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The Edge Process Model and Its Application to
Information-Hiding Capacity Analysis

Sviatoslav Voloshynovskiy, Oleksiy Koval, M. Kivanc Mihcak, and Thierry Pun

Abstract—In this paper, the problem of capacity analysis of data-
hiding techniques in a game information-theoretic framework is
considered. Capacity is determined by the stochastic model of the
host image, by the distortion constraints, and by the side infor-
mation about the watermarking channel state available at the en-
coder and at the decoder. The importance of the proper modeling
of image statistics is emphasized, and for this purpose, a novel sto-
chastic nonstationary image model is proposed that is based on geo-
metrical priors, the so-called edge process model. Being mathemat-
ically simple and tractable, the edge process model outperforms
the estimation-quantization (EQ) and spike process models in ref-
erence applications such as denoising. Finally, this model allows us
to obtain a realistic estimate of maximal embedding rates, and in
particular, it is shown that the expected capacity limit of real im-
ages is significantly lower than previously reported.

Index Terms—Capacity, edge process model, estimation-quanti-
zation (EQ) model, information theory, spike process model, sto-
chastic image model, watermarking.

I. INTRODUCTION

AN important problem in digital data hiding is the inves-
tigation of fundamental capacity limits, i.e., somehow an

analog to Shannon’s limit in digital communications. The recent
work proposed by Moulin advocates a game-theoretic approach
for the evaluation of data-hiding capacity [18]. In this approach,
the data-hiding capacity is considered to be the solution of a
max–min two-player zero-sum game between the data-hider at-
tempting at maximizing reliable information transmission and
the attacker aiming at decreasing it. No specific form of en-
coder/decoder and blockwise memoryless attack channel is as-
sumed, but it is rather supposed that both data-hider and at-
tacker are doing the best to achieve their goals. Therefore, one is
looking for the maximum rate of reliable communications, over
the best possible data-hiding strategy, and the worst attack that
satisfies the specified constraints.

An emerging practical problem is the application of the game-
theoretic paradigm to the analysis of the data-hiding capacity of
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real images. The solution to this problem should formally jus-
tify a number of existing practical algorithms and allow to fairly
evaluate their performance and potential capabilities. An impor-
tant aspect of this problem is to develop appropriate models for
attack channels, for distortion metrics, and for image statistics.
The analysis of these three items has great impact on the solution
of the max–min problem. Therefore, it is justified by Moulin
and O’Sullivan that a minimum mean-square error (MMSE) es-
timator of the host signal and a Gaussian test channel from rate
distortion theory are the worst-case memoryless attacks for a
given constrained attack distortion . A squared-error distor-
tion measure is selected for the analysis
due to its wide usage in communication theory and the fact
that it often yields nice closed-form results. A Gaussian model
of the host image is selected as a source model, since it pro-
vides the upper bound on capacity for non-Gaussian sources
with bounded variance as well. It is also assumed that the max-
imum admissible distortion for the data-hider is while for
the attacker it is constrained by (for further details, we refer
the reader to [5], [18], and [20]).

In a data-hiding communication setup in the case when a fixed
attacking channel is assumed, it is possible to design a code-
book allowing perfect host interference cancellation [6]. This is
not the case when the same problem is considered using game
theory apparatus. An important assumption here is that the sto-
chastic model of the source image is shared among all involved
into the games parties. In the original analysis of Moulin and Mi-
hcak [20], it is proposed to use an estimation-quantization (EQ)
[11] and a spike process model [33] to evaluate the data-hiding
capacity of real images due to their superior performance in ref-
erence applications. Therefore, the final watermark energy al-
location and the attack distortion distribution are performed ac-
cording to the selected models. Although this approach is intu-
itively justified, it could potentially lead to the overestimation of
the actual capacity since the obtained estimate of the rate of reli-
able communications is highly sensitive to the source model se-
lection. This means that the higher is the variance of the source,
the larger will be the capacity estimate. Therefore, although the
selection of the EQ and spike process models have been well jus-
tified for the game-theoretic analysis of information hiding, new
more powerful source models can appear requiring to reassess
the obtained fundamental capacity limits for those models.

The goal of this paper is to introduce a new class of nonsta-
tionary stochastic image models based on geometric priors that
show superior performance in some reference applications such
as denoising over the EQ and spike process models. The pro-
posed model is applied to the game-theoretic setup and new
capacity results are obtained. Since the proposed model has

1053-587X/$20.00 © 2006 IEEE



1814 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 5, MAY 2006

considerably lower local variances, the obtained practical em-
bedding capacity is also smaller than those obtained for the
EQ/spike process models. Therefore, we demonstrate that, al-
though the information-theoretic game approach is an excel-
lent framework for providing the absolute limits of informa-
tion-hiding capacity, the practical limits are highly sensitive to
the model selection and to the transform domain used. Essen-
tially, we show that the capacity under the EP model is much
lower than the one given by the EQ or spike process models.

Section II introduces the edge process (EP) model and
provides the comparison of this model with the EQ and spike
process models for the reference applications. Section III
briefly reviews the main results of Moulin et al. game-theoretic
approach and presents the actual capacity for the EP model for
a number of test images. A new attack based on the EP model
is presented in Section IV. Section V summarizes some open
issues of the game-theoretic approach and concludes the paper.

Notation: We use capital letters to denote scalar random
variables , bold capital letters to denote vector random vari-
ables , and corresponding small letters and to denote
the realizations of scalar and vector random variables, respec-
tively. The superscript is used to denote length- vectors

with th element . We
use or simply to indicate that a random
variable is distributed according to . The mathematical
expectation of a random variable is denoted by

or simply by and denotes the variance
of . Calligraphic fonts denote sets and denotes
the cardinality of a set.

II. EDGE PROCESS MODEL

Themodelselectionisaveryimportantbutatthesametimevery
ambiguous issue. It involvesa lotofsubjectiveexperiencedealing
with the estimation, detection and rate-distortion problems.

The selection of the EQ or spike process models is justified
by their excellent performance in some reference applications
such as image compression and denoising and their good fit to
the parallel Gaussian channel model [11], [15], [16]. In a more
general case, the advantages of one model over another are con-
sidered based on the satisfaction of a list of requirements which
determine its suitability for the practical applications: a) model
simplicity (preferably Gaussian-type models due to easy integra-
tion and differentiation); b) model ability to lead to a closed-form
analytical solution; c) model and result tractability and existence
of performance bounds (preferably Gaussian-type models due to
the corresponding upper and lower bounds in channel capacity
and rate-distortion theory); and d) model robustness in the sense
of the model applicability to a wide class of real images.

