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9 rue Charles Fourier, 91011 Evry Cedex, France.
LSTA, Université Paris VI.
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Abstract—

This paper examines asymptotic performance of MUSIC-
like algorithms for estimating directions of arrival (DOA)
of narrowband complex non-circular sources. Using closed-
form expressions of the covariance of the asymptotic distri-
bution of different projection matrices, it provides a unifying
framework for investigating the asymptotic performance of
arbitrary subspace-based algorithms valid for Gaussian or
non Gaussian and complex circular or non-circular sources.
We also derive different robustness properties from the
asymptotic covariance of the estimated DOA given by such
algorithms. These results are successively applied to four
algorithms: to two attractive MUSIC-like algorithms previ-
ously introduced in the literature, to an extension of these
algorithms, and to an optimally weighted MUSIC algorithm
proposed in this paper. Numerical examples illustrate the
performance of the studied algorithms compared to the
asymptotically minimum variance (AMV) algorithms intro-
duced as benchmarks.

Index terms: MUSIC algorithm, subspace-based algo-
rithms, DOA estimation, complex non-circular sources,
asymptotically minimum variance.

I. Introduction

THERE is considerable literature about second-order
statistics-based algorithms for estimating the DOA

of narrowband sources impinging on an array of sensors.
Among these algorithms, subspace-based algorithms, i.e.,
algorithms obtained by exploiting the orthogonality be-
tween a sample subspace and a DOA parameter-dependent
subspace, have been proved very interesting. However, up
to now these algorithms have been mainly designed under
the complex circular Gaussian assumption only (see e.g.,
[1],[2]).

In mobile communications, after frequency down-shifting
the sensor signals to baseband, the paired in-phase and
quadrature components may be complex non-circular (for
example, binary phase shift keying (BPSK) and offset
quadrature phase shift keying (OQPSK) modulated sig-
nals). Because the second-order statistical characteristics
are also contained in the unconjugated spatial covariance
matrix for non-circular signals, second-order AMV algo-
rithms [3] and Gaussian maximum likelihood algorithms
[4] must be based on the two covariance matrices. In
[3], the potential benefits due to the non-circular prop-
erty have been evaluated using a closed-form expression of
the lower bound on the asymptotic covariance of estima-
tors given by arbitrary second-order algorithms. However

the generalized covariance matching algorithm that attains
this bound requires a multidimensional nonlinear optimiza-
tion which is computationally demanding. Consequently,
we need suboptimal monodimensional optimization algo-
rithms that could benefit from the non-circular property.
Such algorithms have been introduced in the context of
uncorrelated sources of maximum non-circularity rate im-
pinging on a uniform linear array in [5], [6], [7], [8] where
their performance was observed by simulation only. The
aim of this paper is to extend these algorithms, to provide
generic asymptotic results for subspace-based estimates of
the DOA for non-circular sources based on closed-form ex-
pressions of the covariance of the asymptotic distribution
of extended projection matrices and to apply these results
to specific MUSIC-like algorithms.

The paper is organized as follows. The array signal
model and the statement of the problem are given in Sec-
tion 2. The potential benefit due to the non-circularity
property is underscored by the help of subspace-based algo-
rithms built from the unconjugated spatial covariance ma-
trix only in Section 3. The four subspace-based algorithms
that we shall study are described in Section 4. Their perfor-
mance is analyzed in Section 5 using a general functional
methodology. Finally, numerical illustrations and Monte
Carlo simulations of the performance of the algorithms are
given in Section 6.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold upper case
and bold lower case characters, respectively. Vectors are by
default in column orientation, while T , H, ∗ and # stand
for transpose, conjugate transpose, conjugate and Moore
Penrose inverse, respectively. E(.), Tr(.), Det(.) ‖.‖Fro, <(.)
and =(.) are the expectation, trace, determinant, Frobe-
nius norm, real and imaginary part operators respectively.
IK is the identity matrix. vec(·) is the “vectorization” op-
erator that turns a matrix into a vector by stacking the
columns of the matrix one below another which is used
in conjunction with the Kronecker product A ⊗ B as the
block matrix whose (i, j) block element is ai,jB and with
the vec-permutation matrix KM which transforms vec(C)
to vec(CT ) for any M ×M matrix C.

II. Statement of the problem

Let an array of M sensors receive the signals emitted
by K narrowband sources. The observation vectors are



modeled as

yt = Axt + nt, t = 1, . . . , T,

where (yt)t=1,...,T are independent and identically dis-
tributed. A = [a1, . . . ,aK ] is the steering matrix, where
each vector ak = a(θk) is parameterized by the real scalar
parameter θk. xt = (xt,1, . . . , xt,K)T and nt model signals
transmitted by sources and additive measurement noise re-
spectively. xt and nt are multivariate independent, zero-
mean, nt is assumed to be Gaussian complex circular, spa-
tially uncorrelated with E(ntn

H
t ) = σ2

nIM , while xt is com-
plex non-circular, not necessarily Gaussian and possibly
spatially correlated with nonsingular covariance matrices

Rx
def
= E(xtx

H
t ) and R′x

def
= E(xtx

T
t ). Consequently, this

leads to two covariance matrices of yt that contain infor-

mation about : Θ
def
= (θ1, . . . , θK)T

Ry = ARxA
H + σ2

nIM and R′y = AR′xA
T 6= O. (II.1)

These covariance matrices are traditionally estimated by
Ry,T = 1

T

∑T
t=1 yty

H
t and R′y,T = 1

T

∑T
t=1 yty

T
t , respec-

tively. The parameter vector Θ is assumed identifiable from
(Ry,R

′
y).

For a performance analysis, we suppose that the signal
waveforms have finite fourth-order moments. The fourth-
order cumulants of the sources (xt,i, xt,j , xt,k, xt,l)i,j,k,l=1,...,K

are gathered into the K2 ×K2 quadrivariance matrix Qx

defined by (Qx)i+(j−1)K,k+(l−1)K = Cum
(
(xt)i, (xt)

∗
j , (xt)

∗
k, (xt)l

)
.

The non-circularity rate ρk of the kth source is defined by
E(x2

t,k) = ρke
iφkE|x2

t,k| = ρke
iφkσ2

k where φk is its noncir-
cularity phase and satisfies 0 ≤ ρk ≤ 1 (from the Cauchy
Schwartz inequality).

The problem addressed in this paper is to estimate the
DOA Θ from the two sample covariance matrices Ry,T and
R′y,T by using subspace-based algorithms. The number K
of sources is assumed to be known.

III. Subspace-based algorithms based on R′y,T
only

We prove in this section the potential benefit due to the
non-circularity property by proposing a MUSIC-like algo-
rithm based on the unconjugated spatial covariance matrix
only. Because R′y and Ry have a common noise subspace
(see (II.1)) with associated orthogonal projection matri-
ces Π′ = Π, the first idea for estimating Θ from R′y,T
alone, is to apply the following steps: Estimate the pro-
jection matrix Π′T associated with the noise subspace of
R′y,T using the singular value decomposition (SVD) of the
symmetric complex-valued matrix R′y,T and then, use the
standard MUSIC algorithm based on Π′T where the DOA
(θk,T )k=1,...,K are estimated as the locations of theK small-
est minima of the function:

θAlg0

k,T = arg min
θ
g0,T (θ) with g0,T (θ)

def
= aH(θ)Π′Ta(θ).

(III.1)
Compared to the standard MUSIC algorithm based on ΠT

associated with the noise subspace of Ry,T , whose perfor-
mance is given e.g., in [1, rel. (3.11a)], we prove in Ap-
pendix A the following

Theorem 1: The sequences
√
T (ΘT − Θ), where ΘT is

the DOA estimate given by these two MUSIC algorithms,
converge in distribution to the zero-mean Gaussian distri-
bution of covariance matrix given by

(CΘ)k,l =
2

αkαl
<
((

aHl Uak
)

(a
′H

k Πa
′

l)
)

(III.2)

with a
′

k
def
= dak

dθk
and αk

def
= 2a

′H

k Πa
′

k, where U
def
=

σ2
nS#RyS

# with S
def
= ARxA

H and U
def
= σ2

nS′
∗#

RT
y S′

#

with S′
def
= AR′xA

T for the MUSIC algorithms built on
Ry,T and R′y,T , respectively.
As a result of the similar structure of CΘ, given by these
two MUSIC algorithms, the asymptotic performance of
their estimates can be very similar. In particular for only
one source, it is proved in Appendix A that these asymp-
totic variances are respectively given by:

Cθ1 =
1

α 1

[
σ2
n

σ2
1

+
1

‖a1‖2
σ4
n

σ4
1

]
and

Cθ1 =
1

α1ρ2
1

[
σ2
n

σ2
1

+
1

‖a1‖2
σ4
n

σ4
1

]
.

