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Oversampled A/D Conversion and Error-Rate
Dependence of Nonbandlimited Signals

With Finite Rate of Innovation
Ivana Jovanović, Student Member, IEEE, and Baltasar Beferull-Lozano, Member, IEEE

Abstract—We study the problem of A/D conversion and
error-rate dependence of a class of nonbandlimited signals with
finite rate of innovation. In particular, we analyze a continuous
periodic stream of Diracs, characterized by a finite set of time
positions and weights. Previous research has only considered sam-
pling of this type of signals, ignoring the presence of quantization,
necessary for any practical implementation. To this end, we first
define the concept of consistent reconstruction and introduce
corresponding oversampling in both time and frequency. High
accuracy in a consistent reconstruction is achieved by enforcing
the reconstructed signal to satisfy three sets of constraints, related
to low-pass filtering, quantization and the space of continuous
periodic streams of Diracs. We provide two schemes to reconstruct
the signal. For the first one, we prove that the estimation mean
squared error of the time positions is (1 2 3), where and

are the oversampling ratios in time and frequency, respec-
tively. For the second scheme, it is experimentally observed that,
at the cost of higher complexity, the estimation accuracy lowers to
(1 2 5). Our experimental results show a clear advantage of

consistent over nonconsistent reconstruction. Regarding the rate,
we consider a threshold crossing based scheme where, as opposed
to previous research, both oversampling in time and in frequency
influence the coding rate. We compare the error-rate behavior
resulting, on the one hand, from increasing the oversampling in
time and/or frequency, and, on the other hand, from decreasing
the quantization stepsize.

Index Terms—Consistency, convexity, finite rate of innova-
tion, oversampling, projection, quantization, threshold crossing
encoding.

I. INTRODUCTION

RECENT results in sampling theory [1] have shown that it
is possible to develop exact sampling schemes for a cer-

tain set of nonbandlimited signals, characterized by having a fi-
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nite number of degrees of freedom per unit time, which is called
finite rate of innovation. Taking a finite number of uniform sam-
ples, obtained from an appropriate sampling kernel, we are able
to achieve perfect reconstruction. Some of these signals with fi-
nite rate of innovation, such as streams of Diracs, have found
several applications in CDMA [2], UWB [3] and sensor field
sampling [4]. For example, results in [1] can be applied to the
problem of multipath delay estimation in wideband channels.
On the other hand, in the context of sensor networks measuring
physical phenomena, such as temperature, local heat sources
can be well modeled by Diracs and the sampling kernel in this
case is given by the Green’s function of the heat diffusion equa-
tion [5]. In [1]–[3], it was assumed that we have no quantiza-
tion of the acquired samples. However, in any practical appli-
cation quantization is required. An irreversible loss of informa-
tion, introduced by quantization makes perfect reconstruction
no longer possible. Motivated by the need of quantization, we
investigate analog-to-digital (A/D) conversion and the error-rate
dependence of nonbandlimited signals with finite rate of inno-
vation, which has not been considered in previous research.

In this paper, we focus on the A/D conversion of a partic-
ular class of signals with finite rate of innovation, namely, con-
tinuous periodic stream of Diracs, characterized by a set of
time positions and weights . We study the
reconstruction quality of time positions under the presence of
quantization. There are two reasons for this: 1) it can be shown
that the error in weights depends on the error in time positions,
and 2) in many applications, such as UWB and sensor field sam-
pling, the most important information is contained in the posi-
tions of pulses.

High reconstruction accuracy in time positions can be
achieved by introducing two types of oversampling: 1) over-
sampling in frequency, determined by the bandwidth extension
of the low-pass sampling kernel, and 2) oversampling in time,
determined by the number of samples taken from the acquired
filtered signal. Introducing the oversampling is equivalent to
introducing a redundancy in the system, which usually reduces
the sensitivity to degradations. Although this idea is very
intuitive, the question of fully exploiting that redundancy is
not always simple. This can be already observed in the case of
A/D conversion of bandlimited signals, where the simple linear
reconstruction is not optimal. For example, in this case, the
quantized samples of the original and the reconstructed signal
are not necessarily the same, implying a larger reconstruction
error on average. The key idea to achieve high accuracy is to
have a reconstruction that is consistent with all available knowl-
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edge about the signal and the acquisition process. Thus, in our
paper, we explore the concept of consistency by enforcing the
reconstructed signal to satisfy three sets of constraints which
are related to: low-pass filtering, quantization, and the space of
continuous periodic streams of Diracs. A signal reconstruction
satisfying the three sets is said to provide Strong consistency
while if it satisfies only the first two sets is said to provide Weak
consistency.

The concept of consistent reconstruction and the corre-
sponding reconstruction accuracy for the case of bandlimited
signals has been considered in [6]–[8]. However, there are
three essential differences with our paper: 1) we consider the
reconstruction accuracy related to the nonbandlimited signal;
2) we exploit the knowledge about the structure of the nonban-
dlimited signal; 3) we introduce oversampling in frequency in
addition to oversampling in time.

