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Improved Maximum Likelihood Frequency Offset Estimation Based

on Likelihood Metric Design
Hlaing Minn*, Member, IEEE and Poramate Tarasak, Member, IEEE

Abstract— For emerging high data-rate communication sys-
tems in highly dispersive channels such as ultra-wideband
systems, possible frequency offsets could be larger than the
estimation range of the existing methods using training signals
with identical parts or repetitive training signals (i.e., the training
signals are composed of several identical sub-blocks or are
obtained by repeating a training sub-block for several times). This
paper presents a novel improved maximum likelihood frequency
offset estimator which can handle at least twice the estimation
range of the existing methods using training signals with identical
parts and achieves a better estimation performance. Based on the
likelihood metric, a new design metric is introduced which is a
pair-wise error probability (PEP) between the correct frequency
offset point and a trial frequency offset point. The proposed
PEP metric gives more theoretical insights on the performance of
practical maximum likelihood estimators. How to design the PEP
to achieve both a larger estimation range and a better estimation
performance in fading channel environments is also presented
and the corresponding estimator implementation is described.

Keywords—synchronization, estimation, frequency offset, like-
lihood metric design.

I. INTRODUCTION

Frequency synchronization is an essential task at a com-
munication receiver. For packet-based systems such as 2G,
3G and beyond-3G cellular systems, wireless LANs, wireless
MANs, etc., training signal based frequency offset estimation
and compensation are typically performed. The scope of this
paper encompasses all packet-based single-carrier as well as
multi-carrier systems except CDMA-based systems. There are
several existing works on frequency offset estimation, e.g.,
[1]- [11]. They are mainly based on a correlation term of the
training signal in time-domain or frequency-domain [1]- [4],
maximum-likelihood principle [5] [6], a Bayesian approach
[7], a combination of correlation terms in a sub-optimal way
[8], or a combination of correlation terms using best linear
unbiased estimation principle [9]- [11]. Most of them employ
repetitive training signals consisting of several identical parts
(or in the form of cyclic prefixes) which also yield low
complexity estimators.

In [9], a maximum likelihood frequency offset estimation
method (MLE#1) was presented based on a joint estimation of
frequency offset and channel impulse response. With a proper
training signal, MLE#1 can handle absolute frequency offsets
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less than half of the symbol rate which is the maximum pos-
sible estimation range for any estimator operating on symbol-
rate received signal samples. To reduce the MLE#1’s very
high complexity, [9] also presented MLE#2 which utilized a
periodic training signal with a period of

�
samples (the number

of channel taps). The complexity of MLE#2 is approximately�����
times that of MLE#1 but the corresponding estimation

range of MLE#2 is reduced to
���������
	

times the symbol rate.
Since the estimation range of MLE#2 is inversely propotional
to the number of channel taps, MLE#2 cannot be applied to
systems where possible frequency offsets are larger than the
above range. For example, in ultra-wideband (UWB) systems,
the number of channel taps can be quite large and possible
frequency offsets (due to very high carrier frequency and/or
low cost devices) can be larger than the estimation range of
MLE#2. Similarly, the above-mentioned existing methods with
repetitive training signals experience the same problem.

For highly-dispersive channel environments, developing fre-
quency offset estimators which can handle all possible fre-
quency offsets with reasonable complexity is a challenging
problem which has not been addressed in the literature. As
UWB systems become more prominent, the above problem
becomes an important issue. Hence, in this paper, we address
this issue and develop a novel improved maximum likelihood
frequency offset estimation method which can handle a larger
frequency offset with a comparable complexity. Based on the
likelihood metric, a new design metric named pair-wise error
probability (PEP) is introduced. The training signal consisting
of several identical sub-blocks are designed based on the PEP
metric in order to achieve the estimation range extension.
The proposed design also brings in estimation performance
improvement. The proposed scheme can be applied to single-
carrier as well as multi-carrier systems except CDMA sys-
tems1.

The proposed approach can be related to the optimal pe-
riodic training signal design for frequency offset estimation
presented in [12]. The approach from [12] is based on the
Cramer-Rao lower bound (CRB) and it does not provide
information on whether a practical frequency offset estimator
will achieve the improvement projected in the CRB. On the
other hand, the proposed approach in this paper is based on the
likelihood metric of a practical maximum likelihood estimator.
It provides more insights for practical maximum likelihood
estimators and it ensures the improvement in practice.

The rest of the paper is organized as follows. Section II
describes signal model and Section III presents the proposed

1For CDMA systems, the proposed concept could still be applied in down-
link but multi-user interference and multi-user training signal designs would
also need to be taken into consideration in uplink.
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approach for improved maximum likelihood estimator with
extended estimation range. Simulation results and discussions
are given in Section IV and finally the paper is concluded in
Section V.