A. EP Model: Definition and Experimental Validation

1) Stochastic Image Modeling—Main Trends and Assump-
tions: During the last few years, significant efforts have been
devoted to the development of accurate stochastic image
models. This has had impact on all image processing applica-
tions such as compression [11], [26], restoration [2], denoising
[19], [22], [24], data-hiding [29], and image communications
through noisy channels [8], [14], [17]. The most advanced

stochastic models are applied to a transform-based image
representation. In particular, the image is often presented in the
discrete cosine transform (DCT) or discrete wavelet transform
(DWT) domains. Image modeling in the transform domain
has a number of advantages in comparison with the coordi-
nate domain. Such transforms aim at achieving approximate
decorrelation and energy compaction, thus resulting in sparse
data as well as nice fit to the properties of the human visual
system (HVS) [27]. The DWT has a number of advantages
over the DCT, which resulted in the necessity to reconsider
the DCT based JPEG compression standard and led to the
development of the new DWT-based JPEG2000 standard.
Good energy compaction properties of the wavelet transforms
and the remarkable properties of wavelet domain representa-
tions, such as sparsity, locality, and multiresolution, have made
wavelet-domain techniques successful and popular. The best
recent image restoration, denoising, and image communication
systems also exploit the DWT.

In the image compression and estimation literature, various
stochastic models have been proposed to characterize the depen-
dencies among wavelet coefficients. These models can be clas-
sified into three categories: 1) those exploiting interscale depen-
dencies, 2) those exploiting intrascale dependencies, and 3) those
exploiting both dependencies. Since Liu and Moulin [10] have
shownthattheintrabanddependenciesarestrongerthaninterband
dependencies, we will concentrate only on intraband models.

The most simple and widely used class of intraband stochastic
image models is a family of independent and identically dis-
tributed (i.i.d.) generalized Gaussian distributions (GGD) [12].
The GGD model captures the global behavior of wavelet coef-
ficients. A particular case of this model is the Laplacian proba-
bility density function (pdf), which is obtained when the shape
parameter of the GGD is equal to 1. A number of practical image
coders and denoisers are designed based on the Laplacian model
[19],[34].However,anevenmoresignificantgaincanbeachieved
when the coefficients are considered to be locally Gaussian rather
than globally Laplacian. The corresponding procedure of local
image coefficients splitting or classification based on their statis-
tical properties is known as a source splitting [7]. Therefore, it
is important to establish the mathematical relationship between
local and global stochastic models. This link can be found based
on the infinite Gaussian mixture model. According to this model,
the global Laplacian pdf is obtained as a weighted mixture
of zero-mean conditionally Gaussian pdfs (conditioned on local
variance ) and exponential prior on that capture the local
image statistics

(1)

where and

and is the scale parameter of Laplacian distribution
and

(2)
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Fig. 1. Explanation of the EQ and EP models: (a) the edge structure in the transform domain (critically sampled or overcomplete transform); (b) ML-estimation
of the local image variance for the edge coefficient in the local set using a stationary assumption; and (c) ML-estimation of the local image variance for the edge
coefficient using a stationary set of coefficients only along the edge (set R ).

This simple relationship provides a fundamental link between the
global and local statistics of image coefficients. Therefore, the
same data can be considered to be locally zero-mean Gaussian
with the variance distributed according to the exponential pdf
and, at the same time, having Laplacian global statistics. The
Gaussian mixture model is also the basis for a parallel channel
decomposition of stochastic image sources that makes it possible
to use the simple relationships that exists for Gaussian statistics.

The number of Gaussian channels is limited in prac-
tice by instead of an infinite number. Therefore, the
source is split into classes according to their vari-
ances, such that the samples with variance in the intervals

belong to the first,
second, , th classes, accordingly. From another perspec-
tive, the data from these classes can be also considered as
different length vectors generated by Gaussian pdf’s with
different variances governed by an exponential law. The
joint consideration of all samples results in the Laplacian pdf.

It is important to note that one of the state-of-the-art image
compression algorithms, the EQ codec [11], is based on a variant
of this model. In fact, omitting the practical details of side infor-
mation communications between the encoder and the decoder,
Hjorungnes et al. [7] were the first who theoretically demon-
strate that the rate gain between Laplacian and Gaussian Mix-
ture models can be as much as 0.312 bits/sample for a high-
rate regime. This is achieved by the proper design of entropy
coders for each subclass of coefficients. In addition, the analog
of the EQ model was used by Mihcak et al. [15], [16] in the
context of image denoising where state-of-the-art results were
demonstrated.

2) EQ and Spike Process Models—Open Issues: The goal of
this section is to analyze the problem of model parameter esti-
mation and to point out the main drawbacks of the EQ/spike
process models that neglect the nonstationary mean behavior
of the wavelet coefficients. These drawbacks are related to the
usage of a maximum-likelihood (ML) estimation of model pa-
rameters, i.e., the local image variances. To illustrate these draw-
backs, let us consider Fig. 1, where some edge structure is pre-
sented in the transform domain [Fig. 1(a)]. The edge structure
consists of two distinctive parallel propagating sets of coeffi-
cients with different mean values of opposite sign polarity.

In the scope of the EQ/spike process models, the ML estima-
tion is used to estimate the local variance of the wavelet coeffi-

cients in some local neighborhood . We assume an
square window centered at location . The estimation of
the local variance according to the ML estimate is

(3)

where is the cardinality of for all . Although this ML
variance estimator is widely used in the image processing com-
munity, its usage is justified only for approximately locally sta-
tionary data, which is not always the case for real images. The
condition of stationarity is especially violated in the vicinity of
edges and textures. As a result, a lot of outliers from the wavelet
coefficients with different local means are in the square window
in the vicinity of an edge and one obtains extremely high esti-
mates for the local variance. The detailed analysis of this phe-
nomenon is presented in our previous papers [30], [32] on the
example of one-dimensional (1-D) edge structure. The ML es-
timate corresponding to (3) is shown in Fig. 1(b) for the edge
coefficient in the transform domain. As in the 1-D case [30],
[32], one can clearly observe the aforementioned issue of the
ML estimate due to the nonstationarity of the wavelet coeffi-
cients. The local window contains both coefficients belonging
to the edge and coefficients belonging to the flat region. Con-
trarily, Fig. 1(c) demonstrates a situation where the ML-estimate
of the image variance for the edge coefficient is taken using only
those coefficients along the stationary edge, corresponding to
the stationarity condition for the ML-estimate. This practically
corresponds to the wavelet subband separation into two large re-
gions and . The region represents the flat regions in
images and can be assumed to have zero mean in the wavelet
domain while the region corresponds to some edge structure
with distinctive mean values along the direction of edge propa-
gation. Therefore, it is obvious that neglecting the nonzero mean
or applying the ML-estimate to nonstationary data, one obtains
a highly overestimated variance, especially in the regions of the
textures and edges where the condition of stationarity is vio-
lated.

3) EP Model Definition for Real Images: In this section, we
introduce a new stochastic image model that allows to separate
various wavelet subband coefficients into distinct regions and to
treat them separately.

We consider an image with a support as a realization of a
random field with distinct stochastic behavior in different re-
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gions. Let be the set partitioning, where for
all are disjoint connected sets, i.e., , and

. Let denote the subset of image pixels supported
by the regions . In our model, we assume that each region
is fully covered by the model and that
no two neighboring contain the same model. In particular, we
assume that the pixels in the image subregion are distributed
with a joint pdf .

