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Abstract—In this paper, the problem of designing finite-im-
pulse-response (FIR) equalizers for multiple-input multiple-output
(MIMO) FIR channels is considered. It is shown that an arbi-
trary MIMO frequency-selective channel can be rendered FIR
equalizable by a suitable filter bank (FB) precoding operation
that introduces redundancy at the transmitter. The expression for
the minimum redundancy required to ensure FIR invertibility
is derived. The analysis is extended to the case of MIMO multi-
carrier modulation. Optimum zero-forcing (ZF) and minimum
mean-squared error (MMSE) solutions for the FIR equalizer are
derived. Simulation results are provided to demonstrate that the
proposed scheme achieves better performance than the block-pro-
cessing methods while supporting a higher data rate.

Index Terms—Filter bank, finite-impulse-response (FIR) equal-
ization, multiple-input multiple-output (MIMO), polynomial ma-
trix, pseudocirculant matrix, Smith form.

I. INTRODUCTION

WITH the ever-increasing demand for higher data rates,
multple-input multiple-output (MIMO) designs are per-

haps the most viable options for future wireless communication
systems [1]. Various channel impairments like multipath and
dispersion, resulting in intersymbol interference (ISI), make
signal processing for MIMO communications a challenging
task. Techniques like MIMO-orthogonal frequency-division
multiplexing (MIMO-OFDM) and space–time (ST) precoding
have been developed to deal with MIMO frequency-selective
channels [2], [3]. In this paper, we provide a filter bank (FB)
framework for MIMO communications.

In the single-input single-output (SISO) case, the FB pre-
coding approach to multicarrier modulation is quite well de-
veloped [4], [5]. FB transceivers can be designed to provide
a much higher data rate (number of symbols per channel use)
than the block processing methods like OFDM that require re-
dundancy of the order of channel length [4], [6]. In addition, the
FB framework contains the block processing methods as special
cases, thus providing a larger context for studying the tradeoffs
involved in system design.

Among the FB approaches to MIMO communications, the
knowledge of the channel is utilized in [7] to
design a pre-equalizer, i.e., a polynomial matrix such
that , at the transmitter. However, this method
requires , and assumes that the channel coefficient
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matrices are orthogonal. In [8], a blind finite-impulse-response
(FIR) equalizer is designed using polynomial matrix tech-
niques. Pohl et al.[9] uses the Kronecker form of matrix pencils
to design a zero-forcing (ZF) equalizer. These methods, which
perform FIR equalization at the receiver, in general require

and the channel matrix to be irreducible. In [10],
an iterative procedure for the joint design of precoder and
equalizer is developed with the assumption that the channel is
communicable. In [11], the concept of biorthogonal partners is
used to design an FIR fractionally spaced equalizer.

In this paper, we consider the problem of designing a FB pre-
coding framework that achieves FIR equalization of an arbitrary
MIMO FIR channel without imposing any constraints on the
nature of the channel. The channel can be of any dimension,
and it can even be singular. At the transmitter, the availability
of channel knowledge is utilized to design an FIR precoder in
such a way as to make the precoded channel FIR invertible. We
derive the minimum redundancy required to accomplish FIR
invertibility. In practical scenarios wherein the assumption of
random channel coefficients holds, it will be seen that full rate
can be achieved for rectangular channels in the FB precoding
framework, i.e., no redundancy is required. However, when the
channel is square, a redundancy of one symbol per channel use
is required. In addition, it will be seen that the assumption of
channel knowledge at the transmitter can be dispensed with in
practical scenarios.

