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Abstract—This paper is a comparative study of training-based
and semiblind multiple-input multiple-output (MIMO) flat-fading
channel estimation schemes when the transmitter employs max-
imum ratio transmission (MRT). We present two competing
schemes for estimating the transmit and receive beamforming
vectors of the channel matrix: a training-based conventional
least-squares estimation (CLSE) scheme and a closed-form
semiblind (CFSB) scheme that employs training followed by infor-
mation-bearing spectrally white data symbols. Employing matrix
perturbation theory, we develop expressions for the mean-square
error (MSE) in the beamforming vector, the average received
signal-to-noise ratio (SNR) and the symbol error rate (SER)
performance of both the semiblind and the conventional schemes.
Finally, we describe a weighted linear combiner of the CFSB and
CLSE estimates for additional improvement in performance. The
analytical results are verified through Monte Carlo simulations.

Index Terms—Beamforming, channel estimation, constrained
estimation, Cramer–Rao bound, least squares, maximum ratio
transmission (MRT), multiple-input multiple-output (MIMO),
semiblind.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) and smart
antenna systems have gained popularity due to the

promise of a linear increase in achievable data rate with the
number of antennas, and because they inherently benefit from
effects such as channel fading. Maximum ratio transmission
(MRT) is a particularly attractive beamforming scheme for
MIMO communication systems because of its low implemen-
tation complexity. It is also known that MRT coupled with
maximum ratio combining (MRC) leads to signal-to-noise ratio
(SNR) maximization at the receiver and achieves a performance
close to capacity in low-SNR scenarios. However, in order to
realize these benefits, an accurate estimate of the channel is
necessary. One standard technique to estimate the channel
is to transmit a sequence of training symbols (also called
pilot symbols) at the beginning of each frame. This training
symbol sequence is known at the receiver and thus the channel
is estimated from the measured outputs to training symbols.
Training-based schemes usually have very low complexity

Manuscript received February 23, 2005; revised August 23, 2005. This
work was supported in part by UC Discovery grant nos. Com 02-10105, Com
02-10119, Intersil Corp. and the UCSD Center for Wireless Communications.
A conference version of this work appears in Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3,
Mar. 2005, pp. 585–588. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Luc Vandendorpe.

The authors are with the Department of Electrical and Computer Engineering,
University of California, San Diego, La Jolla, CA 92093-0407 USA (e-mail:
cmurthy@ucsd.edu; ajaganna@ucsd.edu; brao@ucsd.edu).

Digital Object Identifier 10.1109/TSP.2006.874780

making them ideally suited for implementation in systems (e.g.,
mobile stations) where the available computational capacity is
limited.

However, the above training-based technique for channel
estimation in MRT-based MIMO systems is transmission
scheme agnostic. For example, channel estimation algorithms
when MRT is employed at the transmitter only need to estimate

and , where and are the dominant eigenvectors of
and respectively, is the channel transfer

matrix, and are the number of receive/transmit antennas.
Hence, techniques that estimate the entire matrix from a set
of training symbols and use the estimated to compute and

may be inefficient, compared to techniques designed to use
the training data specifically for estimating the beamforming
vectors. Moreover, as increases, the mean-square error (MSE)
in estimation of remains constant since the number of
unknown parameters in does not change with , while that
of increases since the number of elements, , grows linearly
with . Added to this, the complexity of reliably estimating
the channel increases with its dimensionality. The channel
estimation problem is further complicated in MIMO systems
because the SNR per bit required to achieve a given system
throughput performance decreases as the number of antennas is
increased. Such low-SNR environments call for more training
symbols, lowering the effective data rate.

For the above reasons, semiblind techniques can enhance the
accuracy of channel estimation by efficiently utilizing not only
the known training symbols but also the unknown data symbols.
Hence, they can be used to reduce the amount of training data
required to achieve the desired system performance, or equiva-
lently, achieve better accuracy of estimation for a given number
of training symbols, thereby improving the spectral efficiency
and channel throughput. Work on semiblind techniques for the
design of fractional semiblind equalizers in multipath channels
has been reported earlier by Pal in [2] and [3]. In [4] and [5]
error bounds and asymptotic properties of blind and semiblind
techniques are analyzed. In [6]–[8], an orthogonal pilot-based
maximum-likelihood (OPML) semiblind estimation scheme
is proposed, where the channel matrix is factored into the
product of a whitening matrix and a unitary rotation matrix

. is estimated from the data using a blind algorithm,
while is estimated exclusively from the training data using
the OPML algorithm. However, feedback-based transmission
schemes such as MRT pose new challenges for semiblind
estimation, because employment of the precoder (beamforming
vector) corresponding to an erroneous channel estimate pre-
cludes the use of the received data symbols to improve the
channel estimate. This necessitates the development of new
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transmission schemes to enable implementation of semiblind
estimation, as shown in Section II-C. Furthermore, the pro-
posed techniques specifically estimate the MRT beamforming
vector, and hence can potentially achieve better estimation
accuracy compared with techniques that are independent of the
transmission scheme.

