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Nonparametric Change Detection and Estimation in
Large Scale Sensor Networks

Ting He, Shai Ben-David, and Lang Tong†

Abstract— The problem of detecting changes in the distribution
of alarmed sensors is considered. Under a nonparametric change
detection framework, we present several detection and estimation
algorithms based on the Vapnik-Chervonenkis theory. Theoretical
performance guarantees are obtained by providing error expo-
nents for false-alarm and miss detection probabilities. Recursive
algorithms for the efficient computation of test statistics are
derived. The estimation problem is also considered in which,
after detection is made, the location with maximum distribution
change is estimated.

Index Terms— Nonparametric change detection, Sensor Net-
works, Detection and estimation algorithms.

I. I NTRODUCTION

We consider the detection of certain phenomenal change in a
large-scale randomly deployed sensor field. For example, sen-
sors may be designed to detect certain chemical components.
When the sensor measurement exceeds certain threshold, the
sensor is “alarmed”. The state of a sensor depends on where
it resides; sensors in some area are more likely to be in the
alarmed state than others are. We are not interested in the event
that certain sensors are alarmed. We are interested instead
in whether there is a change in the geographical distribution
of alarmed sensors from data collections at two different
times. Such a change in distribution could be an indication
of abnormality.

First data collection Second data collection

Fig. 1. Reported alarmed sensors (red) in two collections.

We assume that some (not necessarily all) of the alarmed
sensors are reported to a fusion center, either through the use a
mobile access point (SENMA [1]) or using certain in-network
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routing scheme. Suppose that the fusion center obtains reports
of the locations of alarmed sensors, as illustrated in Fig. 1,
from two separate data collections. In theith report, let the lo-
cation of alarmed sensors have some unknown distributionPi,
and each sampleSi be a set of locations drawn independently
according toPi. The change detection problem considered in
this paper is one of testing whetherP1 = P2 without making
prior assumptions about the data generating distributionsPi.
Note thatPi only specifies the geographical distribution of
alarmed sensors. The joint distribution of alarmed and non-
alarmed sensors is not specified completely. A change inPi

may be caused by the change of the actual phenomenon or
the change of the sensor lay-out.

Such a general nonparametric assumption comes with a
cost of usually requiring large sample size, which renders the
solution in this paper most applicable in large-scale sensor
networks where it is possible to obtain a large amount of
sensor data.

There is also a related estimation problem in which, assum-
ing that the detection of change has been made, we would like
to know where in the sensor field the change has occurred, or
where the change is the most significant (in a sense that will
be made precise later).

A. Summary of Results

In this paper we present a number of nonparametric change
detection and estimation algorithms based on an application of
Vapnik-Chervonenkis Theory [2]. The basis of this approach
has been outlined in [3] where we provided a mathematical
characterization of changes in distribution. Our focus in this
paper is on the algorithmic side, aiming at obtaining practical
algorithms that scale with the sample size along with a certain
level of performance guarantee.

We first present results that establish a theoretical guar-
antee of performance. The nonparametric detection problem
considered here depends on the choice of the distance mea-
sure between two probability distributions, and the choiceis
usually subjective. We consider two distance measures in this
paper. The first is the so-calledA-distance(also used in [3])
that measures the maximum change in probability onA—a
collection of measurable sets. The second is called relative
A-distance—a variation from that in [3]—for cases when
the change in probability is concentrated in areas of small
probability. With these two distance measures, we apply the
Vapnik-Chervonenkis Theory to obtain exponential bounds1

1Here we mean the error probabilities decay exponentially with the increase
of sample size.
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on detection error probabilities and establish the consistency
results for the proposed detector and estimator.

Next we derive a number of practical algorithms. The com-
plexity of applying the Vapnik-Chervonenkis Theory comes
from the search among a (possibly infinite) collection of
measurable sets. In particular, given dataS being the union
of the samples from the two collections,i.e., S = S1

⋃

S2,
the key is to reduce the search in an infinite collection of sets
(e.g., planer disks) to a search in afinite collectionH(S) (a
function of S). Here we need a constraint onH(S) such that
this reduction does not affect the performance.

We consider three commonly used geometrical shapes—
disks, rectangles, and stripes—as our choices of measurable
sets A. For the A-distance measure, ifM = |S| is the
total number of data points in the two collections, we show
that a direct implementation of exhaustive search among the
collection of all planer disks has the complexityO(M4). We
present a suboptimal algorithm, the Search in sample-Centered
Disks (SCD), that has the complexityO(M2 log M). Under
mild assumptions onPi, the loss of performance of SCD
diminishes as the sample size increases. For the class of axis-
aligned rectangles, we show that the optimal search Search
in Axis-aligned Rectangles (SAR) has complexityO(M3). A
suboptimal approach Search in Diagonal-defined axis-aligned
Rectangles (SDR) reduces the complexity toO(M2), again,
with diminishing loss of performance under mild assumptions.
For the collection of strips, we present two algorithms: Search
in Axis-aligned Stripes (SAS) and Search in Random Stripes
(SRS), both have complexityO(M log M). Similar analysis
has also been obtained for the relative distance metric. See
Table I.

We implement several algorithms and verify their perfor-
mance through simulation. We also answer some practical
questions arising in the implementation of the detector,e.g.,
how to decide the detection threshold and how to estimate the
minimum sample size.

B. Related Work and Organization

The problem of change detection in sensor field has been
considered in different (mostly parametric) settings [4],[5].
The underlying statistical problem considered in this paper
belongs to the category of two-sample nonparametric change
detection. A classical approach is the Kolmogorov-Smirnov
two-sample test [6] in which the empirical cumulative dis-
tributions are compared, and the maximum difference in the
empirical cumulative distribution functions are used as test
statistics. In a way, the methods presented in this paper
generalize the idea of Kolmogorov-Smirnov test to a more
general collection of measurable sets using general forms
of distance measures. Indeed, the Kolmogorov-Smirnov two-
sample test becomes a special case of the SAR (Search in
Axis-aligned Rectangles) algorithm presented in Section IV-
A.2.

There is a wealth of nonparametric change detection tech-
niques for one-dimensional data set in which data are com-
pletely ordered. Examples include testing the number of runs
(successive sample points from the same collection) such as

Wald-Wolfowitz runs test, or testing the relative order of the
sample points, e.g. median test, control median test, Mann-
Whitney U test, and linear rank statistic tests [6]–[8]. Such
techniques, however, do not have natural generalizations for
the two dimensional sensor network applications.

This paper is organized as follows. Section II specifies the
model and defines the detector and the estimator. Section III
states the main theorems about the exponential bounds on
error probabilities of the detector and the consistency of the
estimator. Section IV presents the detection and estimation
algorithms, and Section V provides simulation results. We
conclude with comments about the strengths and weaknesses
of the proposed approach.

II. T HE PROBLEM STATEMENT

A. The Model

We consider two probability measuresP1 and P2 on the
same measurable space(X,F) where(X,F , Pi) models the
ith random collection of the locations of the alarmed sensors2.
DenoteSi as the set of locations of alarmed sensors in theith
collection andS = S1

⋃

S2 the set that contains data from
the two collections. We assume that, in each collection, the
locations of alarmed sensors are drawn i.i.d. according toPi

3

and the drawings in different collections are also independent.
The probability measuresPi are not known, and we make no
specific assumptions on their form. Note that how unalarmed
sensors are distributed is not specified, we can model arbitrary
correlations among them; they will not have any impact on
our result. This allows us to model certain types of correlated
sensor readings.