In this paper, reconstruction algorithms for both Weak and
Strong consistency are proposed. As a quantitative characteriza-
tion of the reconstruction quality, we consider the mean squared
error (MSE) of the time positions and its dependence on the
oversampling in time and in frequency. We focus on the MSE
related to time positions because, as we show in this paper, the
MSE related to the weights of the Diracs depends fundamen-
tally on the MSE of time positions. For the first algorithm, we
show both theoretically and experimentally that the MSE perfor-
mance for the time positions decreases as , where

and are the oversampling ratios in time and frequency,
respectively. For the second algorithm, which achieves Strong
consistency but at the cost of higher complexity, we obtain ex-
perimentally an MSE performance of the order of
[9]. Both results show a clear outperformance of consistent re-
constructions over nonconsistent reconstructions.

Regarding the rate, we consider two encoding schemes: a
threshold crossing (TC) based scheme, similar to the one pro-
posed in [10] and a PCM encoding scheme. We compare the
error-rate dependence that is obtained, on the one hand, from
both increasing the oversamplings in time and in frequency, and
on the other hand, from decreasing the quantization stepsize.
The main novelty of the TC encoding analysis, introduced in
our paper, is the additional dependence of the maximal number
of threshold crossings on the oversampling in frequency. This
comes as a consequence of considering nonbandlimited signals
with finite rate of innovation. Our results show that, using the
TC encoding, we can achieve the same error-rate dependence,
by a) increasing the oversampling in time and b) decreasing the
quantization stepsize [11]. This is very important from a prac-
tical point of view because the cost of halving the quantiza-
tion stepsize is much higher than that of doubling any of the
oversampling ratios (complex and expensive analog circuitry).
Moreover, in order to make the TC encoding scheme work, in
our case, we can adjust three parameters (the quantization step-
size and the two oversamplings), as compared to the case of ban-
dlimited signal [10], where only two parameters are adjusted
(the quantization stepsize and the oversampling in time).

Although our theoretical analysis is restricted to periodic
streams of Diracs, the algorithms proposed in this paper can
be also used for reconstructing other signals with finite rate of
innovation, such as finite streams of Diracs and nonuniform
splines.

This paper is organized as follows. Section II introduces
the class of signals given by continuous-time periodic streams
of Diracs. Section III defines the oversampling in time and in
frequency. Section IV introduces the concept of Weak consis-
tency and Strong consistency and proposes the corresponding
reconstruction algorithms. In Section V, we prove an upper
bound for the MSE performance achieved by Weak consistency
and in Section VI, we present the experimental results on the
reconstruction quality for both Weak and Strong consistency.
In Section VII and Section VIII, we describe and analyze the
threshold crossing based encoding and address the rate and
error-rate dependence. We compare the error-rate dependence
as a function of the both oversamplings and the quantization
stepsize. Finally, in Section IX, we conclude with a brief
summary of our paper and directions for future work.

II. SIGNALS WITH FINITE RATE OF INNOVATION

New results on sampling theory show that certain classes
of nonbandlimited signals, such as periodic and finite length
streams of Diracs, nonuniform splines and piecewise polyno-
mials, can be perfectly reconstructed from a finite number of
uniform samples, using sinc and Gaussian sampling kernels. In-
tuitively, these classes of signals are characterized by having a
finite number of degrees of freedom per unit of time, namely,
having a finite rate of innovation.

In this paper, we consider a periodic stream of Diracs, that
is,

with period , where , , ,
and denotes a Dirac delta function. This signal has
degrees of freedom per unit of time, since the only knowledge
that is required to determine the signal uniquely is given by the

time positions and the weights . A pe-
riodic stream of Diracs can be represented through its
Fourier series, as follows:

(1)
After sampling the signal with the sinc sampling kernel,

, thus obtaining
, the uniform samples of are given by

(2)

Taking at least samples , we can directly com-
pute the Fourier coefficients , using (2). From

Fourier coefficients , we can reconstruct first time
positions and then weights. Thus, it is clear that low-pass ver-
sion of the original signal , that we call , is sufficient
for the signal reconstruction. Also, we notice that Fourier co-
efficients of the signal coincides with discrete-time
Fourier series (DTFS) of , i.e., , and for this
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Fig. 1. Reconstruction algorithms for a periodic stream of Diracs. (a) Without introducing quantization. (b) Introducing quantization of the samples y .
The annihilating filter in (a) corresponds to (3) and the one in (b) corresponds to (4).

Fig. 2. (a) Original signal x(t) given by a periodic stream of 3 Diracs, � = 10 and t 2 [0; � ], c 2 [�1;1]. (b) Signal y(t) obtained by filtering x(t) with a
sinc sampling kernel. (c) Samples y = y(nT ). (d) Quantized samples Q(y ). (e) Fourier coefficients from the stream of 3 Diracs x(t). (f) Fourier coefficients
from the signal y(t) that are truncated Fourier coefficients from x(t) and bandlimited to its 2M + 1 central components. (g) N -periodized Fourier coefficients
corresponding to DTFS from y . (h) DTFS with small error deviations that are added to the Fourier components both in the low-pass region and highpass region,
thus making the perfect reconstruction no longer possible.

reason, later, when talking about the signal we will usu-
ally refer to . Analyzing the Fourier components in (1), it
can be seen that each exponential term can
be annihilated by a first order FIR annihilating filter

. Extension of the filter order to results
in a filter that annihilates all
Fourier coefficients. In matrix notation, this can be represented
as

...
...

. . .
...

...
...