We note that for ρ1 = 1 (e.g., for an unfiltered BPSK
modulated source), these two variances are equal. Natu-
rally when ρ1 approaches zero, Cθ1 is unbounded and the
unconjugated spatial covariance matrix R′y conveys no in-
formation about θ1. In consequence of Theorem 1, the
following query is raised: how does one combine the statis-
tics ΠT and Π′T to improve the estimate of Θ? A possible
solution is proposed in the following section.

IV. Subspace-based algorithms under study

To devise subspace-based algorithms built from both
Ry,T and R′y,T , we consider the extended covariance ma-

trix Rỹ
def
= E(ỹtỹ

H
t ) where ỹt

def
=

(
yt
yt
∗

)
for which:

Rỹ = ÃRx̃Ã
H + σ2

nI2M (IV.1)

with

Ã
def
=

(
A O
O A∗

)
and Rx̃

def
=

(
Rx R

′

x

R
′∗
x R∗x

)
. (IV.2)

From the assumptions of Section 2, K ≤ rank(Rx̃) ≤ 2K
and depending on this rank, many situations may be con-
sidered. We concentrate first on a particular case (case
(1)) for which the sources are uncorrelated and with non-
circularity rate ρk equal to 1 because very attractive al-
gorithms have been devised for this case [5],[6]. This case
corresponds, for example, to unfiltered BPSK or OQPSK
uncorrelated modulated signals. In this case, Rx = ∆σ

and R
′

x = ∆σ∆φ with ∆σ
def
= Diag(σ2

1 , . . . , σ
2
K) and

∆φ
def
= Diag(eiφ1 , . . . , eiφK ). Consequently

Rx̃ =

(
∆σ ∆σ∆φ

∆σ∆∗φ ∆σ

)
=

(
IK
∆∗φ

)
∆σ

(
IK ∆φ

)
2



and rank(Rx̃) = K. Then subsequently, we consider the
general case for which rank(Rx̃) = 2K (case (2)). This
case corresponds for example to filtered BPSK or OQPSK
modulated signals. In these two cases, using the structured
matrices Ã and Rx̃ (IV.2), we prove the following lemma

Lemma 1: In cases (1) and (2), the orthogonal projector
matrix Π̃ onto the noise subspace is structured as

Π̃ =

(
Π1 Π2

Π∗2 Π∗1

)
where Π1 and Π2 are Hermitian and complex symmetric,
respectively, and where Π1 and Π2 are not projection ma-
trices in case (1) and Π1 is the orthogonal projector onto
the column space of A and Π2 = O in case (2). Further-
more, the orthogonal projector onto the noise subspace Π̃T

associated with the sample estimate Rỹ,T of Rỹ has the
same structure

Π̃T =

(
Π1,T Π2,T

Π∗2,T Π∗1,T

)
(IV.3)

where Π1,T and Π2,T are Hermitian and complex symmet-
ric respectively.
Proof: Noting that Rỹ or Rỹ,T satisfy the relation Rỹ =

JMR∗ỹJM with JM
def
=

(
OM IM
IM OM

)
, if

(
U1

U2

)
denotes

the partitioned eigenvectors matrix associated with the sig-
nal subspace of Rỹ or Rỹ,T , the corresponding signal part
of the eigenvalue decomposition of Rỹ or Rỹ,T is(

U1

U2

)
Σ
(

UH
1 UH

2

)
= JM

(
U∗1
U∗2

)
Σ
(

UT
1 UT

2

)
JM

Thanks to the uniqueness of these normalized eigenvec-
tors up to a unit modulus complex constant, we have
U2 = U∗1∆ where ∆ is a diagonal matrix whose diago-
nal is composed of unit modulus complex terms. Conse-
quently, these orthogonal projector matrices onto the noise
subspace are structured as

Π̃ = I2M −
(

U1

U2

)(
UH

1 UH
2

)
= I2M −

(
U1U

H
1 U1∆

∗UT
1

U∗1∆UH
1 U∗1UT

1

)
.

In case (2) specifically, Π̃ = I2M − Ã
(
ÃHÃ

)−1

ÃH =(
Π1 O
O Π∗1

)
with Π1

def
= IM −A

(
AHA

)−1
AH .

A. Case (1): uncorrelated sources with ρk = 1

Consider now three subspace-based algorithms for case
(1). An algorithm (denoted Alg1) devised in [5], has been
derived from the standard MUSIC algorithm because in
this case (IV.1) becomes

Rỹ =

(
A

A∗∆∗φ

)
∆σ

(
AH ∆φA

T
)H

+ σ2
nI2M .

(IV.4)

Specifically, the estimated DOA (θk,T )k=1,...,K are obtained
as the locations of the K smallest minima of the following
function:

θAlg1

k,T = arg min
θ
g1,T (θ)

with

g1,T (θ)
def
= min

φ
ãH(θ, φ)Π̃T ã(θ, φ) = aH(θ)Π1,Ta(θ)

− |aT (θ)Π∗2,Ta(θ)|, (IV.5)

with the extended steering vector ã(θ, φ)
def
=

(
a(θ)

a∗(θ)e−iφ

)
.

Noting that ã(θ, φ)HΠ̃ã(θ, φ) =
(

1 eiφ
)
M

(
1

e−iφ

)
=

0 with M
def
=

(
aH(θ) 0T

0T aT (θ)

)
Π̃

(
a(θ) 0
0 a∗(θ)

)
, the

matrix MT
def
=

(
aH(θ) 0T

0T aT (θ)

)
Π̃T

(
a(θ) 0
0 a∗(θ)

)
is

positive definite and a consistent estimate of the rank defi-
cient 2× 2 matrix M. Consequently we can propose a new
subspace-based algorithms (denoted Alg2) defined by

θAlg2

k,T = arg min
θ
g2,T (θ)

with

g2,T (θ)
def
= Det(MT ) =

(
aH(θ)Π1,Ta(θ)

)2
−

(
aT (θ)Π∗2,Ta(θ)

) (
aH(θ)Π2,Ta∗(θ)

)
.(IV.6)

In the particular case of a uniform linear array, replacing
the generic steering vector a(θ) = (1, eiθ, . . . , ei(M−1)θ)T

by a(z)
def
= (1, z, . . . , zM−1)T in (IV.6), [6] proposed a root-

MUSIC-like algorithm (denoted Alg3) defined by

θAlg3

k,T = arg(zk) with zk K roots|z|<1 of

g3,T (z) closest to the unit circle (IV.7)

where g3,T (z) is the following polynomial 1 of degree 4(M−
1) whose roots appear in reciprocal conjugate pairs zk and

(z∗k)
−1

:

g3,T (z)
def
=

(
aT (z−1)Π1,Ta(z)

)2
−

(
aT (z)Π∗2,Ta(z)

) (
aT (z−1)Π2,Ta(z−1)

)
.

B. Case (2): arbitrary full rank spatial extended covariance
matrix

Based on Π̃Ã =

(
Π1 Π2

Π∗2 Π∗1

)(
A O
O A∗

)
= O, dif-

ferent MUSIC-like algorithms can be proposed. Since
Π2 = O, a natural idea consists in proposing the following
algorithm (denoted Alg4) 2

θAlg4

k,T = arg min
θ

aH(θ)Π1,Ta(θ). (IV.8)

1We note that this procedure allows one to estimate up to 2(M−1)
possible DOA, whereas the upper bound is 2M − 1 [9].

2We note that unlike Π1, the positive semidefinite matrix Π1,T is
not a projection matrix.