We introduce a collectionA ⊆ F of measurable sets
to model the set of geographical areas that are of practical
interest. The collectionA does not have to be finite or even
countable, and is part of the algorithm design. For example,
we may be interested in the number of alarmed sensors in a
circle centered at some locations ∈ X with some radiusr.
If we defineA as the collection of measurable subsets ofX
that we are interested in, it may be reasonable to focus on
the probabilities of sets inA (rather than those inF). The
choice ofA is subjective, of course, and it depends on the
application at hand. We will focus in this paper on regular
geometrical shapes: disks, rectangles, and stripes.

Given a pair of samplesS1, S2 drawn i.i.d. from distribu-
tions P1, P2, and a collectionA ⊆ F , we are interested in
whether there is a change in probability measure onA and, if
there is a change, where the maximum change of probability
occurs. Specifically, the detection problem considered in this
paper is the test of hypotheses onA

H0 : P1 = P2 vs. H1 : P1 6= P2
4

The estimation problem, on the other hand, is to estimate the
eventA∗ ∈ A that gives the maximum change. For example,

2The notation(X,F , Pi) is standard:X is the sample space,F theσ-field,
Pi the probability measure.

3Note that the probability that an alarmed sensor reports to the fusion center
may be different across sensors. This probability can be incorporated intoPi.

4H0 saysP1(A) = P2(A) for all A ∈ A. H1 says∃A ∈ A s.t.P1(A) 6=
P2(A).
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using theA-distance measure,

A∗ = arg max
A∈A

|P1(A) − P2(A)|.

We will also consider a relative measure of change defined in
Section II-B.

B. Distance Measures

To measure “change”, we need some notion of distance
between two probability distributions. In this paper, we will
consider two distance measures:A-distance and relativeA-
distance.

A-distance and empiricalA-distance [3] Given probability
spaces(X,F , Pi) and a collectionA ⊆ F , the A-distance
betweenP1 andP2 is defined as

dA(P1, P2) = sup
A∈A

|P1(A) − P2(A)|. (1)

The empirical A-distancedA(S1, S2) is similarly defined by
replacingPi(A) by the empirical measure

Si(A)
∆
=

|Si

⋂

A|
|Si|

(2)

where|Si ∩ A| is the number of points in bothSi and setA.

This notion of empiricalA-distancedA(S1, S2) is related
to the Kolmogorov-Smirnov two-sample statistic. For the case
where the domain set is the real line, the Kolmogorov-Smirnov
test considers

sup
x

|F1(x) − F2(x)|, Fi(x)
∆
= Pi({y : y ≤ x})

as the measure of difference between two distributions. By
settingA to be the set of all the one-sided intervals(−∞, x),
dA(S1, S2) is the Kolmogorov-Smirnov statistic.

The A-distance does not take into account the relative
significance of the change. For example, one could argue
that changing the probability of a set from0.99 to 0.999 is
less significant than a change from0.001 to 0.01; the latter
amounts to a ten-fold increase whereas the former represents
an increase of about1%. For applications in which small
probability events are of interests, we introduce the following
notion ofrelativeA-distancethat takes the relative magnitudes
of a change into account.

Relative and Empirical Relative A-distance Given proba-
bility spaces(X,F , Pi) and a collectionA ⊆ F , the relative
A-distancebetweenP1 andP2 is defined as

φA(P1, P2) = sup
A∈A

fφ(P1(A), P2(A)), (3)

wherefφ : [0, 1] × [0, 1] → [0,
√

2] is defined as

fφ(x, y) =

{

0 if x = y = 0
|x−y|√

x+y
2

o.w. . (4)

The empirical relativeA-distanceis defined similarly by
replacingPi(A) with the empirical measure defined in (2).

The above definition is slightly different from that used in
[3]. It is obvious that|P1(A)−P2(A)| is a metric. The proof

that |P1(A)−P2(A)|
√

P1(A)+P2(A)
2

is a metric follows from [9]. Note that in

generaldA(P1, P2) = 0 or φA(P1, P2) = 0 does not imply
P1 = P2, but impliesP1(A) = P2(A),∀A ∈ A. If we only
care about sets inA, dA and φA defined above are pseudo-
metrics onA.

C. Detection and Estimation

With the distance measure defined, we can now specify the
class of detectors and estimators considered in this paper.

Detector δ(S1, S2; ǫ): Given two collections of sample points
S1 and S2, drawn i.i.d from probability distributionsP1 and
P2 respectively, and thresholdǫ ∈ (0, 1), for hypothesesH0

vs. H1, the detector5 using theA-distance is defined as

δdA
(S1, S2; ǫ) =

{

1 if dA(S1, S2) > ǫ
0 otherwise

(5)

The detectorδφA
(S1, S2; ǫ) using the relativeA-distance is

defined the same way by replacingdA(S1, S2) by φA(S1, S2)
and lettingǫ ∈ (0,

√
2).

Assuming that a change of probability distribution has
occurred, we define the estimator for the event that gives the
maximum change in probabilities.

Estimator Â∗(S1, S2): Given two collection of sample points
S1 and S2, drawn i.i.d from probability distributionsP1 and
P2 respectively, the estimator for the event that gives the
maximum change of probability is defined as

Â∗
dA

(S1, S2) = arg max
A∈A

|S1(A) − S2(A)| .

The estimatorÂ∗
φA

(S1, S2) using the relativeA-distance is
defined similarly.

The definitions given above require searches in a possibly
infinite collection of sets. At the moment, we only specify what
the outcome should be without addressing the algorithmic pro-
cedure generating it. We will address that issue in Section IV.

III. PERFORMANCEGUARANTEE

We present in this section consistency results for the detector
and estimator presented earlier. The results are given in the
forms of error exponents.

First let us look at some technical preliminary from [2]. For
measurable space(X,F), let A ⊆ F . We say a setS ⊂ X is
shatterableby A if for all B ⊆ S, ∃A ∈ A s.t.

B = A ∩ S.

VC-Dimension The Vapnik-Chervonenkis dimension of a
collectionA of sets is

VC-d(A) = sup{n : ∃B s.t. |B| = n andB is shatterable byA}.

The VC-dimension of a class of sets quantifies its ability
to separate sets of points. Intuitively the VC-dimension ofa
classA is the maximum number of free parameters needed

5We use the convention that the detector gives the value1 for H1 and0
for H0.
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to specify a set inA. For example, ifA = {2D disks}, then
we see that at most3 free parameters are needed —x, y-
coordinates of the center and a radius, and it is shown that the
VC-dimension ofA is indeed3 [10].

Note that the VC-dimension of a class may be infinite,e.g.,
VC-dimension of the entireσ-field F is ∞ because any set is
shatterable byF .

Theorem 3.1 (Detector Error Exponents):Given probabil-
ity spaces(X,F , Pi) and a collectionA ⊆ F with finite
VC-dimensiond, let Si ⊂ X be a set ofn sample points
drawn according toPi. The false alarm probabilities for the
detectors defined in (5) are bounded by

PF (δdA
) ≤ 8(2n + 1)de−nǫ2/32, (6)

PF (δφA
) ≤ 2(2n + 1)de−nǫ2/4. (7)

Furthermore, ifdA(P1, P2) > ǫ and φA(P1, P2) > ǫ, the
miss detection probabilities satisfy, respectively,

PM (δdA
, P1, P2) ≤ 8(2n + 1)de−n[dA(P1,P2)−ǫ]2/32,

(8)

PM (δφA
, P1, P2) ≤ 16(2n + 1)de−n[φA(P1,P2)−ǫ]2/16.