Our goal is to introduce the EP model and to compare it with
the EQ model. The EQ model belongs to the class of intraband
stochastic image models and assumes that the wavelet coeffi-
cients are Gaussian (in the original paper of LoPresto et al., a
generalized Gaussian [11]) distributed, with zero mean and vari-
ances that depend on the coefficient location within each sub-
band. It is also assumed that the variance is slowly varying.

We assume that each subband of the multiresolution criti-
cally sampled transform has its own support , ,
where is the number of dyadic decomposition levels such
that , and . For the nondecimated
wavelet transform without downsampling used in our modeling,
each subband has the same support as above but the dimension-
ality of each is the same as the original image. According to
the approximately local stationary assumption of the data under
the EQ model, we assume that only one region is given within
the subband and that all coefficients in this subband belong
to the same region , as follows:

(4)

i.e., all coefficients are considered to be approximately locally
i.i.d. with Gaussian distribution, but with different local vari-
ances . Equivalently, this means that only one stochastic
model out of is applied to the whole support and

follows an i.i.d. Gaussian pdf. In the following, we
will only consider the image model for one subband.

Contrarily to the EQ model, the proposed EP model assumes
two distinctive sets of coefficients in wavelet domain for each
subband, i.e., those belonging to the flat regions and those be-
longing to the edge and texture regions. Moreover, it is assumed
that a transition corresponding to an edge or to a fragment of
texture consists of several distinct mean values that propagate
along the transition. In the following we will refer to the transi-
tion simply as the edge.

Due to the above assumption, one can distinguish two main
approaches to efficiently separate the regions or to simply de-
tect the edge. The first approach exploits the spatial separation
of the regions which requires to know an inter region boundary.
Once the boundary is specified, the ML-estimate is applied to
both regions independently. The knowledge of the separation
boundary requires a relatively a small amount of side informa-
tion to be known in order for the ML estimate to avoid inac-
curacies in the variance estimation. This approach is obviously
very simple in the one-dimensional case. However, some tech-
nical difficulties might arise in the two-dimensional (2-D) case
of real images when the exact separation boundary for all re-
gions should be specified.

The second approach exploits the amplitude-based separa-
tion of the regions assuming that the regions statistics can be
reliably distinguished and that there is a considerable difference

between their mean values. One can consider the region sepa-
ration problem as a corresponding problem of pulse amplitude
modulation (PAM) digital communications [25] represented by
the selected mean values. Moreover, the amplitude classification
problem is equivalent to a multiple hypothesis testing problem
or to a change point detection problem [1], [4] and appropriate
techniques can be used for this purpose as well. Finally, the re-
gion-based segmentation based on K-means or projection onto
convex sets (POCS) methods that are well-known in computer
vision can be of benefit [3].

However, in our approach, we will follow the well-known du-
ality of region segmentation and compression problems [9]. We
consider the mean values as the reconstruction levels of a scalar
uniform threshold quantizer (UTQ) designed for the given sub-
band that is characterized by the global GGD ,
and we assume to be the GGD pdf
with mean , shape parameter and scale , as follows:

(5)

where and are the UTQ decision levels.
It is assumed that the UTQ has uniformly spaced decision levels
and that reconstruction levels are selected to minimize the MSE.
The dead zone of UTQ is chosen to be , where is
a quantization step-size between .

The variation of the coefficients with the same mean is sup-
posed to be low along the edge. According to the above ampli-
tude-based partition approach, the EP model is defined as

(6)

(7)

where the subscript is used to indicate the data behavior along
the th local edge, and represents a partic-
ular subband. Equation (7) assumes a proper separation of the
regions with distinctive statistics. If the width of the bin is
chosen to be relatively small compared to the flatness of the pdf,
one can use an uniform approximation of the region statis-
tics

(8)

However, we are not looking here for the best possible quantized
approximation of the data but rather to obtain the proper region
separation. Therefore, the high-rate mode of quantization is out
of interest in our formulation.

The region represents all flat regions within a subband
assumed to be zero-mean Gaussian random variables with
the local variance . The region corresponds to the
texture and edge regions. Each distinctive geometrical structure
corresponding to the edge or texture transition within is
decomposed into a set of local mean constellations. Moreover,
a particular mean value , , where is the
number of mean levels, propagates along the edge creating the
so-called edge process. Therefore, the coefficients on the edge
are considered to have one of the possible mean values from
the set , contrarily to the EQ model, which does not
differentiate flat and edge regions and assumes zero-mean for



VOLOSHYNOVSKIY et al.: EDGE PROCESS MODEL AND ITS APPLICATION TO INFORMATION-HIDING CAPACITY ANALYSIS 1817

Fig. 2. Explanation of the EP model: (a) Original Lena image and (b) five-level orthogonal wavelet transform (Db8).

all coefficients. We can also assume that the variation of the
coefficients with respect to the mean values (this is especially
true for the overcomplete transform) is very small. Thus, the
EP model assumes that the image consists of random Gaussian
processes with zero-mean and some small local variance for the
flat regions with almost “deterministic” edge occlusions. The
parameters and orientations of edge occlusions depend on the
mutual orientation of the edge and of the subband. Moreover,
transitions along the edge usually have longer stationary length
than the transitions within the texture (which explains the
existence of higher correlations along the edges); this provides
higher redundancy of the support for more accurate model
parameter estimation. Due to this fact, the stationarity condition
is more strict for the edges than for the textures. Finally, all this
leads to the conclusion that the real variance of the subbands
is very low and is mostly determined by the flat regions and by
the edge shape approximation accuracy. This phenomenon is
contrarily to the one observed when the data are modeled by
the EQ or spike process models where huge spikes of image
coefficients with large variance can occur due to the edge
that is supposed to model the wavelet coefficients sparsity.
No relationship or particular geometrical spatial structure is
assumed among the spikes in the spike process model. This is
not the case when the EP model where the “spikes” belonging
to the same edge are treated jointly along the direction of
edge propagation.

4) EP Model Experimental Validation on Real Images: To
demonstrate the main features of the EP model on real images
we performed a number of experiments using a set of standard
test images. We show here results obtained using the image Lena
of size 512 512 [Fig. 2(a)]. Fig. 2(b) illustrates the results of
the selected image decomposition into a five-level wavelet trans-
form pyramid with Daubechies orthogonal wavelet Db8 filter. A
similar four-level decomposition was performed in the case of
discrete overcomplete transform (DOT) based on the 9/7 filter
pair [13].

The absolute values of the first horizontal subbands are shown
in Fig. 3(a) and (c) for the DWT and DOT, respectively. The
DWT first level subband has a two times smaller linear size
in comparison with the DOT subband. The estimation of the
mean along the edge according to the EP model, followed by
its subtraction, results in the more uniform random field shown

in Fig. 3(b) and (d). It is important to note that the amplitude of
the coefficients is considerably reduced. The “edge” is visually
less detectable and the subbands are more decorrelated.