A redundancy of one symbol per channel use for square chan-
nels implies considerable rate loss when the channel dimensions
are small. This motivates us to extend the FB precoding frame-
work to the case of MIMO multicarrier modulation. Due to the
blocking operation inherent in multicarrier modulation, the ef-
fective channel becomes a block pseudocirculant matrix [12].
By investigating the properties of the Smith form of block pseu-
docirculant matrices, we derive the expression for minimum re-
dundancy required to enable FIR equalization at the receiver. It
will be seen that the MIMO multicarrier approach retains the
full rate advantage for rectangular channels, while increasing
the achievable data rate in case of square channels. In addi-
tion, the MIMO multicarrier approach provides a better frame-
work than the basic FB approach for trading off rate for perfor-
mance. Compared with the ST methods, which require redun-
dancy of the order of channel length [2], the MIMO multicarrier
framework provides comparable performance while supporting
a much higher data rate.

The equalizer for the precoded channel is in the form of a FIR
left inverse, and hence is not unique. This non-uniqueness can
be utilized to design equalizers based on different criteria. We
show that the design freedom available at the precoder can be
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used to aid in the design of noise-minimizing ZF equalizer. We
also derive the minimum mean-squared error (MMSE) equalizer
for the precoded channel.

II. PRECODING FRAMEWORK

Consider the MIMO signal model given by

(1)

where is the -length input vector, is the -length
received signal vector, , is the time-
domain representation of the frequency-selective MIMO
channel, and is the -length noise vector. In the absence
of noise, we can write

(2)

in the domain. Now, an FIR equalizer (left inverse) for
exists if and only if and is irreducible. Therefore,
given an arbitrary , we wish to find an
precoder matrix , so that the composite channel
matrix has an FIR left inverse. is
the redundancy introduced by the precoder. If the channel ma-
trix is already FIR invertible, then we can chose

, so that no redundancy is introduced. We address
the question, What is the maximum (minimum redundancy

) for which is irreducible? Before answering this
question, we will look at some properties of the Smith form of
a polynomial matrix.

A. Smith Form

Given a polynomial matrix with normal rank
, , we can write [12]

(3)

where and are unimodular matrices (square matrices
with constant determinants) of sizes and , respectively.

is a matrix of the form

such that (i.e., divides ). The
monic polynomials are unique and are called the in-
variant polynomials of . We say that is equivalent to

and write .
Since and are unimodular, it follows from (3) that

. Therefore, if the minimum rank
of over all values of is , it can be shown that

. If an matrix
is irreducible (polynomially invertible), then its Smith form is

(4)

The following result is stated in [13].
Lemma 1: Let , , 2, have invariant polynomials

, , 2, where is the normal
rank of . Let have normal rank , with
invariant polynomials . Then, for
and , 2, .

The proof follows directly from the Binet–Cauchy formula
[13].

B. Minimum Redundancy

Theorem 1: Let be the minimum rank of the given
FIR channel . An precoder that renders

the composite channel matrix polynomially
invertible exists if and only if .

Proof: We will first prove the only if part.
Let , and denote the invariant poly-

nomials of , and respectively. Suppose is
irreducible. Then

We can always choose

(5)

so that , .
Since the minimum rank of is , we have

and

where is the normal rank of . Hence, for
only if . Therefore, is irreducible only if

.
Now we will prove the if part.
Let be the Smith form decomposi-

tion of the channel matrix. Choose

where is an arbitrary unimodular matrix. Then,
we have

Now, since is the minimum rank of , the submatrix
formed by the first columns of is

If , we have

Therefore, . Therefore, is irreducible.
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This result can be seen as a generalization to the MIMO case
of the minimum redundancy results obtained for the multicarrier
modulation case [4], [6].

C. Minimum Rank and Channel Zeros

Given an channel with normal rank , let
denote the g.c.d (greatest common divisor) of the minors of
order of (if is square and has full normal rank,
then is its determinant). Expanding in terms of
its factors, we have

(6)
The rank of drops below the normal rank only at the
channel zeros , . We now relate the min-
imum rank of to the maximum among the multiplicities
of the channel zeros.

Corollary 1: Let and be the normal rank and the min-
imum rank of respectively. Let be as in (6). Then,
we have .