(9)

Proof: See Appendix.

A few remarks are in order. First, if the maximum change
betweenP1 and P2 on A exceedsǫ, the detector detects the
change with probability arbitrarily close to1 as the sample
size goes to infinity. Similarly, if there is no change inPi on
A, then the probability of false alarm also goes to zero. Notice
that the decay rates of the error probabilities are different when
the two different distance measures are used; from (6,7), the
decay rate of false alarm probabilities for the detector using
φA is eight times that usingdA.

Second, the above theorem provides a way of deciding
the detection thresholdǫ for a particular detection criterion.
For example, the threshold (not necessarily optimal) of the
Neyman-Pearson detection for a given sizeα can be obtained
from the bounds on false alarm probabilities. Theorem 3.1
suggests that we should choose(n, ǫ) such that

8(2n + 1)de−nǫ2/32 ≤ α for δdA
(10)

2(2n + 1)de−nǫ2/4 ≤ α for δφA
. (11)

Taking ǫ(n) to make the inequalities equal gives a threshold

ǫ(n) =







√

32
n log 8(2n+1)d

α for δdA
√

4
n log 2(2n+1)d

α for δφA

(12)

We shall think ofǫ(n) as a measure of detector sensitivity.
From (8,9) in Theorem 3.1, we see that miss detection proba-
bility starts to drop exponentially whenǫ(n) < dA(P1, P2) or
ǫ(n) < φA(P1, P2). Thus, roughly,ǫ(n) is a lower bound
on the amount of changes in order for the change to be
detected with high probability. Furthermore, the smaller the
ǫ(n), the larger the values of[dA(P1, P2) − ǫ(n)]2/32 and
[φA(P1, P2) − ǫ(n)]2/16, and the lower the upper bound on
miss detection probability.

Third, note that the VC-dimensiond of A has diminishing
effects on the rate of decay of error probabilities. The selection
of A, however, may affect the error exponent throughdA or
φA. Furthermore, the selection ofA has a significant impact
on the complexity of practically implementable algorithms.

Finally, we should also note that, while we have stated the
above theorem under|Si| = n, the results generalized easily
to the case when two collections have difference sizes but they
are proportional.

The consistency of the estimator is implied by the following
theorem.

Theorem 3.2:Given probability spaces(X,F , Pi) and
a collection A ⊆ F with finite VC-dimension, if
arg max

A∈A
|P1(A)−P2(A)| is well defined,i.e., it is unique, then

with probability going to1 asn → ∞ (with high probability),

arg max
B∈A

|S1(B) − S2(B)| = arg max
A∈A

|P1(A) − P2(A)|.

Similarly, if arg max
A∈A

fφ(P1(A), P2(A)) is well defined,

then with high probability

arg max
B∈A

fφ(S1(B), S2(B)) = arg max
A∈A

fφ(P1(A), P2(A)).

Proof: See Appendix.

IV. A LGORITHMS

We now turn our attention to practically implementable
algorithms and their complexities. The key step is to obtain
test statistics within a finite number of operations, preferably
with the complexity that scales well with the total number of
data pointsM = |S1

⋃

S2|.
Given sample pointsS = S1

⋃

S2 and a possibly infinite
collection of setsA, we need to reduce the search inA to a
search in afinitecollectionH(S) ⊂ A, and replacedA(S1, S2)
by dH(S1, S2). If H is not chosen properly, such a reduction
of the search domain may lead to a loss of performance. Thus
we need the notion of completeness when choosing the search
domain.

CompletenessGiven A being a collection of measurable
subsets of spaceX, and S ⊂ X be a set of points inX.
Let H(S) ⊂ A be a finite sub-collection of measurable sets
which is a function ofS. We call the collectionH(S) complete
for S with respect toA if ∀A ∈ A, there exists aB ∈ H(S)
such thatS ∩ A = S ∩ B.

The significance of the completeness is that, ifH(S1 ∪S2)
is complete w.r.t.A, then dA(S1, S2) = dH(S1, S2) and
φA(S1, S2) = φH(S1, S2).

For the choice ofA, we consider regular geometric areas,
e.g.,disks, rectangles, and stripes. We present next six algo-
rithms for different choices ofA and sub-collectionH. We
first present complete algorithms, i.e. the sub-collectionH is
complete with respect toA. Next we give a couple of heuristic
algorithms which simplify the computation at the cost of a loss
in completeness.

Hereinafter all sets defined are closed sets unless otherwise
stated.
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A. Complete Algorithms

1) Search in Planar Disks (SPD):Let A be the collection
of two dimensional disks. Let VC-d denote the VC-dimension
of a class. The following result is proved by [10]:

Proposition 4.1:

VC-d(A) = 3.
For the set of sample pointsS ⊆ X, consider the finite

sub-collection ofA defined by

HD(S)
∆
=

⋃

(si,sj ,sk)∈T

HD(si, sj , sk) (13)

where

T ∆
= {si, sj , sk ∈ S3 : si, sj , sk are not collinear},

and

HD(si, sj , sk)
∆
= {D(si, sj , sk),D(si, sj , sk) \ {si},

D(si, sj , sk) \ {sj}, . . . ,D(si, sj , sk) \ {si, sj , sk}}
where D(si, sj , sk) is the disk with si, sj , and sk on its
boundary, i.e., HD(si, sj , sk) is D(si, sj , sk) and all the7
variations for excluding some of the3 boundary points. See
Figure 2.

s1

s2

s3

s4
s5

D(s1, s2, s3) ∈ HDD′(s4, s5) ∈ HCD

Fig. 2. Members ofHD andHCD; ◦: sample point inS1, •: sample point
in S2

In [11] we have proved the following result:

Proposition 4.2:LetA be the collection of two dimensional
disks. ForS1 and S2 drawn fromP1 and P2, if P1 and P2

are such that any set with Lebesgue measure0 has probability
06, then the finite collectionHD(S1 ∪ S2) in (13) is complete
with respect toA a.s.(almost surely).

With HD(S) defined above, the algorithm SPD(dA)—Search
in Planar Disks using distance metricdA—is given by

max
A∈HD

|S1(A) − S2(A)| .

Algorithm SPD(dA) includes three steps: (i) generating
elements ofHD; (ii) computing

∣

∣

∣

|S1∩A|
|S1|

− |S2∩A|
|S2|

∣

∣

∣
by counting

6This is true ifP1,P2 are absolutely continuous,i.e., having pdf, because
any measurable function has integration0 on a0-measure set.

|S1 ∩A| and |S2 ∩A| for everyA ∈ HD, and (iii) finding the
maximum.

Algorithm SPD(φA) (Search in Planar Disks using the
metric φA) is the same as SPD(dA) except in step (ii) where
the relative empirical measure is computed.

We now analyze the complexity of SPD. The complexities
of both SPD(dA) and SPD(φA) are O(M4) for sample size
M = |S1 ∪ S2|. This is because there areO(M3) disks to
consider, and the counting of|S1 ∩ A| and |S2 ∩ A| for each
disk takesM steps.

2) Search in Axis-aligned Rectangles (SAR):We now
consider the collectionA of axis-aligned rectangles. Then we
have the following property:

Proposition 4.3:

VC-d(A) = 4.

Proof: It is easy to see that VC-d(A) ≥ 4. See Fig. 3. The set

x

y

xmin xmax

ymin

ymax

s1

s2

s3

s4

s5

Fig. 3.