(3)
where is the th coefficient of the annihilating polynomial.
Thus, if we are given the exact Fourier coefficients, by
setting , we can find the unique solution of (3). The roots
of the annihilating filter , , reveal
the time positions , while the corresponding weights

can be then directly computed from (1) [see Fig. 1(a)].
Notice that all previous steps assume no quantization in am-

plitude. Hence, no error in ensures the ex-
istence of the previous exact solution. In our work we study A/D

conversion and thus we consider the operation of quantization
performed on [see Fig. 1(b)]. The quantization error causes an
irreversible loss of information and makes the exact recovery of

no longer possible (see Fig. 2). In order to overcome this
problem, as the first step, we are going to introduce two types
of oversampling.

III. OVERSAMPLING IN TIME AND FREQUENCY

We consider two types of oversampling to compensate the
error introduced by quantization. The first one consists of taking
more samples than we need, or equivalently, taking samples of

above the Nyquist rate. In that case, we have .
This introduces an oversampling in time, which is characterized
by oversampling ratio .

Notice that we can also perform an additional type of over-
sampling by extending the bandwidth of the sampling kernel to
be greater than the rate of innovation, or equivalently, making

. We denote this type of oversampling
as an oversampling in frequency with the oversampling ratio

. As explained in Section IV, the
oversampling in frequency will modify the annihilating filter
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method illustrated in (3), and the corresponding matrix has to
be augmented because we use more Fourier coefficients.

We remark also that the number of samples is always propor-
tional to and since .
This means that increases linearly with both types of over-
sampling. As shown in Sections V and VI, by increasing these
two oversamplings, and using proper reconstruction schemes,
we can substantially increase the reconstruction accuracy.

IV. CONSISTENT RECONSTRUCTION

In the reconstruction process, we enforce the concept of con-
sistent reconstruction, previously introduced in [6] for the case
of bandlimited signals. The idea of consistent reconstruction is
to exploit all the knowledge from both the a priori properties of
the original signal and the information provided by the quanti-
zation process. Thus, the key is to find a reconstruction which is
consistent with all the available knowledge. Intuitively, a con-
sistent reconstruction will provide, on average, a better recon-
struction accuracy than a nonconsistent reconstruction.

We first define all the properties that a reconstruction should
satisfy in order to be consistent. Each property defines a set of
signals, thus, requiring the satisfaction of a certain property is
equivalent to requiring the membership in a certain set. The fact
that all properties are satisfied by the original signal ensures that
the corresponding sets have a nonempty intersection. All the
constraints, or equivalently, the sets, are going to be defined as
a subsets of the space of -periodic discrete-time signals, that
we call .

The first set of constraints is related to the quantization
operation. The samples are uniformly quantized, as

where is the quantization stepsize.1 Let
be the quantization in-

terval to which the sample belongs. The quantized samples
give the information about the intervals in which all the

samples lie. The set of these intervals is an -dimensional
cube. More precisely:

Set : Given and , the set
defines a convex set of sampled signals such

that all of them are quantized to the same quantization bins [see
Fig. 3(a)].

The second set of constraints comes from the fact that the
signal , obtained after filtering , is periodic and band-
limited.

Set : The set is a set of -periodic discrete-time signals
bandlimited to nonzero DTFS components.

In addition to the fact that the -periodic discrete-time
signals should have nonzero DTFS components we
also want to use the knowledge that is a periodic stream
of Diracs. Therefore, we define another set of constraints,
as follows.

Set : The set is a set of -periodic discrete-time
signals, such that the DTFS components
originate from a periodic stream of Diracs. This amounts

1We could equivalently define another type of quantizer, as y = Q(y ) =
�by =�c, since the choice of the quantizer is not going to have influence on
our results.

Fig. 3. (a) The estimated function ŷ(t) is consistent with the original signal
y(t) with respect to the quantization bins. (b) If the estimated function ŷ(t)
is not consistent with y(t), then we project to the border of the corresponding
quantization bin.

to having ,
, with , , while there are

no constraints on for .
We can get more insight into the structure of the sets ,

and if we observe that is an -dimensional hypercube
in the -dimensional space , is an -dimensional
subspace of , and that is a -dimensional (non-
linear) surface inside . This dimensional argument naturally
brings the notation of oversampling by space dimension ratios:

and .
Now, we are going to define projections on the corresponding

sets.
Projection : Given a set of samples , is

obtained as

1) if , then .
2) else, is taken to be equal to the closest border of the

quantization interval , that is

Projection : Given an -periodic discrete time signal
, is obtained by low-pass filtering, such that

the nonzero DTFS components are for
.

Projection : Given an -periodic discrete time signal
, the projection provides a new signal ,

with the set of in-band DTFS that are
, with ,

while the out-band DTFS remain the same,
i.e., for .

Projection involves augmenting the matrix in (3) using
Fourier components. Notice that, since the quantiza-

tion taking place, we do not have the exact Fourier coefficients,
but only estimates , and therefore (3) does not
have an exact solution. In order to get better estimates of the
time positions, we use a generalized form of (3) with
Fourier component and increased order of the annihilating filter,
as follows:

...
...

. . .
...

...
...

(4)
where the left-hand side matrix has a size with

and is the filter order. In (4), we indicate with
that the system of equation is not exactly satisfied. Notice here
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how the oversampling in frequency is introduced by extending
the number of rows from to and at the same time,
making the order of the filter larger than . By taking ,
the system (4) becomes equivalent to a high-order Yule-Walker
(HOYW) system [12]

...
...

. . .
...