II. SIGNAL MODEL

For complexity reduction, consider an arbitrary training
signal consisting of several identical sub-blocks (say, � sub-
blocks). Each training sub-block is composed of

�
training

samples2 �������	��
� , . . . ,
��� ���

where
�

is the number
of sample-spaced channel taps. The locations of the identical
sub-blocks are defined by the time-indices of the first samples
of the sub-blocks, namely ��� , ��� , . . . , ���	��� where ��� ���������� �

for � 
 �
, . . . , � � �

. If two adjacent sub-blocks
are not consecutively located, i.e., ��� � ��������� �

, then there
can be null samples or non-zero samples between the two
sub-blocks. The non-zero samples between the two training
sub-blocks could convey some control information or could
be used as training samples for other synchronization tasks.
The first sub-block serves as a cyclic prefix (CP). Similarly,
the � -th sub-block will serve as a CP if � � � ��������� �

.
At the receiver, the observation vector for frequency offset
estimation is formed from the received training samples by
removing the CPs (the first sub-block and all other training
sub-blocks � � � for which � � � �������!� �

) and the null or
data samples between any two training sub-blocks. Suppose
in the observation vector there are " sub-blocks with the
corresponding time-indices �$# � , # � , . . . , #&% ��� � where #('�)� ��� � . Fig. 1 depicts several training signal structures and
corresponding construction of observation vectors (composed
of �$#(� � ) where shaded or unshaded blocks represent trans-
mitted training signal sub-blocks and blank spaces between
training sub-blocks represent null or non-zero samples for
other purposes.

Consider a complex baseband received observation vector* (composed of the received training sub-blocks with time-
indices �$#(� � ) given by* 
,+ - � � 	�. - � ��	�.!/$/$/0. - � " �1� ��	32(4

(1)

where the indices of ��- � � 	0� are with reference to the obser-
vation vector (not the received sample time-indices). Then we
can express * as* 
65 �37�	08:9�;�< 
=5 �37�	?>�;�< (2)

where 9 
 + @ � � 	�. @ � ��	�.!/$/$/�. @ ���1� ��	32(4
(3)< 
 + A � � 	�. A � ��	�.!/$/$/0. A � " �B� ��	32(4
(4)5 �37�	 
DC�E&F�GH��I?J$K?L0M N$OQP �37�	�. I?J$K0R?M N$O3P �37�	�./$/$/0. I J$K?S�THR?M N$O P �37�	0�
(5)P �37�	 
 + �U. I?J$V0W$N .!/$/$/0. I?J$V0WUM X ��� O(N 2 (6)Y � �37�	 
 �UZ #(� 7 (7)+ 8	2 �U[ � 
\� M � �]� O&^ . �!_6��_ " �1� �U. �`_ � _ �B� �U/
(8)

2We will use sample and symbol interchangeably.

In the above equations,
7

is the carrier frequency offset
normalized by the sample rate

����acb
, ��A � � 	0� are indepen-

dent and identically distributed (iid) zero-mean circularly-
symmetric complex Gaussian noise samples each having a
variance of d V� , ��@ � � 	0� are the channel tap gains assumed
to remain constant during the training block, and

�?e 	 X denotes
a modulo-

�
operation. The superscripts f , a , and g repre-

sent the conjugate, the transpose and the conjugate transpose
operations, respectively.

Note that
8

consists of " identical
�,h �

sub-matrices
which are designed to be of full rank. In practice, the exact
number of channel taps may not be known and it can vary
as well. Hence,

�
should represent an upper bound of the

number of channel taps. In this case, the channel vector
9

contains actual channel taps appended with zero-value taps
and the signal model remains the same.

III. THE PROPOSED METHOD

We consider a joint estimation of
9

and
7

as in [9]. The
likelihood function is given byi � *�j�k9�. k7�	 
 �

�3Z d V� 	 % X�l�mHn o � �d V��p * � 5 � k7�	08 k9 p VUq (9)

where k9 and k7 are trial values of
9

and
7

in finding/searching
the best values (of k9 and k7 ) that maximize the likelihood
function and p e p V represents a Euclidean norm-square. For
a fixed k7 , we find k9 that maximizes the likelihood functioni � *�j!k9�. k7�	 by differentiating p * � 5 � k7�	08 k9 p V with respect tok9 and equating the result to zero. The corresponding estimater9 � k7�	 is given byr9 � k7 	 
 �Q8ts!8 	 ��� 8ts 5 s � k7 	 * (10)

where
8

has been designed to have a full rank. After substi-
tuting (10) into (9), the maximum likelihood estimate of

7
is

given by r7 
=F�u?G�v�F mwN ��x � k7 	0� (11)

where x � k7 	 
 * s 5 � k7�	?y 5 s � k7 	 * / (12)

In the above equation,
y

is a " �zh " � projection matrix
given byy 
 8 �Q8 s 8 	 ��� 8 s 
 �" {|}�~ X /$/$/ ~ X

...
. . .

...~ X /$/$/ ~ X
� �� (13)

where
~ X is an

��h �
identity matrix. The above derivation

((9)-(13)) is the same as [9] except that 5 � k7 	 and the formation
of the observation vector * are different from [9]. After some
simplification and dropping unnecessary factors, we obtainx � k7 	 
=��� % ������� � % ����� �]�1� � � . # 	 I?J�M(K0�	M wN$O � K?�&M wN�O&O���
=�1��� � k7 	?���

(14)
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where �:��� � denotes the real part of � and

� � � . # 	 
 X ����� � � - � # �1; � 	 -�� � � �1; � 	 (15)� 
,+ � � � . � 	�. � � � .���	�.$/$/$/Q. � � � . " � ��	�. � � �U.���	�.$/$/$/?.� � �U. " � ��	�. � ����. ��	�.$/$/$/?. � � " � �U. " � ��	32(4
(16)� � k7 	 
,+ I J�M(K?L0M wN�O � K?L0M wN$O&O . I J�M(K?L?M wN�O � K0R?M wN$O&O .$/$/$/0.I?J�M(K?L0M wN�O � K?S�THR0M wN�O&O . I?J�M(K0R?M wN�O � K0R?M wN$O&O .$/$/$/?. I?J�M(K0R?M wN�O � K?S�THR0M wN�O&O .I?J�M(K��0M wN�O � K��0M wN$O&O .$/$/$/0. I?J�M(K?S�THRQM wN$O � K?S�THR?M wN$O&O 2?/ (17)