As an example of edge description according to the above
transforms, we have selected a fragment of the first hori-
zontal subband of the DWT on the shoulder of Lena image
[Fig. 2(b)] that corresponds to a well distinguished propagating
edge [Fig. 4(a)] and the corresponding fragment for the DOT
[Fig. 4(c)]. One can also observe some variations along the
edge due to the critically sampled character of the DWT. The
variation along the edge is smoother for the DOT due to the
absence of downsampling [Fig. 4(c)]. Small variations of the
transformed coefficients are observed on both sides of the edge
in the case of the DWT and DOT. The corresponding fragments
after the EP mean estimation and subtraction are shown in
Fig. 4(b) and (d) for the DWT and DOT, respectively.

Since both EQ and spike process models refer to the local
variance as the model parameter, we visualize the subband local
variances in Fig. 5(a) for the EQ model and in Fig. 5(b) for the
EP model. A seven-mean constellation for each sign was used in
the EP model for the region. Obviously, this simple constel-
lation scheme causes some approximation error that gives rise
to an increase of the local variance in the vicinity of the edge.
More powerful analytical edge shape approximation techniques
can be used for this purpose and the work is underway [28]. The
ML variance estimate was used in both cases (3). One can also
observe a significant decrease of the local image variance with
respect to the peak variance values. The decrease of the vari-
ance has a crucial impact on the performance of denoising and
compression algorithms as well as on the capacity estimation
problem.

To demonstrate the model ability to carry out and to capture
only the significant image components with a certain level of
sparsity, we performed a set of experiments. First, the image was
decomposed using the DWT into a five-level pyramid
and into a four-level DOT (9/7) pyramid. Second, the EP model
was applied and the edges were replaced by their mean estimates
according to the EP model. In both cases, all the information
about the flat part of the image was completely discarded. The
quality of the obtained reconstructed images in terms of PSNR
were 36.95 dB for the DWT domain case and 41.72 dB for the
DOT case.
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Fig. 3. Explanation of the EP model based on Lena image (absolute values of the results are shown): (a) First horizontal subband of the Lena image in the DWT
(Db8) and (c) DOT (9/7) decompositions; (b) and (d) the same subbands after EP model mean subtraction along the edges for the DWT and DOT, respectively.

We now briefly summarize the main features of the EP image
model. First, the EP model offers an additional data “decorrela-
tion” even for fixed transform basis functions, which could be
a very useful feature for many applications such as denoising,
compression and watermarking. It should also be noted that
the complexity of this “decorrelation” transform, besides model
overhead, still remains almost the same as the complexity of
the corresponding wavelet or overcomplete transforms. Second,
the resulting distribution of the subband coefficients is close
to Gaussian assuming a proper selection of decision bound-
aries. This further considerably simplifies the analysis and guar-
anties the existence of closed-form solutions for many applica-
tions, contrarily to non-Gaussian image models. Since the data
is Gaussian and decorrelated, this also brings us an additional
benefit the independent character of the coefficients. This al-
lows the modeling of joint subband pdf as a product of inde-
pendent pdf’s of each coefficient. This also supports the idea
to use the parallel Gaussian channels for the analysis of the
data-hiding capacity. Third, the subtraction of the local mean
along the edges makes data more “stationary” and considerably
reduces the value of variance estimated based on the ML-esti-
mator thereby reducing the uncertainty. This has an important
impact on the performance of denoising and compression algo-
rithms. Further, this provides a completely different justification
for the data-hiding algorithm performance as opposed to the EQ
model (smaller host interference for spread spectrum-based in-
formation-hiding techniques and different capacity estimation
limits).

B. EP Model: Justification

To our knowledge the EQ model produces state-of-the-art re-
sults in image denoising and compression. Therefore, to have a
fair justification we will compare the proposed EP model with
the EQ model in three sets of tests: image generation from model
parameters, operational entropies and reference applications.

1) Image Regeneration: The goal of this section is to
demonstrate the power of the proposed model with respect to
the generation of images from their statistical descriptions. The
experiment performed here are similar to the tests performed in
[23] while investigating the performance of the EQ model.

The image Lena is used as a test target example. The image
is decomposed into the wavelet pyramid using 9/7 biorthogonal
pair. The subbands of the decomposed image are used to esti-
mate the parameters of the four models under test. We keep the
same low-pass subband for all simulations.

In the first case, the Gaussian version of the EQ model is in-
vestigated for the sake of fair comparison. The local variances
are estimated in all high-frequency subbands of the DWT from
the target image. At the same time, a pseudo-random excitation
field is generated in the coordinate domain from a unit-vari-
ance Gaussian distribution and then transformed to the DWT
domain. The DWT coefficients of the pseudorandom excita-
tion field are multiplied by the corresponding estimated stan-
dard deviations (except for the low-pass subband). The resulting
image is transformed back to the coordinate domain using in-
verse DWT [Fig. 6(a)].
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Fig. 4. Example of real edge on Lena’s shoulder: (a) and (c) original Lena’s shoulder in the first horizontal subbands of the DWT and DOT domains according
to Fig. 3(a) and (c); (b) and (d) the same fragments after EP mean subtraction.

The second model discussed in [23] represents a hybrid semi-
deterministic/semi-stochastic version of the EQ. In this model,
the sign of the DWT coefficients extracted from the DWT co-
efficients of the target image (deterministic part of the model)
is used in addition to the local variances (stochastic part of the
model). Since some extra side information (or constraints on the
image generation that relaxes a prior ambiguity) is used, one
can expect that the resulting image will be closer to the target
image according to its statistics. The resulting image generated
according to this procedure is shown in Fig. 6(b) and supports
this conclusion.

Two similar sets of experiments have been performed ac-
cording to the EP model. The only difference with the previous
tests consists in the usage of additional priors given in the form
of the EP model parameters, i.e., the means of the DWT coeffi-
cients propagating along the edges. We assume that these means
also belong to the deterministic part of the image model. There-
fore, in addition to the previous local variance priors, the DWT
coefficients of the random excitation field are replaced by the
EP means in corresponding subbands keeping the same posi-
tions and orientations. Therefore, the means of the EP model

will completely replace the DWT random excitation field co-
efficients disregarding their actual initial values. The resulting
image is shown in Fig. 6(c). In addition, the usage of the target
image subbands sign is demonstrated in Fig. 6(d). An obvious
enhancement of both objective and perceptual image quality is
observed in the case of the EP model.

2) Operational Entropies: The main objective of this sub-
section is to demonstrate the “ompressibility” of the EP model.
In other words, we would like to show the efficiency of the pro-
posed model in the image compression application. Since the
entropy represents an average length of the code for lossless
data representation, we have selected this measure for different
model comparison.

