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Abstract—Graphical models are well suited to capture the com-
plex and non-Gaussian statistical dependencies that arise in many
real-world signals. A fundamental problem common to any signal
processing application of a graphical model is that of computing
approximate marginal probabilities over subsets of nodes. This
paper proposes a novel method, applicable to discrete-valued
Markov random fields (MRFs) on arbitrary graphs, for approx-
imately solving this marginalization problem. The foundation of
our method is a reformulation of the marginalization problem as
the solution of a low-dimensional convex optimization problem
over the marginal polytope. Exactly solving this problem for gen-
eral graphs is intractable; for binary Markov random fields, we
describe how to relax it by using a Gaussian bound on the discrete
entropy and a semidefinite outer bound on the marginal poly-
tope. This combination leads to a log-determinant maximization
problem that can be solved efficiently by interior point methods,
thereby providing approximations to the exact marginals. We
show how a slightly weakened log-determinant relaxation can
be solved even more efficiently by a dual reformulation. When
applied to denoising problems in a coupled mixture-of-Gaussian
model defined on a binary MRF with cycles, we find that the
performance of this log-determinant relaxation is comparable or
superior to the widely used sum-product algorithm over a range
of experimental conditions.

Index Terms—Belief propagation, denoising, Gaussian mixture,
Markov random field, sum-product algorithm.

I. INTRODUCTION

MANY classes of real-world signals, including speech [1],
financial time series [2], and natural images [3], [4],

exhibit complex and non-Gaussian statistical dependencies. In
such settings, it is well known that classical approaches to de-
noising and detection, many of which are based on assumptions
of independence or joint Gaussianity, may lead to markedly
suboptimal performance. It is therefore of considerable interest
to develop and explore signal processing methods that are ca-
pable of modeling and exploiting a broader class of dependency
structures. One such class of methods is provided by graphical
models, a formalism in which random variables are associated
with the nodes of a graph and the edges of the graph repre-
sent statistical dependencies among these variables. Graphical
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models have proven useful in a wide range of signal processing
problems; we refer the reader to the survey papers [5] and [6]
for an overview.

In the graphical models most commonly encountered in
signal processing applications, the underlying graph is a chain
or a tree. For such cycle-free graphs, efficient recursive algo-
rithms [5]–[7] are available for calculating various statistical
quantities of interest (e.g., likelihoods and other marginal prob-
abilities). The elegance and familiarity of these recursive algo-
rithms should not, however, obscure the fact that chains and
trees capture rather limited forms of statistical dependency,
and there are numerous applications—among them image de-
noising [4] and sensor fusion [8]—that would be better served
by the richer class of graphical models in which cycles are
allowed in the underlying graph. Accordingly, the algorithmic
treatment of such graphical models with cycles is the focus of
this paper.

As a specific example of these issues, and as motivation for
the experimental results that we present later in the paper, let
us consider a graphical modeling approach to statistical signal
processing in the wavelet domain. Crouse et al. [9] presented
a statistical model for wavelets in which each wavelet coef-
ficient is modeled as a finite mixture of Gaussians, typically
with two mixture components indexed by a binary {0,1}-valued
random variable. The wavelet coefficients are coupled together
by introducing statistical dependencies among the binary vari-
ables underlying each local Gaussian mixture model; this setup
is sufficiently flexible to capture the non-Gaussian dependen-
cies present in signal classes such as natural images (e.g., [3]
and [4]). Working within the graphical modeling framework,
Crouse et al. investigated two types of dependency among the
binary mixture component labels. The first class of model in-
volves linking variables across space, separately for each scale
[see Fig. 1(a)]. The second class of model involves linking com-
ponents across scale according to a tree structure [see Fig. 1(b)].
The latter model is known as a hidden Markov tree (“hidden” be-
cause the states of the mixture component labels is not observed
in the data), whereas each of the chains composing the former
model is known as a hidden Markov model—perhaps better re-
ferred to as a hidden Markov chain.

The advantage of hidden Markov chains and hidden Markov
trees is that they permit the use of fast recursive algorithms for
computing marginal probabilities. The classical algorithm for
chains is known as the “forward-backward” algorithm [10].
Crouse et al. [9] presented an analog of this algorithm for trees
(see also [11] and [12]). The general algorithm for computing
marginal probabilities on cycle-free graphs is known as the
sum-product algorithm [13], also referred to as belief propaga-
tion [7].
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Fig. 1. Different types of graphical Markov models. (a) A chain-structured
hidden Markov model: shaded nodes represent noisy observations of the hidden
states represented by unshaded nodes. (b) A tree-structured model (showing
only the hidden states for simplicity). (c) A marriage of the chain and tree
models leads to a graphical model with cycles. (d) A factorial hidden Markov
model, in which several Markov chains are coupled together; the arrows from
the hidden state variables to the shaded node represent a conditional distribution
that couples the Markov chains.

