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Abstract—With an abundance of tools based on kernel methods
and information theoretic learning, a void still exists in incorpo-
rating both the time structure and the statistical distribution of the
time series in the same functional measure. In this paper, a new
generalized correlation measure is developed that includes the in-
formation of both the distribution and that of the time structure
of a stochastic process. It is shown how this measure can be inter-
preted from a kernel method as well as from an information theo-
retic learning points of view, demonstrating some relevant proper-
ties. To underscore the effectiveness of the new measure, a simple
blind equalization problem is considered using a coded signal.

Index Terms—Blind equalization, entropy, generalized corre-
lation kernel, information theoretic learning, reproducing kernel
Hilbert space (RKHS).

1. INTRODUCTION

ATURAL processes of interest for engineering are com-

posed of two basic characteristics: statistical distribution
of amplitudes and time structure. Time in itself is very fun-
damental and is crucial to many real-world problems, and the
instantaneous random variables are hardly ever independently
distributed, i.e., stochastic processes possess a time structure.
For this reason, there are widely used measures that quantify
the time structure like the autocorrelation function. On the
other hand, there are a number of methods that are solely based
on the statistical distribution, ignoring the time structure. A
single measure that includes both of these important charac-
teristics could greatly enhance the theory of stochastic random
processes.

The fact that reproducing kernels are covariance functions as
described by Aronszajn [1] and Parzen [2] explains their early
role in inference problems. More recently, numerous algorithms
using kernel methods, including support vector machines [3],
kernel principal component analysis [4], kernel Fisher discrim-
inant analysis [5], and kernel canonical correlation analysis [6],
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[7] have been proposed. Likewise, advances in information the-
oretic learning (ITL), have brought out a number of applications,
where entropy and divergence employ Parzen’s nonparametric
estimation [8]—[11]. Many of these algorithms have given very
elegant solutions to complicated nonlinear problems. Most of all
these contemporary algorithms are based on assumptions of in-
dependent distribution of data, which in many cases is not real-
istic. Obviously, an accurate description of a stochastic process
requires both the information of the distribution and that of its
time structure. A void still exists in incorporating both in the
same functional measure, providing the insight and usefulness
of similarity over time.

Our new function is a step forward in this direction. Specif-
ically, we define a generalized correlation function (GCF) in
terms of inner products of vectors in a kernel feature space.
Since inner products are a measure of similarity, this function in
effect measures the pairwise interaction of the feature vectors,
separated by a certain time delay in input space. On the other
hand and from an ITL point of view, this new measure quanti-
fies the shape and size of the group of points in feature space,
which gives the information of the statistical distribution in the
input space.

Interestingly, it can be deduced that the GCF is directly re-
lated to Renyi’s quadratic entropy estimate of data using Parzen
windowing: For this reason, we will denote this new function as
correntropy. Moreover, we show that it exhibits some properties
that make it structurally similar to the correlation function.

The organization of the paper is as follows. After a brief pre-
sentation of some background on kernel methods and informa-
tion theoretic learning, the definition of the new GCF, its main
properties and some examples illustrating its behavior are pre-
sented in Section III. In Section IV, we present a simple appli-
cation of the GCF to blind equalization of coded signals. As we
shall discuss in more detail, our approach is based on the fact
that in some communication systems the correlation resulting
from a precoder is known in advance and this can be exploited
to our advantage. Since we use more information of the time
structure by employing correntropy, one can see a significant
improvement over contemporary methods. Finally, Section V
summarizes the main conclusions and points out some lines for
further research.

II. SOME BACKGROUND ON KERNEL-BASED
ALGORITHMS AND ITL

In recent years, a number of kernel methods, including
support vector machines [3], kernel principal component anal-
ysis [4], kernel Fisher discriminant analysis [5], and kernel

1053-587X/$20.00 © 2006 IEEE



2188

canonical correlation analysis [6], [7], have been proposed and
successfully applied to several problems. The basic idea of
kernel algorithms is to transform the data x; from the input
space to a high dimensional feature space of vectors ®(x;),
where the inner products can be computed using a positive
definite kernel function satisfying Mercer’s conditions [3]:
k(xi,x;) = (®(x;), P(x;)). This simple and elegant idea
allows us to obtain nonlinear versions of any linear algorithm
expressed in terms of inner products, without even knowing the
exact mapping ®.

