by ,

is calculated as , where represents the
phase angle in .

It is seen that a major computational requirement of the GWLP
1 is to perform the matrix inverse in (7) and attempts [22], [23]
have been made to determine a closed-form expression for
though unsuccessful. Note that it is possible that a closed-form
result exists, which is not known by the authors. Nevertheless,
efficient computation of the inverse can be achieved via the use
of Cholesky decomposition [24] or exploiting the tri-diagonal
property of [25]. In particular, the former technique only re-
quires the order of flops, where each flop means roughly a
complex multiplication and a complex addition [26].

B. Alternative Realizations

Since , an alternative form for the ideal weighting
matrix is then

(10)
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where

...
...

...
...

...
...

(11)

It is worthy to note that in practical implementation, using (7) is
different from (10) because the magnitude of in (9) is generally
not equal to unity due to noise, which implies that the latter is
an approximation. Nevertheless, it is easy to show that (10) has
a closed form and its entry is expressed as

(12)

where if and it is equal to other-
wise. From (12), we also notice that is a positive-definite
Hermitian matrix, which implies that is real and
always has zero phase. As a result, the denominator of (9) can
be removed if the weighting matrix of (10) is employed. Based
on these findings, we suggest our second algorithm for single
frequency estimation, which is referred to as GWLP 2, as fol-
lows.

i) Obtain an initial frequency estimate of GWLP 2 denoted
by using WLP, that is, .

ii) Use to construct from (12).
iii) Compute an updated using

(13)

iv) Repeat Steps ii) and iii) until parameter convergence.
From GWLP 1 and GWLP 2, we propose the third frequency
estimation algorithm, namely, GWLP 3, which replaces in (9)
by , which is defined as

(14)

where we ignore the denominator of (9) in the GWLP 1. The
steps in GWLP 3 are as follows.

i) Use to obtain an initial estimate.
ii) Substitute for to construct from (7) and (8).
iii) Compute an updated version of using (14).
iv) Repeat Steps ii) and iii) until parameter convergence.
v) The frequency estimate of GWLP 3, denoted by , is

calculated as .
It is obvious that among the three proposed estimators, GWLP 1
involves the highest computational requirement whereas GWLP
2 is the most computationally simple, although all algorithms
can be easily programmed on computers. Admitting that GWLP
2 and GWLP 3 are approximate forms of GWLP 1, the approx-
imation in GWLP 2 can also be interpreted as application of the
unity-magnitude constraint in which is justifiable while
will be increasing or decreasing during the iterative procedure
because there is a discrepancy in the magnitudes of both sides

of (14) as the denominator term is removed. As a result, it is
expected that both GWLP 1 and GWLP 2 perform comparably
and are superior to GWLP 3, which will be demonstrated via
computer simulations in Section IV.

C. Relations With Existing Approaches

The relationships between the proposed estimators and some
well-known estimation methods in the literature are now dis-
cussed. Following the development in [27], it can be shown
that the minimizer of (6) with parameterized by is in fact
the ML estimator in the presence of white Gaussian noise. The
GWLP 1 can also be viewed as the so-called iterative quadratic
maximum-likelihood (IQML) method [28], [29] which relaxes
the ML cost function to a quadratic form, for the special case
when the source signal is a pure complex sinusoid. It should
be noted that although the two methods are equal in the im-
plementation, their derivations are different: Our approach uti-
lizes the WLS technique while the IQML estimate is derived
from the ML criterion and assumes white Gaussian noise. Due
to their equivalence, we may utilize the IQML properties in [30]
to prove the local convergence and derive the theoretical perfor-
mance of GWLP 1. On the other hand, since it has been shown
[31] that the IQML method is identical to Steiglitz–McBride al-
gorithm [32], we can also apply the convergence results of the
iterative filtering algorithm for frequency estimation [33], which
bears a strong resemblance to [32], to GWLP 1.