Now, we introduce a new variable to be used in developing
our proposed method as� � k7 	 
�x �37�		� x � k7 	 
=�1�U+ � �37�	 � � � k7 	323���t/ (18)

We will design the likelihood metric to achieve a larger
estimation range and a better estimation performance. This will
be accomplished by means of the design on the training sub-
block locations. We will use � + � � k7�	 _6� 2 as our performance
measure in the design. This measure indicates how likely a
trial point k7 will be chosen as the frequency offset estimate
between the actual frequency offset

7
and the trial point k7 .

In other words, this probability can be considered as a pair-
wise error probability (PEP) of frequency offset estimation
where the exact frequency offset and any other frequency
offset trial point constitute the pair. Note that when k7 
 7 ,
this probability equals to one and it does not represent PEP
but for convenience, � + � � k7�	 _ � 2 will be referred to as the
PEP metric throughout the paper.

We can approximate
� � k7 	 as a Gaussian random variable

(see Appendix-A for justification). The mean and the variance
of
� � k7 	 are, respectively, given by�
	 � M wN$O � � �V  M ��M N$O � ��M wN$O&O �
	 � ��� �
	 ��� �(M ��M N$O � ��M wN$O&O ��� (19)������	 � M wN�O � ��V M ��M N$O � ��M wN$O&O �
	 M � � �
	 � � O3M � � �
	 � � O � �(M ��M N$O � ��M wN�O&O �� �� M ��M N$O � ��M wN�O&O �
	 M � � �
	 � � O3M � � �
	 � � O����(M ��M N$O � ��M wN�O&O��� �� M ��M N$O � ��M wN�O&O�� �
	 M � � �
	 � � O��0M � � �
	 � � O � �(M ��M N$O � ��M wN�O&O ���(20)

Then our design performance measure, PEP, is given by

� + � � k7�	 _6� 2 
! #"!$ + � � k7 	32%'& C�+ � � k7 	32)( (21)

where Std[ � ] denotes the standard deviation of � and  �?e 	
is the Gaussian tail probability. One can note from the above
equation that $ + � � k7�	32 /Std + � � k7�	32 can be used as a design
performance measure as well.

Next, we calculate the mean and the correlation of � � � � . # 	0�required in (19) and (20). After a direct (but lengthy) calcu-
lation, we obtain$ + � � � . # 	32 
 $ � ; � d V�'* + � � # 2 (22)$ + � � � � . # 	 � � � . � 	32 
 $ V� ; � $ �0d V� � * + � � � 2H; * + # � � 2�	; $ ��d V� � * + � � � 2�; * + # � � 2�	 ;,+ �&<B. # . � . � . � 	 (23)$ + � � � . # 	 � � � . � 	32 
 $ V� ; � $ �0d V� � * + � � � 2�; * + # � � 2�	; $ ��d V� � * + # � � 2�; * + � � � 2�	 ;,+ �&<B. � . # . � . � 	 (24)

where $ � 
!- X ���� � �/. 0 � . V and+ �&<�. # . � . � . � 	 
1223 224
������; � � ���B� ��	65 � 	 d �� . if # 
=��
 � 
 �� V d �� . if # 
=� , � 
 � , #87
 �� d �� . if � 
 � , #�
 � , �97
6#� . otherwise.

(25)

Note that in developing our design measure we have con-
sidered a fixed channel output sub-block energy $ � or a
fixed instantaneous (snap-shot) signal-to-noise ratio SNR ' =$ � ����� d V� 	 . In practical fading channels, $ � or SNR ' will
fluctuate. For the estimation to be robust in fading environ-
ments, we will use SNR ' = 0 dB in our design. Different
values of actual normalized frequency offset

7
simply re-

sult in shifted versions (in the k7 -axis) of the metrics
� � k7 	 ,$ + � � k7 	32�� %'& C + � � k7 	32 , and � + � � k7�	 _�� 2 but they do not change

the shapes of the metrics (see Appendix-A for the proof).
The shifting of the metrics will not affect the frequency offset
estimation range which is determined by the distance in k7 -axis
between the metric peak corresponding to the actual frequency
offset and the adjacent metric peak with comparable metric
value (metric nulls in place of metric peaks for the metric$ + � � k7 	32�� %'& C + � � k7 	32 ). Hence, in our likelihood metric design,
without loss of generality, we set

7 
=� . By plotting � + � � k7�	 _� 2 versus k7 for different training sub-block locations, one
can design the training sub-block locations that achieve a
larger frequency offset estimation range (without ambiguity)
and a better frequency offset estimation mean-square error
(MSE) performance. The expected value of x � k7 	 or the ratio$ + � � k7 	32 /Std + � � k7 	32 can also be used as the design performance
measures. Using � + � � k7�	 _ � 2 is more informative in that it
indicates how likely a trial frequency offset point k7 will be
chosen as opposed to the correct frequency offset

7
.