A particularly interesting characteristic of the feature space
is that it is a reproducing kernel Hilbert space (RKHS), i.e., the
span of functions {x(-,x) : x € X'} defines a unique functional
Hilbert space [1], [2], [12], [13]. The crucial property of these
spaces is the reproducing property of the kernel

fx) = (s(-,%), f),

In particular, we can define our nonlinear mapping from the
input space to a RKHS as ®(x) = k(-, x), then we have

(®(x), (y)) = (r(-, %), k(- y)) = £(x,y)

and thus ®(x) = «(+,x) defines the Hilbert space associated
with the kernel.

Without loss of generality, in this paper, we will only con-
sider the translation-invariant Gaussian kernel, which is the
most widely used Mercer kernel.!

1 _ 2
Kx—y)= or exp — (%) . (1)

On the other hand, ITL addresses the issue of extracting
information directly from data in a nonparametric manner
[8]. Typically, Renyi’s entropy or some approximation to the
Kullback-Leibler distance have been used as ITL cost functions
and they have achieved excellent results on a number of prob-
lems, e.g., time-series prediction [9], blind-source separation
[10], or equalization [11].

It has been recently shown that ITL cost functions, when es-
timated using the Parzen method, can also be expressed using
inner products in a kernel feature space which is defined by the
Parzen kernel, thus suggesting a close relationship between ITL
and kernel methods [14], [15]. For instance, if we have a data
setxXq, -+, XN € R< and the corresponding set of transformed
data points ®(x;), - - -, ®(x ), then it turns out that the squared
mean of the transformed vectors, i.e.,

| = <% ¢<x1>,%2¢<xj>>

1 i=1N
:mZZn(xi - X;)
j=1

1

Vf e F.

is the information potential V(x) as defined in [8].2

INotice that in most of the kernel-based methods, the Gaussian kernel is de-
fined without the scale factor 1/ \/ﬁzf On the other hand, in information theo-
retic measures derived from Parzen windowing with Gaussian kernels, the scale
factor is considered in order to keep a constant unit volume of the kernel. Here,
we follow this probability density function (pdf)-based kernel definition.

2The quadratic Renyi’s entropy is defined as Hy = — log(V (x)).
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¢(xt+1' )

lo(x) = K(x,,x)=C

Fig. 1. Mapping of a time series with the reproducing Gaussian kernel.

Similarly, the equivalence between kernel independent com-
ponent analysis and a Cauchy—Schwartz independence measure
has been pointed out in [16]. In fact, all learning algorithms that
use nonparametric pdf estimates in the input space admit an al-
ternative formulation as kernel methods expressed in terms of
dot products. This interesting link allows us to gain some geo-
metrical understanding of kernel methods, as well as to deter-
mine the optimal kernel parameters by looking at the pdf esti-
mates in the input space.

Since the cost functions optimized by ITL algorithms (or,
equivalently, by kernel methods) involve pdf estimates, these
techniques are able to extract the higher order statistics of the
data and that explains to some extent the improvement over
their linear counterparts observed in a number of problems.
Despite its evident success, a major limitation of all these
techniques is that they assume independent and identically
distributed (i.i.d.) input data. However, in practice, most of
the signals in engineering have some correlation or temporal
structure. Moreover, this temporal structure can be known in
advance for some problems (for instance in digital communica-
tions working with coded source signals). Therefore, it seems
that most of the conventional ITL measures are not using all
the available information in the case of temporally correlated
(nonwhite) input signals. The main goal of this paper is to
present a new function that, unlike conventional ITL measures,
effectively exploits both the statistical and the time-domain
information about the input signal. This new function, which
we refer to as GCF, will be presented in the next section.

III. GENERALIZED CORRELATION FUNCTION
A. Motivation and Definition

Let {x,t € T} be a stochastic process with T being an index
set and x; € R%. The nonlinear transformation induced by the
reproducing kernel (1), maps the input samples over a sphere in
the feature space, since | ®(x;)||?> = #(0) = 1/(v/270). There-
fore, the distance between ®(x;,) and ®(xy,) on that sphere
(i.e., the geodesic distance) is proportional to the angle between
the vectors from the origin to those points (see Fig. 1)

X Xy, )) o cos™! (P (xt,) P (xt,)
d(q)( t1)7cb( tz)) (H@(XH)HH(I)(XM)H)

= cos™! (\/ﬁoﬁ (%, — xtz)) .
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In other words, the kernel function is in fact computing the
cosine of the angle between two points over the sphere (i.e., a
distance). In addition, we notice from the previous discussion
and also from Fig. 1 that the transformed data ®(x;) must lie on
some embedded manifold over the first quadrant on the sphere
(since the kernel takes only positive values, the angle belongs to
the interval [0, 7 /2]). Finally, it is also known from the link be-
tween ITL and kernel methods that the cloud of feature vectors
also conveys information about the quadratic Renyi’s entropy of
the input data set (remember that log(||ms||?) is the quadratic
Renyi’s entropy).