The contributions of this paper are as follows. We describe
the training-only-based conventional least-squares estimation
(CLSE) algorithm, and derive analytical expressions for the
MSE in the beamforming vector, the mean received SNR
and the symbol error rate (SER) performance. For improved
spectral efficiency (reduced training overhead), we propose
a closed-form semiblind (CFSB) algorithm that estimates
from the data using a blind algorithm, and estimates exclu-
sively from the training. This necessitates the introduction of
a new signal transmission scheme that involves transmission
of information-bearing spectrally white data symbols to enable
semiblind estimation of the beamforming vectors. Expressions
are derived for the performance of the proposed CFSB scheme.
We show that given perfect knowledge of (which can be
achieved when there are a large number of white data symbols),
the error in estimating using the CFSB scheme asymp-
totically achieves the theoretical Cramer–Rao lower bound
(CRB), and thus the CFSB scheme outperforms the CLSE
scheme. However, there is a tradeoff in transmission of white
data symbols in semiblind estimation, since the SER for the
white data is frequently greater than that for the beamformed
data. Thus, we show that there exist scenarios where for a
reasonable number of white data symbols, the gains from
beamformed data for this improved estimate in CFSB outweigh
the loss in performance due to transmission of white data. As
a more general estimation method when a given number of
blind data symbols are available, we propose a new scheme
that judiciously combines the above described CFSB and
CLSE estimates based on a heuristic criterion. Through Monte
Carlo simulations, we demonstrate that this proposed linearly
combined semiblind (LCSB) scheme outperforms the CLSE
and CFSB scheme in terms of both estimation accuracy as well
as SER and thus achieves good performance.

The rest of this paper is organized as follows. In Section II, we
present the problem setup and notation. We also present both the
CFSB and CLSE schemes in detail. The MSE and the received
SNR performance of the CLSE scheme are derived using a first-
order perturbation analysis in Section III and the performance
of the CFSB scheme is analyzed in Section IV. In Section V, to
conduct an end-to-end system comparison, we derive the perfor-
mance of Alamouti space–time coded data with training-based
channel estimation, and present the proposed LCSB algorithm.
We compare the different schemes through Monte Carlo simu-
lations in Section VI and present our conclusions in Section VII.

II. PRELIMINARIES

A. System Model and Notation

Fig. 1 shows the MIMO system model with beamforming at
the transmitter and the receiver. We model a flat-fading channel
by a complex-valued channel matrix . We assume that

Fig. 1. MIMO system model, with beamforming at the transmitter and
receiver.

is quasi-static and constant over the period of one transmis-
sion block. We denote the singular value decomposition (SVD)
of by , and contains singular values

, along the diagonal, where
. Let and denote the first columns of and ,

respectively.
The channel input–output relation at time instant is

(1)

where is the channel input, is the channel
output, and is the spatially and temporally white
noise vector with independent and identically distributed (i.i.d.)
zero-mean circularly symmetric complex Gaussian (ZMCSCG)
entries. The input could denote data or training symbols.
Also, we let the noise power in each receive antenna be unity,
that is, , where denotes the expectation
operation, and is the identity matrix.

Let training symbol vectors be transmitted at an average
power per vector (T stands for “training”). The training sym-
bols are stacked together to form a training symbol matrix

as (p stands for “pilot”). We em-
ploy orthogonal training sequences because of their optimality
properties in channel estimation [9]. That is, ,

where , thus maintaining the training power of
. The data symbols could either be spatially white (i.e.,

), or it could be the result of using beam-
forming at the transmitter with unit-norm weight vector

(i.e., ), where the data transmit
power is (D stands for “data”). We let de-
note the number of spatially white data symbols transmitted, that
is, a total of symbols are transmitted prior to transmit-
ting beamformed data. Note that the white data symbols carry
(unknown) information bits, and hence are not a waste of avail-
able bandwidth.