The proposed algorithms are also related to the linear predic-
tion approach as follows. When we use the identity matrix as
the weighing matrix in GWLP 1, GWLP 2 and GWLP 3, all of
them will reduce to the minimal order LP [7]. For the GWLP 2
and GWLP 3, we can express the frequency estimate in a scalar
form

(15)

where is a function of for and it is characterized by
for . In particular, the estimate of GWLP 2 can be further

expanded via summing up the diagonals of one by one, as
follows:

(16)

with

(17)
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TABLE I
COMPUTATIONAL COMPLEXITY OF DIFFERENT LOW-COMPLEXITY FREQUENCY ESTIMATORS

while the second and third components of (16) represent the
higher order as well as zero-order weighted linear prediction
terms. On the other hand, the estimate of the WLP is given
by [9]

(18)

From (16)–(18), we see that the sum involving the main diag-
onal of , that is, the first component of (16), is exactly the
WLP approach with the same parabolic weights up to a real
scalar. While the summations correspond to other diagonals of

are parabolically weighted computations of the higher-order
as well as zero-order autocorrelation lags. This clearly shows
how the GWLP 2 generalizes the WLP. Furthermore, the expres-
sion of (9) is even more general than (15). Because of these, we
call our approach as generalized weighted linear predictor. It is
noteworthy to mention that (16) is also related to autocorrela-
tion-based methods of [10], [13], and [15] which use different
combinations of the higher-order autocorrelations, and in par-
ticular, [15] attempts to find an optimal set of autocorrelation
lags for the purpose of fitting a line to their phases. However,
one major difference between the GWLP 2 and these autocor-
relation-based methods is that the latter are subject to phase un-
wrapping errors or have limited frequency operation range while
the former is free of these demerits.

III. ANALYSIS OF GWLP 2

In this Section, we will investigate the computational com-
plexity, convergence as well as mean and variance of the sim-
plest frequency estimator, namely, GWLP 2.

A. Computational Complexity Analysis

Since the first term of (16) corresponds to (18) and remains a
constant during the iterative process, using the WLP as initial-
ization is advantageous in terms of computations in GWLP 2.
For the first iteration, including the initialization, GWLP 2 re-
quires two angle calculations, real-valued multi-
plications and real-valued additions. For each of the

second or above iteration, an additional complexity of one angle
calculation, real-valued multiplications and

real-valued additions are needed. As a result,
the computational complexity of the GWLP 2 has order or

. To reduce its computational complexity, we can include
the two-sided linear prediction terms up to the th order, where

, and ignore the rest, which is analogous to [10], [13],
and [15], where only a set of autocorrelations is employed. In so
doing, the computational complexity of the GWLP 2 can be re-
duced to . The computational requirements of the GWLP
2 as well as some conventional low-complexity frequency es-
timators [7], [9], [10], [15] are tabulated in Table I. Note that

roughly refers to the GWLP 2 with no approxima-
tion. We can see that although GWLP 2 is more computationally
demanding than the minimal order LP, WLP, and WPA, its com-
plexity is comparable to those of [10] and [15].

B. Convergence Analysis

The following analysis is to show that if is sufficiently
close to , iterative application of (13) will converge to the true
frequency as the number of samples goes to infinity. Basically,
we have followed [34] to prove the convergence of the algo-
rithm. Note that similar convergence analysis is also found in
[35] which deals with iterative estimation of a single real tone.
Let , where in (12) is now a function
of . To prove the convergence of the GWLP 2, it is sufficient
[34] to show that the following two conditions are satisfied:

i)
ii) ,

and

almost surely as , where
, and are fixed. If these two conditions are

satisfied, will iterate to a unique fixed point, namely, , upon
convergence. In our study, an alternative form for the second
condition is employed:

ii)

where denotes the imaginary part and
.
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In Appendix A, we have shown that

(19)

which implies that the first condition is satisfied. Moreover,
and have been derived as (see Appendix A)

(20)

and

(21)

Using (20) and (21), the second condition can be proved as fol-
lows:

(22)

As a result, will approach upon convergence as tends to
infinity.

C. Mean and Variance Analysis

The bias and variance of the frequency estimate for the
GWLP 2 are now derived. It is expected that the mean analysis
will also hold for the GWLP 1 for sufficiently high SNRs and/or
large such that and . To sim-
plify the derivation, we assume that the ideal weighting matrix
of (10) is used in (13). Note that this assumption becomes valid
when the frequency estimate approaches the true value of ,
which is anticipated to occur at sufficiently large SNR and/or
data length conditions. Taking the expected value of (13) with
the use of the ideal weighting matrix gives (see Appendix B)

(23)

which indicates the approximately unbiasedness of the algo-
rithm. In Appendix B, we have also derived the variance of ,
denoted by , as

SNR SNR
(24)

where SNR . On the other hand, the CRLB for
single frequency estimation in white Gaussian noise, denoted
by CRLB , is given by [17]

CRLB
SNR

(25)

Comparing (24) and (25), we see that for a fixed SNR, the esti-
mation accuracy of in the presence of white Gaussian noise
approaches the CRLB when the data length is sufficiently large.
It is worthy to note that (24) can hold for noises with other prob-
ability density functions as well because its derivation assumes
zero-mean white noise only.