With these remarks, we can define the new GCF as follows.

Definition: Let {x;,t € T} be a stochastic process with T’
being an index set and x; € R?. The generalized correlation
function V (t1, t5) is defined as a function from 7" x T  into R™
given by

V(t1,t2) = Bl (xr, — X1,)] @)

where E[-] denotes mathematical expectation over the sto-
chastic process x;.

Using a series expansion for the Gaussian kernel, the GCF
can be rewritten as

. 1 = (_l)n 2n
Vit te) = @O_;%M!E[nxtl x| 3

which involves all the even-order moments? of the random vari-
able ||x:, — X4, || Specifically, the term corresponding to n = 1
in (3) is proportional to

E (%, 1] + B [IIx )] = 2B [(x0,,x0,)]

2 2
Tty + O—xtz

=0 - 2Rz(t1,t2)
where R, (t1,t2) is the covariance function of the random
process; this shows that the information provided by the
conventional covariance function (the autocorrelation for
zero-mean processes) is included within the new function.

From (3), we can see that in order to have a univariate GCF, all
the even-order moments must be invariant to a time shift. This
is a stronger condition than wide sense stationarity, which in-
volves only second-order moments. More precisely, a sufficient
condition to have V (¢,t —7) = V(7) is that the input stochastic
process must be strictly stationary on the even moments [17];
this means that the joint pdf p(x;, X¢+- ), must be unaffected by
a change of time origin. We will assume this condition in the
rest of the paper when using V(7).

For a discrete-time strictly stationary stochastic process,
we define the generalized correlation function as V[m]| =
E[k(xn — Xn—m)], which can be easily estimated through the
sample mean

]\T
N 1
VIm] = N_om+1 Z K(Xp — Xp—m)- @)

3A different kernel would yield a different expansion, for instance the sig-
moidal kernel k(X ,X:,) = tanh({x.,,X:,) + @) admits an expansion in
terms of the odd moments of its argument.
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B. Properties

Some important properties of the GCF can be listed
as follows.

Property 1: For any symmetric positive definite kernel (i.e.,
Mercer kernel) k(xy, , Xt, ) defined on R x R, the GCF defined
as V(t1,t2) = E[r(x¢,,Xt,)] is a reproducing kernel.

Proof: Since r(xy, , X, ) is symmetrical, it is obvious that
V (t1,t2) is also symmetrical. Now, since (X, , X, ) is positive

definite, for any set of n points {z1, - - -, z, } and any set of real
numbers {a1, - -, an}, not all zero
n n
ZZaiajm(xi,Xj) > 0. 5)
i=1 j=1

It is also true that for any strictly positive function g(-, -) of two
random variables = and y, E[g(z,y)] > 0. Then

F zn:i:aiajﬁ(xi,x]') >0 =

i=1 j=1
Z Z a;a; E [k(x;,x;)] = Z ZaiajV(i,j) > 0.
i=1 j=1 i=1 j=1

Thus, V(t1,t2) is both symmetric and positive definite. Now,
the Moore—Aronszajn theorem [1] proves that for every real
symmetric positive definite function s of two real variables,
there exists a unique RKHS with & as its reproducing kernel.
Hence, V (t1,t2) = F[k(xX¢,, X, )] is areproducing kernel. This
concludes the demonstration. [ |

The following properties consider a discrete-time stochastic
process; obviously, the properties are also satisfied for contin-
uous-time processes.

Property 2: V[m] is a symmetric function V[—m] = V[m].

Property 3: V[m] reaches its maximum at the origin, i.e.,
Vim] < V[0], Vm.

Property 4: Vm] > 0 and V[0] = 1/v/270.

All these properties can be easily proved. Properties 2 and 3
are also satisfied by the conventional autocorrelation function,
whereas Property 4 is a direct consequence of the positiveness
of the Gaussian kernel.

Property5: Let{x,,n=0,---,N—1}beasetofi.i.d.data
drawn according to some distribution p(x). The mean value of
the GCF estimator (4) converges asymptotically to the estimate
of information potential obtained through Parzen windowing
with Gaussian kernels.