In this paper, we restrict our attention to the case where the
transmitter employs MRT to send data, that is, a single data
stream is transmitted over transmit antennas after passing
through a beamformer . Given the channel matrix , the
optimum choice of is [10]. Thus, MRT only needs an
accurate estimate of to be fed back to the transmitter. We
assume that , since when , estimation of the beam-
forming vector has no relevance. Finally, we will compare the
performance of different estimation techniques using several
different measures, namely, the MSE in the estimate of ,
the gain (rather, the power amplification/attenuation), and
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Fig. 2. Comparison of the transmission scheme for conventional least-squares (CLSE) and closed-form semiblind (CFSB) estimation.

the symbol error rate (SER) of the one-dimensional channel
resulting from beamforming with the estimated vector
(assuming uncoded -ary QAM transmission). The perfor-
mance of a practical communication would also be affected by
factors such as quantization error in , errors in the feedback
channel, feedback delay in time-varying environments, etc.,
and a detailed study of these factors warrant separate treatment.

B. Conventional Least-Squares Estimation

Conventionally, a maximum-likelihood (ML) estimate of the
channel matrix, , is first obtained from the training data as
the solution to the following least-squares problem:

(2)

where represents the Frobenius norm, is the ma-
trix of received symbols given by , where

is the set of additive white Gaussian noise ((AWGN)
spatially and temporally white) vectors. From [11], the solu-
tion to this least-squares estimation problem can be shown to be

, where is the Moore–Penrose generalized in-
verse of . Since orthogonal training sequences are employed,
we have , and consequently

(3)

The ML estimates of and , denoted and respectively,
are now obtained via an SVD of the estimated channel matrix

. Since is the ML estimate of , from properties of ML
estimation of principal components [12], the obtained by this
technique is also the ML estimate of given only the training
data.

C. Semiblind Estimation

In the scenario that the transmitted data symbols are spatially-
white, the ML estimate of is the dominant eigenvector of
the output correlation matrix , which is estimated as

. Now, the estimate of is obtained by computing
the following SVD:

(4)

Note that it is possible to use the entire received data to com-
pute in (4) rather than just the data symbols, in this case,
should be changed to . The estimate of , denoted
(the subscript “s” stands for semiblind), is thus computed blind
from the received data as the first column of . As grows, a
near perfect estimate of can be obtained.

In order to estimate as described above, it is necessary that
the transmitted symbols be spatially-white. If the transmitter
uses any (single) beamforming vector , the expected value of

the correlation at the receiver is
, and hence, the estimated eigenvector will be a vector

proportional to instead of . Fig. 2 shows a schematic
representation of the CLSE and the CFSB schemes. Thus, the
CFSB scheme involves a two-phase data transmission: spatially
white data followed by beamformed data. White data transmis-
sion could lead to a loss of performance relative to beamformed
data, but this performance loss can be compensated for by the
gain obtained from the improved estimate of the MRT beam-
forming vector. Thus, the semiblind scheme can have an overall
better performance than the CLSE scheme. Section V presents
an overall SER comparison in a practical scenario, after ac-
counting for the performance of the white data as well as for
the beamformed data.

Having obtained the estimate of from the white data, the
training symbols are now exclusively used to estimate . Since
the vector has fewer real parameters than the channel
matrix , it is expected to achieve a greater accuracy of
estimation for the same number of training symbols, compared
to the CLSE technique which requires an accurate estimate of
the full matrix in order to estimate accurately. If is
estimated perfectly from the blind data, the received training
symbols can be filtered by to obtain

(5)

Since , (here represents the 2-norm) the statistics
of the Gaussian noise are unchanged by the above operation.
We seek the estimate of as the solution to the following least-
squares problem:

(6)

where denotes the semiblind estimate of . The following
lemma establishes the solution.

Lemma 1: If satisfies , the least-squares
estimate of (under ) given perfect knowledge of
is

(7)

Proof: See Section A of the Appendix.
Closed-Form Semiblind Estimation Algorithm: Based on the

above observations, the proposed CFSB algorithm is as follows.
First, we obtain , the estimate of , from (4). Then, we esti-
mate from the training symbols by substituting for
in (7). This requires symbols to actually estimate ,
however, of these symbols are data symbols (which carry in-
formation bits). Hence, we can potentially achieve the desired
accuracy of estimation of using fewer training symbols com-
pared to the CLSE technique.
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An alternative to employing at the receiver is employ
maximum ratio combining (MRC), i.e., to use an estimate
of (which can be accurately estimated as the
dominant eigenvector of the sample covariance matrix of the
beamformed data). The performance of such a scheme is sum-
marized in [1], and the analysis can be carried out along the
lines presented in this paper.