Proof: Let , , be the invariant polyno-
mials of . Then, from the definition of the Smith form, we
have

Now, since , it follows that if some is a factor
of , then its multiplicity as a factor of is at least

. Thus, any factor of cannot be
a factor of for . Therefore, rank of
cannot be less than . Thus, we have the lower bound for
the minimum rank as .

A random nonsquare polynomial matrix is irreducible with
probability 1 [14]. Therefore, given an arbitrary channel

with , FB precoding utilizes all the degrees of
freedom i.e., the throughput is symbols per channel
use. If , then the channel can be completely preequal-
ized i.e., . If , FIR equalization can
be accomplished without precoding. Compared with ST pro-
cessing methods [2], [3], the FB precoding scheme provides
better throughput at a much lesser complexity. When ,
we need a redundancy of 1, i.e., , so that the pre-
coded channel becomes a tall matrix.

From the proof of Theorem 1, it is observed that the freedom
to choose the right unimodular matrix is available at
the precoder. One way of utilizing this freedom, when channel
knowledge is available at the transmitter, is given in Section IV.

When the transmitter has no channel knowledge, this freedom
can be used for channel independent techniques like constella-
tion precoding [15].

III. MIMO MULTICARRIER FRAMEWORK

Consider the MIMO signal model given by (1). Suppose the
output vectors are blocked to form the

vector , where
is the block-length (it corresponds to the number of tones in

case of MIMO-OFDM). Let , be the
polyphase components of of order , given by

(7)

The polyphase components of and are defined sim-
ilarly. Now, consider the convolution

We can express the odd and even parts of separately as

Applying transform and using the definition of polyphase
components, we can write

In general, for a polyphase decomposition of order , we can
write

The resulting system model is given by (8), shown at the bottom
of the page.

The relation given in (8) can be denoted concisely as

(9)

The matrix is called a block pseudocircu-
lant matrix. Pseudocirculant matrices (which result when

...
...

...
...

(8)
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is a scalar polynomial) are studied in detail in [16]. The fol-
lowing result, which is an extension of the diagonalization re-
sult of pseudocirculants to the block pseudocirculant case, was
proved in [14]:

(10)

with

(11)

where

and is the DFT matrix. and are the row and
column block permutation matrices, and

(12)

with .
From (12), we can infer the following [14]:

• since and are irreducible,
;

• is irreducible if and only if is irreducible.

A. Minimum Redundancy for MIMO Multicarrier Modulation

From Section II-B, we know that a rate loss of is
incurred for accomplishing FIR invertibility. This rate loss can
be considerable when is small. This motivates us to find the
minimum redundancy required for the block pseudo-
circulant channel matrix in the MIMO multicarrier rep-
resentation .

Lemma 2: Given an polynomial matrix , if
has roots , then has roots

. This result can be proved in a manner sim-
ilar to the SISO case [6].

For any polynomial matrix with normal rank , its rank
falls below only at the roots of . We have

At any root , the rank of drops by 1 if the multiplicity of
is 1. When the multiplicity of the root is more than 1, there is

possibility of the rank drop being more than 1. Let denote
the rank drop of at . From the proof of corollary
1, it follows that . The minimum rank of ,
which is the minimum value of over all , is given
by .

Definition: A set of zeros of is
called congruous with respect to if the following hold [6]:

1) are distinct;
2) .

If two zeros and of are congruous with respect to
, then where [6]. Congruous

zeros have the same magnitude and are phase shifted by an in-
teger multiple of .

Let the zeros of be partitioned into sets of congruous
zeros such that the number of congruous sets is minimum, i.e.,
no two sets can be combined to form a larger congruous set [17].

Each set contains either congruous zeros or a single zero. If, for
example, a zero has multiplicity 3 and is congruous to
(and is congruous to no other zero), then we have three con-
gruous sets: and . Let there be a total of

congruous sets . Let denote the cardinality
of . Each is of the form

We have . For each , let us define

Theorem 2: Given an polynomial matrix with
normal rank , the minimum rank of the block pseudocirculant
matrix is .