While hidden Markov chains and hidden Markov trees are as-
sociated with fast algorithms, they are not necessarily faithful
models of the statistical dependencies among wavelet coeffi-
cients. In particular, tree-structured models are well known to
introduce artifacts in the spatial domain [5], [14]. Consider for
example the variables , , and in Fig. 1(b). While the spa-
tial separation of and is the same as the spatial separation
between and , the vertices and are nearest neighbors in
the tree whereas and are separated by a large distance in the
tree. Although this type of boundary artifact is not present in the
chain-structured model in Fig. 1(a), a chain-structured model
fails to capture dependencies across scale. More desirable is the
hybrid model shown in Fig. 1(c), in which both vertical and hori-
zontal edges are present. This graphical model has cycles, how-
ever, and the computation of marginal probabilities no longer
reduces to a straightforward recursion on a tree.

The need to couple multiple Markov chains arises not only
in wavelet modeling [8], [15]. For example, many sensor fusion
problems involve statistical dependencies among multiple time
series, and one approach to treat such problems is to make use of
a coupled set of hidden Markov chains, one for each time series.
For example, Reyes et al. [8] described a model for separation
of multiple speakers in which a hidden Markov chain is used
for each speaker and the observable spectra are a function of the
states of all of the chains [see Fig. 1(d)]. This graphical model
has cycles and exact marginalization is feasible only for small
numbers of chains.

Although introducing cycles into a graphical model leads
to a more expressive class of probability distributions, it also
raises the fundamental computational challenge of computing
marginal probabilities in the presence of cycles. In principle,
any Markov model on a graph with cycles can be converted, by
a procedure of clustering nodes and augmenting the associated
states, into the so-called junction tree form [16], to which exact
recursive algorithms akin to the sum-product algorithm can be

applied. However, the overall algorithm of the junction tree
approach has computational cost exponential in the size of the
augmented state space, a quantity which is unacceptably large
in many applications. Thus, a key problem to be addressed—if
graphical models with cycles are to be applied fruitfully to
signal processing problems—is the development of efficient
methods for computing approximate marginal distributions.

The sum-product algorithm involves a simple mes-
sage-passing protocol in which each node in the graph
computes outgoing messages based on transformations (sums
of products) of the messages arriving from its neighbors.
When there are cycles in the graph, the algorithm can still be
implemented, but it is no longer guaranteed to converge, and
the answers obtained (assuming convergence occurs) must be
viewed as approximations to the underlying marginal probabil-
ities. Despite these serious problems, this “loopy” form of the
sum-product algorithm is widely used in practice and indeed
it is the state-of-the-art approach to various signal processing
problems involving graphical models with cycles [6], [13],
[17]. Interestingly, the “loopy” sum-product algorithm can be
characterized in terms of optimization: in particular, Yedidia
et al. [18] showed its fixed points correspond to stationary
points of the “Bethe free energy.” This important result not only
provides an analysis tool, but also motivates seeking alternative
algorithms via other optimization-based formulations.

The framework that we pursue in this paper begins by formu-
lating the problem of exact marginalization as an optimization
problem; our approximate marginalization algorithm is based
on solving a relaxed version of this exact formulation. More
precisely, we show in Section III how the general problem of
computing marginal probabilities in graphical models for dis-
crete random variables (and for a more general class of models
known as “exponential family models”) can be formulated as a
convex optimization problem—the problem involves the maxi-
mization of a certain concave cost function over a convex set.
Both of these mathematical objects—the cost function and the
constraint set—can be complex, however, and the optimization
problem is intractable in general. The “Bethe free energy”
approach involves approximating the cost function and relaxing
to a simpler constraint set. However, as the Bethe free energy
is often nonconvex, the loopy sum-product algorithm may
have multiple fixed points, and may converge to a nonglobal
optimum.

Rather than replacing a convex problem with a nonconvex
one, it would seem desirable to maintain convexity in any re-
laxation. This is the contribution of the current paper: we pro-
pose a convex relaxation of the general problem of computing
marginal probabilities on graphs with cycles. At the foundation
of our method is a conjugate dual relation [19] that holds for
any graphical model. The natural constraint set arising from
this duality is the marginal polytope of all globally realizable
marginal vectors. Our convex relaxation involves a semidefinite
outer bound on the marginal polytope together with an upper
bound on the conjugate dual function. The resulting problem is
strictly convex, and its unique optimum can be found by efficient
interior point methods [20]. We illustrate our relaxation in the
context of denoising using the coupled mixture-of-Gaussians
model of Crouse et al. [19] for graphs with cycles. As we will
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show, the performance of our method is either comparable or su-
perior to the sum-product algorithm over a wide range of experi-
mental conditions [i.e., coupling strengths, signal-to-noise ratio
(SNR)]. A significant fact is that the improvement in perfor-
mance over sum-product is particularly large for more strongly
coupled problems, the regime in which accounting for statistical
dependency is most relevant.

The remainder of this paper is organized as follows. Section II
is devoted to background on graphical Markov models, their
use in modeling coupled mixture of Gaussians (MOGs), and the
role of marginalization in signal processing applications. In Sec-
tion III, we show how the problem of computing marginal prob-
abilities can be reformulated as a low-dimensional optimization
problem. In Section IV, we develop a convex relaxation of this
optimization problem. Experimental results from applying this
relaxation as a technique for performing denoising in the cou-
pled mixture-of-Gaussians model are described in Section V.