3



But it is shown in Section V, that this algorithm is always
outperformed by the standard MUSIC algorithm based on
Ry,T only. Using the ideas of the weighted MUSIC al-
gorithm introduced for DOA estimation [2], then applied
for frequency estimation [10],[11], we propose the following
column weighting3 MUSIC (denoted Alg5):

θAlg5

k,T = arg min
θ
g5,T (θ),

with

g5,T (θ)
def
= Tr

(
WĀH(θ)Π̃T Ā(θ)

)
,

where W is a 2× 2 non-negative definite weighting matrix
whose optimal value will be specified in Theorem 7, and

Ā(θ) is the steering matrix

(
a(θ) 0
0 a∗(θ)

)
. To derive

the optimal weighting matrix W =

(
w1,1 w1,2

w∗1,2 w2,2

)
in the

next section, the weighted MUSIC cost function can be
written as

g5,T (θ) = (w1,1+w2,2)
(
aH(θ)Π1,Ta(θ) + <(zaT (θ)Π2,Ta(θ))

)
,

(IV.9)

with z
def
=

2w∗1,2
w1,1+w2,2

. Consequently the performance of this

algorithm depends only on z. By choosing W diagonal, we
have z = 0 and this algorithm reduces to Alg4.

V. Performance analysis

A. Second-order algorithms based on Ry,T only

Considering first the influence of the non-circularity on
the performance of an arbitrary second-order algorithm
based on Ry,T only, we prove the following theorem.
Theorem 2: All DOA consistent estimates given by an

arbitrary second-order algorithms based on Ry,T only, that
do not explicitly suppose the sources to be spatially un-
correlated, are robust to the distribution and to the non-
circularity of the sources; i.e., the asymptotic performances
are those of the standard complex circular Gaussian case.
Proof: Based on these assumptions, the Jacobian matrix
DAlg

Θ of the mapping (Ry,T 7−→ ΘT = Alg(Ry,T )) that
associates the estimate ΘT to Ry,T satisfies the constraint
(see [12])

DAlg
Θ (A∗ ⊗A) = O,

and because the covariance matrix Cry of the asymptotic
distribution of vec(Ry,T ) is given by [3]

Cry = (A∗ ⊗A)Crx(AT ⊗AH) + σ4
nIM2

+ σ2
nIM ⊗ARxA

H + A∗R∗xA
T ⊗ σ2

nIM

with Crx = R∗x ⊗Rx + KK(R′x ⊗R
′∗

x ) + Qx where Qx is
the quadrivariance matrix defined in Section II, the first
term of Cry (which contains R′x and Qx) disappears in

the expression of the covariance CAlg
Θ = DAlg

Θ Cry

(
DAlg

Θ

)H
of the asymptotic distribution of the estimated DOA ΘT

given by the algorithm Alg(.).

3Because Π̃T is an orthogonal projector, the cost function g5,T (θ)

reduces to ‖Π̃T Ā(θ)W1/2‖2Fro.

B. Subspace-based algorithms built from Rỹ,T

To consider the asymptotic performance of an arbitrary
subspace-based algorithms built from Rỹ,T , we adopt a
functional analysis which consists of recognizing that the
whole process of constructing an estimate ΘT of Θ is equiv-
alent to defining a functional relation linking this estimate
ΘT to the statistics Π̃T from which it is inferred. This
functional dependence is denoted ΘT = Alg(Π̃T ). By as-
sumption, Θ = Alg(Π̃), so arbitrary sufficiently “regular”
subspace-based algorithms built from Rỹ,T constitute dis-

tinct extensions of the mapping Π̃ 7−→ Θ. For the differ-
ent algorithms Alg(.) defined in Section IV, we note that
this mapping is differentiable with respect to (Π1,Π2,Π

∗
2).

With this approach, the asymptotic distributions of the es-
timates given by these algorithms are directly related to
the asymptotic distributions of Π̃T or (Π1,T ,Π2,T ,Π

∗
2,T )

for which we prove the following theorem in Appendix B
Theorem 3: The sequence of statistics

√
Tvec

(
Π̃T − Π̃

)
and

√
T

 vec(Π1,T −Π1)
vec(Π2,T −Π2)
vec(Π∗2,T −Π∗2)


converge in distribution to the zero-mean Gaussian distri-
butions of first covariance matrices

CΠ̃ = (I4M2 + K2M (JM ⊗ JM ))
(

(Π̃∗ ⊗ Ũ) + (Ũ∗ ⊗ Π̃)
)

(V.1)
and

CΠ1,Π2,Π∗2
=

 CΠ1
CH

Π2,Π1
CH

Π∗2 ,Π1

CΠ2,Π1
CΠ2

CH
Π∗2 ,Π2

CΠ∗2 ,Π1 CΠ∗2 ,Π2 CΠ∗2

 (V.2)

with

CΠ1
= (Π∗1 ⊗U1) + (U∗1 ⊗Π1)

+ KM ((Π2 ⊗U∗2) + (U2 ⊗Π∗2)) , (V.3)

CΠ2 = (IM2 + KM ) ((Π1 ⊗U1) + (U1 ⊗Π1)) ,

CΠ2,Π1
= (IM2 + KM ) ((Π2 ⊗U1) + (U2 ⊗Π1)) ,

CΠ∗2 ,Π1
= (IM2 + KM ) ((Π∗1 ⊗U∗2) + (U∗1 ⊗Π∗2)) ,

CΠ∗2 ,Π2 = (IM2 + KM ) ((Π∗2 ⊗U∗2) + (U∗2 ⊗Π∗2)) ,

where Ũ
def
= σ2

nS̃#RỹS̃
# =

(
U1 U2

U∗2 U∗1

)
with S̃

def
=

ÃRx̃Ã
H .

We note that Theorem 2 does not extend to arbitrary
second-order algorithms based on Rỹ,T because here

DAlg
Θ

(
Ã∗ ⊗ Ã

)
6= O due to the constraints on Rx̃ (see the

proof in [12]). However, since expression (V.1) of CΠ̃ does
not depend on the fourth-order moments of the sources, we
have proved the following

Theorem 4: The asymptotic performance given by an ar-
bitrary subspace-based algorithm built from Rỹ,T depends
on the distribution of the sources through their second-
order moments only.
More specifically, regarding the algorithms described in
Section IV, we prove the following

4



Theorem 5: The sequences
√
T (ΘT −Θ), where ΘT are

the DOA estimates given by the first three subspace-based
algorithms [resp., algorithms 1 and 2] described in Sec-
tion IV for a uniform linear array [resp., arbitrary array],
converge in distribution to the same zero-mean Gaussian
distribution 4 with covariance matrix

(CΘ)k,l =
1

γkγl

(
α

(k)
φ,φ −α(k)

θ,φ

)
B(k,l)

(
α

(l)
φ,φ

−α(l)
θ,φ

)
(V.4)

with
(
B(k,l)

)
i,j

def
= 4<

(
(ãTk Ũ∗ã∗l )(ã

′H
i,kΠ̃ã′j,l)

)
, i, j = θ, φ

where ãk
def
=

(
ak

a∗ke
−iφk

)
, ã′θ,k

def
= dãk

dθk
, ã′φ,k

def
= dãk

dφk
and

with
(
α

(k)
i,j

)
i,j=θ,φ

and γk are the purely geometric factors:

α
(k)
i,j

def
= <(ã′

H

i,kΠ̃ã′j,k) and γk
def
= α

(k)
θ,θα

(k)
φ,φ − (α

(k)
θ,φ)2. In

particular:

(CΘ)k,k =
2α

(k)
φ,φ

γk
(ãHk Ũãk), k = 1, . . . ,K (V.5)

which gives in the case of a single source:

Cθ1 =
1

α 1

[
σ2
n

σ2
1

+
1

2‖a1‖2
σ4
n

σ4
1

]
, (V.6)

where α1 is the purely geometric factor 2a
′

1

H
Πa

′

1 with

a
′

1
def
= da1

dθ1
.

Remark: If the case of a single non-circular complex
Gaussian distributed source of maximum noncircularity
rate (ρ1 = 1), asymptotic variance (V.6) attains the non-
circular Gaussian Cramer-Rao bound given in [4]. Con-
sequently, the first three subspace-based algorithms de-
scribed in Section IV are efficient for a single source.
Proof: First, we note that the cost functions g1,T (α)
and g2,T (α) given in (IV.5) and (IV.6) respectively, sat-

isfy the relation g2,T (α) = g1,T (α)rT (α) with rT (α)
def
=

(aH(α)Π1,Ta(α))+|aT (α)ΠH
2,Ta(α)|, where in exact statis-

tics r(θk) 6= 0 (because if r(θk) were to vanish, we would
have aH(θk)Π1a(θk) = 0 and |aH(θk)Π2a

∗(θk)| = 0, and

consequently

(
ak

a∗ke
iβ

)
would belong to the signal space

of Rỹ for all values of β, which leads to a contradiction with
(IV.4). Then, applying the proof [1, Theorem 3.2], the esti-
mates minimizing g1,T and g3,T have the same asymptotic
distribution and consequently algorithms 1 and 2 have the
same asymptotic performances.