{s1, s2, s3, s4} is shatterable byA.
For any setS of more than4 points. Letxmin, xmax, ymin, ymax

be the minimum and the maximumx, y-coordinates for points
in S, and let the points with these coordinates bes1, s2, s3, s4

(some of them can be the same). Then any axis-aligned
rectangle containing{s1, s2, s3, s4} containsS. The subset
{s1, s2, s3, s4} cannot be obtained by shatteringS with A,
andS is not shatterable. Hence VC-d(A) ≤ 4.

¥

Given samplesS1 and S2, let S = S1 ∪ S2 =
{(x1, y1), · · · , (xM , yM )} where, at the cost ofO(M log M),
we may assume thatx1 ≤ x2 ≤ · · · ≤ xM . Let the finite
collectionHR(S) be defined by

HR(S)
∆
= {R(yi, yj , xm, xn) : (xk, yk) ∈ S, k = i, j,m, n}

(14)
whereR(yi, yj , xm, xn) is the rectangle defined by the four
lines y = yi, y = yj , x = xm, x = xn. See Figure 4.

Proposition 4.4:Let A be the class of two dimensional
axis-aligned rectangles. GivenS1 andS2, the finite collection
HR(S1 ∪ S2) in (14) is complete with respect toA.

The reason for this proposition is that for any axis-aligned
rectangleR and givenS, we can find axis-aligned rectangle
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replacements
y1

y4

x2 x3

s1

s2

s3

s4
R(y1, y4, x2, x3) ∈ HR

Fig. 4. Members ofHR

R′ such thatR′ ∩ S = R ∩ S andR′ has at least one sample
point on each side of the boundary, where points on different
sides are not necessarily different. SinceHR includes all those
rectangles, it is complete w.r.t.A.

Algorithm SAR(dA) computesdHR(S1, S2). Because of
the ordering inxi’s, the collectionHR allows a recursive
calculation of distance measures. Specifically, for fixedyi and
yj s.t. yi ≤ yj , define

fk
ij(n)

∆
= |Sk ∩ R(yi, yj , x1, xn)|/|Sk|, k = 1, 2 (15)

Fij(n) = f1
ij(n) − f2

ij(n) (16)

Thenfk
ij(n) (n = 1, . . . ,M ) can be computed recursively by

fk
ij(n) =

{

fk
ij(n − 1) + 1

|Sk|
yn ∈ [yi, yj ], (xn, yn) ∈ Sk

fk
ij(n − 1) otherwise

.

Then find

imax = arg max
n

Fij(n), imin = arg min
n

Fij(n)

l
∆
= min{imax, imin} + 1, u

∆
= max{imax, imin}

The optimal rectangle, for fixedyi and yj , is then given by
R(yi, yj , xl, xu), and the maximum difference in empirical
probabilities is given byFij(imax) − Fij(imin).

Finally, compute

dHR(S1, S2) = max
i,j:yi≤yj

(Fij(imax) − Fij(imin)).

The pair (i, j) that achieves this maximum gives the best
rectangle inHR.

Algorithm SAR(φA) computesφHR(S1, S2). For fixedyi

and yj (yi ≤ yj), we computef1
ij(n) and f2

ij(n) for n =
1, . . . ,M as before. Compute empirical probabilities for every
pair xm < xn by

Sk(R(yi, yj , xm, xn)) = fk
ij(n) − fk

ij(m), k = 1, 2 (17)

Then optimizing over all the pairs ofx’s andy’s

max
i,j,m,n:

yi≤yj,m<n

|S1(R(yi, yj , xm, xn)) − S2(R(yi, yj , xm, xn))|
√

S1(R(yi,yj ,xm,xn))+S2(R(yi,yj ,xm,xn))
2

givesφHR(S1, S2) and the best rectangle.

We now analyze the complexity of Algorithm SAR.
SAR(dA) has complexityO(M3), and SAR(φA) has com-
plexity O(M4). This is because in computingdA we can use
the fact that

max
m,n

|(f1
ij(n) − f1

ij(m)) − (f2
ij(n) − f2

ij(m))|

= max
m,n

|(f1
ij(n) − f2

ij(n)) − (f1
ij(m) − f2

ij(m))| (18)

= max
n

(f1
ij(n) − f2

ij(n)) − min
m

(f1
ij(m) − f2

ij(m)) (19)

and reduce the two-variable optimization to two one-variable
optimizations, which are done in linear time. To computeφA,
however, we have to check all theO(M2) (xm, xn) pairs.
The search is then repeated for all theO(M2) (yi, yj) pairs.
Note that the VC-dimension of the collection of axis-aligned
rectangles is4 while the VC dimension of the collection of
planar disks is3, which results in a larger sample sizeM for
Algorithm SAR as we discuss later.

3) Search in Axis-aligned Stripes (SAS):The complexities
of algorithms SPD and SAR may be formidable for large
M . This urgent need of reducing complexity gives birth to
a simplified algorithm that deals with axis-aligned stripes.
The basic idea is to project sample points ontox and y
coordinates, and then perform change detection/estimation on
each coordinate.

Let A be the collection of vertical stripes, i.e., axis-aligned
rectangles with height equal to the field height. Similarly,
let B be the collection of horizonal stripes. The following
property is true:

Proposition 4.5:

VC-d(A ∪ B) = 4.

Proof: It is easy to see that VC-d(A ∪ B) ≥ 4. See Fig. 5.

x

y

s1

s2

s3

s4

Fig. 5.

The set{s1, s2, s3, s4} is shatterable byA ∪ B.
For any setS of more than4 points. Letsl, sr, su, so be the

points with the minimum and the maximumx, y-coordinates
in S accordingly (not necessarily different). Then any vertical
stripe containing{sl, sr} containsS, and any horizonal stripe
containing{su, so} also containsS. The subset{sl, sr, su, so}
cannot be obtained by shatteringS with A∪B, and thusS is
not shatterable byA ∪ B. Hence VC-d(A ∪ B) ≤ 4.
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Given a collection of sample pointsS = S1 ∪ S2, consider
finite subsetsHV(S) ⊂ A andHH(S) ⊂ B defined by

HV(S)
∆
= {V (xi, xj) : si = (xi, yi), sj = (xj , yj) ∈ S}

(20)

HH(S)
∆
= {H(yk, yl) : sk = (xk, yk), sl = (xl, yl) ∈ S}

(21)

where V (xi, xj) is the vertical stripe with left and right
boundaryxi andxj , andH(yk, yl) is the horizonal stripe with
lower and upper boundaryyk andyl. See Figure 6.

si

sj

sk

sl

xi xj

yk

yl

H(yk, yl) ∈ HH

V (xi, xj) ∈ HV

Fig. 6. Members ofHV andHH

Proposition 4.6:Let A be the class of vertical stripes and
B be the class of horizonal stripes. GivenS1 andS2, the finite
collectionHV(S1∪S2)∪HH(S1∪S2) defined in (20) and (21)
is complete with respect toA ∪ B.

The proposition is easy to verify because for any axis-
aligned stripe, we can find another axis-aligned stripe with
the same intersection withS and at least one sample point on
each boundary. Thus it suffices to consider stripes with sample
points on the boundary.

Given S, Algorithm SAS(dA) performs the following
search

max
A∈HV∪HH

|S1(A) − S2(A)| .