Proof: The Parzen pdf estimate is given by p(x) =
(1/N) Zi::ol k(X — X,), and the estimate of the information
potential is

=— K (X — Xp1) 6)

where ' denotes a Gaussian kernel with twicEe the kernel size
of . On the other hand, the GCF estimate is V[m] = (1/N —
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[m]) S £(Xn = Xn—m), for (N = 1) < m < (N = 1),
and therefore its mean value is

1 N-1 1 N-1
V > = N n — Ssn—m)-
(Vi 2N-1, & N—ml ngn“(x Xn=m)

(N
It is trivial to check that all the terms in (6) are also in (7);
however, each term is weighted differently in both expressions.
Therefore, the mean value of the GCF estimator is a biased (al-
though asymptotically unbiased) estimator of the information
potential. This concludes the proof. ]
Property 5 clearly demonstrates that this generalization
includes information about the pdf. On the other hand, we also
showed that it also conveys information about the correlation.
For these reasons, in the sequel we will refer to V[m] as
correntropy.
Property 6: Given V[m] form = 0,---, P — 1, then the
following Toeplitz correntropy matrix of dimensions P x P

Vo] V{1l VP —1]
v Vo] VP -2
V[P:— 1] V[P.'— 2] V:[O]

is positive definite.

Proof: Matrix V can be decomposed as V = Zi\;m A,
where A,, is given by the equation shown at the bottom of the
page, if k(x;,x;) is a kernel satisfying Mercer’s conditions,
then A, is a positive definite matrix Vn. On the other hand, the
sum of positive definite matrices is also positive definite [18];
this proves that V is a positive definite matrix. ]

We would like to point out that this important property opens
the possibility of applying this new function to all the signal pro-
cessing methods using conventional correlation matrices: signal
and noise subspace decompositions, projections, etc. In partic-
ular, we can define a generalized power spectral density (PSD)
function as

P(w) = Z Vimle™ ™ >0

m=—00

which satisfies all the properties of a conventional PSD func-
tion and could be used to analyze time series in the frequency
domain. Since it is the Fourier transform of correntropy, we de-
note this new function as correntropy spectral density (CSD).
The potential applications and usefulness of these ideas are be-
yond the scope of this paper.

Property 7: Let {z, € R,n € T} be a discrete-time wide-
sense stationary zero-mean Gaussian process with autocorrela-
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tion function 7[m] = E[z, %, —.]. The correntropy function for
this process is given by

Vim] = { oy

m =0

40 ®)

where o is the kernel size and o%[m] = 2(r[0] — 7[m)]).

Proof: The correntropy function is defined as V[m] =
E[k(xy — y—m)]. Since z,, is a zero-mean Gaussian random
process, for m # 0, z,, = Tp — Tp—m 1S also a zero-mean
Gaussian random variable with variance o?[m] = 2(r[0] —
r[m]). Therefore

Vim] = 7f<é(2m)

;ex —< om )dz 9)
2ma[m] P 202[m] e

Since we are considering a Gaussian kernel with variance 02,(9)
is the convolution of two zero-mean Gaussians of variances o2
and o[m]? evaluated at the origin; this yields (8) immediately.
|

Property 7 clearly reflects that correntropy conveys informa-
tion about the time structure of the process and also about its pdf
via quadratic Renyi’s entropy. As a consequence of Property 7,
if {z, € R,n € T} is a white zero-mean Gaussian process
with variance 02, we have that V[m] = 1/(y/27(02 + 02)),
Vm # 0, which coincides with the mean value of the func-
tion and, of course, is the information potential* of a Gaussian
random variable of variance (7% , when its pdf has been estimated
via Parzen windowing with a Gaussian kernel of size 2.

Property 8: The correntropy estimator (4) is unbiased and
asymptotically consistent.

The properties of the estimator can be derived following the
same lines used for the conventional correlation function [19].

C. Some Examples of Correntropy

In this section, we show some examples that provide us a
better understanding of the behavior and characteristics of cor-
rentropy. We consider the generation model shown in Fig. 2,
where different source distributions and different linear time-in-
variant filters can be used. First, we switch off the filter and
generate zero-mean unit variance white processes with different
distributions: Gaussian, impulsive, and exponential. Fig. 3 de-
picts V[m] and the conventional autocorrelation function R[m).
The correntropy function has been estimated from registers of
N = 10000 samples, and the used kernel size was o = 1. We
can see that the mean value of correntropy changes for different

4J (o) de =1/ /27(0% + o2).

’i(xn - Xn—P—l)
K,(Xn - Xn7P72>

K(Xn _ X,)
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s[n]

X[n]

Filter
H(z)

Source
PDF

—_—

Fig. 2. Generation model.