Then, to prove that algorithms 2 and 3 have the same
asymptotic performances, we consider the first order per-

turbation expansions of δθk,T
def
= θk,T − θk as a function of

δΠ1,T
def
= Π1,T − Π1 and δΠ2,T

def
= Π2,T − Π2 given by

these two algorithms. Following the lines of the derivation
given in [13] where the standard MUSIC and root-MUSIC
algorithms are replaced by algorithms 1 and 3 respectively,

4These three algorithms have different behavior outside the asymp-
totic regime, as will be stressed in Section VI.

we prove in Appendix C that these algorithms satisfy the
same perturbation expansion:

θk,T = θk + A1,kvec(δΠ1,T ) + A2,kvec(δΠ2,T )

+ A∗2,kvec(δΠ∗2,T ) + o(δΠ1,T ) + o(Π2,T ). (V.7)

The proof is completed in Appendix C where the DOA es-
timate given by algorithm 1 is proved to converge in distri-
bution to a Gaussian distribution whose covariance matrice
is given with (V.4),(V.5) and (V.6).

In case (2), it is straightforward to prove the following
Theorem

Theorem 6: The sequence
√
T (ΘT −Θ), where ΘT is the

DOA estimate given by the MUSIC-like algorithm (IV.8)
described in Section IV, converges in distribution to the
zero-mean Gaussian distribution with covariance matrix

(CΘ)k,l =
(
DAlg4

Θ CΠ1D
Alg4

Θ

)
k,l

=
2

αkαl
<
((

aHl U1ak
)

(a
′H

k Πa
′

l)
)

(V.8)

where DAlg4

Θ = DAlg0

Θ is given in (A.3). Because(
U1 U2

U∗2 U∗1

)
= σ2

nS̃#RỹS̃
# with S̃ = ÃRx̃Ã

H , we note

that the performance of this algorithm is critical when Rx̃

which interacts in S̃ approaches singularity. This is partic-
ularly the case when the sources are uncorrelated with at
least a non-circularity rate that tends to one (because in

this case, det(Rx̃) =
∏K
k=1

(
σ4
k(1− ρ2

k)
)
).

For a single source, (V.8) gives

CAlg4

θ1
=

1

α1(1− ρ2
1)

[
σ2
n

σ2
1

+
1

‖a1‖2
(1 + ρ2

1)

(1− ρ2
1)

σ4
n

σ4
1

]
. (V.9)

and consequently

CAlg4

θ1
≥ CMUSIC

θ1 =
1

α1

[
σ2
n

σ2
1

+
1

‖a1‖2
σ4
n

σ4
1

]
lim
ρ1→1

CAlg4

θ1
= ∞. (V.10)

Thus this algorithm is always outperformed by the stan-
dard MUSIC algorithm. This critical property will be stud-
ied for two sources, through numerical examples in Section
VI.

Then considering the second algorithm proposed in case
(2), we prove in Appendix D the following

Theorem 7: The sequence
√
T (ΘT −Θ) where ΘT is the

DOA estimate given by the weighted MUSIC algorithm
introduced in Section IV converges in distribution to the
zero-mean Gaussian distribution with covariance matrix

(CΘ)k,l =
1

2αkαl
(1 z∗ z 1)

(
(ĀT

k Ũ∗Ā∗l )⊗ (Ā′
H

k Π̃Ā
′

l)

+(Ā′
T

k Π̃∗Ā′
∗
l )⊗ (ĀH

k ŨĀl)
)

(1 z∗ z 1)H , (V.11)

with z
def
=

2w∗1,2
w1,1+w2,2

, Āk
def
= Ā(θk) and Ā

′

k
def
= dĀk

dθk
. Fur-

thermore, the value zopt
k that minimizes (CΘ)k,k is given

5



by

zopt
k = − aTkU∗2ak

aHk U1ak
, (V.12)

for which the minimum value of (CΘ)k,k is

min
z

(CΘ)k,k =
Det(ĀH

k ŨĀk)

2(aHk U1ak)(a′
H
k Π1a

′
k)
. (V.13)

For a single source, we prove in Appendix E
Corollary 1: The asymptotic variance of the DOA es-

timate given by the optimal weighting MUSIC algorithm
attains the non-circular Gaussian Cramer Rao bound for
all values of the non-circularity rate in the single source
case.
Remark 1: The optimal value of the weight previously
derived depends on the specific DOA whose variance is to
be minimized, which means that the optimal weight is not
the same for all DOAs. This, however, might have been
expected as MUSIC estimates the DOAs one by one. In
addition, it should be noted that zopt

k is sample depen-
dent. Consequently, this value ought to be replaced by a
consistent estimate in the implementation of the optimal
weighting MUSIC algorithm. This point will be described
in the next section. We note that this replacement of zopt

k

by a consistent estimate has no effect on the asymptotic
variance of the weighting MUSIC algorithm as it is proved
in Appendix E.
Remark 2: For circular sources, Rỹ is block diagonal.

This successively implies that S̃, S̃# and Ũ are block di-
agonal. Consequently, U2 = O, zopt

k = 0, Wopt is diago-
nal and the optimal weighting MUSIC algorithm reduces
to the standard MUSIC algorithm. Then (V.13) becomes

minz (CΘ)k,k =
aHk Uak

2a′
H
k Π1a

′
k

, which is the asymptotic vari-

ance given by (III.2).
To implement this optimal weighted MUSIC algorithm,

we propose to use the following multistep procedure de-
scribed in [11, Section 7].
1. Determine standard MUSIC estimates of (θk)k=1,...,K

from Ry,T .
2. For k = 1, ...,K, perform the following: Let θ0

k,T denote

the estimates obtained in step 1. Use (θ0
k,T )k=1,...,K and

the estimate U1,T and U2,T of U1 and U2 derived from

R̃y,T to obtain consistent estimates zk,T of zopt
k . Then

determine improved estimates θ1
k,T by locally minimizing

the weighted MUSIC cost function (IV.9) associated with
zk,T around θ0

k,T .

VI. Illustrative examples

In this section, we provide numerical illustrations and
Monte Carlo simulations of the performance of the dif-
ferent algorithms presented in Section IV and numerical
comparisons of the variances of these DOA estimates to
the asymptotic variance of AMV estimators based on Rỹ,T

(i.e., Ry,T and R′y,T ) and on Ry,T alone [3].
We consider throughout this section two uncorrelated

5 equipowered (SNR
def
=

σ2
1

σ2
n

) filtered or unfiltered BPSK

5We concentrate on uncorrelated sources because it was shown in

modulated signals with identical non-circularity rate (ρ
def
=

ρ1 = ρ2) with phases of noncircularity φ1 and φ2. These
signals impinge on a uniform linear array with M = 6
sensors separated by a half-wavelength for which ak =
(1, eiθk , . . . , ei(M−1)θk)T where θk = π sin(αk), with αk the
DOAs relative to the normal of array broadside. 1000 in-
dependent simulation runs have been performed to obtain
the estimated variances and the number of snapshots is
T = 500 [resp. T = 1000] in case (1) [resp. in case (2)].

The first experiment illustrates Theorem 5 for which
ρ = 1. Figs.1, 2 and 3 exhibit the dependence of
var(θ1,T ) given by algorithms 1, 2 and 3, and by the

AMV algorithm based on Rỹ,T (i.e., on Ry,T and R
′

y,T ),
with the SNR, the DOA separation ∆θ = θ2 − θ1 and
the noncircularity phase separation ∆φ = φ2 − φ1

6.
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Fig.1 Theoretical and empirical asymptotic variances given by al-

gorithms 1, 2, 3 and AMV algorithm based on (Ry,T ,R
′
y,T ) as a

function of the SNR for ∆θ = 0.05 radians, ∆φ = π/6 radians.
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Fig.2 Theoretical and empirical asymptotic variances given by algo-
rithms 1, 2, 3, standard MUSIC and AMV algorithms based on Ry,T

only and on (Ry,T ,R
′
y,T ) as a function of the DOA separation for

SNR=20dB, ∆φ = π/6 radians.

Figs.1 and 2 show that the domain of validity of
our asymptotic analysis depends on the algorithm. Be-
low a SNR threshold that is algorithm-dependent, al-

[3] that expected benefits due to the non-circular property happens
mainly for uncorrelated sources.