II. BACKGROUND AND PROBLEM SETUP

In this section, we begin by providing some background on
graphical Markov models; we refer the reader to [16] and [21]
and survey papers [5] and [6] for further details. We then de-
scribe the coupled mixture-of-Gaussian model and its use in
modeling and noisy prediction.

A. Graphical Markov Models

There exist various but essentially equivalent formalisms for
describing graphical models, depending on the type of graph
used. In this paper, we make use of an undirected graph

, where is the vertex set and is a set
of edges joining pairs of vertices. We say that a set is a
vertex cutset in if removing from breaks the graph into
two or more disconnected components—say, and . To each
node , we associate a random variable taking values
in some configuration space . For any subset , we
define with configuration space . The
link between the random vector and the graphical
structure arises from Markov properties that are imposed by the
graph. In particular, the random vector is a Markov random
field with respect to the graph if, for all subsets and that
are separated by some vertex cutset , the random variables
and are conditionally independent given . Fig. 1(a) pro-
vides a simple example of a graphical Markov model, in which
the random variables of a Markov chain are asso-
ciated with the nodes of a chain. In this chain, each vertex is
a cutset; this property implies the familiar conditional indepen-
dence properties of a Markov chain, in which the past and future
are conditionally independent given the present.

An alternative specification of a Markov random field (MRF)
is in terms of a particular factorization of the distribution that
respects the structure of the graph. In this paper, we focus on
pairwise MRFs, in which the factorization is specified by terms
associated with nodes and edges of the underlying graph. It is
convenient to specify the factorization as an additive decompo-
sition in the exponential domain, as we now describe for a dis-
crete random vector (i.e., for which . For
each and , let us define an indicator function

(equal to one if and zero otherwise). We then consider
the singleton functions at each node, and coupling functions

on each edge that are weighted combinations of these
indicator functions

(1)

The collection of functions
are known as the sufficient statistics, and the vector with el-
ements is the (canonical) parameter vector.
As we have described it, the vector is -dimensional, where

. In fact, since the indicator functions are
linearly dependent (e.g., for all ), it is pos-
sible to describe the same model family using only a total of

parameters.
For a pairwise MRF, the distribution of the random vector ,

denoted by , decomposes as

(2a)

where the quantity

(2b)

is the log partition function that serves to ensure that the distri-
bution is normalized properly. Note that is a function from

to ; from the definition (2b), it can be seen that is both
convex and continuous.

B. Coupled Mixture-of-Gaussians and Denoising

We now use the Markov random field to define a more gen-
eral graphical model involving mixture variables. Let us view
the random variable as indexing a
Gaussian mixture with components. More concretely, we
define a random variable whose conditional distribution is
given by

for (3)

where and are
-vectors specifying the Gaussian variances and means respec-

tively. Summing the joint distribution over the values of
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yields a Gaussian mixture distribution for . See Fig. 2(a) for
a simple graphical representation of this model.

The coupled mixture-of-Gaussians model is a joint proba-
bility model over , defined by the distribution

(4)
The wavelet signal processing framework of Crouse et al. [9]
involves a model of the form (4), in which the underlying graph
is a tree and each variable is a mixture of Gaussian
components. Our main focus in this paper is the generalization
of this model when the underlying graph has cycles, such as the
lattice shown in Fig. 2(b).

One important application of the model (4) is to signal de-
noising. The problem setup is as follows: given a vector of
noisy observations of the Gaussian mixture vector , we would
like to use the noisy observations to form an optimal predic-
tion of . When is no longer directly observed [as it was in
Fig. 2(a)], we have the new local model illustrated in Fig. 2(c),
in which the third (shaded) node represents the noisy observa-
tion variable . One common observation model, and the one
that we consider in this paper, takes the form

(5)

where is a Gaussian random noise vector and
controls the SNR. For continuous random variables,

it is common to assess prediction performance using the mean-
squared error (MSE), in which case it is well known that the
optimal predictor of , given observations , is the con-
ditional mean . For an observation model
of the form (5), it is straightforward to derive that the conditional
mean takes the form

(6)

Note that is a combination of linear least squares estima-
tors (LLSEs), in which the LLSE for Gaussian component is
weighted by the marginal probability . Thus,
the main challenge associated with performing optimal predic-
tion is the computation of these marginal probabilities. For our
development to follow, it is convenient to observe that since
is an observed quantity (and hence fixed), the computation of
the conditional marginal distribution can be re-
formulated as the computation of an ordinary marginal distri-
bution , where is a modified set of exponen-
tial parameters obtained by incorporating the observa-
tions into the model. Explicitly, the modified terms at each node
have the form for each

; the coupling terms remain unchanged (i.e.,
).

Fig. 2. (a) A simple graphical model showing a scalar mixture-of-Gaussian
(MOG) model. (b) A coupled MOG model defined on a four nearest neighbor
lattice. (c) Modification to each local module when given noisy observations Y
of Z .

III. EXACT VARIATIONAL FORMULATION

In this section, we show how the problem of computing
marginals and the log partition function can be reformulated
as the solution of a low-dimensional convex optimization
problem, which we refer to as a variational formulation. We
discuss the challenges associated with an exact solution of this
optimization problem for general Markov random fields.