...

...
(5)

or in matrix notation

(6)

where , , and

...
...

. . .
...

Since both and are distorted from the original values, the
use of total least square (TLS) method, which allows for the fact
that both and may have some error, instead of least square
(LS) method is more appropriate [13]. Simulation results in [14]
show that, in general, for solving HOYW equations the TLS
method achieves the better accuracy than the LS method. This
is particularly clear in cases where the zeros of the annihilating
filter approach the unit circle [13]. As pointed out before, the
order of the annihilating filter may lie between and .
So, there will be “correct” or signal-related roots and
extraneous roots, created artificially by the method. There are
several ways to decide the positions of the “correct” roots. We
propose the following two methods.

1) Choose the roots that are closest to the unit circle. This
is the common solution used for the problem of retrieval
of sinusoids in noise [15], which can be seen as a dual
problem.

2) Perform two steps.
a) Compute roots without increasing the filter order.
b) Compute roots increasing the filter order and choose

the roots that are the closest to the roots in a).
Notice that by increasing and , extraneous roots can be

very close to the unit circle and the first method might fail. Since
the second method does not have this problem and we are pri-
marily interested in the reconstruction accuracy for high over-
samplings, we use the second method.

If there was no quantization and the estimated
were the exact ones, then the chosen roots

would all lie on the unit circle. However, because of the
quantization error, an additional step is required after the
TLS projection. It consists of projecting the obtained roots
to the unit circle, in order to get unit-norm root estimates

. From , we can directly compute the time

positions . Then, using (1), we can estimate the weights
. The whole process including the TLS projection,

extracting the “correct” roots and computing the time positions
and weights, can be seen as the third projection .

Notice that although we are primarily interested in the recon-
struction , we can also consider the reconstruction

since there is one-to-one correspondence between the
set of all possible inputs and a subset of , which is ex-
actly . After defining the sets of constraints and the
corresponding projections we are ready to formally define the
nonconsistent reconstruction and to introduce the two levels of
consistency.

Definition 1: Reconstruction is called a
nonconsistent reconstruction.

What makes this reconstruction nonconsistent is the fact that
after resampling and requantizing, the signal may not
always lie in the same quantization bins as the original , or
equivalently, it is possible that . Notice that,
quantization applied to a signal that belongs to makes
it leave , although it still remains in the global space

. Certain improvement can be achieved forcing some of the
previously defined constraints. Therefore, we define Weak con-
sistent reconstruction, as follows:

Definition 2: Reconstruction is called
Weak consistent reconstruction.

To impose the Weak consistent reconstruction, notice that sets
and are convex, and and are convex projections.

Therefore, starting from the quantized samples obtained from
the original signal, and iterating only the projections and

, we will converge to . The convergence is en-
sured by the theorem of alternating projections on convex sets
(POCS) [15]. In practice, numerically speaking, a Weak consis-
tent reconstruction can be approached within a finite number of
iterations. Once we have converged to the reconstruction

, we apply the additional projection , on the set
to obtain . The Weak consistency
algorithm is illustrated in Fig. 4(b).

Following the idea of Weak consistent reconstruction we can
extend the concept of consistency to not only the two sets
and but also to . These three sets are used to enforce a
stronger sense of consistency, that is called Strong consistency,
and it is defined as follows:

Definition 3: Reconstruction is called
Strong consistent reconstruction.

The concept of the Strong consistency adds a third property in
addition to the previous two properties defined by the concept
of Weak consistency. Similarly to the Weak consistency algo-
rithm we can define a Strong consistency algorithm, where we
generalize the idea of alternating projections to more than two
projections. We form a composite projection by the sequential
application of , and and the goal is to converge to a
point in the intersection set . In practice, we have
to check that the reconstructed signal (see Fig. 1) is the re-
sult of filtering a periodic stream of Diracs. In terms of Fourier
coefficients, Strong consistent reconstruction means that has
Fourier coefficients satisfying (1). Notice that although for high
enough oversampling, the projection is convex, the set is
not convex. In general, this could cause problems when iterating
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Fig. 4. (a) Nonconsistent reconstruction algorithm consists of applying
projections PPP , PPP and PPP only once. (b) The Weak consistency algorithm
consists of first iterating projections PPP and PPP , and then applying the
projection PPP . (c) The Strong consistency algorithm consists of iterating the
projections PPP , PPP , and PPP .

the composite projection , because while any projec-
tion mapping to will reduce (more precisely, not increase)
the distance to , if one of the sets is not convex, we could still
get an increase in distance to the intersection .
Here, we conjecture that for large enough and , the con-
vergence property is ensured. Our experimental results in Sec-
tion VI confirm clearly this conjecture. The Strong consistency
algorithm is illustrated in Fig. 4(c). Notice that the complexity
of the Strong consistent algorithm is higher than of the Weak
consistent algorithm.

To illustrate the fact that Strong consistency introduces one
more set of constraints and hence reduces the set of possible
reconstructions, as compared to Weak consistency, we remark
that

On the other hand

that confirms that the set of Strong consistent reconstruction is
a subset of the Weak consistent reconstruction set. This implies
that by enforcing Strong consistency, the reconstruction will be,
on average, closer (or the same, but never further) to the original
signal, than by enforcing only Weak consistency.