The setup of the demonstration is the following. Having a
data base of 30 512 512 grayscale test images, we estimated
the entropy of the high frequency wavelet transform coefficients
after the application of a four level transform. The entropies
are calculated based on three different assumptions about the
stochastic properties of wavelet coefficients assuming that the
model parameters are perfectly available at both encoder and de-
coder [31]. In the first case, we assume that the statistics in each
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Fig. 5. Variance estimation for the subbands shown in Fig. 3: (a) and (c) ML variance estimation in a 5 � 5 window used in the EQ/spike process model for the
DWT and DOT, respectively; (b) and (d) ML variance estimation for the EP model computed in a 5 � 5 window and the same subbands.

wavelet subband can be modeled using a global i.i.d. Laplacian
distribution. In this case, one can obtain

(9)

where is the parameter of the Laplacian pdf.
Taking into account the cardinality of each subband, we fi-

nally calculate the average number of bits per transformation
sample that should be used to represent the data in the high-fre-
quency subbands without losses.

In the second case, we apply the Laplacian source splitting
property to connect the previous global model with the EQ
model. Having an infinite Gaussian mixture representation of
the Laplacian pdf (1), the entropy of the EQ, calculated in each
subband, is determined by

(10)

where is the cardinality of the subband ,
and is a variance of the th zero-mean component of the
infinite Gaussian mixture estimated using the ML strategy in a
[9 9] noncausal window.

Finally, to estimate the entropy of the coefficients in the high
frequency wavelet subbands, we assume a locally Gaussian
behavior of the data in the subbands and the availability of
the mean values along the edge propagation direction. In this
case we apply (10), where the variance estimation is performed
taking advantage from the availability of the EP information.

The results of those simulations are presented in Fig. 7.
They demonstrate that for the selected test images the average
amount of bits needed for the lossless representation of the
high-frequency subband coefficients is 5.03, 4.37, and 3.54 for
the Laplacian, EQ, and EP model, respectively, that is clearly
lower for the EP model.

3) EP Model Performance in Reference Applications: An
important issue of the model selection is its performance in
some reference applications. Therefore, the validity of the EP
model was additionally investigated in two reference applica-
tions, namely in denoising [32] and in compression [28]. The
reason to choose these two reference applications is due to the
existence of benchmarking results for the EQ model.

In the denoising, the observed noisy image is

(11)

where is i.i.d. AWGN . We use the MAP
estimator to get the estimate of

(12)

where corresponds to the
log-likelihood function for the above case of AWGN and
represents the priori distribution that corresponds to the EQ and
EP models. Since the EQ model is used in the denoising method
of Mihcak et al. [15], we have chosen this method for the sake
of comparison.

Both EQ and EP models belong to the Gaussian family of
models with the only difference being in the estimation of the
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Fig. 6. Example of real image generation according to the different stochastic image models: (a) Image generated from the EQ model variance (PSNR =
19.18 dB); (b) image generated from the EQ model variance and sign of the original subband coefficients (PSNR = 20.56 dB); (c) image generated from the EP
model (PSNR = 24.66 dB); and (d) image generated from the EP model and sign of the original subband coefficients (PSNR = 25.49 dB).

Fig. 7. Operational entropies (in bits per pixel) under (a) global i.i.d. Laplacian
model, (b) the EQ model, and (c) the EP model.

model parameters. In this case, the resulting estimate will be in
the form of a Wiener filter and the corresponding variance of the
estimator can be found as

(13)

where states for the matrix trace operation and is the
local image variance of the EQ or EP models. Obviously, the
lower the image variance, the lower the variance of the estimator
will be. Thus, taking into account the considerable decrease of
local variances in the case of the EP model in comparison to
the EQ (Fig. 5), the advantages of the EP models are obvious.
More results demonstrating the EP model performance in this
reference application can be found in [32].

The lossy compression problem can be formulated in a way
similar to denoising as

(14)

where is the distortion
between the original data and its reconstructed version that cor-
responds to the above negative log-likelihood function. is the
rate allocated to represent the original image in the codebook

with , and .
represents the differential en-

tropy. is the Langrange multiplier.
The critical issue is the selection of an accurate stochastic

image model for the original image . Since, both the EQ
and the EP models are Gaussian and treat coefficients indepen-
dently, with the differential entropy

. Obviously, the smaller the vari-
ance of the individual coefficients, the greater the gain in perfor-
mance that can be achieved as was the case with the denoising
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application. The results presented in Fig. 7 clearly support this
conclusion.

Therefore, taking into account all previous results concerning
image variances of the EQ and EP models, one can conclude that
the EP model can theoretically attain superior performance. The
extensive simulation results performed in [28] and [32] experi-
mentally support this conclusion.

III. EP MODEL APPLICATION TO DIGITAL DATA-HIDING

A. Data-Hiding Game-Theoretic Approach

In this section, we review the main results of Moulin and Mi-
hcak [20] for the sake of convenience.

We assume that a message , uniformly distributed
over the message set with cardinality , is encoded
based on a secret key into some watermark

and embedded into a host data (image)
. We denote by a 2-D

sequence representing the luminance of the original image. The
th element of is denoted by where ,

and and is the size
of the host image. The embedding rule can be expressed as a
mapping, as follows:

(15)

(16)

where is a particular realization of the random message ,
, is the stego data, and represents

(the so-called noncausal side informa-
tion). The admissible distortion for watermark embedding is

(17)

where denotes -vector
distortion between the vectors and , and denotes
the element-wise distortion between the th elements and

.
The attacker, aiming at imparing reliable communications,

modifies the stego data and produces the attacked data .
The admissible attacker distortion according to Moulin defini-
tion [18] is that is defined in the same way as (17) between
the vectors and , as follows:

(18)

The decoder produces the estimate of using

(19)

where denotes the decoding rule and
is the distorted stego data. The decoding

error occurs when . Finally, Moulin and O’Sullivan con-
sidered the above Gel’fand–Pinsker problem in the following
game setup [21]:

(20)

with the maximization over all embedding strategies and
minimization over all attacking strategies subject to the
embedding and attacking distortion constraints (17) and (18),
respectively.

B. Capacity for the Parallel Gaussian Channels and Spike
Process Model

Moulin and Mihcak [20] have furthermore used the
EQ-model and the so-called spike process model introduced
by Weidmann and Vetterli [33]. Under the spike process model
there are two types of channels: those with large variance, i.e.,
strong channels , and those with low variance,
i.e., weak channels . The image components are
assumed to be very sparse and independent and decomposed
into channels using some multirate transform. Assuming
that , for and for

, the capacity for the spike process model
is then determined as [20]

(21)

where is the fraction of strong signal
components.

The MMSE filter cannot considerably help killing the
watermark in the strong channels, because it does not pro-
duce an accurate estimate of the host signal. The variance
of the MMSE/MAP estimators in the Gaussian case for
both the host image and the watermark is determined as

. According to the
spike process model assumption for the strong channels

. Therefore, and the MMSE
estimator term , resulting in

as a one-to-one mapping, i.e., no reliable estimate
is produced in this case. The only attack that is introduced in
this case is a test channel from the rate-distortion theory.