To illustrate our proposed approach, let us consider a system
where � 
 � � identical training sub-blocks are transmitted
and

� 
;: (see Fig. 1). The observation vector will have a
smaller number of sub-blocks " (less training energy used in
the estimation) if there are more non-consecutive groups of
sub-blocks, i.e., if there are more � for which � � � � � ������

. Hence, we consider a scheme with two non-consecutive
groups of training sub-blocks (there is only one � for which� � � � � ����� �

). The two groups are separated by < samples.
The first group contains =�� ; �

sub-blocks and the second
has " � =�� ; �

sub-blocks. The � -th and
� =�� ; ��	

-th sub-
blocks serve as CPs and are removed at the receiver. Hence, if<�� � , the observation vector has " 
>: training sub-blocks
with the corresponding time indices3 given by #('�
@? � for?�
 � , 1, . . . , =�� � �

, and #�A R�� � 
 < ; � =�� ; �:; � 	 �
for � 
=� , . . . , " � =�� � �

. If < 
=� , the observation vector
contains " 
CB consecutive sub-blocks with the corresponding
time indices #(':
;? � for ?:
 � , 1, . . . , " � �

, which is the
conventional training structure used in [9]- [11]. Our objective
in this illustrative example is to find < which gives a larger
frequency offset estimation range and a better estimation MSE
than the conventional approaches (corresponding to < 
=� ).

3The time index of the first transmitted sub-block is assumed to be DFE .
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In Figs. 2-9, we present effects of < , =�� , " , and SNR '
on several metrics. In Fig. 2, the normalized mean values
of the likelihood metric x � k7 	 for < from � to

�=� �
are

presented where " 
 B for < 
 � and " 
 : , =�� 
 �
for < � � . The corresponding plots of $ + � � k7 	32 /Std + � � k7 	32 and
PEP are shown in Figs. 3 and 4, respectively. The metric lobe
centered around k7 
=� (correct frequency offset) will be called
mainlobe and the other lobes will be referred to as sidelobes.
For the metric $ + � � k7�	32 /Std + � � k7 	32 , the metric null at k7 
�
(correct frequency offset) will be called main-null and the
other nulls will be referred to as side-nulls. At k7 
=� ��� where� is an integer, the mean values of the likelihood metric are
the same for < 
 � hence limiting the estimation range of
the conventional approaches to . 7 .�� ���������
	

. Similarly, the
values of $ + � � k7�	32 /Std + � � k7 	32 are all zeros at k7 
z� ��� (is 0/0
at k7 
 7 
 � ) and the PEPs are all 0.5 at k7 
 � ��� (is 1 atk7 
 7 
 � ). In other words, for < 
 � , the metric sidelobe
peaks (or side-nulls) have the same (or almost the same) values
as the mainlobe peak (or main-null) and this fact limits the
unambiguious frequency offset estimation range.

For <�� � in Figs. 2-4, the values of all metrics (the mean
of likelihood metric, $ + � � k7 	32 /Std + � � k7 	32 , and the PEP) change
at some or all points of k7 
=� ��� ,

� � 7
=� 	 , hence opening up
the possibility of estimation range extension. In other words,
the sidelobe peaks (or side-nulls) adjacent to the mainlobe
peak (or main-null) take on values which are sufficiently
distanced from the mainlobe-peak value (or side-null value),
hence increasing the unambiguious frequency offset estimation
range. For example, for < 
 �

or � , the estimation range
becomes 4 times that of < 
 � but due to relatively large
sidelobe peaks within the range, its estimation performance
could be affected at low SNR. Of particular interest is < 
 �
���

case whose estimation range is twice of the range with < 
6�
and its sidelobe peaks within the range are relatively small,
hence ensuring high accuracy of estimation.

The effects of < 
z� �
��� for some integer � are presented
in Figs. 5-7. Note that < 
=� corresponds to the conventional
structure [9] [11] [13] and < 
 � �

for a nonzero positive
integer � corresponds to the structures considered in [12].
For these structures (corresponding to < 
� , 16, 32 in the
figures), the estimation range is . 7 .�� ���������
	

and a larger< gives a sharper metric mainlobe (or main-null) resulting
in a better estimation MSE performance4. However, a larger< introduces new sidelobes of the likelihood or PEP metric
whose values increase as < increases (new side-nulls for
the $ + � � k7 	32 /Std + � � k7 	32 metric whose values decrease as <
increases), which may limit the use of a very large < for low
SNR.

We observe that the training structure design by minimizing
the CRB as in [12] is in fact making the likelihood metric
sharper around the correct frequency offset. On the other hand,
the training design by minimizing the CRB may not reveal the
feasibility of the maximum likelihood estimator. For example,
with a very large < at low SNR, the maximum likelihood
estimator would not give a reliable result due to large sidelobe

4The larger mean value of the likelihood metric for ���
	 is due to the
fact that one more training sub-block is used in the estimation for ����	 .

peaks of the likelihood metric within the estimation range. This
fact cannot be deduced from the minimum CRB design from
[12]. For < 
6� �
��� with an odd integer � (i.e., < 
 �

, 20, and
36 in Figs. 5-7), the estimation range is doubled and similar
discussion applies – a larger < gives a sharper likelihood metric
mainlobe but a very large < may not be give a reliable estimate
due to the increased sidelobe peaks.

Next, the impacts of different =�� values on the PEP are
shown in Fig. 8. It is observed that =�� 
 " ��� gives the
sharpest PEP metric but its sidelobe peaks are larger. It is
worth-noting that minimizing the CRB [12] gives the same
result of =�� 
 " ��� . The PEPs for =�� 
 " ����; � and=�� 
 " ���:� � are observed to be the same.