It is important to notice that, since is a bandlimited signal,
there exist algorithms [16]–[18] for reconstructing which
do not require iterated projections and which achieve a similar
reconstruction accuracy as the one shown in Theorem 1 (see
Section V). These algorithms could then be followed by projec-
tion in order to achieve a performance similar to the Weak
consistency algorithm. However, the algorithms in [16]–[18] do
not ensure the consistency with respect to the quantization bins,
i.e., set , which means that they cannot be used, together with
projection , in order to achieve Strong consistency.

A. Extension to Other Nonbandlimited Signals With Finite
Rate of Innovations

Our reconstruction algorithms can be applied to other types
of signals with finite rate of innovation, such as finite (nonperi-
odic) streams of Diracs and periodic nonuniform splines, where
oversampling in time and in frequency can be again introduced.

The reconstruction of finite streams of Diracs from filtered
unquantized samples, is explained in [1]. Basically, after getting
the filtered samples , using a sinc sampling kernel, an anni-
hilating discrete-time filter method is used to obtain, first, the
time positions and then the weights. In the case of quantization,
after quantizing the samples , as before, we can project to
the space of (nonperiodic) bandlimited signals, with bandwidth

determined by the oversampling in frequency, and check if the
new samples belong to the corresponding quantization bins.
If this is not the case, we can perform projection , as before.
Similarly to , we can define a projection on the signal space
of finite streams of Diracs.

Analyzing periodic nonuniform splines, we can see that the
th derivative of a periodic nonuniform spline of degree

with knots at is given by a periodic stream of Diracs.
This allows us to extend easily the reconstruction algorithm to
the case of nonuniform splines. The th derivative of a
nonuniform spline has Fourier coefficients given by

Differentiating (1) times we see that, the Fourier coeffi-
cients are related to the Fourier coefficients
of in the following way:

Therefore, we can use the same consistent reconstruction algo-
rithms to obtain , providing the final reconstruction
of the nonuniform splines.

V. THEORETICAL PERFORMANCE OF OVERSAMPLING

A. Error in Time Positions

As explained earlier, in order to estimate the time positions
and weights, some of the consistency constraints that we enforce
involve the -periodic bandlimited discrete-time
signal . We can easily change the bandwidth of the signal ,
by increasing/decreasing the bandwidth of the sampling kernel

, which is equivalent to changing . In terms of DTFS, in-
creasing/decreasing the bandwidth is equivalent to adding/re-
moving nonzero DTFS. Similarly, for the fixed bandwidth we
still can choose how many samples we want to have, or equiv-
alently, choose . In the following, we are going to see what is
the dependence of the reconstruction quality on and . As
a quantitative characterization of the reconstruction quality we
introduce the following distances:

1) MSE (Parseval’s the-
orem);

2) MSE ;
3) MSE ;
4) MSE .
In practice, the distances , and are the most inter-

esting. However, in the following two theorems we speak about
and . This is because, as an intermediate step to com-

pute we need to make use of the distance for the case of
. Later, we also show theoretically that depends

on and experimentally that does not differ too much from
when (see Fig. 5). For the Strong consistent re-

construction the distances and , when ,
are experimentally shown later.

Theorem 1: Given the two -periodic discrete time signals
where the sets and are uniquely de-

termined by , and , there exists an such that if
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(a) (b)

Fig. 5. The Weak consistent reconstruction. Dependence of accuracy on oversampling in timeR for (a) d —MSE of Fourier coefficients whereX[m] = Y [m]
and Y [m] is a reconstruction. (b) d —MSE of time positions.

, there is a constant , which depends only on
and not on and , such that

Proof: See Appendix I.
The importance of this theorem is in the fact that even if we

increase , while keeping constant, the upper bound on
remains the same. However, it is clear that since, we estimate
the time positions from DTFS of , the number of available
Fourier components in addition to directly impacts . That
is, increasing , intuitively, will improve the time positions
estimates. On the other hand, notice also that, since from The-
orem 1 will decrease as we increase , then will decrease
as we increase both and . Here, we also remark that in-
creasing and/or , we also increase the number of samples
since .

In the following theorem, we examine the order of as a
function of both oversamplings and , for the case of Weak
consistent reconstruction.

Theorem 2: Given the two -periodic discrete time signals
where the sets and are uniquely deter-

mined by , and , there exist some constants
and , such that if and , there is a constant

which depends only on and not on and , and

Proof: See Appendix II.
From Theorem 2 it can be seen that if we are limited to some

large but finite number of samples and , by in-
creasing we reduce faster than by increasing . Thus, if
we are allowed to use a fixed number of samples and our goal
is to minimize only we will tend to increase oversampling
in frequency, rather than oversampling in time. In Sections VII
and VIII the influence of increasing and on the required
bit-rate and error-rate dependence will be considered, as well.

B. Error in Weights

Given the time position estimates we can directly esti-
mate the weights from (1) as

...
...

...
...

...

(7)
Notice here, that the Fourier coefficients are coming as the result
of the projection , that is . We can also write the
previous equation in the matrix notation as follows:

Notice that the matrix has rows, due to the oversam-
pling in time, which implies that the system in (7) is overdeter-
mined. Thus, we can compute in the two ways, using a TLS
projection or a LS projection. In the following, is given by

The error in vector defined by depends directly on the
error in , which is equal to in the case of Weak consistent
reconstruction, and on the error in which is related to the error
in time positions . Hence

Because of this dependence, in this paper, we focus on the
error and . Moreover, in many practical applications, such
as UWB communications (e.g., PPM modulation) and sensor
networks sampling local physical sources, the important infor-
mation is given by time positions.