The algorithm includes the following steps: (i) project
sample points ontox andy coordinates; (ii) sort the projected
sample points into increasing order; (iii) in thex coordinate
(we havex1 ≤ x2 ≤ · · · ≤ xM ), for i = 1, . . . ,M , compute
fk

x (i)
∆
= Sk(V (0, xi)) (k = 1, 2) recursively by

fk
x (i) =

{

fk
x (i − 1) + 1

|Sk|
if si ∈ Sk

fk
x (i − 1) otherwise

, (22)

and then computeFx(i)
∆
= f1

x(i) − f2
x(i); computeFy(j)

∆
=

S1(H(0, yj)) − S2(H(0, yj)) similarly; (iv) find

m1 = arg max
i

Fx(i), m2 = arg min
i

Fx(i).

n1 = arg max
j

Fy(j), n2 = arg min
j

Fy(j).

We then have

max
A∈HV∪HH

|S1(A) − S2(A)|

= max(Fx(m1) − Fx(m2), Fy(n1) − Fy(n2)) (23)

and the estimation of the changed area isV (xm1
, xm2

)
if Fx(m1) − Fx(m2) > Fy(n1) − Fy(n2), or H(yn1

, yn2
)

otherwise.

Algorithm SAS(φA) does the same in steps (i),(ii) and (iii),
but (iv) is changed to finding

φHV (S1, S2) = max
i,j:i<j

|S1(V (xi, xj)) − S2(V (xi, xj))|
√

S1(V (xi,xj))+S2(V (xi,xj))
2

(24)

whereSk(V (xi, xj)) is given byfk
x (j)− fk

x (i). φHH(S1, S2)
is computed similarly. Then

φHV∪HH(S1, S2) = max(φHV (S1, S2), φHH(S1, S2))

and the changed area is the stripe on which the maximum is
attained.

Now we analyze the complexities of Algorithm SAS(dA)
and Algorithm SAS(φA). Given M = |S1 ∪ S2|, the
complexity of Algorithm SAS(dA) is O(M log M). This is
because by projection, we only need to perform two linear-
complexity searches. Now the dominating part is the sorting
of sample points, which takesO(M log M). The complexity
of Algorithm SAS(φA) is O(M2) because in the two-variable
optimization there areO(M2) (xi, xj) pairs to consider.

4) Search in Random Stripes (SRS):Note that in Algorithm
SAS the choice ofx and y axes for projection is subjective,
and this choice should be part of algorithm design. When we
know nothing about the change, introducing randomness may
give more robustness to the algorithms.

For θ randomly selected from[0, π
2 ], choseAθ to be the

collection of vertical stripes rotated (counter-clockwise) by
θ, and Bθ to be the collection of horizonal stripes rotated
by θ. Define Hθ

V (S) and Hθ
H(S) to be members ofAθ, Bθ

accordingly, with sample points on the boundary, which is
similar to definitions (20,21).

We claim similar properties forAθ∪Bθ andHθ
V (S)∪Hθ

H(S),
i.e., VC-d(Aθ∪Bθ) = 4 andHθ

V (S)∪Hθ
H(S) is complete with

respect toAθ ∪Bθ. Note that introducingθ does not increase
the VC-dimension to5 because the projection direction is
randomly chosen but not optimized over.

Algorithm SRS is a randomized variation of Algorithm
SAS. It is based on the same projection and search idea as
in Algorithm SAS. The difference is when performing the
projection, we project sample points onto random directions
instead of the fixed directions ofx andy axes. The rest of the
algorithm is the same as Algorithm SAS.

Algorithm SRS has the same order of complexity as Algo-
rithm SAS in computing bothdA andφA. The advantage of
Algorithm SRS is that it is more robust than Algorithm SAS.
Specifically, as a randomized algorithm, SRS will perform
equally well under a wider range of change patterns (the way



SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING, APRIL, 2005. 8

change occurs) while SAS can be affected significantly by
the change pattern. For example, SAS is vulnerable to the
pattern where changes always occur along a tilted line of angle
45◦ or 135◦, because in that case the increasing and decreasing
parts of the change will largely get cancelled when projected
onto axes.

A quick comment is in order. Both Algorithm SAS and
Algorithm SRS can be easily generalized to algorithms of
multiple projections. By doing multiple projections and line
searches, we can increase the accuracy of the algorithm at the
cost of a constant factor increase in the complexity.

B. Heuristic Algorithms

Some complete algorithms may be good in performance but
too expensive to implement in practice, while the simplified
complete algorithms SAS and SRS may be not sensitive
enough to detect the changes despite their improved com-
plexities. A trade-off is heuristic algorithms which have lower
complexities than their complete counterparts and perform
reasonably well for certain classes of distributions.

1) Search in sample-Centered Disks (SCD):In calculating
the distances onHD in SPD, it is difficult to reuse the
calculation since sample-defined disks may overlap in arbitrary
ways. We define here a different sub-collection in which disks
form nested sets, which allows the recursive computation of
distances.

Let A be the collection of two dimensional disks. Given
sampleS = S1

⋃

S2, HCD(S) ⊂ A is the sub-collection of
sample-centered disks defined by

HCD(S)
∆
= {D′(si, sj) : si, sj ∈ S} (25)

whereD′(si, sj) is the disk withsi at the center andsj on
the boundary. See Figure 2.

Proposition 4.7:

VC-d(HCD) = 2.

Proof:

It is easy to see that VC-d(HCD) ≥ 2 because any set of two
points can be shattered (a singleton also belongs toHCD).

For any setS of 3 points, i.e., S = {s1, s2, s3}. Let

|s1s2| = max
i, j∈{1, 2, 3}

|sisj |.

Then {s1, s2} cannot be shattered (i.e., obtained by shatter-
ing) because the only way to shatter it is byD′(s1, s2) or
D′(s2, s1), but they both contains3. Hence any suchS is not
shatterable, and VC-d(HCD) ≤ 2.

¥

Unfortunately,HCD is not complete with respect toA. For
some classes of probability distributions, however, it turns out
that SCD has the same performance as SPD asymptotically.
For example, if there exists some center point such that any
neighborhood around the center has reasonably high proba-
bility, SCD is expected to perform almost as well as SPD.

Generally, if probability measuresPi are such that any disk
with positive Lebesgue measure has positive probability, then
the loss of performance vanishes asymptotically. Considera
disk and an arbitrary neighborhood of its center, the strong
law of large numbers guarantees that as sample size goes
to infinity, there is a sample point within this neighborhood
of the center almost surely. This implies that as sample size
goes to infinity, Algorithm SCD will give the same output
as Algorithm SPD,i.e., the search of SCD is asymptotically
complete.

Algorithm SCD(dA) computes

max
A∈HCD

|S1(A) − S2(A)| .

The presence of increasing subsets allows the counting proce-
dure to be incremental, i.e. fix a center and count the number
of sample points recursively from the inner-most disk to the
outer-most disk.

Algorithm SCD(dA) does the following:
Fix a centersi and define

Fi(j)
∆
= S1(D

′(si, sj)) − S2(D
′(si, sj)) (26)

whereSk(D′(si, sj)), k ∈ {1, 2} is the empirical probability
of D′(si, sj) in Sk. First sort the sample points into increasing
ordersj1 , sj2 , . . . according to their distance tosi

7 (sj1 = si),
and then setFi(j0) = 0 and computeFi(jk) (k = 1, 2, . . . ,M )
recursively by

Fi(jk) =

{

Fi(jk−1) + 1
|S1|

if sjk
∈ S1

Fi(jk−1) − 1
|S2|

if sjk
∈ S2

.