In Fig. 9, the effects of different " and SNR ' on the PEP
are depicted where =�� 
 " ��� is used. A larger " or SNR '
results in a sharper PEP with smaller sidelobes. Hence, using
a larger " , we can lower the PEP sidelobes in order to ensure
accurate estimation at low SNR ' (due to fading) for a larger< 
 � �
��� where � is an odd positive integer. Similarly,
if a larger estimation range is required, the sidelobe peaks
associated with some appropriate < can be lowered by using a
larger " (for example, the sidelobe peaks for < 
 �

in Fig. 4
can be lowered by a larger " to achieve an estimation range
of . 7 .� ����� 
 �����

).

In practical packet-based wireless communications, if the
signal arriving at the receiver is in deep fade (below the
receiver sensitivity) or the instantaneous signal to noise ratio
is very low, the receiver will not be able to detect the signal.
Hence, the frequency offset estimator’s performance under
such conditions is irrelavent to practical systems and typical
mean-square error (MSE) performance measure may not re-
flect the exact performance for practical systems at low SNR.
Therefore, we introduce a practical estimator performance
measure named “practical MSE” which represents the mean-
square estimation error given that the received signal power is
above a threshold (related to the receiver sensitivity). We used
SNR ' = 0 dB as our threshold for practical MSE.

Next, we address what sidelobe peak level of PEP (in
other words, what value of " ) gives a reliable result with
an extended estimation range. Suppose the sidelobe peak of
the PEP is � at SNR ' = 0 dB. Then the contribution of the
sidelobe to the practical MSE is approximately � ����� � V 	 which
should be less than the practical MSE for < 
=� (the reference
MSE) to suppress the sidelobe problem. In design, the CRB at
SNR ' = 0 dB for < 
z� (denoted by CRB ����� ) can be used in
place of the reference MSE. Recall that " for < 
=� is larger
than " for <�� � by one. The parameter " for <�� � cases
can be chosen such that the corresponding PEP sidelobe peak
is less than

� � V CRB ����� . For example, if CRB ����� is
� h � � ���

and
� 
C: , the allowable � for the suppression of the sidelobe

problem could be
� � ��� or smaller from which " can easily

be determined.

Following a similar approach from [12], we obtain the snap-
shot CRB of frequency offset estimation at a given SNR ' for
an observation vector consisting of " sub-blocks with the
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corresponding time-indices �$# � , # � , . . . , #&% ��� � as

������� ���
	
� 
 %��� ����: Z V ��� - % ���� � � # V� � M�� S�THR��� L � � O �% � (26)

which is used to calculate CRB ����� . Note that the proposed
design yields a smaller CRB than the conventional training
structures. Proof of this fact and the derivation of CRB are
given in Appendix-B.

A. Implementation
In the following, we discuss an implementation of the

maximum likelihood frequency offset estimator for < 
 � � � ;��� � � V 	 � where � � . ��� . � V are non-negative integers with � � 
� if � V 
 �
, ��� )B� �U.$/$/$/0. � V � ���

if � V � �
, and

�
� � V is an
integer. Form a new vector � of length ��� as follows����� � "!$# % &"' ( �*) +-,/. ( � ) +-,*01-23+ �5476"� �879/:<;"=*>-;@?

�BA
;�C3;ED�D�D�;$F�G$HIC

(27)
where J�� is the summation of all correlation terms � � � � . # 	0�which have the same phase factor

� Y � �37�	�� Y � �37�	 
� ���UZ 7��
� � V 	 	 , (see (29)). If � � 
 ��� 
 � , then ��� 
 "
(if 10 training sub-blocks are transmitted, " 
CB in this case).
If ��� 
 � and � �1� � , then ��� 
 " ; � � (if 10 training
sub-blocks are transmitted, " 
;: in this case). If � ��� � ,
then ��� 
 � V � " ; � ; � � 	H; ��� (if 10 training sub-blocks are
transmitted, " 
 : in this case). Then the frequency offset
estimate is given byr7 
 � V� ��K7L F�u?G�v�F m��MON N P/Q VSR ��T MON N P"Q V ���`+ U MON N P/� 2Q� (28)

where U MON N P/� gives the ��K7L point FFT of � .
In the above implementation, the trial values of v are� � � �X MON N P � � 
 � MON N PV .�� MON N PV ; �U.$/$/$/?. MON N PV � ���

. Note that��K7LB� � ��� and ��K7L is a power of
�

for low-complexity
FFT implementation. If necessary, a quadratic interpolation
can be applied to + r71� � �X MON N P , r7 , r71; � �X MON N P 2 to fine-tune
the frequency estimate. A larger �VK7L is associated with a
larger complexity while giving a better estimation accuracy
especially if the quadratic interpolation is not performed. With
the quadratic interpolation, a suitable choice of ��K7L for low
complexity, while giving no noticeable degradation in the
estimation accuracy for SNR of practical interest, would be��W X Y�Z � M � M\[ O ] or

��W X Y�Z � M ��M\[ O ] . Note that for � � 
 ��� 
 � , this
implementation is exactly the same as [9].