Proof: Let have the Smith form

Then it can be verified that has the Smith form

Since and have the same number of invariant poly-
nomials, they have the same normal rank. Since the number of
nonunity invariant polynomials is also the same, both and

have the same minimum rank.
If has normal rank , so does ,

. Therefore, it follows from (12) that has
normal rank . Now, since ,

has normal rank , the same as that of . In
addition, the minimum rank of is the same as that of

. Therefore, we have the following:

• normal rank of is ;
• minimum rank of is equal to the minimum rank

of .
Now, let be a root of . At , drops
by . At , also drops if and only
if is a common zero for both and . This
means that both and are zeros of , i.e.,
the two zeros are congruous.

Therefore, at any , matrices among ,
become rank deficient, by

respectively. Therefore, the
rank drop at any is .

Therefore, we have that the maximum rank drop of is
. Therefore, the minimum rank of , which is

equal to the minimum rank of , is .

We can now extend the minimum redundancy result to the
MIMO multicarrier case.

Corollary 2: Given a block-length and an FIR
channel with normal rank , an precoder
which renders the composite channel matrix poly-
nomially invertible exists if and only if .

Example: Consider a 3 3 matrix with the following
Smith form:
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We have . The zero
at (with multiplicity 2) is congruous to the one at
with respect to 2. From Lemma 2, we have

From Theorem 2, the minimum rank of is 3, and its
Smith form is given by

Remarks:

• A random nonsquare polynomial matrix is almost surely
irreducible [14]. Therefore, for an arbitrary square poly-
nomial matrix , we have and
with probability 1, which means, by Theorem 2, that a
redundancy of one symbol per channel use is enough.
Therefore, given an channel matrix, the rate loss
to be incurred to enable FIR equalization is in
the MIMO multicarrier scheme, as opposed to the
factor without multicarrier modulation. For rectangular
channels, the MIMO multicarrier scheme retains the full-
rate advantage. In addition, the multicarrier approach pro-
vides better resolution for trading off rate for
performance than the basic FB approach .

• In the ST precoding approach, the precoder and the equal-
izer can be jointly optimized [2]. In FB precoding, ob-
taining a closed form solution for the joint optimization
of the precoder and the equalizer is difficult, and itera-
tive optimization techniques need to be used [10]. Since
the focus in this paper is on the algebraic aspects of FIR
invertibility, we have used the simple zero-padding pre-
coder of the form .

IV. EQUALIZER DESIGN

The design of the equalizer can be based on different criteria
such as low delay, low complexity and noise minimization. The
polynomial matrix framework enables one to utilize many of the
results in systems theory literature regarding the construction
of inverse systems [18]. In this section, we derive the MMSE
equalizer and the noise-minimizing ZF equalizer, using the de-
sign freedom available at the precoder.

We assume that the receiver has the knowledge of the
precoded channel (or ,
in case of multicarrier modulation). We also assume that the
noise in (1) is zero-mean Gaussian and that the covariance
matrix is positive definite. The equalizer design problem is
to find a polynomial matrix such that

. This can also be written as , where

(13)

. . .
. . . (14)

and . is , is ,
and is . is tall if

. is full rank if and only if the following are found
[19]:

• is irreducible and column reduced;
• , where are the Kro-

necker indexes of the dual space of ;
• the degrees of all the columns of are equal.

The third restriction can be overcome by deleting the null
columns of as explained in [8]. Therefore, given an irre-
ducible and with chosen large enough, is full
rank if is column-reduced. Any polynomial matrix can
be brought to column-reduced form by multiplying it to the
right by a suitable unimodular matrix [13]. From the proof of
Theorem 1, it follows that we have the freedom of choosing
a unimodular factor of . We can choose that
unimodular matrix such that becomes column reduced,
resulting in a full rank . In the following section, superscript

denotes Hermitian transpose.
Theorem 3: If is tall and full rank, the equalizer

which minimizes the output noise power is given by
.