III. CONVENTIONAL LEAST-SQUARES ESTIMATION

A. Perturbation of Eigenvectors

We recapitulate a result from matrix perturbation theory [13]
that we will use frequently in the sequel. Consider a first-order
perturbation of a Hermitian symmetric matrix by an error ma-
trix to get , that is, . Then, if the eigenvalues
of are distinct, for small perturbations, the eigenvectors of

can be approximately expressed in terms of the eigenvectors
of as

(8)

where is the rank of , is the th eigenvalue of , and
, .

When , we have , where
is the matrix of eigenvectors and

. One could scale the vector
to construct a unit-norm vector as . Then,

, where .
Following an approach similar to [14], if are small, since

, the components are approximately given by

(9)

Note that is real, and is a higher-order term compared
to , . We will use this fact in our first-order ap-
proximations to ignore terms such as and

. In the sequel, we assume that the
dominant singular value of is distinct, so the conditions re-
quired for the above result are valid.

B. MSE in

To compute the MSE in , we use (3) to write the matrix
as a perturbation of and use the above matrix

perturbation result to derive the desired expressions.

(10)

where with
. Here, we have ignored the term in writing

the expression for , since it is a second-order term due to the
factor in . Now, we can regard as a perturbation

of the matrix . As seen in Section II-B, is estimated
from the SVD of . Since the basis vectors span , we

can let , and write as
a perturbation of .

For , is obtained from (9) as

(11)

Note that, if , we have , , hence,
, for . Therefore, to simplify notation, we

can define and , for and
respectively. The following result is used to find .

Lemma 2: Let , be fixed complex numbers. Let
denote the variance of one of the elements of .

Then

(12)
for any , .

Proof: Let and . Then, from
lemma in Section E of the Appendix, and are circularly
symmetric random variables. Since is circularly symmetric

and and are both
linear combinations of elements of , we have .
Finally, since , the variance of and are
equal, and . Substituting, we have

Using the above lemma with , and ,
we get, for ,

(13)

where the expectation is taken with respect to the AWGN term
. The following lemma helps simplify the expression further.

We omit the proof, as it is straightforward.
Lemma 3: If , then

(14)

where is the first element of .
Using (13) in (9) and substituting into in (14), the final esti-

mation error is

(15)

C. Received SNR and Symbol Error Rate

In this section, we derive the expression for the received
SNR when beamforming using at the transmitter and fil-
tering using at the receiver. Since the unitary matrices

and span and , and can be expressed as
and , respectively. Borrowing notation from

Section III-B, let and
respectively. Then, can
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be derived by a perturbation analysis on analogous to
that in (10) in Section III-B. We obtain

where, as before, we define , and , ,
for and respectively, so that ; , as
expected. The channel gain is given by

Ignoring higher-order terms (cf. Section II-A), the power am-
plification is

(16)

From (9) and (13), we have

Now, can be written as

And likewise for . Denoting , the power
amplification is

(17)

In obtaining (17), we have used the fact that for ,
where . Finally, the received SNR is

SNR (18)

where is the power per data symbol. The power amplifica-
tion with perfect knowledge of at the transmitter and the re-
ceiver is . As increases, approaches

. Note that, when , the above expression simplifies to
. Also,

since . Hence, if , the CLSE performs best when
the channel is spatially single dimensional (for example, in key-
hole channels or highly correlated channels), that is, ,

. In this case, we have . At the
other extreme, if the dominant singular values are very close to
each other such that , the analysis is incor-
rect because it requires that the dominant singular values of
be sufficiently separated. For Rayleigh fading channels, i.e.,
has i.i.d. ZMCSCG entries of unit variance, we can numerically
evaluate the probability to be approx-
imately , with and a typical value of

10 dB. Thus, the above analysis is valid for most channel
instantiations and practical SNRs.

Having determined the expected received SNR for a given
channel instantiation, assuming uncoded M-ary QAM transmis-
sion, the corresponding SER is given as [15]

(19)

(20)

where is the Gaussian Q-function, and is given by (17).
The above expression can now be averaged over the probability
density function of through numerical integration.

IV. CLOSED-FORM SEMIBLIND ESTIMATION

First, recall that the first-order Taylor expansion of a function
of two variables is given by

(21)

Now, in CFSB, the error in (or loss in SNR) occurs due to
two reasons: first, the noise in the received training symbols, and
second, the use of an imperfect estimate of (from the noise
in the data symbols and availability of only a finite number
of unknown white data). More precisely, let the estimator of
be expressed as a function of the two variables

and . Using the above expansion, we have

(22)
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where and from (7), . Since
the training noise and the error in the estimate are mutually
independent, we get

(23)

Note that the term represents the MSE in as if the re-
ceiver had perfect knowledge of (i.e., ), and the
term represents the MSE in when the training symbols
are noise-free (i.e., ). Hence, the error in can be
thought of as the sum of two terms: the first one being the error
due to the noise in the white (unknown) data, and the second
being the error due to the noise in the training data. A similar
decomposition can be used to express the loss in channel gain
(relative to ).