04 T " .

Gaussian source

Exponential source
0.35¢

Impulsive source

E 03722 ------------------------------------
>
0.25f :
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m
(@)
1.2 T T T
1t .
Gaussian source
0.8 —  Exponential source
------ Impulsive source
E
o
02 L | |
0 0 5 10 15 20
m
(b)
Fig. 3. White processes with different input source distributions:

(a) Correntropy and (b) autocorrelation.

source distributions, whereas the autocorrelation function is ba-
sically the same, independent of the source distribution. Specifi-
cally, we can see from Fig. 3 that the value of correntropy at any
nonzero lag corresponds the true value of the information poten-
tial, which can be theoretically obtained for Gaussian (0.23), im-
pulsive (0.30), and exponential sources (0.26). This observation
may yield a method to eliminate the bias on the estimation of
entropy from finite data sets using the Parzen window method.

From this example, we can also see that in the case of i.i.d
data, the correntropy at any lag (except zero) is all the informa-
tion that we need to estimate quadratic Renyi’s entropy. This
idea can be related to the stochastic information gradient algo-
rithm [20], which uses a pair of consecutive samples to estimate
the entropy at the output of a linear system.
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Fig. 4. Filtered processes with different input source distributions:

(a) Correntropy and (b) autocorrelation.

In the second experiment, the source distribution changes
among Gaussian, exponential, and impulsive, but now we
introduce the following infinite-impulse-response (IIR) filters:
H(z) = 1/(1 — 1.527 + 0.8272). Fig. 4 shows that, in this
case, the overall shape of V[m] is very similar to R[m], thus
reflecting the time structure of the process (which only has
linear relationships among the variables). Since after linear
filtering the pdf of the output becomes more Gaussian, the
differences among the correntropy function for different source
distributions are less evident in Fig. 4(a). Obviously, the differ-
ences would be smaller by using a longer filter. Finally, Fig. 5
shows the CSD estimated using 20 lags of the correntropy with
mean removed and the true PSD: The main periodicity of the
PSD is also evident in CSD, but other features are also present
that require further investigation.

SFor readers not familiar with the notation typically used in the signal pro-
cessing literature H(z) denotes the z transform of the impulse response of the
filter.
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Fig. 5. Comparison in the frequency domain: (a) Correntropy spectral density
and (b) true PSD: |H(f)|*.

In the final example, we consider the chaotic Lorenz system
[21] described by the following equations:

i=o(y— =)

y=—y—zz+ Rz
z=xy— bz (10)
where R = 28, 0 = 10, and b = 8/3. We generate 9000 sam-
ples of the Lorenz system by solving the equations with fourth-
order Runge—Kutta method with integral step 0.05. Fig. 6(a)
shows that V'[m] peaks up at the same lag for all the state vari-
ables: since x is coupled nonlinearly to 4 and z the periodic
similarities in one state variable affect the other states and then
any state of the system could be used to gain information about
the process. This does not happen with the conventional auto-
correlation, which for the state variables y and z do not show
any (linear) correlation around the fifteenth lag. This example
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Fig. 6. (a) Correntropy and (b) autocorrelation for the Lorenz chaotic system.

clearly shows that correntropy is able to extract non linear cou-
pling information embedded in the time structure of time series,
unlike the conventional autocorrelation.

IV. APPLICATION TO BLIND EQUALIZATION
A. Motivation to Use Correntropy

In digital communication systems, the transmitted signals are
often distorted through a bandlimited channel which introduces
intersymbol interference (ISI). Blind equalization refers to the
problem of restoring the original digital signal when only the
channel’s output is available. To solve the problem, blind tech-
niques exploit some knowledge about the statistical properties
of the input signal or the structure of the channel [22].

Benveniste er al. [23] were the first to prove that a sufficient
condition for perfect equalization is that the pdf of the recovered
symbols be equal to the source pdf. According to this idea some
blind algorithms aiming at forcing a given pdf at the output of
the equalizer have been proposed [24]-[26]. Later, Shalvi and
Weinstein relaxed this condition by showing that it is enough
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i.id 1, Linear precoder/| S,

source > PRS P(z)

x .
Channel l n Equahzer‘ Y
Hz [0 e

Fig. 7. Baud-rate digital communications system with linear precoding.

to match a few cumulants between the output signal and the
source in order to achieve perfect equalization [27]. For in-
stance, the so-called “super-exponential” algorithm [28] max-
imizes the kurtosis at the output of the channel subject to a con-
straint on the output variance. Other algorithms based on this
result are the cumulant matching methods proposed by Tugnait
[29], and also by Hatzinakos and Nikias [30].