6By virtue of numerical examples, the different theoretical variances
depend on θ1, θ2, φ1, φ2 by only ∆θ = θ2 − θ1 and ∆φ = φ2 − φ1 in
case (1) [only ∆θ = θ2 − θ1 in case (2)] for two equipowered sources
with identical non-circularity rates.
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gorithm 3 (root-MUSIC-like algorithm) outperforms al-
gorithm 2 which outperforms algorithm 1, and natu-
rally all three algorithms clearly outperform the standard
MUSIC and the AMV algorithm based on Ry,T alone.
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Fig.3 Theoretical asymptotic variances given by algorithms 1, 2, 3

(1) and by the AMV algorithm based on (Ry,T ,R
′
y,T ) (2) as a func-

tion of the noncircularity phase separation for two DOA separations
and SNR=20dB.

In Fig.2, we note that the asymptotic variances given
by algorithms 1, 2 and 3 and the AMV algorithm
tend to a finite limit when the DOA separation de-
creases to zero. For algorithms 1, 2 and 3, this strange
behavior is explained by the two non-zero eigenvalues

(λk)k=1,2 of S̃ which interact in Ũ
def
= σ2

nS̃#RỹS̃
#

that appears in (V.5) of Theorem 5. With λk =

2Mσ2
1

(
1 + (−1)k cos((M − 1)∆θ

2 −∆φ)
sin(M ∆θ

2 )

M sin( ∆θ
2 )

)
k =

1, 2, we see that one of these eigenvalues approaches zero
and consequently the asymptotic variances increases with-
out limit only if both ∆θ and ∆φ tend to zero. For the
AMV algorithm, CΘ =

[
(SHC−1

s S)−1
]
(1:K,1:K)

(see the

notations of [3]) and S is column rank deficient only if
both ∆θ and ∆φ tend to zero as well. Fig.3 illustrates
the sensitivity of the performances to the noncircularity
phase separation ∆φ, which is particularly prominent for
low DOA separations. Figs.1 and 2 show the good efficiency
of these three algorithms compared to the AMV estima-
tor based on Rỹ,T , particularly for large DOA separations.

0 2 4 6 8 10 12 14 16 18 20
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∆θ=0.05rd 

∆θ=0.2rd 

Fig.4 Ratio r1
def
= Var

AMV(R,R′)
θ1

/Var
Alg1,2,3

θ1
as a function of the

SNR for different DOA separations, ∆φ = π/6 radians.

To specify this point, Fig.4 exhibits the ratio r1
def
=

Var
AMV(R,R′)
θ1

/Var
Alg1,2,3

θ1
as a function of the SNR for dif-

ferent DOA separations. It shows that algorithms 1, 2 and
3 are very efficient, except for low DOA separations and
low SNRs.

The second experiment considers arbitrary non-

circularity rates ρ (case (2)). Fig.5 exhibits the ratio r2
def
=

Var
MUSIC(R)
θ1

/VarAlg4

θ1
as a function of the non-circularity

rate for different DOA separations. It shows that algorithm
4 is worse than the standard MUSIC algorithm based on
Ry,T alone, for all scenarios. This extends that a property
proved by (V.10) in the single source case.

In the following, we concentrate on the optimal weighted
MUSIC algorithm (alg5) introduced in Subsection IV-
B. Compared to the standard MUSIC algorithm based
on Ry,T , Figs.6 and 7 show that algorithm 5 outper-
forms the standard MUSIC algorithm, particularly for
low SNRs and DOA separations when the noncircularity
rate ρ increases. The efficiency of this optimal weighted
MUSIC algorithm is exhibited in Fig.8 through the ra-

tio r4
def
= Var

AMV(R,R′)
θ1

/VarAlg5

θ1
. We show that, despite

the fact that algorithm 5 improves the performance of
the standard MUSIC algorithm based on Ry,T for low
SNRs and DOA separations when the noncircularity rate
ρ increases, its efficiency decreases in these circumstances.
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MUSIC(R)
θ1
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as a function of the non-

circularity rate for different DOA separations for SNR=5dB, ∆φ =
π/6 radians.
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radians.

Tables 1 and 2 compare our theoretical asymptotic vari-
ance expressions with empirical mean square errors (MSEs)
obtained from Monte Carlo simulations for the standard
MUSIC and the optimal weighted MUSIC algorithms for
ρ = 0.9, ∆θ = 0.2rd. We see that there is an agreement be-
tween the theoretical and empirical results beyond a SNR
threshold. Below this threshold, the optimal weighted MU-
SIC algorithm largely outperforms the standard MUSIC
algorithm.

(dB) MUSIC Weighted MUSIC
SNR est MSE(θ1) th Var(θ1) est MSE(θ1) th Var(θ1)
6 4.452.10−3 4.589.10−4 3.154.10−4 4.151.10−4

8 1.600.10−3 2.604.10−4 2.344.10−4 2.449.10−4

10 2.899.10−4 1.527.10−4 1.561.10−4 1.474.10−4

20 1.338.10−5 1.348.10−5 1.337.10−5 1.347.10−5

TABLE I

∆θ = 0.2rd

VII. Conclusion

This paper has provided a unifying framework to inves-
tigate the asymptotic performance of arbitrary subspace-
based algorithms for estimating DOAs of narrowband com-

MUSIC Weighted MUSIC
est MSE(θ) th Var(θ) est MSE(θ) th Var(θ)

θ1 1.600.10−3 2.604.10−4 2.344.10−4 2.449.10−4

θ2 1.800.10−3 2.604.10−4 2.457.10−4 2.449.10−4

TABLE II

∆θ = 0.2rd and SNR = 8dB

plex non-circular sources by giving closed-form expressions
of the covariance of the asymptotic distribution of extended
projection matrices. Different robustness properties of the
asymptotic covariance of the estimated DOA given by such
algorithms are proved. These results are applied to differ-
ent MUSIC-like algorithms. We have proved that such spe-
cific algorithms largely outperform the standard MUSIC
algorithm in the case of uncorrelated sources with maxi-
mum non-circularity rate. In the general case of nonsingu-
lar extended spatial covariance of the sources, the optimal
weighted MUSIC that we have introduced outperforms the
standard MUSIC algorithm as well, but the offered perfor-
mance gain is noticeable for low SNRs and DOA separa-
tions only. Furthermore this optimal weighted MUSIC is
computationally more demanding than the standard MU-
SIC algorithm. Consequently from an application view-
point this gain in performance may not motivate the extra
computational complexity. In this general case of nonsin-
gular extended spatial covariance of the sources, only mul-
tidimensional non-linear optimization algorithms such as
the subspace-based AMV estimator seems to be able to to-
tally benefit of the non-circular property. A study to deal
with this issue is underway.

Appendix

I. Appendix: Proof of Theorem 1

Because Π′T is the orthogonal projector onto the noise

subspace of the Hermitian matrix R′y,TR′
H
y,T , the standard

perturbation result (B.1) for orthogonal projectors associ-
ated with invariant subspaces of Hermitian matrices can be
applied:

δ(Π′) = −Π′δ(R′yR
′H
y )(R′yR

′H
y )#

− (R′yR
′H
y )#δ(R′yR

′H
y )Π′ + o(δ(R′yR

′H
y )).

Using δ(R′yR
′H
y ) = δ(R′y)R′

H
y + R′yδ(R

′H
y ) + o(δ(R′y)),

Π′R′y = O and R′
H
y (R′yR

′H
y )# = R′

#
y , we obtain:

δ(Π′) = −Π′δ(R′y)R′
#
y −R′

H
y

#
δ(R′

H
y )Π′ + o

(
δ(R′y)

)
.