VI. EXPERIMENTAL PERFORMANCE OF OVERSAMPLING

In this section, we show experimental results for the three al-
gorithms illustrated in Fig. 4, with parameters: , ,

, . The positions and the weights are
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(a) (b)

Fig. 6. The nonconsistent, Weak consistent and Strong consistent reconstruction. Dependence of accuracy on oversampling in frequencyR for (a) d —MSE of
Fourier coefficients where X[m] = Y [m] and Y [m] is a reconstruction. (b) d —MSE of time positions.

randomly chosen from the corresponding intervals and the re-
sults are the average over 300 signals. For the Weak consistency
algorithm, our numerical results illustrated in Fig. 5 and Fig. 6
confirm Theorems 1 and Theorem 2. The Strong consistency al-
gorithm provides an experimental behavior of that
is also illustrated in Fig. 6. We have also compared our con-
sistent reconstruction algorithms with the case of nonconsistent
reconstruction. A clear outperformance of our reconstruction
algorithms over nonconsistent reconstructions is observed [see
Figs. 5(a) and 6].

We can conclude that by increasing the oversampling in fre-
quency , we can achieve a reconstruction accuracy which is
(polynomially) superior for both the Weak and the Strong consis-
tency algorithms than the one obtained by increasing . More-
over, from the results of MSE dependence on the quantization
stepsize derived in Section VIII, we also conclude that over-
sampling in frequency outperforms decreasing of the quantiza-
tion stepsize . Therefore, oversampling in frequency provides
largest gain in performance.

VII. ENCODING SCHEME AND BIT RATE

In this section, we analyze encoding schemes and the scaling
laws that can be achieved in terms of bit rate and error-rate de-
pendence. As explained in Section III, by increasing or ,
we increase the number of samples . It is clear that using
the traditional way of encoding, that is, pulse-code modulation
(PCM) encoding, the bit rate depends linearly on the number of
samples . For each sample, using a scalar quantizer with step-
size , we need at most bits, where denotes
the dynamic range in amplitude of the signal . From (15) it
can be easily shown that

(8)

In the previous equation, we assume that the weights are
bounded by some fixed bounds, that is, . Hence,
for a fixed , the bit rate can be bounded as

(9)

On the other hand, when the sampling interval is sufficiently
fine, some simple and efficient techniques can be developed
[10], for which the required bit rate is substantially smaller than
in the case of PCM encoding. In the following, we show we
can use the results in [10], developed for bandlimited signals to
compute the dependence of the bit rate on both and .

The idea originates from the equivalence between the tradi-
tional interpretation of the digital version of an analog signal,
where the uncertainty is determined by the quantization step-
size at the exact time instants, and the alternative one [10], [19],
where the digital signal is uniquely determined by the sampling
intervals in which its quantization threshold crossings occur. A
unique representation in the alternative interpretation is ensured
if the following two conditions are satisfied: 1) the quantiza-
tion threshold crossings are sufficiently separated; 2) at most
one quantization threshold crossing occurs in each sampling in-
terval. The first condition requires that the intervals between
consecutive crossings of any given threshold are limited from
below by a constant . The second condition is satisfied
if the slope of the signal is finite. The latter is ensured by the
fact that the signal has finite energy and is bandlimited.
Thus, there is always an interval on which cannot
go through more that one quantization threshold crossing. For
a sufficiently fine sampling period, that is ,
all quantization threshold crossings occur in distinct sampling
intervals, and a unique representation is ensured.

The encoded information, in the case of threshold crossings
(TC) based encoding, are the positions of the sampling inter-
vals in which the quantization threshold crossings occur. The
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signal is observed in a given time interval, which in our case
is the period . For determining the position of each sampling
interval of length , we need at most
bits. Every threshold crossing can be determined with respect to
the previous one by introducing only one additional bit to indi-
cate the direction, upwards or downwards, of the next threshold
crossing. If quantization threshold crossings occur during the
period , then the required bit rate is

Next, we need to determine the maximal number of threshold
crossings. There are two types of threshold crossings: 1) a
d-crossing which is preceded by a threshold crossing of a
different threshold level [Fig. 3(a)—the first and the second
threshold crossing], and 2) an s-crossing which is preceded
by a crossing of the same threshold level [Fig. 3(a)—second
and third threshold crossing]. The sum of these two types of
threshold crossings is the total number of threshold crossings.
From results on nonharmonic Fourier expansions [20], the
s-crossings for the case of bandlimited signals constitute a
sequence of uniform density2 . This also means that the zeros
of the first derivative of constitute a sequence of the same
density. Then, is bounded as , where

is the maximum frequency of the signal and it is
of the order of the bandwidth . Consequently, the number
of s-crossings is given by . The
maximum possible number of d-crossings depends linearly
on the maximum dynamic range of the signal . Using
(8) we have that . Therefore

(10)

where and are some constants that depend on the specific
signal and on the quantization stepsize , but which do
not depend on and . The additional bits required for speci-
fying the first threshold crossing (the others are going to be spec-
ified with respect to this one) have arbitrary small effect on the
required bit rate over the sufficiently long time period.