To summarize, the theoretical results in [23] and [27] demon-
strate that the higher order statistics are enough to solve the
problem when the source signal is i.i.d. In some practical
systems, however, the source symbol sequence presents some
correlation (for instance in systems that use some type of
precoding). In this situation, the performance of most of the
existing blind techniques degrades drastically or they even fail
to converge. To solve this problem, the proposed correntropy
function enables us to derive new cost functions for blind
equalization that exploits simultaneously our knowledge about
both the pdf of the source and its time structure.

B. Problem Setting

We consider a baud-rate sampled baseband representation of
a linearly precoded digital communication system (see Fig. 7).
Ani.i.d. source I, is linearly precoded at the transmitter to form
a sequence of correlated symbols s,,. The linear precoder can be
a partial response system (PRS), typically introduced to make an
efficient use of the available bandwidth [31]-[33] or any other
type of line coding introducing correlation such as the alternate
mark inversion (AMI), in which the logical “0” is represented
by no line signal and the logical “1” is represented by positive
and negative alternate pulses [31].

Now, let us suppose that the correlated source signal s,, is sent
through a linear time-invariant channel with coefficients h,,. The
resulting channel output can be expressed as

Zp =Y hisn_i+en (11)

where e,, is a zero-mean white Gaussian noise with variance o2.
The objective of a blind linear equalizer is to remove the ISI at
its output without using any training sequence. Typically, the
equalizer is designed as a finite-impulse-response (FIR) filter
with M coefficients w; then, its output is given by

M-—1
— E I
=0

The “super-exponential” algorithm proposed by Shalvi and
Weinstein [27], [28] maximizes |K,|, subject to the constraint
El|lyn|?] = E[|sn|?], where K, is the kurtosis at the output of
the equalizer, which is defined as

Ky =E [lyl] = 2(E [lm])* - |E 2] a2

The Shalvi—-Weinstein algorithm is typically implemented as
a batch technique, i.e., (12) is iteratively maximized using a
block of collected data. Other blind techniques update the equal-
izer coefficients on a sample-by-sample basis using stochastic
gradient descent algorithms. To this category belongs the family
of Godard algorithms [34], which minimize the cost function

Jow) = E (Il = B,)°], p=12+ (13

where R, = E[|s,|*"]/E|[|s,|P] depends on the input constel-
lation. For the particular case p = 2, (13) is the cost function
of the constant modulus algorithm (CMA), [34], [35]. Using a
stochastic gradient descent approach, the CMA can be written
as

Wit1 = Wi — i ([yn]? = R2) ynXn. (14)

As a measure of equalization performance we use the ISI de-
fined as
5, 162 = max, 6.2

ISI = 101logy max, 0.2

where § = h * w is the combined channel-equalizer impulse
response, which is a delta function for a zero-forcing equalizer.

C. Proposed Cost Function and Iterative Algorithm

Exploiting our knowledge about the linear precoder, first we
must obtain the theoretical correntropy function for a given
source signal. For instance, consider that the linear precoder
used in Fig. 7 is given by P(z) = 1 + 27!, which is the
filter used in a duobinary modulation. If the input of this
linear filter is a binary i.i.d. signal (£1), then at its output we
have a correlated symbol sequence drawn from the alphabet

{—=2,0,+2} with probabilities 1/4, 1/2, and 1/4, respectively,
whose theoretical correntropy function is given by
k(0), m=0
Vi|m] = 26(0) + 35(2), m = =+l

35(0) + 36(2) + £6(4), |m|>1

where k(z) is the Gaussian kernel defined in (1).

Similarly, the theoretical correntropy function for the AMI
line code (whose correlated symbol sequence is drawn from the
alphabet {—1,0,+1}) is given by

k(0), m =0
Kk(0) + 3k(1) + 1k(2), m==+1

Va[m] = { 1%
§6(0) + 36(1) + gr(2), |m| >1

For both examples, the theoretical correntropy function con-
veys information about the pdf and the correlation of the non-
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white source signal. Therefore, we propose to use the following
cost function for equalization:

P
Tee(w) = Y (Vi[m] - V[m])®

m=1

15)

where V, [m] is the correntropy function estimated at the output
of the equalizer and P is the number of lags (notice that we have
removed the zero lag since it is always equal to £(0)).