Proof: The output of the equalizer can be written as

Using (13) and (14), we can write

(15)

where
and are the
blocked versions of and , of dimensions

and , respectively. The covariance matrix of the
noise component of is given by

(16)

in view of the white noise assumption. The noise-minimizing
equalizer is obtained by minimizing subject to
the constraint . Using the Lagrange multiplier method,
we get

(17)

where is the Lagrange multiplier matrix.
From (17), we have

(18)

Since

(19)

From (17) and (19), we have

(20)

When the noise is white, (20) reduces to

(21)

Theorem 4: The MMSE solution for the system in (15) is
given by , where is
the covariance matrix of the vectors .
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Proof: From (15), the desired signal has to be esti-
mated from the observed signal . The
Wiener filter in this case is given by

where the last step follows because the input and the noise are
uncorrelated and .

When the noise and the input vectors are white, then

(22)

In practice, in the case of both ZF and MMSE equalizers,
least-square computations are preferred over the explicit com-
putation of inverses.

For both ZF and MMSE equalizers, the equalized signal can
be written as , where is the error
vector. Both the ZF and MMSE approaches try to minimize the
trace of , the error covariance matrix. For the ZF equalizer
with white noise, from (16) and (21), we can write

Similarly, for the MMSE equalizer, we can write

We define and
. and provide figures-of-merit

for the performance of the respective equalizers. The lower the
value of or , the better the performance.

V. SIMULATION RESULTS

Simulations were carried out with 4 4 channel coefficient
matrices with independent Gaussian distributed complex co-
efficients (Rayleigh fading). The power delay profile used was
[20]

The channel order was chosen to be 5. The noise generated
was spatially and temporally white. The results were averaged
over 100 random channels. The input constellation used in the
simulations is BPSK, unless otherwise mentioned.

Fig. 1 shows and for different values
of redundancy and SNR, with the block-length . It can
be seen that, for the same signal-to-noise ratio (SNR),
is less than , confirming that the MMSE equalizer performs
better than the ZF equalizer, even though the gap is closer at high
SNR. In addition, and decrease with increasing re-
dundancy, indicating an improvement in performance with de-
creasing data rate.

Fig. 1. T and T for different values of redundancy and SNR for L =
4.

Fig. 2. Comparative performance of FB and matrix pencil-based equalizers.

Fig. 2 shows the comparative performance of FB equalizer
and the matrix pencil-based equalizer of [9] for a quarternary-
phase-shift-keying (QPSK) input constellation. The redundancy
introduced in both cases was one symbol per channel use i.e.,

. Both the equalizers were ZF equalizers. It can
be seen from the figure that the FB equalizer provides a better
performance than the matrix pencil-based equalizer.

Fig. 3 shows the comparative performance of the ZF equal-
izer for different block-lengths and for different data rates.
When , and the redundancy introduced is 1 (with

), the data rate is . In this case, even
though FIR equalization is achieved, the performance is not sat-
isfactory. However, if the rate is reduced further by increasing
the redundancy, as shown in the figure for , we see that the
performance improves substantially, as could be inferred from
Fig. 1, where falls sharply when redundancy is increased
from 1 to 2.
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Fig. 3. Performance of MIMO-MCM for different block-lengths and data
rates.

Fig. 4. Comparative performance of ZF and MMSE equalizers for L = 4.

Fig. 4 illustrates the comparative performance of the ZF and
the MMSE equalizers for . It can be seen that the MMSE
equalizer performs better than the ZF equalizer as expected, and
the gap narrows down at high SNR.

Fig. 5 shows the comparative performance of FB precoding
with two designs from the ST precoding scheme of [2]. The
ST precoder designed according to Lemma 3 of [2] contains
as its columns the eigenvectors of , where is the
block-Sylvester channel matrix, whereas the design according
to Lemma 1 involves power loading across the eigenmodes in
addition. The block length was chosen to be 32. The data rate
was . For the FB precoding scheme, ,
and the rates were , . From Fig. 5,
we observe the following.