IV. SIMULATION RESULTS

Computer simulations had been carried out to evaluate
the frequency estimation performance of the three proposed

Fig. 1. Mean square frequency errors versus SNR at N = 20 and ! = 0:1�.

Fig. 2. Mean frequency errors versus SNR at N = 20 and ! = 0:1�.

algorithms in the presence of complex white Gaussian noise by
comparing with minimal order LP, WLP, and WPA as well as
CRLB. We used 2 iterations in all proposed algorithms because
no significant improvement was observed for more iterations.
The signal power was unity, which corresponded to and
we scaled the noise sequence to produce different SNRs while
we fixed the phase parameter as . All results provided
were averages of 2000 independent runs.

Fig. 1 shows the mean square frequency error (MSFE) perfor-
mance versus SNR at and , which corresponded
to a small data length scenario. It is seen that the GWLP 1 and
GWLP 2 performed almost identically and their MSFEs attained
the CRLB for SNR 4 dB. On the other hand, the estimation
performance of the GWLP 3 and minimal order LP was very
similar, which had the largest MSFEs. We believe the inferi-
ority of GWLP 3 was due to the discrepancy in the magnitude
of both sides of (14) as pointed out in Section II-B. Although
the WPA could attain the CRLB as well, its threshold SNR was
higher than those of the GWLP 1 and GWLP 2, which implies a
smaller SNR operation range. While it is seen that the WLP was
optimum only for very high SNR conditions. The corresponding
mean frequency errors, which were obtained by subtracting
from the mean frequency estimates, are shown in Fig. 2. We
observe that the biases in all the methods were negligible for
sufficiently high SNRs, which demonstrates the approximately
unbiasedness property of the proposed methods and indicates
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Fig. 3. Mean square frequency errors versus SNR atN = 200 and! = 0:1�.

Fig. 4. Mean square frequency errors versus! at SNR = 10 dB andN = 20.

that the MSFEs were mainly due to variances of the frequency
estimates.

We repeated the first test for , which corresponded to
a large data length scenario, and the MSFEs are plotted in Fig. 3.
Similar findings were observed, in particular, the GWLP 1 and
GWLP 2 could attain the CRLB with the largest SNR operation
range. Note that we have not included the corresponding mean
frequency error results because they were similar to those in
Fig. 2.

Fig. 4 shows the MSFEs of different frequency estimators
versus frequency at SNR 10 dB and . We see that
both GWLP 1 and GWLP 2 achieved optimum performance for
the admissible frequency range while the optimality of the WPA
only held for . Furthermore, the GWLP 3
and minimal order LP performed almost identically and were
inferior to the suboptimal WLP. The above test was repeated for

and the results are shown in Fig. 5, and the findings
were similar to those in Fig. 4.

Figs. 6–11 plot the frequency versus SNR contours of MSFE
for the GWLP 1, GWLP 2, GWLP 3, minimal order LP, WLP,
WPA, respectively, at in order to investigate the
threshold performance in more detail. We can see that GWLP
1 and GWLP 2 had the best threshold performance while that
of WPA was the poorest. The corresponding contour plots at

were also produced which are shown in Figs. 12–17,
and we had similar observations.

Fig. 5. Mean square frequency errors versus ! at SNR = 10 dB and N =

200.

Fig. 6. Contour plot of GWLP 1 at N = 20.

Fig. 7. Contour plot of GWLP 2 at N = 20.

In Figs. 18–21, the performance of different approximations
of GWLP 2 was evaluated, that is, we only employed the linear
prediction terms up to the th order. The results of ,
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Fig. 8. Contour plot of GWLP 3 at N = 20.

Fig. 9. Contour plot of minimal order LP at N = 20.

Fig. 10. Contour plot of WLP at N = 20.

and , which corresponded
to no approximation, and the baseline algorithm of WLP were
given. The simulation settings of Figs. 18–21 were identical to

Fig. 11. Contour plot of WPA at N = 20.

Fig. 12. Contour plot of GWLP 1 at N = 200.