The proposed cost function can be minimized either in a batch
mode or in an adaptive setting by using a gradient descent ap-
proach. In a batch mode for all the iterations, we use the same
set of collected data, while in an online mode we use a sliding
window of a given length and update once per input sample. For
both modes, the basic iteration of the algorithm is given by

¢ OV, [m]
Wit =W, + 1y (Va[m] = Vy[m]) w
m=1
where
Vlm] _ 1 :
ow = N—m 2 rlwiviem)

i=n—N-—-m+1
X (yi - yq',—m)(xi - xi—m)

and NNV denotes the number of samples used to estimate the cor-
rentropy function.

D. Simulation Results

1) Batch Algorithm: In the first example, we test the
correntropy algorithm in a batch mode and compare its
performance with the “super-exponential” algorithm proposed
by Shalvi and Weinstein [28] (in the sequel, we will refer to
this algorithm as SW). N = 2000 samples of a duobinary
signal were generated with the linear precoder P(z) = 1+ 271
and then distorted by an FIR channel with 11 taps taken from
[31] and representative of a telephone channel: h; =

(0.04,-0.05,0.07, —0.21, —0.5,0.72, 0.36,0,0.21, 0.03, 0.07).

White Gaussian noise is added to the channel output to
get a given SNR.

A 21-tap equalizer was used and initialized with the center
coefficient set to unity and the rest to zero. The correntropy
cost function was estimated at P = 10 lags and iteratively
minimized by applying 1000 iterations with a fixed step size
1 = 0.25. The kernel size to estimate the correntropy function
was calculated after each iteration as the standard deviation of
the equalizer’s output ¢ = std(y). After the blind stage, the
algorithm switchs to a decision-directed mode and 2000 addi-
tional iterations are carried out with a step size p = 0.004. Fi-
nally, the bit error rate (BER) is estimated by counting errors
after transmitting 10° or 10® symbols, depending on the SNR.
We run 50 independent simulations.

On the other hand, the SW algorithm was tested in a sim-
ilar setting: first a pure blind mode and then a decision-directed
mode. The SW algorithm requires a white source signal (strictly,
the source must be fourth-order white), therefore when applied
to the distorted duobinary signal it is unable to open the eye di-
agram. Since the linear precoder P(z) is known, a reasonable
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Fig. 8. Bit error rate versus SNR for correntropy, SW algorithm and SW

algorithm with a whitening filter.

alternative would be to whiten the source signal by using the
inverse of the linear precoder P(z)~! before the equalizer. The
problem with this approach is that the precoders used in partial
response systems such as P(z) = 1 + z~! cannot be inverted
since they have zeros on the unit circle. To avoid this problem,
we will use an approximate inverse FIR filter with 13 coeffi-
cients given by

P (w)

Gz)= ——————
) |P(w)]* + A

where A = 0.05 was used. This type of “regularized” inverse
has been used in [33] as a whitening step before the equalizer
that restores the i.i.d. assumption of the source signal.

Fig. 8 compares the BER of the correntropy algorithm, the
SW algorithm and the SW with a whitening filter. As it was
discussed previously, the SW algorithm without whitening step
fails to converge since the duobinary source is not i.i.d. On the
other hand, for low SNRs, the SW with whitening filter achieves
a lower BER than correntropy, whereas for moderate and high
SNR’s the correntropy algorithm provides the best solution.

2) Online Algorithm: For the second example, we test the
correntropy algorithm in an on-line setting and compare its per-
formance with the CMA algorithm. We consider an alternate
mark inversion (AMI) source signal distorted by an IIR channel:
Hq(z) = 1/(1 — 0.527"), then white Gaussian noise is added
for a final SNR = 20 dB. A 3-tap equalizer was used and ini-
tialized with the center coefficient set to unity and the rest to
ZEero.

The correntropy function was estimated using a window of
N = 100 samples and P = 4 lags. The kernel size was itera-
tively updated like in the previous example as the standard de-
viation of the equalizer’s output for the current window. Fig. 9
shows the ISI curves for correntropy and CMA obtained by av-
eraging 25 independent Monte Carlo simulations. The step-size
for correntropy was p = 0.6, whereas for CMA was ficma =
0.04: for both algorithms, these are the largest step-sizes for
which all the trials converged while providing a similar con-
verge speed as can be seen in Fig. 9.



SANTAMARIA e al.: GCF: DEFINITION, PROPERTIES, AND APPLICATION TO BLIND EQUALIZATION

ISI (dB)

Correntropy

0 5000 10000
lterations (symbols)

15000

Fig. 9.
noise.