C. Data-Hiding Capacity for the EP Model

It should be pointed out that Moulin and Mihcak have used
both the EQ and spike process models in the original paper. Our
objective is to validate the data-hiding capacity for the EP model
since it produces more realistic results in the cited reference
applications.

It is also important to underline that Moulin and Mihcak as-
sume that the model parameters are perfectly known to both in-
volved parties as side information. Therefore, for the sake of
fair comparison, we also assume that the parameters of the EP
model are available to the data-hider and to the attacker.

Assuming the parallel Gaussian channel energy allocation for
the spike (EQ) model, we estimate the data-hiding capacity in
the case of the EP model. We use the technique proposed by
Moulin and Mihcak [20] for this purpose. The capacity is esti-
mated for the attacker distortion and for
for several synthetic images shown in Fig. 8 (Table I) and test
grayscale images Lena, Barbara, and Baboon of size 512
512 (Table II). The results for the spike process model are not
surprising. The images with large amount of transitions like
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Fig. 8. Synthetic test images: (a) Step edge; (b) diagonal step edge; (c) cross; and (d) circle.

TABLE I
COMPARISON OF TOTAL DATA-HIDING CAPACITIES (IN BITS) FOR THE

SYNTHETIC TEST IMAGES OF SIZE OF 512 � 512, FOR JUST NOTICEABLE

DISTORTION D FOR THE SPIKE AND EP MODELS

Baboon and Barbara are characterized by high local variances
and a large embedding distortion . Thus, the capacity

estimate is higher than for the rather smooth image Lena. The EP
model produces much lower estimates of data-hiding capacity
due to the more accurate assumptions about image statistics in
the transition regions. This surprising phenomenon is justified
by the capabilities of the EP model to correctly account for the
locally smooth structures on the Baboon and Barbara textured
regions for local variance computation.

Since the variance of the EP model is significantly lower in
these regions, which are supposed to be the main carriers of the
watermark according to the max-min approach and EQ/spike
process model, the difference in the data-hiding capacity be-
tween the spike and the EP model is considerable. One can argue
that the capacity for the EQ/spike process model is higher and
thus it should be considered as an upper bound. The difference
between the EQ model capacities in the wavelet and DCT do-
mains was explained by the fact that wavelets produce better in-
dependence between the channels and better fit to the Gaussian
distribution [20]. However, comparing the EP and EQ models,
as it was shown is Section V, one can clearly observe that these
conditions are even better met with the EP model than with the
EQ model. Therefore, the existence of larger capacities for the
EQ model does not mean that these results should be considered
as practically reachable data-hiding upper bounds.

IV. ATTACK BASED ON THE EP MODEL

The statistics of real images under the EP model can also be
used to develop a more involved attacking strategy. The main
idea of this attack is based on the nice approximating feature of
the EP model.

We have shown that, by preserving only the information about
means along the edges, one can obtain a high quality image.
Therefore, instead of “killing” the rate of spike coefficients with
large variance according to the Gaussian test channel and the
assumption about zero mean, we propose to set to zero all flat

TABLE II
COMPARISON OF TOTAL DATA-HIDING CAPACITIES (IN BITS) FOR REAL TEST

IMAGES OF SIZE OF 512� 512, FOR JUST NOTICEABLE DISTORTION D FOR

THE SPIKE AND EP MODELS

regions and to replace all edges by the corresponding mean es-
timates, thus completely killing the watermark in these regions.
This attack is an asymptotic case of the Gaussian test channel for
zero rate. In this case, the attack distortion will be proportional
to the variance of the edge process, that is relatively small in the
case of the EP model contrary to the zero-mean EQ model.

If we assume some edge wavelet coefficient to be a constant
value along the EP defined edge structure, and that a max-min
energy allocation for the i.i.d. watermark with energy is
performed, we obtain the model

(22)

Assuming the watermark to be i.i.d. Gaussian
, we can apply the ML-estimate for

(23)

where is a support of the edge and is the length
of the edge. The ML mean estimate is the unbiased es-
timate with the variance of the estimate

. Therefore, the
longer the edge , the more accurate mean estimate one
can receive. In the case of an i.i.d. Gaussian assumption about
region (see (16)) , the variance of the mean
estimator of will be . In the case of
a simple replacement of the i.i.d. edge signal
by the sample mean estimated from the watermarked image,
the resulting variance of the replacement error will consist of

that represents the above mentioned asymptotic case of zero
rate. Although this attack completely kills the watermark in the
flat regions and replaces the edge structures by the EP model
mean, the introduced distortion will be smaller than those for
the EQ model and Gaussian test channel. This came from using
the redundancy along the stationary edge to get a more accurate
estimate of the mean and lower local variance contrarily to
the EQ/spike process models where all coefficients are treated
separately.
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V. CONCLUSION

We have considered the problem of data-hiding capacity for
real images by applying the results obtained by Moulin and
Mihcak for parallel Gaussian channels. A new stochastic image
model has been introduced for the wavelet domain, the so-called
EP model, that more accurately treats the data in the regions of
edgesand textures.Weemphasize thecrucial roleof themodel se-
lection on determining capacity. Although the EP model is more
accurate, as has been demonstrated in a reference application,
and fits better the conditions of proper image decomposition into
the parallel Gaussian model, the obtained results considerably
deviate from those obtained for the EQ/spike process models
argued to yield “upper bounds” on actual capacity. We have
in fact shown that the capacity is likely to be much lower than
previously thought. We also demonstrate the important role of
model mismatch in the extended data-hiding games. Finally, a
new attack based on the proposed EP model is presented in the
paper.

ACKNOWLEDGMENT

The authors would like to thank F. Pérez-González (Univer-
sity of Vigo, Spain) and P. Moulin (University of Illinois at Ur-
bana-Champaign) for many helpful and interesting discussions.

REFERENCES

[1] M. Basseville and I. Nikiforov, Detection of Abrupt Changes. Engle-
wood Cliffs, NJ: Prentice-Hall, 1993.

[2] M. Belge and E. Miller, “Wavelet domain image restoration using edge
preserving prior models,” in Proc. IEEE Int. Conf. Image Processing
(ICIP), vol. 2, Chicago, IL, Oct. 1998, pp. 103–107.

[3] A. Bovik, Handbook of Image and Video Processing. New York: Aca-
demic, 2000.

[4] J. Chen and A. K. Gupta, “Likelihood procedure for testing change point
hypothesis for multivariate Gaussian model,” Random Operators Sto-
chastic Equations, vol. 3, no. 3, pp. 235–244, 1995.

[5] A. S. Cohen and A. Lapidoth, “The Gaussian watermarking game,” IEEE
Trans. Inf. Theory, vol. 48, no. 6, pp. 1639–1667, Jun. 2002.

[6] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, no.
3, pp. 439–441, May 1983.

[7] A. Hjorungnes, J. Lervik, and T. Ramstad, “Entropy coding of com-
posite sources modeled by infinite Gaussian mixture distributions,” in
Proc. IEEE Digital Signal Processing Workshop, Jan., 20–24 1996, pp.
235–238.