B. Complexity

The estimation computational complexities associated with
the conventional and the proposed approaches are presented in
Table I for a training signal consisting of

� = ; � identical sub-
blocks. The parameter ^ accounts for the complexity reduction
due to the zero inputs to the FFT [9]. The number of non-zero
FFT inputs "�_ for the proposed approach depends on < and" _ is at most `�= � �

and can be smaller than that. For
� 
C: ," 
 � : (=19 for < 
 � ) and �VK7L 
 �7a � for < 
� � and��K7L 
 a����

for < 
z� �
��� , the number of real multiplications
for < 
 � �
��� is about

�U/ `7` times, for < 
 � � � � is about� / B � times that of < 
 � and the numbers of real additions

are for < 
=� �
��� ,
�U/ �a

times and for < 
=� � � � , � / B7b times
that of < 
6� . Recall that MLE#1 [9] has complexity about

�

times that of < 
z� and hence our proposed approach would
be a better choice for the estimation range . 7 .� �����

.

IV. SIMULATION RESULTS AND DISCUSSIONS

A multipath Rayleigh fading channel with
� 
>: taps and

an exponential power delay profile with a 3 dB per tap decay
factor is considered. Channel gains are assumed to remain con-
stant over the whole training signal. In order to have the same
frequency resolution in the estimation, ��K7L 
 �7a � is used for< 
 � � and ��K7L 
 a����

is used for < 
 � � ; � / a�	 � where� is a non-negative integer. To decouple the effect of FFT
bin resolution in performance comparison, we set frequency
offsets on the FFT grids which would give optimistic results
but does not affect the performance comparison.

In Fig. 10, the MSEs and practical MSEs are presented
for different values of the training signal separation distance< with a frequency offset

7 
 ` � � � which is within the
frequency offset estimation ranges for all < (all approaches).
At high SNR, a larger < gives a better performance due to
a sharper likelihood (or PEP) metric mainlobe. At low SNR,< 
 � has the smallest MSE due to the smallest sidelobe
peaks of its likelihood (or PEP) metric. From Figs. 5-7, it can
be observed that < 
 � �
���

has a smaller sidelobe peaks for
an even integer � than an odd � (note that the estimation
range for an even � is half of that for an odd � ). This fact
translates into a better MSE for an even � at low SNR in Fig.
10. At low SNR, practical MSE is smaller than MSE which
indicates that the conventional MSE performance at low SNR
is pessimistic. Some <B� � can give a better practical MSE
than < 
=� depending on the sidelobe peaks of the associated
likelihood (or PEP) metric.

In Fig. 11, the MSEs and practical MSEs obtained with
different < are presented for

7 
 ` � ` � . Since
7

is larger than
the estimation range of the existing approaches (corresponding
to < 
 � � with � being a non-negative integer), their
corresponding MSEs or practical MSEs are very high. Due to
the extended estimation range, the proposed approach using< 
 � � ; � / a�	 � still gives a reliable estimate.

Next, we discuss how to circumvent the problem for < � �
having a larger practical MSE than the conventional structure
( < 
 � ) at low SNR. In fact, if we certainly know that
the frequency offset is limited to . 7 . � ���������
	

, the above
sidelobe problem can easily be avoided for most of the cases
by limiting the search range to . 7 . � ���������
	

since the larger
sidelobe peaks of the likelihood (or PEP) metric are around. 7 . 
 ���������
	

. That means the sidelobe problem associated
with some < in Fig. 10 can be relieved by limiting the search
range. If the frequency offset can be larger than

���������
	
but

less than
�����

, then the search range cannot be limited as
above. In this case, " can be increased to avoid this sidelobe
problem as discussed in the previous section. From CRB and
Fig. 9, we can easily check that " 
;: and

���
for < 
 � �

will encounter the sidelobe problem while " 
 � : will avoid
the problem. In Figs. 12 and 13, the MSE and practical MSE
performance obtained with " 
 � : are presented for

7 
 ` � � �
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and
7 
 ` � ` � , respectively. As expected, the sidelobe problem

is avoided for practical MSE.
In Figs. 14-16, we present a comparison of the proposed

method with different parameters and the existing methods
from [5] and [9] in terms of the estimation MSE and the
estimation range. The training signal for [5] is generated by
64-point IFFT of a length-64 Golay complementary sequence
and then repeating it once and adding a cyclic prefix of 8
samples. Hence for [5], 136 training samples are transmitted
and 128 training samples are used in the frequency offset
estimation. The training signal for [9] is composed of 17
identical sub-blocks (including the CP) of 8 samples each
(total 136 samples) and 16 sub-blocks (128 samples) are
used in the estimation. For the proposed method, two sets of
parameters are considered: “ " 
 �3a

(17 identical sub-blocks
of 8 samples each (total 136 samples) are transmitted), =�� 
: ”, and “ " 
 � � (18 identical sub-blocks are transmitted),=�� 
 " ��� 
#: ”. For each set, < 
 �

and
���

are used. The
estimation ranges of [5], [9], and the proposed method are. 7 .�� ������� : , . 7 . � ����� � , and . 7 .�� ��� : , respectively. From
the simulation results in Figs. 14-16, we can also observe these
estimation ranges. The estimation range of [5] is very small
even compared with that of [9] and the proposed method’s
estimation range is twice that of [9]. In terms of practical MSE
performance, [9] has a better performance than [5] while the
proposed method outperforms both [5] and [9].

V. CONCLUSIONS

For emerging high data-rate communication systems in
highly dispersive channels such as ultra-wideband systems,
possible frequency offsets could be larger than the estimation
range of the existing methods using training signals with sev-
eral identical sub-blocks. This paper addressed this issue and
presented a maximum likelihood estimator with an extended
estimation range as well as an improved estimation perfor-
mance. The range extension and the estimation performance
improvement are accomplished by designing the likelihood
metric or a new design metric which is a pair-wise error prob-
ability (PEP) between the correct frequency offset point and
a trial frequency offset point. The proposed new PEP metric
gives more theoretical insights on the performance of practical
maximum likelihood estimators. At comparable complexity
with the same training overhead amount, the proposed method
at least doubles the estimation range and also improves the
estimation performance.