At a high level, our strategy for obtaining the desired varia-
tional representation can be summarized as follows. Recall that
the log partition function maps parameter vectors to
real numbers and is a convex function of . The convexity of
means that its epigraph is a convex subset of

, and therefore can be characterized as the intersection of
all half-spaces that contain it [19]. This half-space representa-
tion of the epigraph is equivalent to saying that can be written
in a variational fashion as follows:

(7)

Here denotes the Euclidean inner product between the vec-
tors and is an auxiliary function, known as the con-
jugate dual, that we describe in more detail in Section III-B. In
geometric terms, the dual vector represents the slope of the hy-
perplane describing a half-space, whereas the dual value
represents the (negative) intercept of the hyperplane. In prin-
ciple, this conjugate dual relation allows us to compute by
solving the optimization problem (7). Accordingly, we first turn
to an investigation of the form of the dual function . Of par-
ticular importance is characterizing the subset of on which

is finite-valued (known as its effective domain) because we
can always restrict the optimization (7) from to this set.

Although the variational principle (7) is related to the “free
energy” principle of statistical physics [18], it differs from
this classical approach in important ways. More specifically,
it is low-dimensional convex problem, in which the optimiza-
tion variables have a natural interpretation as realizable
marginal probabilities. An important consequence, as we will
see later in this section, is that an effective solution to the
optimization problem (7) yields not only the value of the log
partition function but it also the marginal probabilities
(i.e., and ) that we aim to
compute. Moreover, in contrast to the free energy approach,
this perspective clarifies that there are two distinct components
to any relaxation of the variational principle (7)—namely, an
approximation of the dual function and an outer bound on the
effective domain.
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Fig. 3. Geometrical illustration of a marginal polytope. Each vertex
corresponds to the mean parameter � := �(e) realized by the distribution
� (x) that puts all of its mass on the configuration e 2 X . The facets of the
marginal polytope are specified by hyperplane constraints ha �i � b .

A. Marginal Polytopes

We begin by defining the set that is to play the role of the
constraint set in our variational principle. Recall the sufficient
statistics in a discrete exponential family: they are the collec-
tion of indicator functions .
For each discrete configuration , the quantity is a
{0–1}-valued vector contained within ; of interest is the
convex hull of this set of vectors. More formally, we define

MARG

for some distribution (8)

where is any valid distribution. The elements of , which
can be indexed as , have a very concrete
interpretation. For instance, element
is simply the marginal probability that (under the
distribution ). Similarly, element corresponds to a
particular joint marginal probability. Accordingly, we refer
to the set MARG as the marginal polytope associated
with the graph and the potentials . We refer to elements

MARG as mean parameters associated with the
Markov random field defined by and . Fig. 3 provides a geo-
metric illustration of a marginal polytope. Since it corresponds
to the convex hull of a finite number of vectors, it must be a
polytope (and hence can be characterized by a finite number
of hyperplane constraints). Although MARG has a very
simple definition, it is actually a rather complicated set. In
particular, the number of hyperplane constraints required to
specify this polytope grows at least exponentially in the graph
size (see [22] and [23] for further discussion of this point).

B. Conjugate Dual Function

Given the convexity of , it is natural to consider its conjugate
dual [19], which is a function defined
as follows:

(9)

Here the vector of dual variables is the same dimension
as the vector of exponential parameters.

Our choice of notation is deliberately suggestive, in that the
dual variables turn out to be closely associated with the mar-
ginal polytope defined in the previous section. In order to see
the connection, consider the gradient of the log partition func-
tion. A straightforward calculation using the definition (2b) of

yields that

(10)

so that elements of this gradient correspond to particular mar-
ginal probabilities (under the distribution ). This fact im-
plies that the image of the gradient mapping (i.e., ) is
contained within the marginal polytope (8).

Our goal now is to compute a more explicit form for the dual
function . A quantity that plays a key role in this context is the
discrete entropy [24] associated with a distribution , defined
as

(11)

We begin by observing that for a fixed , the function
is strictly concave and differentiable.

Therefore, if there exists a solution to the equation
, then the supremum (9) is attained at this point. Accordingly,

we compute the gradient using (10) and set it equal to zero

(12)

It can be shown [23] that this equation has a unique solution
whenever belongs to the interior of MARG . Sub-

stituting the relation into the definition (9) of
yields, for any in the interior of MARG , the impor-

tant relation . To interpret ,
we compute the negative entropy of as follows:

(13)

Thus, we recognize the dual function as the negative en-
tropy specified as a function of the mean parameters.

We have established that for in the interior of MARG ,
the value of the conjugate dual is given by the negative
entropy of the distribution , where the pair and
are dually coupled via (12). Moreover, it can be shown [23] that
when lies outside the closure of the marginal polytope, then
the value of the dual function is . We summarize as follows:

for in the interior of
MARG

otherwise.
(14)

Since the function is differentiable on , we are guaranteed
that taking the conjugate dual twice recovers the original func-
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tion [19]. By applying this fact to and , we obtain the fol-
lowing relation:

(15)

Note that the optimization here, in contrast to (7), is restricted
to the marginal polytope MARG , since the function
is infinite outside of this set. Moreover, it can be shown [23]
that the optimum (15) is attained uniquely at the vector
of marginals associated with . Consequently, the opti-
mization problem (15) is a variational representation in two
senses. First, the optimal value of the optimization problem
yields the value of the log partition function; and second,
the optimal arguments yield the mean parameters or marginals

. This variational formulation plays a central role
in our development in the sequel.