[8] R. L. Josshi, H. Jafarkhani, J. H. Kasner, T. R. Fischer, N. Farvardin, M.
W. Marcellin, and R. H. Bamberger, “Comparison of different methods
of classification in subband coding of images,” IEEE Trans. Inf. Theory,
no. 6, pp. 1473–1486, Nov. 1997.

[9] J. Li and R. M. Gray, Image Segmentation and Compression Using
Hidden Markov Models. Boston, MA: Kluwer/Plenum (Springer),
2000.

[10] J. Liu and P. Moulin, “Analysis of interscale and intrascale dependencies
between image wavelet coefficients,” in Proc. IEEE Int. Conf. Image
Processing (ICIP), vol. 1, Vancouver, BC, Canada, Oct. 2000, pp.
669–672.

[11] S. LoPresto, K. Ramchandran, and M. Orhard, “Image coding based on
mixture modeling of wavelet coefficients and a fast estimation-quanti-
zation framework,” in Proc. Data Compression Conf., Snowbird, UT,
1997, pp. 221–230.

[12] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
11, no. 7, pp. 674–693, Jul. 1989.

[13] S. G. Mallat, A Wavelet Tour of Signal Processing. New York: Aca-
demic, 1997.

[14] H. Man, F. Kossentini, and M. J. Smith, “A family of efficient and
channel error resilient wavelet/subband image coders,” IEEE Trans.
Circuits Syst. Video Technol., vol. 9, no. 1, pp. 95–108, Feb. 1999.

[15] M. K. Mihcak, I. Kozintsev, and K. Ramchandran, “Spatially adaptive
statistical modeling of wavelet image coefficients and its application
to denoising,” in IEEE Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP), vol. 6, Phoenix, AZ, Mar. 1999, pp. 3253–3256.

[16] M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin,
“Low-complexity image denoising based on statistical modeling of
wavelet coefficients,” IEEE Signal Process. Lett., vol. 6, no. 12,
pp. 300–303, Dec. 1999.

[17] M. J. Ruf and J. W. Modesti, “Operational rate-distortion performance
for joint source and channel coding of images,” EEE Trans. Inf. Theory,
vol. 8, no. 3, pp. 305–320, Mar. 1999.

[18] P. Moulin, “The role of information theory in watermarking and its ap-
plication to image watermarking,” Signal Process. (Special Issue on In-
formation Theoretic Issues in Digital Watermarking), vol. 81, no. 6, pp.
1121–1139, 2001.

[19] P. Moulin and J. Liu, “Analysis of multiresolution image denoising
schemes using generalized-gaussian and complexity priors,” IEEE
Trans. Inf. Theory, vol. 45, no. 3, pp. 909–919, Apr. 1999.

[20] P. Moulin and M. K. Mihcak, “A framework for evaluating the data-
hiding capacity of image sources,” IEEE Trans. Image Process., vol. 11,
no. 9, pp. 1029–1042, Sep. 2002.

[21] P. Moulin and J. O’Sullivan, “Information-theoretic analysis of informa-
tion hiding,” IEEE Trans. Inf. Theory, vol. 49, no. 3, pp. 563–593, Mar.
2003.

[22] B. Natarajan, “Filtering random noise from deterministic signals via data
compression,” Proc. IEEE Trans. Signal Process., vol. 43, no. 11, pp.
2595–2605, Nov. 1995.

[23] A. Ortega and K. Ramchandran, “Rate-distortion techniques in image
and video compression,” IEEE Trans. Inf. Theory, vol. 15, no. 6, pp.
23–50, Nov. 1998.

[24] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Adaptive
wiener denoising using a Gaussian scale mixture model in the wavelet
domain,” presented at the 8th Int. Conf. Image Processing (ICIP), Thes-
saloniki, Greece, Oct. 2001.

[25] J. G. Proakis, Digital Communications. New York: McGraw-Hill,
1995.

[26] J. Shapiro, “Embedded image coding using zerotrees of wavelet coef-
ficients,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3445–3462,
Dec. 1993.

[27] B. Vidacovic, Statistical Modeling by Wavelets. New York: Wiley,
1999.

[28] J. Vila, O. Koval, and S. Voloshynovskiy, “Facial image compression
using overcomplete transforms,” in Proc. SPIE: Electronic Imaging
2004 Image Video Communications Processing VI, vol. 5308, San Jose,
CA, Jan. 2004, pp. 1060–1072.

[29] S. Voloshynovskiy, A. Herrigel, N. Baumgaertner, and T. Pun, “A
stochastic approach to content adaptive digital image watermarking,”
in Proc. 3rd Int. Workshop Information Hiding, vol. 1768, Dresden,
Germany, Sep. 29–Oct. 1 1999, pp. 212–236.

[30] S. Voloshynovskiy, O. Koval, F. Deguillaume, and T. Pun, “Data
hiding capacity-security analysis for real images based on stochastic
nonstationary geometrical models,” presented at the IS&T/SPIE’s
Annu. Symp. Electronic Imaging 2003: Image Video Communications
Processing V, Santa Clara, CA, Jan., 20–24 2003.

[31] , “Visual communications with side information via distributed
printing channels: Extended multimedia and security perspectives,”
presented at the SPIE Photonics West, Electronic Imaging 2004,
Multimedia Processing Applications, San Jose, CA, Jan. 18–22,
2004.

[32] S. Voloshynovskiy, O. Koval, and T. Pun, “Wavelet-based image
denoising using nonstationary stochastic geometrical image priors,”
presented at the IS&T/SPIE’s Annu. Symp. Electronic Imaging 2003:
Image Video Communications Processing V, Santa Clara, CA, Jan.,
20–24 2003.

[33] C. Weidmann and M. Vetterli, “Rate-distortion analysis of spike pro-
cesses,” presented at the Data Compression Conf., Snowbird, UT, Mar.
1999.

[34] Y.Yoo , A. Ortega, and B. Yu, “Image subband coding using con-
text-based classification and adaptive quantization,” IEEE Trans. Image
Process., vol. 8, no. 12, pp. 1702–1715, Dec. 1999.



VOLOSHYNOVSKIY et al.: EDGE PROCESS MODEL AND ITS APPLICATION TO INFORMATION-HIDING CAPACITY ANALYSIS 1825

Sviatoslav Voloshynovskiy received the Radio
Engineer degree from Lviv Polytechnic Institute,
Lviv, Ukraine, in 1993 and the Ph.D. degree in elec-
trical engineering from State University “Lvivska
Polytechnika,” Lviv, Ukraine, in 1996.

From 1998 to 1999, he was a visiting scholar with
the University of Illinois at Urbana-Champaign.
Since 1999, he has been with the University of
Geneva, Switzerland, where he is currently an
Associate Professor with the Department of Com-
puter Science and head of the Stochastic Image

Processing group. His current research interests are in information-theoretic
aspects of digital data hiding, visual communications with side information,
and stochastic image modeling for denoising, compression, and restoration.
He has coauthored over 100 journal and conference papers in these areas and
holds nine patents. He has served as a consultant to private industry in the
above areas.