Next compute

j∗(i) = arg max
j

|Fi(j)|. (27)

The search is repeated for all possiblesi. Finally, we find
the maximum among|Fi(j

∗(i))|,∀i, i.e.

imax = arg max
i

|Fi(j
∗(i))|. (28)

Then the optimal disk inHCD for A-distance is given by
D′(simax, sj∗(imax)), and the maximum difference is

max
A∈HCD

|S1(A) − S2(A)| = |Fimax(j
∗(imax))|.

Algorithm SCD(φA) computes

max
A∈HCD

|S1(A) − S2(A)|
√

S1(A)+S2(A)
2

.

Clearly when computingFi(j), we can getS1(D
′(si, sj)) and

S2(D
′(si, sj)) by similar update, so we can compute

Gi(j) =
|S1(D

′(si, sj)) − S2(D
′(si, sj))|

√

S1(D′(si,sj))+S2(D′(si,sj))
2

.

Then

max
A∈HCD

|S1(A) − S2(A)|
√

S1(A)+S2(A)
2

= max
i,j

Gi(j).

7This sort is at the cost ofO(M log M).
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The complexities of Algorithm SCD(dA) and Algorithm
SCD(φA) are of the same order. Their complexity, compared
with the O(M4) complexity of Algorithm SPD, is reduced
to O(M2 log M). The dominating term is the sorting of
the sample points according to their distances to a certain
sample point, which takesO(M log M) for each center, and
is repeated forM centers.

2) Search in Diagonal-defined axis-aligned Rectangles
(SDR): Algorithm SDR is a heuristic simplification of Al-
gorithm SAR. A major drawback of Algorithm SAR is that it
is much slower in computingφA distance (O(M4) compared
to O(M3) in computingdA). Aiming at reducing the cost of
computingφA for rectangles, we propose a simplified variation
of SAR: Algorithm SDR. Inspired by Kolmogorov-Smirnov
two-sample test [6], we reduce the search to the class of axis-
aligned rectangles having sample points on diagonal vertices.

Let A be the collection of axis-aligned rectangles. Given
sampleS = S1 ∪ S2, consider the following finite subset of
A defined by

HDR(S)
∆
= {R(yi, yj , xm, xn) : (xm, yi), (xn, yj) ∈ S

or (xm, yj), (xn, yi) ∈ S} (29)

whereR(yi, yj , xm, xn) is the axis-aligned rectangle defined
as in (14). See Fig. 7.

s1

s2

xmxn

yi

yj

R(yi, yj , xm, xn)I

II

III

IV

Fig. 7. Members ofHDR

Proposition 4.8:

VC-d(HDR) = 2.

Proof:

It is easy to see that VC-d(HDR) ≥ 2 because any set of two
points can be shattered (a singleton also belongs toHDR).

For any setS of 3 points, i.e., S = {s1, s2, s3}. If there
is no set inHDR containing S, then S is not shatterable.
Otherwise, lets1, s2 be the points defining such a set,i.e., the
axis-aligned rectangle with diagonal verticess1, s2 contains
S. Then {s1, s2} cannot be shattered because the only way
to shatter it is by the axis-aligned rectangle withs1, s2 as
diagonal vertices, but this rectangle also containss3. Hence
VC-d(HDR) ≤ 2.

¥

HDR is not complete w.r.t.A. However, by the same argu-
ment as in Algorithm SCD, we see that if the probability

distributions are such that any disk with positive measure
has positive probability, the loss of performance vanishesas
sample size goes to infinity.

Algorithm SDR(dA) and Algorithm SDR(φA) share the
following steps:

Initially, the algorithm builds two matricesC1 and C2 to
store the empirical cdf(cumulative distribution function) of S1

and S2. Specifically, assumingx1 ≤ x2 ≤ . . . ≤ xM , and
y1 ≤ y2 ≤ . . . ≤ yM , define

Ck(j, i)
∆
= |Sk ∩ R(0, yj , 0, xi)|/|Sk|, k = 1, 2.

ConstructC1 andC2 recursively:
(i) Sort S by the abscissa and ordinates respectively;

Define functionδk : {1, . . . ,M} → {0, 1}, k = 1, 2,

δk(j) = 1 if the sensor with ordinateyj belongs toSk.

Define functiong : {1, . . . ,M} → {1, . . . ,M},

g(j) = i if (xi, yj) ∈ S.

(ii) Compute the first row:

Ck(1,m) =
δk(1)

|Sk|
if m ≥ g(1) (30)

= 0 otherwise (31)

k ∈ {1, 2}, m = 1, . . . ,M .
(iii) Compute thej-th row, j = 2, . . . ,M :

Ck(j,m) = Ck(j − 1,m) +
δk(j)

|Sk|
if m ≥ g(j) (32)

= Ck(j − 1,m) otherwise (33)

k ∈ {1, 2}, m = 1, . . . ,M .

Then compute empirical probabilities for members ofHDR:
for every rectangleR(yi, yj , xm, xn) ∈ HDR, i ≤ j,m ≤ n, its
empirical probabilities are given by

Sk(R(yi, yj , xm, xn)) =
{

S′
k(R(yi, yj , xm, xn)) + δk(i)

|Sk|
if (xm, yi) ∈ S

S′
k(R(yi, yj , xm, xn)) + δk(i)+δk(j)

|Sk|
o.w.

(34)

where

S′
k(R(yi, yj , xm, xn)) = Ck(j, n) − Ck(i, n)

−Ck(j,m) + Ck(i,m), (35)

k ∈ {1, 2}. As seen in Fig. 7, the probability of the bold
rectangle is the probability ofI minus that ofII , minus III ,
and plusIV, and we need the amendments to take care of
boundary points.

Then Algorithm SDR(dA) computes

max
R∈HDR

|S1(R) − S2(R)| ,

and Algorithm SDR(φA) computes

max
R∈HDR

|S1(R) − S2(R)|
√

S1(R)+S2(R)
2

.
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Algorithm SDR(dA) and Algorithm SDR(φA) both have
complexityO(M2) because constructing matricesC1 andC2

takesO(M2) steps and the search exhausts theO(M2) rect-
angles inHDR. Note that this algorithm requires a substantial
amount of space:O(M2), which is due to the space to store
C1 andC2.

V. SIMULATION

A. Simulation Setup

In the simulation, we consider the case when the distribution
of collected sensors is a mixture of 2D uniform distributions,
one on ans × s squareD and the other centered atx0 ∈ D
with radiusr. Specifically, the PDF of the 2D random vector
x is given by

px0
(x) =







p
πr2p+(s2−πr2)q x ∈ D, ||x − x0|| ≤ r

q
πr2p+(s2−πr2)q x ∈ D, ||x − x0|| > r

0 otherwise

wherex0, p, q, and r are parameters,0 < r << s and 0 ≤
q < p ≤ 1.

This model corresponds to the scenario when sensors are
uniformly distributed inD, and a sensor is alarmed with
probability p if it is within distancer from x0 ∈ D and q
if it falls outside this distance. If we view the disk{x ∈
D : ||x − x0|| ≤ r} as the area where a noiseless sensor
measurement should be “alarm” and the area outside this disk
be where a noiseless measurement should be “non-alarm”, then
1 − p is the (uniform) miss detection probability andq is the
(uniform) false alarm probability at sensors.

Under hypothesisH0, two sets of sample points are drawn
i.i.d. from the samepx0

; underH1, one set of sample points
are drawn frompx0

, and the other set of sample points are
drawn independently fromp

x
′
0

for some other centerx′
0.