IV. LOG-DETERMINANT RELAXATION

In this section, we derive an algorithm for approximating mar-
ginal probabilities based on the solution of a relaxed variational
problem involving determinant maximization and semidefinite
constraints. We first provide a high-level description of our ap-
proach. There are two challenges associated with the variational
formulation (15). First, actually evaluating the dual function

for some vector of marginal probabilities is a very
challenging problem, since it requires first computing the ex-
ponential family distribution with those marginals,
and then computing its entropy. Indeed, with the exception of
trees and more general junction trees, it is typically impossible
to specify an explicit form for the dual function . Second,
for a general graph with cycles, an exact description of the mar-
ginal polytope MARG requires a number of inequalities
that grows rapidly with the size of the graph [22]. Accordingly,
our approach is to relax the exact variational formulation (15)
as follows: we replace the marginal polytope by a convex outer
bound, and bound the intractable dual function with a convex
surrogate. In the following two sections, we describe each of
these steps in turn.

Although the ideas and methods described here are more gen-
erally applicable, for the sake of clarity in exposition we focus
here on the case of a binary random vector . In
this case, it is necessary only to consider the indicator functions

at each node and on each edge.
Thus, for a given graph , the parameter vector has a total
of elements (i.e., its elements have the form

). We refer the reader to Ap-
pendix A for discussion of general multinomial case.

A. Outer Bounds on the Marginal Polytope

We first show how to derive various outer bounds on the mar-
ginal polytope. In this context, it is convenient to consider the
marginal polytope MARG associated with the complete
graph (i.e., the graph in which each node is joined by an
edge to all ( 1) other nodes). It should be noted that this as-
sumption entails no loss of generality, since an arbitrary pair-
wise Markov random field can be embedded into the complete

graph by setting to zero a subset of the parameters. (In
particular, for a graph , we simply set for
all pairs ).

On the complete graph, the model dimension is .
Given an arbitrary vector , consider the following
1 1 matrix:

...
...

...
...

...
...

...
...

...
...

(16)

The motivation underlying this definition is the following:
suppose that the given dual vector actually belongs
to MARG , in which case there exists some dis-
tribution such that and

. Under this condition, the matrix
can be interpreted as the matrix of second-order mo-

ments for the vector (1, ), as computed under . An
important point here is that in computing these second-order
moments, we use the fact that when . It is
for this reason that the elements appear along the
diagonal.

Given a symmetric matrix , we use to mean
that is positive semidefinite. The significance of the moment
matrix is illustrated in the following.

Lemma 1 [Semidefinite Outer Bound]: The binary marginal
polytope MARG is contained within the semidefinite con-
straint set SDEF .

Proof: This result follows from the fact that any
second-order moment matrix must be positive semidefi-
nite, as can be verified by the following simple argument.
Letting , then for any vector , we have

, which is certainly
nonnegative.

This semidefinite relaxation can be further strengthened by
including higher order terms in the moment matrices, as de-
scribed by Lasserre [25].

In addition to such semidefinite constraints, there are various
linear constraints that any member of the marginal polytope
MARG must satisfy. Here we consider some linear con-
straints that are relevant to the sum-product algorithm. For a
given edge , there are three mean parameters asso-
ciated with each pair of random variables —namely,

, and . Collectively,
these three mean parameters specify the joint marginal distribu-
tion over as

(17)

Therefore, the four inequality constraints obtained by requiring
that each entry of be nonnegative are necessary and
sufficient to ensure that the pairwise marginals on each edge
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are valid. For a binary-valued Markov random field de-
fined on a general graph with cycles, these constraints are equiv-
alent to the constraints that are enforced by the sum-product al-
gorithm [18]. Thus, these constraints provide a complete charac-
terization of the marginal polytope for any tree-structured graph.

B. Gaussian Entropy Bound

We now describe how to upper bound the (negative) dual
function using a Gaussian-type approximation. Our
starting point is the well-known fact [24] that the (differential)
entropy of any continuous random vector is upper bounded
as

(18)

This upper bound corresponds to the differential entropy of a
Gaussian matched to the covariance matrix (denoted )
of the continuous random vector . However, it is not directly
useful in application to a discrete random vector, for which
the differential entropy is not well-defined. Our approach is to
“smooth” by adding an independent noise variable, and then
apply the bound (18). After some derivation, the end result is
the following:

Lemma 2: The negative dual function is upper bounded as

(19)

where the matrix is defined in (16) and
is an 1 1 block-diagonal matrix with

a 1 1 zero block, and another block with the identity
matrix .

See Appendix B for the proof of this claim.

C. Log-Determinant Relaxation

Equipped with these building blocks, we are now ready to
state our log-determinant relaxation for the log partition func-
tion.

Theorem 1: Consider a binary Markov random field
over the vector . Then for any compact convex
outer bound OUT on the marginal polytope MARG ,
the log partition function is upper bounded by the solution
of the following variational problem:

(20)

This problem is strictly concave, and so has a unique global
optimum.