Comparing (9) and (10), we can conclude that the TC based
encoding has clear advantages over the traditional PCM en-
coding, since the bit-rate for TC based encoding grows much
more slowly as a function of the oversampling in time . We
also remark that these coding results are applicable regardless of
the reconstruction method that is used (e.g., consistent or non-
consistent reconstruction).

VIII. ERROR-RATE DEPENDENCE

A natural question that arises in oversampled A/D conversion
is to compare the improvement in error-rate that comes, on the
one hand, from the oversamplings, in our case from increasing

and , and on the other hand, from reducing the quanti-
zation stepsize . To represent the error-rate dependence, we
consider the distance as a function of the bit rate.

2A sequence � of real or complex numbers has uniform density �, � � 0, if
there are constants L �1 and s > 0 such that: a) j� � (n=�)j � L;n 2 ,
b) j� � � j � s > 0, where n 6= m.

We have shown in Section V and Section VII the behavior of
both and the bit rate as a function of and . In this sec-
tion, we also introduce the corresponding behavior as a func-
tion of the quantization stepsize , and then we examine the
error-rate dependence considering all the three parameters, ,

, and .
It has been shown in [10] that if: 1) there is a large number of

quantization levels compared to the signal amplitude range, and
2) the quantization stepsize is sufficiently small, then, it is
approximately correct to model the quantization error as a uni-
formly distributed white noise over the interval
that is independent of the input signal. Assuming the white noise
based model, we have

MSE

Recall from Section II that we estimate the time positions from
the Fourier coefficients , hence, the error
for the time positions can be computed to a first order approxi-
mation3 as:

(11)

where measures the depen-
dence of the time positions on the Fourier coefficients and
does not depend on the quantization stepsize . The inequality
in (11) follows simply from the Cauchy-Schwartz inequality.
Therefore, for sufficiently small it holds that

(12)

Concerning the bit rate, it is clear that increasing/decreasing the
quantization stepsize, we reduce/increase the required bit rate.

In the case of PCM encoding, for a fixed and , it can be
seen from (9) that, the bit rate, as a function of , is given by

(13)

In the case of TC based encoding, the dependence of the bit-
rate on the quantization step size comes through the depen-
dence on the maximum number of threshold crossings, namely,

, which together with (10) and taking into
account that now and are fixed, results in

(14)

where is some constant that does not depend on , and
. All the results, for the and the bit rate, are given in

Table I.
Analyzing Table I, we can see first that in the case of PCM

encoding, the best error-rate dependence is obtained by de-
creasing the quantization stepsize instead of increasing any
type of oversampling. Since we have a logarithmic increase

3We assume sufficiently high enough oversamplings and sufficiently small
quantization stepsize, so that the first order approximation is correct.
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TABLE I
ERROR-RATE DEPENDENCE

of the bit rate and an error decrease of ,
changing the stepsize and fixing the oversampling ratios,
we get a dependence for of , where is
some constant that does not depend on . Assuming PCM
encoding, this performance can not be achieved by increasing
the oversampling ratios and . However, using the TC
based encoding, we can achieve the same dependence (as when
reducing the quantization stepsize ), by increasing the over-
sampling in time . This is very important because, in practice,
the cost (complexity of expensive high-precision analog cir-
cuitry) of halving is much higher than that of doubling .
However, by increasing the oversampling in frequency , the
required bit rate grows exponentially faster than in the case of
increasing or decreasing . Therefore, asymptotically (high
rates), the error-rate performance obtained by increasing is
inferior to that of increasing or decreasing .

IX. CONCLUSION AND FUTURE WORK

In this paper, we studied reconstruction of nonbandlimited
signals with finite rate of innovation, particularly, periodic
streams of Diracs, under the presence of quantization. High
reconstruction accuracy is obtained by introducing the over-
sampling in time and in frequency, and enforcing the concept
of consistency. We defined the concept of Weak and Strong
consistency and we examined the performance in terms of
MSE of time positions, that is achieved with Weak and Strong
consistent reconstruction algorithms. We concluded that the
oversampling in frequency provides a superior decrease in
MSE of time positions. On the other hand, in terms of error-rate
dependence, by using a threshold crossing based encoding, the
oversampling in time provides a superior error-rate tradeoff
over the oversampling in frequency. Moreover, it is also ob-
served that the error-rate dependence obtained from doubling
the oversampling in time is the same as the one obtained from
halving the quantization stepsize, while, in practice, the cost of
performing the oversampling in time is much lower than that of
reducing the quantization stepsize.

Some future lines of research include finding faster consis-
tent reconstruction algorithms, such as algorithms which do not
require projection iterations, extension of our results of A/D
conversion for the case of more general sampling kernels (e.g.,
Gaussian kernels), reconstruction of signals with finite rate of
innovations under physics based kernels, such as those given

by a heat diffusion equation [5], and extension of our results
to multidimensional nonbandlimited signals with finite rate of
innovations.

APPENDIX I
PROOF OF THEOREM 1

In order to prove Theorem 1, we first need to compute the
slope of the filtered signal . This signal is nothing but the
sum of “ -periodized” sinc functions, that is

(15)

It is then obvious that the slope of is of the following order

for ,
otherwise.

(16)

Using the results on oversampled conversion of band-
limited signals in [10], it can be shown that in the case
of stable sampling4 [21], which is satisfied by the class of peri-
odic bandlimited signals, the MSE can be written as
follows:

MSE (17)

where and are some constants that do not depend
on the signal (particularly, they come from the definition of
stable sampling) and is the norm. Inserting (16) in
(17), we get the final conclusion

Here, and are any two signals in .