Oleksiy Koval received the Master’s and Ph.D.
degrees, both in electrical engineering, from the
National University “Lvivska Politechnika,” Lviv,
Ukraine, in 1996 and 2002, respectively. He also
received the Ph.D. degree in stochastic image mod-
eling from the University of Geneva, Switzerland, in
2004.

From 1996 to 2001, he was a Researcher and Ph.D.
student with the Department of Synthesis, Processing
and Identification of Images, Institute of Physics and
Mechanics, Lviv, Ukraine. Since 2002, he has been

with Stochastic Image Processing Group, Computer Vision and Multimedia
Laboratory, University of Geneva, where he is currently a Postdoctoral Fellow.
Research interests cover stochastic image modeling for different image pro-
cessing applications, digital watermarking, information theory, and communi-
cations with side information.

M. Kivanc Mihcak was born in Turkey. He received
the B.S. degree in electrical engineering from Bilkent
University, Ankara, Turkey, in 1996 (valedictorian)
and the M.S. and Ph.D. degrees from the University
of Illinois, Urbana-Champaign, in 1999 and 2002 re-
spectively.

Between 1996 and 2002, he was with the Elec-
trical and Computer Engineering Department at
the University of Illinois, Urbana-Champaign, in
the Image Formation and Processing Group, at the
Beckman Institute. Currently, he is with the Crypto

Group, Microsoft Research, Redmond, WA. His research interests include in-
formation hiding, watermarking, fingerprinting, hashing, multimedia security,
as well as statistical signal processing, information theory, data compression,
and wavelets.

Thierry Pun received the Ph.D. degree in image
processing from the Swiss Federal Institute of
Technology in Lausanne (EPFL), Switzerland, in
1982.

In 1986, he joined the University of Geneva,
Switzerland, where he is currently Full Professor
in the Computer Science Department and head of
the Computer Vision and Multimedia Laboratory.
Since 1979, he has been active in various domains
of image processing, image analysis, and computer
vision. He has authored or coauthored over 200

journal and conference papers in these areas as well as seven patents and led
or participated in a number of national and European research projects. His
current research interests, related to the design of multimedia information
systems and multimodal interaction, focus on data hiding, image and video
watermarking, image and video content-based information retrieval systems,
EEG signals analysis, and brain–computer interaction.


	toc
	The Edge Process Model and Its Application to Information-Hiding
	Sviatoslav Voloshynovskiy, Oleksiy Koval, M. Kivanc Mihcak, and 
	I. I NTRODUCTION
	Notation: We use capital letters to denote scalar random variabl

	II. E DGE P ROCESS M ODEL
	A. EP Model: Definition and Experimental Validation
	1) Stochastic Image Modeling Main Trends and Assumptions: During



	Fig.€1. Explanation of the EQ and EP models: (a) the edge struct
	2) EQ and Spike Process Models Open Issues: The goal of this sec
	3) EP Model Definition for Real Images: In this section, we intr

	Fig.€2. Explanation of the EP model: (a) Original Lena image and
	4) EP Model Experimental Validation on Real Images: To demonstra

	Fig.€3. Explanation of the EP model based on Lena image (absolut
	B. EP Model: Justification
	1) Image Regeneration: The goal of this section is to demonstrat


	Fig.€4. Example of real edge on Lena's shoulder: (a) and (c) ori
	2) Operational Entropies: The main objective of this subsection 

	Fig.€5. Variance estimation for the subbands shown in Fig.€3: (a
	3) EP Model Performance in Reference Applications: An important 

	Fig.€6. Example of real image generation according to the differ
	Fig.€7. Operational entropies (in bits per pixel) under (a) glob
	III. EP M ODEL A PPLICATION TO D IGITAL D ATA-HIDING
	A. Data-Hiding Game-Theoretic Approach
	B. Capacity for the Parallel Gaussian Channels and Spike Process
	C. Data-Hiding Capacity for the EP Model


	Fig.€8. Synthetic test images: (a) Step edge; (b) diagonal step 
	TABLE€I C OMPARISON OF T OTAL D ATA -H IDING C APACITIES (I N B
	IV. A TTACK B ASED ON THE EP M ODEL

	TABLE€II C OMPARISON OF T OTAL D ATA -H IDING C APACITIES (I N 
	V. C ONCLUSION
	M. Basseville and I. Nikiforov, Detection of Abrupt Changes . En
	M. Belge and E. Miller, Wavelet domain image restoration using e
	A. Bovik, Handbook of Image and Video Processing . New York: Aca
	J. Chen and A. K. Gupta, Likelihood procedure for testing change
	A. S. Cohen and A. Lapidoth, The Gaussian watermarking game, IEE
	M. Costa, Writing on dirty paper, IEEE Trans. Inf. Theory, vol.
	A. Hjorungnes, J. Lervik, and T. Ramstad, Entropy coding of comp
	R. L. Josshi, H. Jafarkhani, J. H. Kasner, T. R. Fischer, N. Far
	J. Li and R. M. Gray, Image Segmentation and Compression Using H
	J. Liu and P. Moulin, Analysis of interscale and intrascale depe
	S. LoPresto, K. Ramchandran, and M. Orhard, Image coding based o
	S. G. Mallat, A theory for multiresolution signal decomposition:
	S. G. Mallat, A Wavelet Tour of Signal Processing . New York: Ac
	H. Man, F. Kossentini, and M. J. Smith, A family of efficient an
	M. K. Mihcak, I. Kozintsev, and K. Ramchandran, Spatially adapti
	M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin, Low-c
	M. J. Ruf and J. W. Modesti, Operational rate-distortion perform
	P. Moulin, The role of information theory in watermarking and it
	P. Moulin and J. Liu, Analysis of multiresolution image denoisin
	P. Moulin and M. K. Mihcak, A framework for evaluating the data-
	P. Moulin and J. O'Sullivan, Information-theoretic analysis of i
	B. Natarajan, Filtering random noise from deterministic signals 
	A. Ortega and K. Ramchandran, Rate-distortion techniques in imag
	J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, 
	J. G. Proakis, Digital Communications . New York: McGraw-Hill, 1
	J. Shapiro, Embedded image coding using zerotrees of wavelet coe
	B. Vidacovic, Statistical Modeling by Wavelets . New York: Wiley
	J. Vila, O. Koval, and S. Voloshynovskiy, Facial image compressi
	S. Voloshynovskiy, A. Herrigel, N. Baumgaertner, and T. Pun, A s
	S. Voloshynovskiy, O. Koval, F. Deguillaume, and T. Pun, Data hi
	S. Voloshynovskiy, O. Koval, and T. Pun, Wavelet-based image den
	C. Weidmann and M. Vetterli, Rate-distortion analysis of spike p
	Y. Yoo , A. Ortega, and B. Yu, Image subband coding using contex