Fig. 13. Contour plot of GWLP 2 at N = 200.

those of Figs. 1, 3, 4, and 5, respectively. From the figures, we
see that using and had comparable
MSFEs with those of the exact version, except that the GWLP 2
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Fig. 14. Contour plot of GWLP 3 at N = 200.

Fig. 15. Contour plot of minimal order LP at N = 200.

Fig. 16. Contour plot of WLP at N = 200.

with had a larger threshold SNR. It is also observed
that the estimation accuracy increased with .

Fig. 17. Contour plot of WPA at N = 200.

Fig. 18. Mean square frequency errors of different approximations of GWLP
2 versus SNR at N = 20 and ! = 0:1�.

Fig. 19. Mean square frequency errors of different approximations of GWLP
2 versus SNR at N = 200 and ! = 0:1�.

V. CONCLUSION

Three computationally simple frequency estimation algo-
rithms, viz. GWLP 1, GWLP 2, and GWLP 3, have been
developed for a complex sinusoid embedded in white noise.
The GWLP 1 is the fundamental algorithm which is derived
straightforwardly using the ideas of linear prediction and
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Fig. 20. Mean square frequency errors of different approximations of GWLP
2 versus ! at SNR = 10 dB and N = 20.

Fig. 21. Mean square frequency errors of different approximations of GWLP
2 versus ! at SNR = 10 dB and N = 200.

weighted least squares. The other two algorithms are the
approximate realizations of the GWLP 1 and they involve
fewer computations. The proposed approach can be considered
as a generalized version of Kay’s weighted linear predictor
frequency estimator. In particular, computational requirement,
convergence as well as mean and variance analysis of the
GWLP 2 are studied. It is shown that the GWLP 1 and GWLP
2 can provide optimum estimation accuracy while the GWLP 3
is a suboptimum estimator. As a result, the GWLP 2 is the best
among the three estimators in terms of estimation performance
and implementation complexity.

APPENDIX A

In this Appendix, we prove that if , the fre-
quency estimate of GWLP 2 will converge to the true frequency
for infinite data samples. Expanding
yields

(A1)

where
, and

such that and . The terms in (A1)
are analyzed as follows. The first term of (A1) is

(A2)

where if and it is equal to otherwise.
Considering the second and third terms of (A1) together, we
have

(A3)

where is given by

with

and

while the terms and are
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and

We notice that is real and has order of .
Furthermore, is .
Combining these results, (A3) is simplified as

(A4)

The last term of (A1) is

(A5)

where is

with

and

while the terms and are

and

We note that is real and applying the following result [35]:

is . Similarly, both and are
while and are . There-

fore, is . Com-
bining these results, (A5) is simplified as

(A6)

With the use of (A2), (A4), and (A6), the magnitude and
phase angle of can be calculated as (A7) and (A8), shown
at the bottom of the page. By applying the following formulas
with

the second component in (A8) can be simplified to ,
and this implies

(A9)

which is (19). From (A7) and (A9), we get

(A10)

In a similar manner, it can be shown that

(A11)

Utilizing (A9)–(A11), the two conditions for convergence of
GWLP 2 are proved.

APPENDIX B

In this Appendix, we will prove that the frequency estimate
of the GWLP 2 is approximately unbiased and produce its vari-
ance expression. With the use of (13) and (A1), the frequency
estimate of the GWLP 2 is expressed as

(B1)

(A7)

and

(A8)
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where

(B2)

is the error in the frequency estimate.
We first notice that is real. Let

the real and imaginary parts of
be and , respectively, and noting that here

corresponds to the ideal weighting matrix of (10). Assuming that
the estimation error is sufficiently small, we use Taylor’s series
to expand around 0 up to the first-order term to obtain [7]

(B3)

The denominator of (B3) can also be expressed as

(B4)

where

(B5)

and tr represents the trace operation. The entry of is
evaluated as . With the use of (12) and

[36], is calcu-
lated as

(B6)

To investigate the numerator of (B3), we decompose into
where ,

and . Expanding as
, and are computed as

(B7)

and

(B8)

where (see the equations at the bottom of the page). Since
and are uncorrelated, it is easily seen from (B7) and

(B8) that , which implies
or the approximately unbiasedness of .

To compute the variance of , we use (B3) again, as follows:

(B9)

Since and are uncorrelated, we have

(B10)

With the use of (B7) and (B8), and are calcu-
lated as

(B11)

and

(B12)

Substituting (B6) and (B10)–(B12) into (B9) yields (24).
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