IST convergence curves for correntropy and CMA under Gaussian

We see that for this example the correntropy function effec-
tively extracts more information than the CMA about the source
signals and it is able to provide a better solution. In order to
explain the poor behavior of CMA for this particular case, we
should remember that the use of a nonuniform symbol distribu-
tion has the effect of raising the kurtosis, thus making the pdf of
the source distribution more Gaussian. Specifically, the kurtosis
for the AMI signal of our example is E[|s,|*]/(E[|s.]2)” = 2,
whereas for a uniform binary phase shift keying the kurtosisis 1,
for a pulse amplitude modulation with 32 levels is 1.798 and for
a Gaussian is 3. Although the source remains sub-Gaussian, the
increase in kurtosis has the effect of lifting the CMA cost func-
tion (thus increasing the excess mean squared error) and flat-
tening its surface (thus reducing the convergence speed) [36].
Moreover, the use of a correlated source can also cause major
problems in the CMA convergence as it was also pointed out in
[36].

Another interesting property of the correntropy function is
its robustness against impulsive noise. This additional advan-
tage is due to the fact that when an outlier is present, the inner
product in the feature space computed via the Gaussian kernel
tends to be zero (i.e., 5(y; — yi—r) = 0 when either y; or y;_x
have a large value). To illustrate this point, we have used the
same simulation example, but this time the channel output is
distorted with a zero-mean white impulsive noise, e,,, generated
according to the following Gaussian mixture model:

€ (e%)_i_(l—e) <e%)
——exp— | =% ~—Zexp— | ==&
V2To ! 202 V2mos P 203

where typically ¢ < 1 and 02 >> o2. Specifically, in our simu-
lations, we used ¢ = 0.15, 02 = 5003 and oo = 0.12. Fig. 10
shows the ISI curves obtained in this case. Now the step-size
for correntropy was p# = 0.4 and ptema = 0.001. We can see
that even for this small step-size, the CMA is not able to con-
verge due to the large noise spikes at the channel output. On the
other hand, with the correntropy function we obtain practically
the same convergence behavior as in the Gaussian case.

flen) =
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Fig. 10. ISIconvergence curves for the correntropy and CMA under impulsive

noise.

V. CONCLUSION

In this paper, we have proposed a new reproducing kernel
for stochastic processes that extracts information about its time
structure as well as about its statistical distribution. Unlike the
autocorrelation function, the correntropy function conveys in-
formation about the quadratic Renyi’s entropy of the generating
source (i.e., about its higher order moments). On the other hand,
unlike most kernel methods and related ITL algorithms, the cor-
rentropy function is sensitive to the time structure of the process.

The intention of this paper is to present the definition of cor-
rentropy and outline some of its properties and possible appli-
cations. We were able to show that the correntropy satisfies a
number of interesting properties: for instance it is a symmet-
rical positive definite function with a maximum at zero lag, and
its mean value is the information potential. Therefore, a spectral
density can be defined, and the correntropy matrix is positive
definite. In perspective, the correntropy extends the autocorre-
lation function to nonlinear systems analysis and non-Gaussian
sources. This is significant because the autocorrelation function,
the workhorse of stochastic process analysis, is unable to quan-
tify statistical properties beyond the second order moments, and
cumulants are very difficult to estimate from finite data. Like-
wise, when dealing with nonlinear systems, the autocorrelation
function is obviously not an appropriate measure, but as far as
we know, there are no reasonable alternatives in the literature.
The examples presented in the paper are simple, and for illus-
trative purposes only, but they convey the possible usefulness of
correntropy. For instance, the Lorenz example shows that cor-
rentropy is sensitive to nonlinear coupling between the states of
the system, while the autocorrelation function is not.

Much more work is necessary to fully characterize this new
measure of similarity and fully exploit its use in model based
signal processing. An example to a simple blind equalization
problem using a coded signal is presented. We have shown that
the “extra” information provided by the precoder in the time
structure of the symbol sequence can be efficiently exploited by
the correntropy function, outperforming the CMA algorithm as
well as cumulant-based techniques. As an additional advantage
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of the method, it has been shown to be robust against impulsive
noise. Exploring potential applications of this measure to other
problems such as nonlinear controls and nonlinear signal pro-
cessing are interesting lines for further research.

The mathematical structure of RKHS seems the right tool
to pursue the research in correntropy, its properties, and appli-
cations. Since the correntropy is a positive function that cap-
tures higher order moments of the random process, it defines an
RKHS with different properties of the one defined through co-
variance functions. At the same time, the well-established links
between RKHS and statistical estimation, as first outlined by
Parzen, remain valid. This gives us hope that practical exten-
sions to statistical estimation theory for non-Gaussian processes
are possible and relatively straightforward to implement.
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