Given our development thus far, the proof is straightforward.
In particular, by examining the variational representation (15) of

, we see that an upper bound on can be obtained via an upper
bound on the negative dual function and an outer bound on

the marginal polytope MARG . The bound thus follows
by applying Lemmas 1 and 2. Strict concavity and uniqueness
follow by standard results on the log-determinant function [20].

The simplest form of the relaxation (20) is obtained when the
semidefinite constraint (see Lemma 1) is the only
constraint imposed. In this case, the relaxation has a natural in-
terpretation as optimizing over a subset of valid covariance ma-
trices. It is also straightforward to strengthen the relaxation via
additional linear constraints on the marginal polytope, such as
those associated with the Bethe problem and the sum-product
algorithm [see (17)]. Overall, our approach will be to proceed
in analogy to the exact variational principle (15): in particular,
we will solve (20) and then make use of the optimizing argu-
ments as approximations to the exact marginals. Insofar as our
relaxation is relatively tight, this procedure can be expected to
provide reasonable approximations, as we will see in Section V.

D. Efficient Solution of Log-Determinant Relaxation

An important fact is that the unique optimum of problem (20)
can be obtained in polynomial time by interior point methods
specialized for log-determinant problems [e.g., [20]]. However,
the complexity of a generic interior point method is ,
which (though polynomial time) is too large to be practically
viable. Accordingly, here we describe how a suitable dual re-
formulation leads to very efficient methods for solving a slightly
weakened form of the log-determinant relaxation in Theorem 1.

Our starting point is the observation that the log-determinant
term in (20) acts naturally as a barrier function to enforce the
constraint , which is a some-
what weaker constraint than . This observation leads
to the relaxed problem

(21)

By an appropriate dual reformulation described in Appendix C,
we can convert (21) into an unconstrained log-determinant
problem that can be solved with i) complexity per
iteration for a full Newton method on an arbitrary graph or
ii) complexity per iteration for a diagonally scaled
quasi-Newton method on grid-structured problems. By compar-
ison, the computational complexity per iteration of sum-product
is . As particular illustrations, this amounts to a com-
plexity per iteration of for complete graphs and
for grid-structured problems. The overall complexity is deter-
mined by the per iteration cost as well as the convergence rate,
which determines the total number of iterations required to
reach a pre-specified error tolerance. The convergence rate of
the sum-product algorithm (assuming that it converges) is at
best linear [26]. In contrast, an appropriately scaled gradient
method, like Newton’s method, has a superlinear rate of con-
vergence [27].

V. EXPERIMENTAL RESULTS

In this section, we describe experimental results of applying
the log-determinant relaxation (21) to the noisy prediction
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problem in a coupled mixture-of-Gaussians (MOG) model (see
Section II-B). Recall that the MOG model is specified by a
discrete MRF over the vector of discrete mixing vari-
ables, a vector of Gaussian mixture variables, and a vector
of noisy observations, as described by (5). The noisy prediction
problem is to compute for each vertex the conditional
mean , as defined in (6). We consider the approximation

to this conditional mean, in which the true marginals
are replaced by the approximations ob-

tained from the log-determinant relaxation. For all experiments
reported here, we fix the variances and
means of the Gaussian mixture components.
We study the behavior of the log-determinant (LD) relaxation
(21) as the coupling strengths and the SNR are varied.
For purposes of comparison, we also show prediction results
based on the approximate predictor computed using
the vector of approximate marginals obtained from the
sum-product or belief propagation (BP) algorithm (see [18, (4)
and (5)]).

Our experiments cover two types of graphs: the complete
graph , in which each node is connected to every other, and
the four nearest neighbor lattice graph [see Fig. 2(b) for an illus-
tration]. For each set of trials on a given graph, we generate the
parameter that specifies the coupling distribution (2a)
in the following way. In all trials, we set the single node parame-
ters for all vertices . The edge parameters

are chosen differently depending on the coupling strength
; here corresponds to an independence

model, whereas larger generates increasing amounts of
dependence among the indicator variables . Let de-
note the uniform distribution on the interval . For a fixed
coupling strength , we sample independently from the

distribution and then set

Note that this procedure for choosing the parameter vector
produces a distribution in which each variable is
equally likely to be zero or one, and for which neighboring vari-
ables are more likely to take the same value. This probabilistic
structure is consistent with the coupled mixture models used in
practice (e.g., in wavelet denoising [9]).

We solved the log-determinant relaxation (21) via Newton’s
method, as described in Appendix C. We used the standard
parallel message-passing form of the sum-product algorithm
with a damping factor1 ; if the sum-product algorithm
failed to converge, we switched to a convergent double-loop
alternative [28]. For each graph (fully connected or grid), we
examined a range of coupling strengths and the full
range of SNRs parameterized by . For purposes of
comparison, we computed the exact marginal values either by
exhaustive summation on the complete graph or by applying
the junction tree algorithm to grid-structured problems. Due
to the computational complexity of these exact calculations,
we performed our experiments on nodes for complete

1To be more precise, we applied damping the log domain as � logM +
(1 � �) logM .