Then using the standard theorem of continuity (see e.g.,
[18, p. 122]) on regular functions of asymptotically Gaus-
sian statistics, the asymptotic behaviors of Π′T and R′y,T
are directly related and the first covariance matrix of the
asymptotically Gaussian distribution of Π′T can be written
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as

CΠ′ =
(

R′
#
y ⊗Π′ Π′

∗ ⊗R′
∗
y

#
)( Cr′y

C′r′y
C′r′y

∗
C∗r′y

)
(

R′
∗
y

# ⊗Π′

Π′
∗ ⊗R′

#
y

)
, (A.1)

where the expressions of Cr′y
= E

(
(yt ⊗ yt − vec(R′y))

(yt ⊗ yt − vec(R′y))H
)

and C′r′y = E
(
(yt ⊗ yt − vec(R′y))

(yt ⊗ yt − vec(R′y))T
)

are given in [3, Lemma 2]. In-
serting these expressions in (A.1) and using Π′A = O,

R′
#
y RyΠ

′ = O, we obtain after tedious but simple algebra
manipulations:

CΠ′ = Π′
∗ ⊗U + U∗ ⊗Π′, (A.2)

where U is given here by σ2
nS
′∗#RT

y S
′#. Using again the

standard theorem of continuity, the DOAs estimated by the
MUSIC algorithm based on Π′T are asymptotically Gaus-

sian distributed with covariance CΘ = DAlg0

Θ CΠ′(D
Alg0

Θ )
H

where the Jacobian matrix DAlg0

Θ of the mapping that as-
sociates ΘT to Π′T is given by

DAlg0

Θ =

 dT1
...

dTK

 with dTk =
−1

αk

(
a
′

k

T
⊗ aHk + aTk ⊗ a

′

k

H
)

(A.3)
straightforwardly obtained from a first-order expansion of
∂g0,T (θ)

∂θ |θ=θk+δθk,T
= 0. Using expression (A.2) of CΠ′ ,

expression (III.2) of CΘ is straightforwardly deduced.

In the case of a single source, U =
σ2
n(σ2

1‖a1‖2+σ2
n)

σ4
1ρ

2
1‖a1‖6 a1a

H
1

and the expression of Cθ1 follows.

II. Appendix: Proof of Theorem 3

The proof relies on the standard central limit the-
orem applied to the independent equidistributed com-
plex non-circular random variables ỹ∗t ⊗ ỹt with ỹt =
Ãx̃t + ñt. Thanks to simple algebraic manipulations of
Crỹ = E

(
(ỹ∗t ⊗ ỹt − vec(Rỹ))(ỹ∗t ⊗ ỹt − vec(Rỹ))H

)
, we

straightforwardly obtain

Crỹ = R∗ỹ⊗Rỹ+K2M

(
R
′

ỹ ⊗R
′

ỹ

∗)
+(Ã∗⊗Ã)Qx̃(ÃT⊗ÃH)

with R
′

ỹ
def
= E(ỹtỹ

T
t ) and where (Qx̃)i+(j−1)2K,k+(l−1)2K =

Cum
(
(x̃t)i, (x̃t)

∗
j , (x̃t)

∗
k, (x̃t)l

)
. Then using the standard

perturbation result for orthogonal projectors [17] (see also
[13]) applied to Π̃ associated with the noise subspace of Rỹ

δ(Π̃) = −Π̃δ(Rỹ)S̃# − S̃#δ(Rỹ)Π̃ + o (δ(Rỹ)) , (B.1)

the asymptotic behaviors of Π̃T and Rỹ,T are directly re-
lated. The standard theorem (see e.g., [18, p. 122]) on
regular functions of asymptotically Gaussian statistics ap-
plies and the first covariance matrix of the asymptotically

Gaussian distribution of Π̃T can be written as

CΠ̃ =
(

(Π̃∗ ⊗ S̃#) + (S̃#∗ ⊗ Π̃)
)

Crỹ

(
(Π̃∗ ⊗ S̃#)

+(S̃#∗ ⊗ Π̃)
)

(B.2)

=
(

(Π̃∗ ⊗ S̃#) + (S̃#∗ ⊗ Π̃)
) (

R∗ỹ ⊗Rỹ

+ K2M (R
′

ỹ ⊗R
′

ỹ

∗
)
)(

(Π̃∗ ⊗ S̃#) + (S̃#∗ ⊗ Π̃)
)

= (I4M2 + K2M (JM ⊗ JM ))
(

(Π̃∗ ⊗ Ũ) + (Ũ∗ ⊗ Π̃)
)

where Π̃Ã = O, and R
′

ỹ

∗
= JMRỹ and S̃#RỹΠ̃ = O are

used in the second and third equalities respectively.

Proving the convergence in distribution of the second
statistic follows the same lines where the terms of

CΠ1,Π2,Π∗2
= lim

T→∞

1

T
E

 vec(Π1,T −Π1)
vec(Π2,T −Π2)
vec(Π∗2,T −Π∗2)


 vec(Π1,T −Π1)

vec(Π2,T −Π2)
vec(Π∗2,T −Π∗2)

H
 =

 CΠ1 CH
Π2,Π1

CH
Π∗2 ,Π1

CΠ2,Π1 CΠ2 CH
Π∗2 ,Π2

CΠ∗2 ,Π1
CΠ∗2 ,Π2

CΠ∗2



can be deduced from the expression of

CΠ̃ = lim
T→∞

1

T
E

[
vec

(
Π1,T −Π1 Π2,T −Π2

Π∗2,T −Π∗2 Π∗1,T −Π∗1

)
vecH

(
Π1,T −Π1 Π2,T −Π2

Π∗2,T −Π∗2 Π∗1,T −Π∗1

)]
(B.3)

=

(
G O
O G

)
lim
T→∞

1

T
E




vec(Π1,T −Π1)
vec(Π∗2,T −Π∗2)
vec(Π2,T −Π2)
vec(Π∗1,T −Π∗1)




vec(Π1,T −Π1)
vec(Π∗2,T −Π∗2)
vec(Π2,T −Π2)
vec(Π∗1,T −Π∗1)


H

(

GT O
O GT

)
(B.4)

=

(
G O
O G

)
(B.5)

CΠ1 CH
Π∗2 ,Π1

CH
Π2,Π1

CΠ1,Π∗1

CΠ∗2 ,Π1 CΠ∗2
CΠ∗2 ,Π2 C∗Π2,Π1

CΠ2,Π1 CH
Π∗2 ,Π2

CΠ2 C∗Π∗2 ,Π1

CH
Π1,Π∗1

CT
Π2,Π1

CT
Π∗2 ,Π1

CΠ∗1

( GT O
O GT

)

where G is the block permutation matrix defined by

vec

(
A
B

)
= G

(
vec(A)
vec(B)

)
. With expressions (B.5) and

9



(V.1) of Π̃, we obtain


CΠ1

CH
Π∗2 ,Π1

CH
Π2,Π1

CΠ1,Π∗1

CΠ∗2 ,Π1
CΠ∗2

CΠ∗2 ,Π2
C∗Π2,Π1

CΠ2,Π1
CH

Π∗2 ,Π2
CΠ2

C∗Π∗2 ,Π1

CH
Π1,Π∗1

CT
Π2,Π1

CT
Π∗2 ,Π1

CΠ∗1


=

(
GT O
O GT

)([
Π∗1 Π∗2
Π2 Π1

]
⊗
[

U1 U2

U∗2 U∗1

]
+

[
U∗1 U∗2
U2 U1

]
⊗
[

Π1 Π2

Π∗2 Π∗1

]
(B.6)

+K2M

([
Π2 Π1

Π∗1 Π∗2

]
⊗
[

U∗2 U∗1
U1 U2

])
+K2M

([
U2 U1

U∗1 U∗2

]
⊗
[

Π∗2 Π∗1
Π1 Π2

]))(
G O
O G

)
.

Then, using the following two identities deduced from the
definition of the permutation matrices G and K2M for any
M ×M matrices A, B, C and D

(
GT O
O GT

)([
A B
B∗ A∗

]
⊗
[

C D
D∗ C∗

])(
G O
O G

)

=


A⊗C A⊗D B⊗C B⊗D
A⊗D∗ A⊗C∗ B⊗D∗ B⊗C∗

B∗ ⊗C B∗ ⊗D A∗ ⊗C A∗ ⊗D
B∗ ⊗D∗ B∗ ⊗C∗ A∗ ⊗D∗ A∗ ⊗C∗

 ,

(
GT O
O GT

)
K2M

(
G O
O G

)

=


KM O O O
O O KM O
O KM O O
O O O KM

 ,

the expressions of CΠ1 , CΠ2 , CΠ2,Π1 , CΠ∗2 ,Π1 and CΠ∗2 ,Π2

of Theorem 3 follow directly from (B.6).