B. Detector Sensitivity

We consider Neyman-Pearson detection with detector size
α, and choose detection threshold according to (12) to guar-
antee that the detector’s false alarm will not exceedα.

Recalling thatǫ(n) measures detector sensitivity, we ex-
amine the relation betweenǫ(n), the VC-dimension and the
distance measure. Note that for fixed false alarm, we need
more sample points to achieve the same threshold for a test
searching in a class of larger VC-dimension. For searches in
classes of the same VC-dimension, the test using relativeA-
distance needs less sample points to achieve the same threshold
than the one usingA-distance. See Fig.8.

Fig.9 shows that the detection threshold is not sensitive to
the maximum false alarmα. We see that given a certain sample
size, a detector with a larger size would not have a much
smaller detection threshold. Hence increasing the sample size
is usually the only way to improve the accuracy of the detector.

C. Detector Performance

We focus on miss detection in our Monte Carlo simulations.
Fig. 10 and Fig. 11 show the miss detection probability vs.
sample size. We observe that there is a threshold sample size
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Fig. 8. Detection threshold as a function of the sample size for different
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Fig. 9. Detection threshold as a function of the detector size for different
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beyond which the miss detection probability drops sharply.
This can be explained using Theorem 3.1, which states that
the upper bound on miss detection probability begins to drop
when ǫ(n) < dA(P1, P2) for δdA

or ǫ(n) < φA(P1, P2)
for δφA

, and once it starts to drop, it drops exponentially.
A heuristic argument on the minimum sample size would be
that the sample sizen should be s.t.

ǫ(n) =

√

32

n
log

8(2n + 1)d

α
≤ dA(P1, P2) for δdA

(36)

ǫ(n) =

√

4

n
log

2(2n + 1)d

α
≤ φA(P1, P2) for δφA

(37)

If we know P1 and P2, we can calculatedA(P1, P2)
and φA(P1,2 ) to obtain a lower bound onn by solving
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the inequalities (36) and (37). An observation is that this
estimation is close to the minimum sample size required in the
simulation. For example, in our simulation setup, the estimated
minimum sample sizes for Algorithm SAS and SCD usingA-
distance metric are both2725, and that for SCD using relative
A-distance metric is53. As indicated in Fig. 10 and Fig. 11,
they all agree well to the sharp drop in missing detection
probabilities.
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Fig. 10. Miss detection probability ofδdA
as a function of the sample size:

simulation results. Herep = 0.98, q = 0.02, r = s/12. Use1000 Monte
Carlo runs.
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Fig. 11. Miss detection probability ofδφA
as a function of the sample size:

simulation results. Herep = 0.98, q = 0.02, r = s/12. Use10000 Monte
Carlo runs.

As expected, both threshold and miss detection probability
are decreasing functions of sample size, which reflects a trade-
off between detection precision and sampling time, energy
consumed and data processing expense.

We also plot the detection probability w.r.t. the size of
the detector. See Fig. 12 and Fig. 13. The plot shows the
detection probability does not increase significantly withthe
increase of the detector size, which is expected because the

size affects detection probability only through the threshold,
and the threshold is not sensitive to the change of size (see
Fig. 9).
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Fig. 13. Detection probability ofδφA
as a function of detector size,10000

Monte Carlo runs.

Note that by choosing the threshold from the upper bound
in (38) and (41), we only guarantee the false alarm is upper
bounded byα. Our simulation shows the actual false alarm
probability can be much less than the size of the detector8,
which implies that the theoretical threshold is a loose upper
bound of the actual minimum threshold needed to guarantee
the required detector size. This is because of the nonparametric

8For example, in our simulation of Algorithm SAS and SRS, for sample
size up to10, 000 using1000 Monte Carlo runs, we encounter no false alarm
at all.
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nature of the theoretical threshold. This threshold is proved
to satisfy the size constraint under arbitrary distributions
by the Vapnik-Chervonenkis Theory. Therefore for a given
distribution, this threshold may be loose.

For comparison among the algorithms, an obvious observa-
tion is thatδφA

outperformsδdA
in detection probability. This

is because on one hand, givenn andα, using (36,37) to choose
threshold yields thatǫ(n) for φA is 1/2

√
2 smaller than that

for dA; on the other hand, we haveφA(S1, S2) ≥ dA(S1, S2).
Therefore in our simulation it is easier for algorithms using
statisticφA(S1, S2) to detect a change. However, this is caused
by the specific way to decide the detection threshold, and does
not imply thatδφA

is uniformly better thanδdA
.

An intuitive guideline in algorithm design is that the better
sets inA separate the probability mass inP1 and P2 and
the simplerA is, the better the detector performance is, e.g.
Algorithm SCD performs better than Algorithm SAS and
SRS. Moreover, we can introduce random factors into the
algorithm to make it more robust, e.g. we randomize SAS
to be SRS so as to make it independent of the direction in
which change occurs.

VI. EXTENSION TO FINITE-LEVEL SENSOR

MEASUREMENTS

We have presented our results based on collecting sensor
locations of sensors with the same report (i.e., “alarm”).
Extension can be made to applications with finite-level sensor
measurements.

Without loss of generality, let each sensor report either it
is alarmed (say, measurement level1) or it is not alarmed
(level 0). In such a case, theith data collection is modelled
by probability space(X×{0, 1}, F , Pi) whereF is aσ-field
on X ×{0, 1}. Let random variablex ∈ X denote the sensor
location, andL ∈ {0, 1} denote the sensor report. In theith
collection,(x, L) has joint distributionPi, and the location of
alarmed sensors has conditional distributionPi|L=1. It is easy
to see that there are cases whenPi changes butPi|L=1 does
not. Hence by collecting both types of sensor reports, we are
able to detect a wider range of changes.

To apply the algorithms presented previously, choose class
A′ to be the collection of sets fromA in either 0-plane or
1-plane, i.e., A′ = A × {0, 1}. For instance, the collection
of planar disks becomes the collection of planar disks with
either measurement0 or measurement1. Algorithms should
be applied to both0-plane and1-plane and we choose the
larger as the test statisticsdA(S1, S2) or φA(S1, S2). The
detection and estimation performance guarantee still holds,
but note that the sample size now becomes the total number
of sensor reports collected (rather than the number of alarms
collected). Note that the VC-dimension of such a classA′

remains the same as that ofA:

Proposition 6.1:For a classA of planar sets,

VC-d(A× {0, 1}) = VC-d(A).

Proof:
It is easy to see that VC-d(A× {0, 1}) ≥VC-d(A).

For any setS, if S contains points from different planes,
S is not shatterable because no set inA × {0, 1} contains
points from different planes. IfS only contains points in one
plane, it is shatterable only if|S| ≤ VC-d(A). Therefore, VC-
d(A× {0, 1}) ≤VC-d(A).

¥

VII. C ONCLUSION

We have presented in this paper a nonparametric approach
to the detection of changes in the distribution of alarmed
sensors. We have provided exponential bounds for the miss
detection and false alarm probabilities. The error exponents
of these probabilities provide useful guideline for determining
the number of sample points required.