APPENDIX-A

In this appendix, we show that
� � k7 	 and hence,$ + � � k7 	32 /Std + � � k7 	32 and PEP metrics just depend on

� k7!��7�	 .
By this fact, we can conclude that a change in

7
value will

simply result in a shift in the metrics (in the k7 -axis) which
does not affect the estimation range. Hence, in our design for
estimation range extension, we can simply set

7 
=� .
Equation (15) can be expressed as

879/:<;/=*>
����� ) ( �*) +-,/. ( � ) +-,�, 4 .���� 0�� �
	 � 9/? > 	 1� � 9/? > ���� 9/: � � ? >� � � 9/? > �� 9*= � � ? > � �� 9*= � � ? > ���� 9/: � � ? > � (29)

where � kA � � �1; � 	 
 A � � �1; � 	 I � J�M(K���M N$O � V0W$N � O � have the
same statistics as ��A � � 	0� . Similarly, the elements of � �37�		�� � k7 	 can be given by� � ) ( � ) +-,/. ( ��) +-,�, H � � ) ( � )��+-,/. ( ��)��+-,�,����� ) ( � ) +-,/. ( ��) +-,�,�� C$H ��� ) ( � )��+S. +-,/. ( ��)��+�. +-,�,�� D (30)

By substituting (29) and (30) into (18),
� � k7 	 can be

expressed as�
9
�� > � �"!�# .���! 0�� # .���% 0 !%$ ��� ) ( � ) +-,/. ( ��) +-,�, H ��� ) ( � )��+-,/. ( ��)��+-,�,
& 879/:<;"=*>('� � !�# .���! 0�� # .���% 0 ! � C\H ��� ) ( � )��+S. +-,/. ( ��)��+�. +-,�,�� 4 .���� 0�� �
	 � 9/? > 	 1� � 9/? > ���� 9/: � � ? > � � � 9/? > �� 9*= � � ? >� �� 9*= � � ? > ���� 9/: � � ? > �
) D (31)

Equation (31) proves that the statistics of
� � k7 	 just depend

on
� k7`��7�	 .

Next, we present a justification for the Gaussian approxima-
tion of

� � k7 	 . For SNR values of practical interest, the last termkA � # � ; � 	 kA � � � � ; � 	 from (31) is negligible if compared to
the remaining terms. Hence, we can approximate

� � k7 	 as�
9
�� >+* �,!�# .���! 0�� # .���% 0 ! � C$H � � ) ( � )��+S. +-,/. ( ��)��+�. +-,�, � 4 .���� 0�� �
	 � 9/? > 	 1� � 9/? > ���� 9/: � � ? > � � � 9/? > �� 9*= � � ? > �
) D (32)

For given
8

,
9

and
7
, � 0 � � 	0� are deterministic variables and� kA � � 	0� are Gaussian random variables.

� � k7 	 in (32) is just a
linear combination of Gaussian random variables and hence,
it is a Gaussian random variable.

The insignificant term neglected in (32) can be expressed
as 4 .���� 0��.- # .���! 0�� # .���% 0 ! �0/ � C$H ��� ) ( � )��+S. +-,/. ( ��)��+�. +-,�, �1 �� 9*= � � ? > ���� 9/: � � ? > )�� �

4 .���� 0��32 � D (33)

Note that there are no common Gaussian noise terms in 4 �
and 4 � for � 7
 � . Since � kA � # 	0� are iid Gaussian random
variables (with zero-mean, variance d V� ), � 4�� � are also iid
random variables. This paper considers a highly dispersive
channel and hence, the number of channel taps

�
is large.

Then by the Central limit theorem, the term in (33) (and hence� � k7 	 ) can be approximated as a Gaussian random variable. In
brief, for SNR of practical interest, the term from (33) can be
neglected and in this case

� � k7 	 is exactly a Gaussian random
variable. If the (insignificant) term from (33) is included,

� � k7 	
can be approximated as a Gaussian random variable by means
of the Central limit theorem.

APPENDIX-B

In this appendix, we first derive the snap-shot CRB of the
frequency offset estimation at a given SNR ' for an observation
vector consisting of " sub-blocks with the corresponding
time-indices �$# � , # � , . . . , #&% ��� � . Then we prove that the
proposed design gives a smaller CRB than the conventional
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training structures consisting of several consecutive identical
sub-blocks.