III. Appendix: Proof of Theorem 5

We first prove that algorithms 2 and 3 satisfy the same
first-order perturbation expansion (V.7). For algorithm 2,
we note that

∂g2,T (θ)

∂θ
= 2Tr

(
Π1,TM

′
(θ)Π1,TM(θ)

)
− 2<

[
Tr
(
Π∗2,TM

′
(θ)Π2,TM∗(θ)

)]
,

with M(θ)
def
= a(θ)aH(θ) and M

′
(θ)

def
= dM(θ)

dθ . Because

θk,T satisfies
∂g2,T (θ)

∂θ |θ=θk,T=θk+δθk,T
= 0, we straightfor-

wardly obtain the following first-order perturbation expan-
sion thanks to Π1,T = Π1 + δΠ1,T , Π2,T = Π2 + δΠ2,T ,

M(θk,T ) = Mk + M
′

kδθk,T + o(δθk,T ) and M
′
(θk,T ) =

M
′

k + M
′′

kδθk,T + o(δθk,T ):[
Tr
(
Π1M

′′

kΠ1Mk

)
−<

(
Tr
(
Π∗2M

′′

kΠ2M
∗
k

))
+ Tr

(
Π1M

′

kΠ1M
′

k

)
−<

(
Tr
(
Π∗2M

′

kΠ2M
′∗
k

))]
δθk,T

= <
(

Tr
(
δΠ∗2,TM

′

kΠ2M
∗
k

))
+ <

(
Tr
(
Π∗2M

′

kδΠ2,TM∗
k

))
−Tr

(
δΠ1,TM

′

kΠ1Mk

)
− Tr

(
Π1M

′

kδΠ1,TMk

)
(C.1)

+o(δΠ1,T ) + o(Π2,T )

with Mk
def
= M(θk), M

′

k
def
= M

′
(θk) and M

′′

k
def
=

d2M(α)
dα2 |α=θk

. Furthermore, we note that the sum of the

first two terms of the left hand side of (C.1) vanishes
thanks to the identity Π̃ãk = 0, which is equivalent to
Π1ak + e−iφkΠ2a

∗
k = 0, and which implies

Π1MkΠ1 = Π2M
∗
kΠ
∗
2. (C.2)

Consequently

Tr
(
Π1M

′′

kΠ1Mk

)
−<

(
Tr
(
Π∗2M

′′

kΠ2M
∗
k

))
= <

(
Tr
(

(Π1MkΠ1 −Π2M
∗
kΠ
∗
2)M

′′

k

))
= 0.

Thus (C.1) becomes

δθk,T =
D

Tr
(
Π1M

′
kΠ1M

′
k

)
−<

(
Tr
(
Π∗2M

′
kΠ2M

′∗
k

))
+ o(δΠ1,T ) + o(δΠ2,T ) (C.3)

withD def
= <

(
Tr
(
δΠ∗2,TM

′

kΠ2M
∗
k + Π∗2M

′

kδΠ2,TM∗
k

))
−

Tr
(
δΠ1,TM

′

kΠ1Mk + Π1M
′

kδΠ1,TMk

)
. For algorithm

3, we note that

g3,T (z) = Tr (Π1,TM(z)Π1,TM(z))

− Tr
(
Π∗2,TM(z)Π2,TM(z−1)

)
(C.4)

with M(z)
def
= a(z)aT (z−1). By definition of algorithm 3

(see (IV.7)), zk,T = θk + δθk,T is solution of

g3,T (zk,T ) = 0 with zk,T = rk,T e
iθk,T = zk+δzk,T = eiθk+δzk,T .

(C.5)
To relate δθk,T to δΠ1,T , δΠ2,T and δΠ∗2,T , a second-order
expansion of a(z), Π1,T and Π2,T is required since the first-
order terms in δθk,T and δrk,T vanish, as noted in [13] for
the standard root-MUSIC algorithm.

a(zk,T ) = ak + a
′

kδθk,T − ia
′

kδrk,T +
1

2
a
′′

k(δθk,T )2

− ia
′′

kδθk,T δrk,T −
1

2
a
′′

k(δrk,T )2 + o2(δθk,T , δrk,T )

a(z−1
k,T ) = a∗k + a

′

k

∗
δθk,T − ia

′

k

∗
δrk,T +

1

2
a
′′

k

∗
(δθk,T )2

− ia
′′

k

∗
δθk,T δrk,T −

1

2
a
′′

k

∗
(δrk,T )2 + o2(δθk,T , δrk,T )

Π1,T = Π1 + δΠ1,T + δ2Π1,T + o(δ2Π1,T )

Π2,T = Π2 + δΠ2,T + δ2Π2,T + o(δ2Π2,T )
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with a
′

k
def
= dak

dθk
and a

′′

k
def
= d2ak

dθ2
k

, where (δΠi,T )i=1,2 and

(δ2Πi,T )i=1,2 denote the first and second-order terms of
the expansion of (Πi,T )i=1,2 w.r.t. δRỹ,T , and where
o2(δθk,T , δrk,T ) is a third-order term in (δθk,T , δrk,T ). Con-
sequently

M(zk,T ) = Mk + M
′

kδθk,T − iM
′

kδrk,T +
1

2
M
′′

k(δθk,T )2

−iM
′′

kδθk,T δrk,T −
1

2
M
′′

k(δrk,T )2 + o2(δθk,T , δrk,T ))

M(z−1
k,T ) = M∗

k + M
′

k

∗
δθk,T − iM

′

k

∗
δrk,T

+
1

2
M
′′

k

∗
(δθk,T )2 − iM

′′

k

∗
δθk,T δrk,T

− 1

2
M
′′

k

∗
(δrk,T )2 + o2(δθk,T , δrk,T )),

Inserting these second-order expansions of Π1,T , Π2,T ,
M(zk,T ) and M(z−1

k,T ) in the expression (C.4) of g2,T (zk,T )
and using identity (C.2) and identity

aHk δΠ1,Tak + <(aHk δΠ2,Ta∗ke
−iφk) = 0

deduced from identity ãHk δΠ̃T ãk = 0 (issued from Π̃ãk = 0

and δΠ̃T ãk + Π̃δãk,T = 0), one can check that the first-
order terms in δθk,T and δrk,T vanish and the following
expression of g3,T (zk,T ) of (C.4) is obtained after simple,
but tedious algebra manipulations:

g3,T (zk,T ) =

1

2

{(
Tr(Π1M

′

kΠ1M
′

k)−<(Tr(Π∗2M
′

kΠ2M
′

k

∗
))
)

(
(δθk,T )2 − (δrk,T )2

)
+ 2

(
Tr(δΠ1,TMkΠ1M

′

k)

−<(Tr(δΠ∗2,TMkΠ2M
′

k

∗
)) + Tr(Π1MkδΠ1,TM

′

k)

−<(Tr(Π∗2MkδΠ2,TM
′

k

∗
))
)
δθk,T + 2

(
Tr(Π1Mkδ

2Π1,TMk)

−<(Tr(Π∗2Mkδ
2Π2,TM∗

k)
)}
− 2i

{
Tr(δΠ1,TM

′

kΠ1Mk)

+Tr(Π1M
′

kδΠ1,TMk)−<(Tr(δΠ∗2,TM
′

kΠ2M
∗
k)

−<(Tr(Π∗2M
′

kδΠ2,TM∗
k) +

(
Tr(Π1M

′

kΠ1M
′

k)

−<(Tr(Π∗2M
′

kΠ2M
′

k

∗
))
)
δθk,T

}
δrk,T + o2(δθk,T , δrk,T ).

(C.6)

Since the different matrices M are composed of sums
of rank-one matrices and that matrices Π1, δΠ1,T and
δ2Π1,T , [resp. Π2, δΠ2,T and δ2Π2,T ] are Hermitian [resp.
complex symmetric] structured, one can check that the first
four lines within the braces in (C.6) are real, while the last
two lines in the second brace are purely imaginary. By
setting the imaginary part of this expansion equal to zero
(zk,T is a root of g3,T (z)), (C.3) is found.
Remark: With different cost functions, we note the simi-
larity of behavior of our algorithms 1 and 2, with the stan-
dard MUSIC and root-MUSIC algorithms analyzed in [13]:
In the two cases, the asymptotic distributions of the DOA
estimates given by the MUSIC and the associated root-
MUSIC algorithm are identical. Furthermore the second-
order terms in δ2Π1,T and δ2Π2,T are not used for the

derivation of δθk,T (they would be used in the derivation
of δrk,T , which is not studied in this paper) for the two
root-MUSIC algorithms.