• For the same rate (3/4), FB precoding performs much
better than the ST precoding without power loading
(STP-NPL) and on par with ST precoding with power
loading (STP-PL). FB precoding with rate

Fig. 5. Comparative performance of FB precoding and ST precoding with
ZF equalization. Here, STP-PL = ST precoding with power loading and
STP-NPL = ST precoding without power loading.

outperforms STP-NPL with rate at high SNR.
Also, no channel knowledge at transmitter was used
in FB precoding, whereas ST precoding uses channel
knowledge at transmitter.

• The ST precoding scheme has much higher complexity
than the FB precoding scheme because of its higher block
length. However, it has the advantage of possessing a
better structure for a rate–performance tradeoff.

VI. CONCLUSION

In this paper, we have provided an FB framework for FIR
equalization of MIMO frequency-selective channels. We have
derived the expression for minimum redundancy required to en-
able FIR invertibility of arbitrary channels. We have extended
the analysis to the case of MIMO multicarrier modulation by
investigating the properties of the Smith form of block pseudo-
circulant matrices. We have also obtained solutions for the op-
timal ZF and MMSE equalizers. It is shown that the proposed
FB precoding approach outperforms the existing ST precoding
techniques while supporting a much higher data rate. We have
used the simple zero padding precoder in the simulations. De-
veloping optimal precoder designs and the study of sensitivity
of the receiver to channel estimation errors are presently under
investigation.

REFERENCES

[1] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview of
MIMO communications—A key to gigabit wireless,” Proc. IEEE, vol.
92, no. 2, pp. 198–218, Feb. 2004.

[2] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath,
“Optimal designs for space–time linear precoders and decoders,” IEEE
Trans. Signal Process., vol. 50, no. 5, pp. 1051–1063, May 2002.

[3] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless
communications,” IEEE Trans. Commun., vol. 46, no. 3, pp. 357–366,
Mar. 1998.

[4] X.-G. Xia, “New precoding for intersymbol interference cancella-
tion using nonmaximally decimated multirate filterbanks with ideal
FIR equalizers,” IEEE Trans. Signal Process., vol. 45, no. 10, pp.
2431–2441, Oct. 1997.



1652 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 5, MAY 2006

[5] P. P. Vaidyanathan and B. Vrcelj, “Transmultiplexers as precoders in
modern digital communication: A tutorial review,” in Proc. IEEE Int.
Symp. Circuits Systems, vol. 5, May 2004, pp. V-405–V-412.

[6] Y.-P. Lin and S.-M. Phoong, “Minimum redundancy for ISI free FIR
filterbank transceivers,” IEEE Trans. Signal Process., vol. 50, no. 4, pp.
842–853, Apr. 2002.

[7] H. Sampath, H. Bolcskei, and A. J. Paulraj, “Pre-equalization for MIMO
wireless channels with delay spread,” in Proc. IEEE Vehicular Tech-
nology Conf. (VTC) Fall, vol. 3, 2000, pp. 1175–1178.

[8] J. K. Tugnait, “FIR inverses to MIMO rational transfer functions with
applications to blind equalization,” in Proc. 30th Asilomar Conf. Signals,
Systems Computers, vol. 1, 1997, pp. 295–299.

[9] V. Pohl, V. Jungnickel, E. Jorswieck, and C. von Helmolt, “Zero forcing
equalizing filter for MIMO channels with intersymbol interference,” in
Proc. Int. Symp. IEEE Personal Indoor Mobile Radio Communications
(PIMRC), vol. 3, 2002, pp. 1037–1041.

[10] A. Hjorungnes, P. S. R. Diniz, and M. L. R. de Campos, “Jointly min-
imum BER transmitter and receiver FIR MIMO filters for binary signal
vectors,” IEEE Trans. Signal Process., vol. 52, no. 4, pp. 1021–1036,
Apr. 2004.

[11] B. Vrcelj and P. P. Vaidyanathan, “MIMO biorthogonal partners and ap-
plications,” IEEE Trans. Signal Process., vol. 50, no. 3, pp. 528–542,
Mar. 2002.