We have also proposed several nonparametric change de-
tection and estimation algorithms. Here we have aimed at
reducing the computation complexity while preserving the
theoretical performance guarantee by using recursive search
strategies that reuse earlier computations, which gives ustwo
near linear-complexity algorithms SAS and SRS. The more
expensive algorithms SCD and SDR also have their roles,
despite their near square cost, especially in detecting changes
of highly clustered distributions. This is because the search
classes in Algorithm SCD and SDR may yield larger
distance than the more simplified classes, which in turn gives
larger error exponents as indicated in Theorem 3.1. Moreover,
Algorithm SCD is much more efficient than the exhaustive
algorithm SPD with complexityO(M4), and Algorithm SDR
also improves the complexity of its exhaustive counterpart
Algorithm SAR significantly. Complexities of different algo-
rithms presented so far are summed up in the following table.

TABLE I

TIME COMPLEXITY COMPARISON

dA φA

SPD O(M4) O(M4)
SCD O(M2 log M) O(M2 log M)
SAR O(M3) O(M4)
SDR O(M2) O(M2)
SAS O(M log M) O(M2)
SRS O(M log M) O(M2)

Besides running time, one may also care about the amount
of storage used for executing the algorithms. ObviouslyO(M)
space is needed to storeS1 andS2, and the extra space needed
scales as follows:

TABLE II

SPACE COMPLEXITY COMPARISON

dA φA

SPD O(1) O(1)
SCD O(1) O(1)
SAR O(1) O(M)
SDR O(M2) O(M2)
SAS O(1) O(M)
SRS O(1) O(M)

Comparing these tables, one can see the time-space trade-
off in algorithm design. For example, although Algorithm SDR
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has comparable running time with Algorithm SCD, it requires
much more space to execute, i.e.O(M2) instead ofO(1). The
choice of algorithm should be a trade-off between running
time, space requirement and detection performance, with the
significance of each highly dependent on applications.

One should be further cautioned that the techniques consid-
ered in this paper typically require a large number of sample
points. Since no information about the distribution is used,
and the performance guarantee must hold for all distributions,
bounds derived here are conservative. While in this paper
we adhere to the principle of nonparametric approach, the
incorporation of certain prior knowledge about the distribution,
in the selection ofA for example, would lead to more effective
detection and estimation schemes in practice.

APPENDIX

A. Proof of Theorem 3.1

Proof: We first prove the theorem for detectors using
theA-distance metricdA(S1, S2) = supA∈A |S1(A)−S2(A)|.
From [12], we have

Pr{∃A ∈ A, ||P1(A) − P2(A)| − |S1(A) − S2(A)|| > ǫ}
≤ 8(2n + 1)de−nǫ2/32 (38)

UnderH0, P1 = P2, and the false alarm probability satisfies

PF (δ) = Pr{dA(S1, S2) > ǫ;H0}
= Pr{∃A ∈ A, |S1(A) − S2(A)| > ǫ;H0}
= Pr{∃A ∈ A, ||P1(A) − P2(A)|

−|S1(A) − S2(A)|| > ǫ;H0}
≤ 8(2n + 1)de−nǫ2/32 (39)

where inequality (39) follows from (38).
For the miss probability, letA∗ = arg maxA∈A |P1(A) −

P2(A)|.
PM (δ, P1, P2) = Pr{dA(S1, S2) ≤ ǫ;P1, P2}

≤ Pr{|S1(A
∗) − S2(A

∗)| ≤ ǫ;P1, P2}
≤ Pr{||P1(A

∗) − P2(A
∗)|

−|S1(A
∗) − S2(A

∗)||
≥ ||P1(A

∗) − P2(A
∗)| − ǫ| ;P1, P2}

≤ 8(2n + 1)de−n[|P1(A
∗)−P2(A

∗)|−ǫ]2/32

(40)

Now consider relative distance. The proof for relative dis-
tance metric goes line by line as that for the non-relative
metric, replacing inequality (38) with the following results
from [12],

P 2n(φA(S1, S2) > ǫ) ≤ 2(2n + 1)de−nǫ2/4 (41)

P 2n[|φA(P1, P2) − φA(S1, S2)| > ǫ]

≤ 16(2n + 1)de−nǫ2/16 (42)

We have

PF (δ) ≤ 2(2n + 1)de−nǫ2/4 (43)

PM (δ, P1, P2) ≤ 16(2n + 1)de−n[φA(P1,P2)−ǫ]2/16(44)

B. Proof of Theorem 3.2

Proof: Let V C-d(A) = d < ∞. We first prove the
theorem forA-distance.

Let
A = arg max

B∈A
|P1(B) − P2(B)|,

and defineη to be

η
∆
= |P1(A) − P2(A)| − sup

B∈A
B 6=A

|P1(B) − P2(B)|.

The uniqueness ofA saysη > 0.
By results of [12], we have

Pr{ sup
B∈A

||P1(B) − P2(B)| − |S1(B) − S2(B)|| ≤ η

3
}

≥ 1 − 8(2n + 1)de−nη2/288.

So with probability≥ 1 − 8(2n + 1)de−nη2/288,

|S1(A) − S2(A)| − sup
B∈A
B 6=A

|S1(B) − S2(B)|

≥ |P1(A) − P2(A)| − sup
B∈A
B 6=A

|P1(B) − P2(B)|

−||S1(A) − S2(A)| − |P1(A) − P2(A)||
−| sup

B∈A
B 6=A

|S1(B) − S2(B)| − sup
B∈A
B 6=A

|P1(B) − P2(B)||(45)

≥ η − 2 sup
B∈A

||P1(B) − P2(B)| − |S1(B) − S2(B)|| (46)

≥ η
3 (47)

That is,

Pr{A = arg max
B∈A

|S1(B)−S2(B)|} ≥ 1−8(2n+1)de−nη2/288.

Now let n → ∞,

lim
n→∞

Pr{A = arg max
B∈A

|S1(B) − S2(B)|} = 1.

For relativeA-distance, let

A = arg max
B∈A

|P1(B) − P2(B)|
√

P1(B)+P2(B)
2

.

Let

η
∆
= fφ(P1(A), P2(A)) − sup

B∈A
B 6=A

fφ(P1(B), P2(B)).

The uniqueness ofA saysη > 0.
In [9] it is proved thatfφ(x, y) is a metric on[0, 1].
The proof is similar to that ofA-distance. By [12] we have

Pr( sup
B∈A

fφ(Si(B), Pi(B)) ≤ η

5
) ≥ 1 − 8(2n + 1)de−nη2/100,

i = 1, 2.

So with probability≥ [1 − 8(2n + 1)de−nη2/100]2, we have

fφ(S1(A), S2(A)) − sup
B∈A
B 6=A

fφ(S1(B), S2(B))
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≥ fφ(P1(A), P2(A)) − sup
B∈A
B 6=A

fφ(P1(B), P2(B))

−|fφ(P1(A), P2(A)) − fφ(S1(A), S2(A))|
−| sup

B∈A
B 6=A

fφ(P1(B), P2(B)) − sup
B∈A
B 6=A

fφ(S1(B), S2(B))|(48)

≥ η − fφ(P1(A), S1(A)) − fφ(P2(A), S2(A))

− sup
B∈A
B 6=A

fφ(P1(B), S1(B)) − sup
B∈A
B 6=A

fφ(P2(B), S2(B)) (49)

≥ η − 2 sup
B∈A

fφ(P1(B), S1(B)) − 2 sup
B∈A

fφ(P2(B), S2(B))

(50)

≥ η
5 (51)

That is,

Pr{A = arg max
B∈A

|S1(B) − S2(B)|
√

S1(B)+S2(B)
2

}

≥ [1 − 8(2n + 1)de−nη2/100]2.

Now let n → ∞, the proof completes.
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