APPENDIX II
PROOF OF THEOREM 2

The annihilating filter method with oversampling in time and
in frequency is the classical high-order Yule-Walker system
(HOYW) [12]. In order to prove Theorem 2, we go through the
two main steps:

4Definition of stable sampling: A sequence of real numbers (� ) is said
to be a sequence of stable sampling in the space of square-integrable �-bandlim-
ited function, denoted by V , if there exist two constants, A > 0 and B <1,
such that for any f in V , the following sequence holds:

A jf(x)j dx � jf(� j � B jf(x)j dx
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1) We first show how the estimation accuracy is effected by
a) the number of YW equations, or equivalently, the over-

sampling in frequency ;
b) the model order, or equivalently, the filter order L.
For this purpose, we use a common singular value decom-
position (SVD)-based HOYW procedure.

2) Then, we use the known result that the TLS-based HOYW
method and the SVD-based HOYW method are asymptot-
ically equivalent.

SVD-based method finds the rank- ( being the number of
Diracs) best approximation in the Frobenious norm sense
and obtains the following solution

where denotes the Moore-Penrose pseudoinverse of . In
general, the matrix has full rank being equal to
and does not approach which has rank , even for
the case when increases without bound. In contrast to ,
the pseudoinverse tends to as the error in
becomes smaller. This is a crucial property that is necessary for
reducing the error in the estimates.

Suppose that are the exact coefficients of the annihilating
filter polynomial. Then, the following analysis holds:

(18)

where

First, we show what is the relationship between the matrix
, associated to the annihilating filter

coefficients and the matrix , associated to
the time positions.

The angular positions of the roots of the annihilating filter
give us the estimates of the time positions. Assuming that the
roots are sufficiently close to the unit circle, so that the first
approximation of the Taylor series expansion corresponding to
the time positions holds, it can be shown [12] that:

with or, in matrix form,

(19)

Therefore

where

. . .

...
...

Applying the same arguments as in [22], where a similar ex-
pression is found for the complex sinusoids in noise, it can be
shown that

where denotes Hermitian transpose.
Unfortunately, it appears difficult to derive an explicit expres-

sion for the matrix for the various choices of , because the
vector changes itself with . However, it is possible to obtain
a compact formula for that is

(20)

and investigate the influence of and on the estimation ac-
curacy. For the proof of (20) we refer to [12], and its references,
where the related problem of estimating sinusoids in noise, is
studied.

Now, we show that the order of magnitude of is
for sufficiently large and when is of the

order of . First, notice that can be factorized as follows:

...
...

...
...

. . .

...
... (21)
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Since all these matrices are of full rank, we can use standard
results on the Moore-Penrose pseudoinverse together with (21),
to show that

(22)

Inserting (22) in (20), we obtain

(23)

In the next steps of the proof, we analyze in detail the different
terms involving in (23). We examine the order of each term
and use the notation to denote
that the matrix has diagonal elements of the order
and off-diagonal elements of the order while
and are any two functions of . For evaluating the order
of some terms we also need the following standard result [23]

for and
for and

(24)

1) and consequently ,
since depends only on the signal and has no de-
pendence on or .

2) and conse-
quently ,
which can be verified by direct multiplication using (24).

3) and
consequently

, which can be verified again by direct multipli-
cation since the matrix has a similar structure as .

4) and consequently
From the defini-

tion of , we have that:

(25)

Next, by multiplying the corresponding matrices, it can
also be verified, by direct computation, that:

(26)

For the last part in (25) we get that

...
...

...

...

The term on the right-hand side (RHS) of the previous
equation has the following order:

and, therefore

(27)

Putting together the results from previous steps and sub-
stituting (26) and (27) in (25) and assuming that and
are of the same order, we can conclude that

(28)
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Similarly:

(29)

and we obtain

The same procedure can be used to evaluate the order of
for , obtaining

This leads to the conclusion that
.

5) MSE MSE for

The key point is that first we can split matrix into
two terms, one depending only on , and the other one
depending only on and , or equivalently, on , as-
suming that is also of the order of . Following similar
arguments as in [12], the matrix can be rewritten as:

MSE

where denotes conjugation of and

. . .
. . .

. . .

Thus, it follows that

MSE

In order to obtain an insight on the order of , we
compute the explicit form for the case of one Dirac and
describe how to generalize the result for the case of
Diracs.

For , we have that

...

...

Then, for the case where , we have that

...
. . .

. . .
...

...

...

...

...

and
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Now, noticing that the coefficients of the annihilating filter
have the following form:

...

...

...

...
(30)

then, by doing the same steps as for the case of one Dirac,
we get that the diagonal elements of are of
the order O(L), or equivalently

...

For the off-diagonal elements, taking into account the spe-
cific structure of that follows from (30), we have

...

This upper bound is sufficient for us and we do not have
to search for tighter bounds. Thus

(31)

Finally, we can calculate the order of the matrix as
follows:

MSE

(32)

Changing in (32) and using the result
from Theorem 1 for we get that:

The final results follows from [24], where it is shown
that the results derived for the Yule-Walker system and
the least square solution has asymptotically the same be-
havior as the total least square solution. Therefore

MSE (33)
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