[12] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[13] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[14] X.-G. Xia, W. Su, and H. Liu, “Filterbank precoders for blind equaliza-

tion: Polynomial ambiguity resistant precoders (PARP),” IEEE Trans.
Circuits Syst. I, Fundam. Theory Appl., vol. 48, pp. 193–209, Feb. 2001.

[15] J. Boutros and E. Viterbo, “Signal space diversity: A power- and band-
width-efficient diversity technique for the Rayleigh fading channel,”
IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1453–1467, Jul. 1998.

[16] P. P. Vaidyanathan and S. K. Mitra, “Polyphase networks, block dig-
ital filtering, LPTV systems, and alias-free QMF banks: A unified ap-
proach based on pseudocirculants,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 36, no. 3, pp. 981–991, Mar. 1998.

[17] Y.-P. Lin and S.-M. Phoong, “Smith form of FIR pseudocirculants,”
IEEE Signal Process. Lett., vol. 9, no. 8, pp. 256–258, Aug. 2002.

[18] B. Moore and L. Silverman, “A new characterization of feedforward
delay-free inverses,” IEEE Trans. Inf. Theory, vol. 19, no. 1, pp.
126–129, Jan. 1973.

[19] P. Loubaton, E. Moulines, and P. Regalia, “Subspace method for blind
identification and deconvolution,” in Signal Processing Advances in
Wireless Communications. Englewood Cliffs, NJ: Prentice-Hall,
2000.

[20] H. Bolcskei, M. Borgmann, and A. J. Paulraj, “Impact of propa-
gation environment on the performance of space-frequency coded
MIMO-OFDM,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp.
427–439, Apr. 2003.

A. Vijaya Krishna received the B.E. degree from
the University of Mysore, Karnataka, India, in 1998
and the M.Sc. degree in engineering from the De-
partment of Electrical Engineering, Indian Institute
of Science, Bangalore, in 2002. He is currently
working toward the Ph.D. degree at the Department
of Electrical Communication Engineering, Indian
Institute of Science.

From 1998 to 1999, he worked as a Systems Engi-
neer in Wipro Enterprise Solutions. His research in-
terests are in the area of multirate signal processing,

signal processing for communications, and MIMO systems.

K. V. S. Hari (SM’97) received the B.E. degree
from Osmania University, Hyderabad, India, in
1983, the M.Tech. degree from the Indian Institute
of Technology, New Delhi, India (IIT Delhi), in
1985, and the Ph.D. degree from the University of
California San Diego, La Jolla, in 1990.

Previously, he was a Scientist with the Defence
Electronics Research Laboratory, Hyderabad, from
December 1985 to July 1987, a Scientist at Osmania
University from December 1990 to January 1991, and
an Assistant Professor with the Department of Elec-

trical and Computer Engineering, Indian Institute of Science (IISc), Bangalore,
India (IISc), from February 1992 to January 1998. Since February 1998, he has
been an Associate Professor with the Department of Electrical Communication
Engineering, He was a visiting faculty member at Helsinki University of Tech-
nology, Espoo, Finland, from May to July 2002; Stanford University, Stanford,
CA, from September 1999 to December 2000; and the Royal Institute of Tech-
nology, Stockholm, Sweden, from July to September 1995. His research inter-
ests are in statistical signal processing. He has worked on space–time signal
processing algorithms for direction-of-arrival estimation, acoustic signal sepa-
ration using microphone arrays, and MIMO wireless communication systems.
He has also worked on MIMO wireless channel measurements and modeling
and is the coauthor of the IEEE 802.16 (WiMAX) standard on wireless channel
models for fixed broadband wireless communication systems. He has been a
consultant to various companies around the world and is also a co-founder of
a start-up company, ESQUBE Communication Solutions Pvt., Ltd, Bangalore,
India.