Following the same approach from [9], we obtain the snap-
shot CRB for a given

9
as������� � 
 d V�
��� s � ~ % X ��y 	�� (34)

where� �����
	���
(35)	 ����� �����

= � ;E= � � C3;�D�D�D�;$= � � � HBC3;= � ;"= � � C3;�D�DSD�;"= � � � H C3;�D�D�D�;= # .�� ;$= # .�� � C3;�D�D�D�;$= # .�� � � H C ) D (36)

After some manipulation in (35) and substituting (13) into
(34), we obtain� ����� $ 9 	 � � �  � = � � �  > � ;�9 	 � � �  � = � � �  > � ;

D�D�D�;�9
	 � � �  � = # .�� � �  > � & � (37)����� # 4 � ����� 1 ���  � � �� 	 1� � � � �� � � �� 	 � � �  # .���� 0�� = � � # .���� 0�� = 1�  � � �� � � � (38)����!"� ����� 1�� �  � � �� 	 1� � � � �� � � �� 	 � � �  # .���� 0�� = � � �$# # .��� 0�� = � � 1�  � � �� � � 
%�&' (39)

where
8 � is a

��h �
matrix with elements + 8 � 2 �U[ � 
=� M � �]� O&^

and (`� = diag � 0, 1, . . . ,
�z� ���

. Substituting the above
equations into (34) together with the definitions

9	s!8ts� 8 � 9 
$ � and SNR ' = $ � ����� d V� 	 gives the snap-shot CRB as in (26).
The snap-shot CRB for a given

9
depends on the snap-shot

(instantaneous) SNR and hence, the notation CRB
���
	
�

has
been used throughout the paper.

Define ) 
 % ����� � � #3V� � � - % ���� � � # � 	 V" /
(40)

Then we have ������� ���
	
� 
 %��� � ���: Z V � ) / (41)

In the following, we calculate

)
for the conventional structure

denoted by

)+*
and for the proposed design denoted by

)�,
. In

the proposed design, the training signal is separated into two
groups of the same length and the two transmitted training
signal groups are distanced by < � � samples. Suppose
that

� = ; �
training sub-blocks are transmitted. For the

conventional structure, we have " 
 � = ; �
, # ��
� � for� 
=� , 1, . . . ,

� = . After some simplification in (40), we obtain)-* 
 � V
` = ��� = V ; `�= ; ��	�/

(42)

For the proposed design, we have " 
 � = , #&�6
 � � for�=
 � , 1, . . . , = � �
and # A � � 
 � � ; = ; ��	 ��; < =� � ; = ; < _ 	 � for � 
=� , 1, . . . , = � �

where < _ 
 ��; < ��� .
After some calculation, we obtain)., 
 � V

� = � � = V � ��= ; �	; ��� = ; < _ � ��	 � `�< _ ; ` 	0�H/ (43)
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Fig. 2. The effects of the training signal group separation distance � on the
normalized mean value of the likelihood metric for � � 	 , . . . , E D0/ . The
actual frequency offset corresponds to 12 � 	 . Any other 12 with normalized3�4 5�6 12$798 close to one causes an ambiguity in estimation. ( E �0: )
Substituting < _ 
 �

into (43) yields

);, 
 )-*
. Since < _ � �

and

).,
increases with < _ , we have proved that

);, � )-* which
means (see (41)) the proposed design gives a smaller snap-
shot CRB (and hence a smaller average CRB, averaged over
the channel fading statistics) than the conventional training
structure does.
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TABLE I

ESTIMATION COMPUTATIONAL COMPLEXITY FOR A TRAINING SIGNAL CONSISTING OF ������� IDENTICAL SUB-BLOCKS

# real multiplication �)E�� 6 ���0/ 7 �	��
������� ��� 1 6 
��� 7
# real addition �)E�� 6 ��� / 7 D�������
�����	� ��� 1 6 
��� 7

��� / D � ��� � ) � N N P 6 # � ,��1�) # � 6 � N N P .��*,� ��� � ) � N N P ,
Conventional � ���!���"� /


��� �	
#�
Proposed � ������� D0/ (at most)


��� �	
#� for ����$6E

��������
 � for ����$6E�%��

d = 0, U = 9
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Fig. 1. Several training structures for & ��/ 	 total transmitted identical training signal sub-blocks (defined by '�( �*) ) and the corresponding observation
vector’s sub-blocks (defined by '�+ ��) ). (a) An arbitrary training signal structure, (b) The existing training signal structure (Our considered training signal
structure with ��� 	 ), (c) Our considered training signal structure with �-, 	 .
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Fig. 3. The effects of the training signal group separation distance � on the
ratio

3�4 . 6 12�798 /Std
4 . 6 12�798 for ��� 	 , . . . , E/D0/ . The actual frequency offset

corresponds to 12 � 	 . Any other 12 with
3�4 . 6 12�798 /Std

4 . 6 12�798 close to zero
causes an ambiguity in estimation. ( E �0: )
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actual frequency offset corresponds to 12 ��	 . ( E �0: )
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Fig. 7. The effects of the training signal group separation distance � on the
pair-wise error probability metric for ��� $6E�%�� where $ is an integer. The
actual frequency offset corresponds to 12 ��	 . ( E �0: )
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Fig. 10. Estimation performance obtained with different training separation
distance � for a normalized frequency offset 2 less than /�% 6 �)E 7 . ( E �0: )
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Fig. 11. Estimation performance obtained with different training separation
distance � for a normalized frequency offset 2 between /�% 6 �)E 7 and /�%)E .
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Fig. 12. Estimation performance obtained with a larger � (for suppressing
sidelobe peaks) for a normalized frequency offset 2 less than /�% 6 �)E 7 . ( E �0: )
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Fig. 13. Estimation performance obtained with a larger � (for suppressing
sidelobe peaks) for a normalized frequency offset 2 between /�% 6 �)E 7 and/�%)E . ( E �0: )
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Fig. 14. Comparison of estimation MSE and estimation range for several
methods at SNR = 5 dB
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Fig. 15. Comparison of estimation MSE and estimation range for several
methods at SNR = 10 dB
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Fig. 16. Comparison of estimation MSE and estimation range for several
methods at SNR = 15 dB