Considering algorithm 1, the estimates θk,T and φk,T are
solutions of the global minimization

(θk,T , φk,T ) = arg min
θ,φ

g̃1,T (θ, φ)

with g̃1,T (θ, φ) = ãH(θ, φ)Π̃T ã(θ, φ) = Tr(Π̃TMθ,φ) where

Mθ,φ
def
= ã(θ, φ)ã(θ, φ)H . Because (θk,T , φk,T ) satisfies

∂g̃1,T (θ, φ)

∂θ |(θ,φ)=(θk,T ,φk,T )=(θk+δθk,T ,φk+δφk,T )
= 0

and

∂g̃1,T (θ, φ)

∂φ |(θ,φ)=(θk,T ,φk,T )=(θk+δθk,T ,φk+δφk,T )

= 0,

we straightforwardly obtain the following first-order per-
turbation expansion

Tr(Π̃M
′′

θ,θ)δθk,T + Tr(Π̃M
′′

θ,φ)δφk,T + Tr(δΠ̃TM
′

θ) = 0

Tr(Π̃M
′′

θ,φ)δθk,T + Tr(Π̃M
′′

φ,φ)δφk,T + Tr(δΠ̃TM
′

φ) = 0

(C.7)

with M
′

θ
def
=

∂Mθ,φ

∂θ , M
′

φ
def
=

∂Mθ,φ

∂φ , M
′′

θ,θ
def
=

∂2Mθ,φ

∂θ2 ,

M
′′

θ,φ
def
=

∂2Mθ,φ

∂θ∂φ and M
′′

φ,φ
def
=

∂2Mθ,φ

∂φ2 associated with

the source k. Noting that Tr(Π̃M
′′

i,j) = 2<(ã′
H

i,kΠ̃ã′j,k),

i, j = θ, φ which is denoted by α
(k)
i,j , (C.7) gives

δθk,T =
−1

α
(k)
θ,θα

(k)
φ,φ − (α

(k)
θ,φ)2

(
α

(k)
φ,φTr(δΠ̃TM

′

θ)

−α(k)
θ,φTr(δΠ̃TM

′

φ)
)

+ o(δΠ̃T ),

where Tr(δΠ̃TM
′

i) = (ã′
T

i,k ⊗ ãHk + ãTk ⊗ ã′
H

i,k)vec(δΠ̃T ),

i = θ, φ. Consequently the Jacobian matrix DAlg1

Θ of the

mapping that associates ΘT to Π̃T is given by DAlg1

Θ =

(d1, ...,dK)
T

with

dTk =
−1

α
(k)
θ,θα

(k)
φ,φ − (α

(k)
θ,φ)2

(
α

(k)
φ,φ(ã′

T

θ,k ⊗ ãHk + ãTk ⊗ ã′
H

θ,k)

−α(k)
θ,φ(ã′

T

φ,k ⊗ ãHk + ãTk ⊗ ã′
H

φ,k)
)
.

Because Π̃T is asymptotically Gaussian distributed with
first covariance CΠ̃, ΘT is also asymptotically Gaus-
sian distributed thanks to the standard theorem of con-
tinuity (see e.g., [18, p. 122]) with covariance CΘ =

DAlg1

Θ CΠ̃(DAlg1

Θ )
H

. Using, the expression (V.1) of CΠ̃,
the expressions (V.4) and (V.5) of CΘ are straightfor-
wardly deduced after simple but tedious algebra ma-
nipulations thanks to the identities (a ⊗ b)K2M =
(b ⊗ a) for all 2M × 1 vectors a, b, Π̃ã = 0
and ãHJΠ̃∗ = 0T . In the case of a single source,

Ũ = 1
2‖a‖2

(
σ2
n

σ2
1

+ 1
2‖a‖2

σ4
n

σ4
1

)(
ã√

2‖a‖

)(
ã√

2‖a‖

)H
and (V.6)

is straightforwardly deduced as well.
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IV. Appendix: Proof of theorem 7

Because θk,T satisfies
∂g5,T (θ)

∂θ |θ=θk,T=θk+δθk,T
= 0, we

straightforwardly obtain the following first-order perturba-
tion expansion thanks to Π̃T = Π̃ + δΠ̃T , where we have
used the identity Tr(ABCD) = vecT (AT )(DT ⊗B)vec(C)
[19, th. 7.17]

δθk,T =
vecH(W)(ĀT

k ⊗ Ā′
H

k + Ā′
T

k ⊗ ĀH
k )vec(δΠ̃T )

2Tr(WĀ′
H

k Π̃Ā
′
k)

+ o(δΠ̃T ). (D.1)

And because Π̃T is asymptotically Gaussian distributed,
ΘT is also asymptotically Gaussian distributed thanks to
the standard theorem of continuity (see e.g., [18, p. 122])
with covariance:

(CΘ)k,l =
1

βkβl
vecH(W)MkCΠ̃MH

l vec(W),

with βk
def
= 2Tr(WĀ

′H

k Π̃Ā
′

k) and Mk
def
= ĀT

k ⊗ Ā′
H

k +

Ā′
T

k ⊗ ĀH
k . Using the alternative expression 1

2LM (Π̃∗ ⊗
Ũ + Ũ∗ ⊗ Π̃)LM of CΠ̃ given by (V.1) where LM

def
=

(I4M2 + K2M (JM ⊗ JM )), we obtain thanks to straight-
forward algebra manipulations

MkCΠ̃MH
l =

1

2
L4

(
(ĀT

k Ũ∗Ā∗l )⊗ (Ā′
H

k Π̃Ā
′

l)

+(Ā′
T

k Π̃∗Ā∗
′

l)⊗ (ĀH
k ŨĀl)

)
L4,

and because L4vec(W) =


w1,1 + w2,2

2w∗1,2
2w1,2

w1,1 + w2,2

 and β =

2(w1,1 + w2,2)a′
H
k Π1a

′
k, expression (V.11) is proved.

Expressing the matrix C
def
= (ĀT

k Ũ∗Ā∗l )⊗ (Ā′
H

k Π̃Ā
′

l) +

(Ā′
T

k Π̃∗Ā′
∗
l ) ⊗ (ĀH

k ŨĀl) of (V.11) as a function of
ak, Π1 and Π2, we obtain after simple but tedious al-

gebra manipulations C =


2α β β∗ 0
β∗ 2α 0 β∗

β 0 2α β
0 β β∗ 2α

 with

α
def
= (aHk U1ak)(a′

H
k Π1a

′
k) and β

def
= (aHk U2a

∗
k)(a′

H
k Π1a

′
k).

Consequently (V.11) becomes

(CΘ)k,k =
1

2α2
k

4[α(1 + |z|2) + 2<(βz)],

which is minimum for zopt = −β
∗

α = − aTkU∗2ak
aHk U1ak

The associated minimum value of (CΘ)k,k is

min
z

(CΘ)k,k =
1

2α2
k

4

α
(α2−|β|2) =

(aHk U1ak)2 − |aHk U2a
∗
k|2

2(a′Hk Π1a′k)(aHk U1ak)
(D.2)

and the proof is completed.
We note that replacement of W by an arbitrary consis-

tent estimate that satisfies WT = W +O(Rỹ −Rỹ,T ) has

no effect on the asymptotic variance of the weighted MU-
SIC estimates because the first order perturbation (D.1) is
preserved.

V. Appendix: Proof of corollary 1

For the single source case, we obtain from the expressions
of Ũ given at the end of Appendix D

U1 =
σ2
n

σ2
1‖a1‖4(1− ρ2

1)

(
1 +

σ2
n

σ2
1‖a1‖2

1 + ρ2
1

1− ρ2
1

)
a1a

H
1 ,

U2 = − ρ1σ
2
n

σ2
1‖a1‖4(1− ρ2

1)

(
1 +

σ2
n

σ2
1‖a1‖2

2

1− ρ2
1

)
eiφ1a1a

T
1 .

Then, using these values in expression (D.2) of
minz (CΘ)k,k we obtain after tedious but simple algebra
manipulations

min
z
Cθ1 =

1

α 1

(aH1 U1a1)2 − |aH1 U2a
∗
1|2

(aH1 U1a1)

=
1

α 1

[
2r−1

1 + ‖a1‖−2r−2
1 + ‖a1‖2 − ‖a1‖2ρ2

1

‖a1‖2r1 + 1 + (1− ‖a1‖2r1)ρ2
1

]
where r1

def
=

σ2
1

σ2
n

, which is the expression of the non-circular

Gaussian Cramer Rao bound proved in [4].
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