Dr. Hari is currently a member of the Editorial Board of EURASIP’s Journal
on Signal Processing.


	toc
	Filter Bank Precoding for FIR Equalization in High-Rate MIMO Com
	A. Vijaya Krishna and K. V. S. Hari, Senior Member, IEEE
	I. I NTRODUCTION
	II. P RECODING F RAMEWORK
	A. Smith Form
	Lemma 1: Let $P_{i}(z)$, $i=1$, 2, have invariant polynomials $\

	B. Minimum Redundancy
	Theorem 1: Let $r_{m}$ be the minimum rank of the given $M\times
	Proof: We will first prove the only if part.


	C. Minimum Rank and Channel Zeros
	Corollary 1: Let $r$ and $r_{m}$ be the normal rank and the mini
	Proof: Let $\psi_{i}(z)$, $i=1,2,\ldots r$, be the invariant pol



	III. MIMO M ULTICARRIER F RAMEWORK
	A. Minimum Redundancy for MIMO Multicarrier Modulation
	Lemma 2: Given an $M\times N$ polynomial matrix $H(z)$, if $\ver
	Definition: A set of zeros $\{\alpha_{k_{1}},\alpha_{k_{2}},\ldo
	Theorem 2: Given an $M\times N$ polynomial matrix $H(z)$ with no
	Proof: Let $H(z)$ have the Smith form $${\rm diag}\left\{\delta_

	Corollary 2: Given a block-length $L$ and an $M\times N$ FIR cha
	Example: Consider a 3 $\times$ 3 matrix $H(z)$ with the followin
	Remarks:


	IV. E QUALIZER D ESIGN
	Theorem 3: If ${\cal C}$ is tall and full rank, the equalizer wh
	Proof: The output of the equalizer can be written as $$\mathhat{

	Theorem 4: The MMSE solution for the system in (15) is given by 
	Proof: From (15), the desired signal $\mathhat{x}(n)$ has to be 


	V. S IMULATION R ESULTS

	Fig. 1. $T_{\rm ZF}$ and $T_{\rm MMSE}$ for different values of 
	Fig.€2. Comparative performance of FB and matrix pencil-based eq
	Fig.€3. Performance of MIMO-MCM for different block-lengths and 
	Fig.€4. Comparative performance of ZF and MMSE equalizers for $L
	Fig.€5. Comparative performance of FB precoding and ST precoding
	VI. C ONCLUSION
	A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, An over
	A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. 
	G. G. Raleigh and J. M. Cioffi, Spatio-temporal coding for wirel
	X.-G. Xia, New precoding for intersymbol interference cancellati
	P. P. Vaidyanathan and B. Vrcelj, Transmultiplexers as precoders
	Y.-P. Lin and S.-M. Phoong, Minimum redundancy for ISI free FIR 
	H. Sampath, H. Bolcskei, and A. J. Paulraj, Pre-equalization for
	J. K. Tugnait, FIR inverses to MIMO rational transfer functions 
	V. Pohl, V. Jungnickel, E. Jorswieck, and C. von Helmolt, Zero f
	A. Hjorungnes, P. S. R. Diniz, and M. L. R. de Campos, Jointly m
	B. Vrcelj and P. P. Vaidyanathan, MIMO biorthogonal partners and
	P. P. Vaidyanathan, Multirate Systems and Filter Banks . Englewo
	T. Kailath, Linear Systems . Englewood Cliffs, NJ: Prentice-Hall
	X.-G. Xia, W. Su, and H. Liu, Filterbank precoders for blind equ
	J. Boutros and E. Viterbo, Signal space diversity: A power- and 
	P. P. Vaidyanathan and S. K. Mitra, Polyphase networks, block di
	Y.-P. Lin and S.-M. Phoong, Smith form of FIR pseudocirculants, 
	B. Moore and L. Silverman, A new characterization of feedforward
	P. Loubaton, E. Moulines, and P. Regalia, Subspace method for bl
	H. Bolcskei, M. Borgmann, and A. J. Paulraj, Impact of propagati