Fig. 4. Percentage increase in MSE as a function of the SNR parameter � 2
[0; 1] for a four nearest-neighbor grid with n = 100 nodes. Each point on each
line is the average over 50 trials; the plus signs provide the standard errors.
(a) Edge coupling strength d = 0:45. (b) Edge coupling strength d =
0:90. Note that there is a factor of ten difference in the vertical scales between
panels (a) and (b).

graphs and nodes for the lattices. We used the fol-
lowing procedure to assess the error in the approximations. Let
MSE denote the MSE
of the optimal Bayes estimator (6). Similarly, let MSE
and MSE denote the MSEs of the log-determinant and
BP-based predictors, respectively. For any given experimental
trial, our evaluation is based on the percentage increase in MSE;
for instance, for the log-determinant predictor, we compute
100 MSE MSE .

Fig. 4 shows the results for the grid with nodes;
each plot displays the percentage increase in MSE versus the
SNR parameter for a fixed coupling strength . Each
point in each solid line corresponds to the mean taken over 30
trials; the plus marks show the standard errors associated with
these estimates. Shown in panel (a) is the case of low coupling
strength , for which the mixing variables on
the grid interact only weakly. For these types of problems,
the performance of BP is slightly but consistently better than
the LD method; however, note that both methods lead to a
percentage increase in MSE of less than 0.25% over all .
Panel (b), in contrast, shows the case of stronger coupling

. Here the percentage loss in MSE can be quite
substantial for BP in the low SNR region ( small), whereas
its behavior improves for high SNR. In contrast, the behavior
of the LD method is more stable, with the percentage MSE
loss remaining less than 2% over the entire range of . The
degradation of BP performance for strong couplings can be
attributed to the nonconvexity of the Bethe problem and the
appearance of multiple local optima.

Fig. 5 shows analogous results for the fully connected graph.
In panel (a), we see the weakly coupled case ;
as with the lattice model in Fig. 4(a), the performance loss for
either method is less than 2.5% when the dependencies are
weak. The results in panel (b), where the couplings are stronger

, are markedly different: for harder problems
with low SNR, the BP method can show MSE percentage
increases upwards of 25%. Over the same range of , the loss
in the LD method remains less than 5%. It should be noted that
the relatively poor performance of BP for this fully connected
graph is to be expected in some sense, since it is an approxima-
tion that is essentially tree-based. Nonetheless, it is interesting
that the performance of the LD method remains reasonable
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Fig. 5. Percentage increase in MSE as a function of the SNR parameter � 2

[0; 1] for a fully connected graph K . Each point on each line is the average
over 50 trials; the plus signs provide the standard errors. (a) Edge coupling
strength d = 0:075. (b) Edge coupling strength d = 0:15. Note that
there is a factor of ten difference in vertical scales between panels (a) and (b).

even for this densely connected model over the same range of
coupling strengths and SNRs.

Fig. 6 shows two cross-sections taken from a grid for cou-
pling strength ; panel (a) shows the low SNR
behavior , whereas panel (b) shows the behavior
for higher SNR . The cross-sections were chosen to
illustrate a step discontinuity in the underlying signal, at which
point the mixing variable switches from (Gaussian
mean ) to (Gaussian mean ). In the
low SNR example, note that the BP algorithm outputs approxi-
mates marginals that are strongly skewed toward state .
As a result, the noisy signal reconstruction is biased toward

. In contrast, the LD method returns approximate
marginals that are more balanced between the two mixture
components, and thus reconstructs a smoother version of the
step that is centered about zero. For the high SNR example
in panel (b), both methods perform quite well as would be
expected.

VI. DISCUSSION

Graphical models have proven useful in a variety of signal
processing applications. Although exact algorithms for cycle-
free graphs are widely used, the algorithmic treatment of
graphs with cycles presents a number of challenges that must
be addressed in order for these models to be applied to
signal processing problems. The foundation of this paper is an
exact variational representation of the problem of computing
marginals in general Markov random fields. We demonstrated
the utility of semidefinite constraints in developing convex
relaxations of this exact principle, which can be solved effi-
ciently to obtain approximations of marginal distributions. The
method presented here is based on a Gaussian entropy bound
in conjunction with both linear and semidefinite constraints on
the marginal polytope. An attractive feature of the resulting
log-determinant maximization problem is that it can be solved
rapidly by efficient interior point methods [20]. Moreover, we
showed how a slightly modified log-determinant relaxation
can be solved even more quickly by conventional Newton-like
methods. As an illustration of our methods, we applied our
relaxation to a noisy prediction problem in a coupled mix-
ture-of-Gaussians problem and found that it performed well

Fig. 6. Cross-sections of the actual signal z (solid line), noisy observation y

(dotted lines), as well as the BP-based and LD-based signal reconstructions.
(a) Low SNR example (� = 0:30). (b) High SNR example (� = 0:70).

over a range of coupling strengths and SNR settings. An im-
portant open question, not addressed in this paper, is how to
estimate model parameters for such prediction problems.

There are a number of additional research directions sug-
gested by the methods proposed here. It remains to develop
a deeper understanding of the interaction between the two
choices involved in these approximations (i.e., the entropy
bound, and the outer bound on the marginal polytope), as well
as how to tailor approximations to particular graph structures.
It is certainly possible to combine semidefinite constraints
with entropy approximations (preferably convex) other than
the Gaussian bound used in this paper. For instance, it would
be interesting to investigate the behavior of “convexified”
Bethe/Kikuchi entropy approximations [29] in conjunction
with semidefinite constraints.

APPENDIX

A. Generalization to Multinomial States

This Appendix discusses the extension of our techniques to
discrete spaces with ; our
treatment is necessarily brief due to space constraints. Given
a random variable , one set of sufficient statistics is
the vector of monomials .
The overall distribution on the random vector can be repre-
sented in terms of these monomials, and the cross-terms

for each edge .
Note that this is a natural generalization of the representation

that we used in the binary case. Let
and be the associated mean parameters. Let us
define a dimensional matrix, where ,
by taking the covariance . The ele-
ments of this matrix are given in terms of the mean parame-
ters defined above; it is the natural generalization of the ma-
trix defined previously (16) for binary variables. As in
Lemma 1, imposing a semidefinite constraint on this matrix gen-
erates an outer bound on the associated marginal polytope. Sim-
ilarly, we can also derive an upper bound on the entropy of
based on the characterization of the Gaussian distribution as the
maximum entropy distribution for a fixed covariance matrix. A
first step in doing so is the observation that

; we can then upper bound the entropy
in terms of the covariance matrix
as we did in the binary case.
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B. Proof of Lemma 2

We first convert our discrete random vector (taking values
in {0,1} ) to a continuous version with an equivalent dif-
ferential entropy. Define a new continuous random vector via

, where is a random vector independent of ,2

with each element independently and identically distributed as
.

Lemma 3: We have , where and denote
the differential and discrete entropies of and , respectively.

Proof: Throughout this proof, we use to denote the
probability density function of the continuous random vector
and to denote the probability mass function of the discrete
random vector . By definition [24], the differential entropy
of is given by the integral ,
where is the support of . By our
construction of , the support set can be decomposed into a
disjoint union of hyperboxes of unit volume, one for each
configuration . Using this decomposition, we write
the differential entropy as

Now by our construction of , the quantity
is equal to the constant for all in the
hyperbox , where is the probability of the dis-
crete configuration . Accordingly, we have

, which is
equal to , since the volume of each box is unity.

Now to establish Lemma 2, let MARG and let be
a random vector with these marginals. Consider the continuous-
valued random vector . From Lemma 3, we have

. Combining this equality with the Gaussian
entropy bound (18) yields the upper bound

We now express the log-determinant quantity in an alterna-
tive form. First, using the independence of and , we write

, where we have used the fact
that the covariance matrix of an independent uniform random
vector on a unit box is (1/12) . Next we use the Schur com-
plement formula [20] to express in terms of the
second-order moment matrix defined in (16) as follows:

(22)

where is an 1 1 block-diagonal
matrix. Combining (22) with the Gaussian upper bound on

yields
, which is the statement

of Lemma 2.

2The notation U [a; b] denotes the uniform distribution on the interval [a; b].

C. Derivation of Dual Updates

To derive Newton updates for the Lagrangian dual of the
weakened relaxation described in Section IV-D, it is more
convenient to work with the same relaxation, but as applied
to “spin” variables . The interaction among
these spin variables can be captured by a Markov random field
of the form .
Let and be the associated mo-
ments of the spin vector. Let denote the second-order
moment matrix associated with ; it has the form of the
matrix in (16), but with diagonal elements are all equal
to one, since for spin variables in 1 1 . In
this spin representation, we convert to a continuous version

, where again is uniformly distributed
on (1/2), (1/2) . (The rescaling by 1/2 is necessary to
adjust the impulses to be within distance one of each other.)
The log-determinant of the covariance of takes the form

. Intro-
ducing the matrix-variable ,
the weakened semidefinite relaxation corresponds to

such that ,
where , is an 1 1 matrix
involving the weight vector , and is
the Frobenius inner product. (As a sidenote, note that we have
dropped a multiplicative factor of 1/2, as well as the additive
constants in this form of the cost function. Moreover, the
motivation for introducing a negative sign in will be clear
momentarily.)

Let be a vector of Lagrange multipliers associated
with the linear constraints . Computing the (La-
grangian) dual function of the weakened relaxation yields

(23)

Thus, the dual problem corresponds to optimizing a convex and
continuously differentiable function over , which can be
performed very efficiently by Newton’s method [27]. In partic-
ular, using well-known properties of matrix derivatives, we can
compute the gradient and
Hessian ,
where denotes Hadamard product. Thus, we can apply
Newton’s method or other scaled gradient methods to solve
the dual problem. Given the optimal dual solution , we
obtain the optimal primal solution as .
Finally, the optimal moment matrix is given by

.
In the absence of any particular graph structure, the overall

computational complexity of full Newton updates is ,
which arises from the inversion of of matrices.
If we restrict our attention to a grid-structured graphical model,
then the matrix will be sparse and grid-structured,
and thus can be inverted with complexity using nested
dissection [30]. Thus, we can perform diagonally scaled gra-
dient descent with a complexity of on grid-structured
problems.
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