A. MSE in With Perfect

In this section we consider the error arising exclusively from
the training noise, by setting . Let be defined as

. Then, from (5)

where, , as before. Recall from (7)
that . Now, can be simplified as

, whence we get

Ignoring terms of order and simplifying, the MSE in
is

(24)

Taking expectation and simplifying the above expression using
Lemma 2, we get

(25)

Interestingly, the above expression is the CRB for the estimation
of assuming perfect knowledge of , which we prove in the
following theorem.

Theorem 1: The error given in (25) is the CRB for the esti-
mation of under perfect knowledge of .

Proof: From (37), the effective SNR for estimation of
is . From the results derived for the CRB with con-
strained parameters [7], [16], and since , the
estimation error in is proportional to the number of parame-
ters, which equals as is a -dimensional complex vector
with one constraint . The estimation error is given
by

Num. Parameters

(26)

which agrees with the ML error derived in (25).

B. Received SNR With Perfect

We start with the expression for the channel gain when using
and as the transmit and receive beamforming vectors.

When we have perfect knowledge of at the receiver,
and , where and .
The power amplification with perfect knowledge of , denoted
by . As shown in
the Section B of the Appendix, this can be simplified to

(27)

Finally, the received SNR is given by , as before. Com-
paring the above expression with the power amplification with
CLSE (17), we see that when , even in the best case of a
spatially single-dimensional channel

. Next, when , CLSE and CFSB techniques perform ex-
actly the same: since (that is,
no receive beamforming is needed). Thus, if perfect knowledge
of is available at the receiver, CFSB is guaranteed to perform
as well as CLSE, regardless of the training symbol SNR.

C. MSE in With Noise-Free Training

We now present analysis to compute the second term in (23),
the MSE in solely due to the use of the erroneous vector
in (7), and hence let , or . As in Section III-C,
we can express as a linear combination of the columns of
as . We slightly abuse notation from Section IV-A and
redefine as . Hence

Thus, from (7), we have, , where .
From Lemma (3)

(28)

Let . Then, as shown in the Sec-
tion C of the Appendix, , the first element of , is given by

(29)
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and hence . Let be de-

fined as . Then, from Section C of the Appendix,
is given by

(30)
Substituting, we get the final expression for the MSE as

(31)

Note that the above expression decreases as (since
depends linearly on ), and therefore the MSE asymptotically
(as ) approaches the bound in (25).

D. Received SNR With Noise-Free Training

The power amplification with noise-free training, de-
noted , is given by . We also have

and , where . Then,
, and thus

Substituting for from (9) and from (30), we obtain the
power amplification with noise-free training as

(32)

As before, the received SNR is given by . Note that
approaches for large values of length and SNR .

E. Semiblind Estimation: Summary

Recall that and . The final expres-
sions for the MSE in and the power amplification, from (23),
are

(33)

(34)

The SER with semiblind estimation is given by , with
defined as in (19).

V. COMPARISON OF CLSE AND SEMIBLIND SCHEMES

In order to compare the CFSB and CLSE techniques, one
needs to account for the performance of the white data versus
beamformed data, an issue we address now. Generic compar-
ison of the semiblind and conventional schemes for any arbitrary
system configuration is difficult, so we consider an example to
illustrate the tradeoffs involved. We consider the 2 2 system
with the Alamouti scheme [17] employed for white data trans-
mission, and with uncoded 4-QAM symbol transmission. The
choice of the Alamouti scheme enables us to present a fair com-
parison of the two estimation algorithms since it has an effective
data rate of one bit per channel use, the same as that of MRT.
In addition, it is possible to employ a simple receiver structure,
which makes the performance analysis tractable.

Let the beamformed data and the white data be statistically
independent, and a zero-forcing receiver based on the conven-
tional estimate of the channel (3) be used to detect the white data
symbols. In Section D of the Appendix, we derive the average
SNR of this system as

(35)

where is the Frobenius norm, is the per-symbol transmit
power and as defined before. From (35), we can
also obtain the symbol error rate performance of the Alam-
outi coded white data by using (19) with replaced by .
The resulting expression can be numerically averaged over the
pdf of , which is Gamma distributed with degrees of
freedom, to obtain the SER. The analysis of the beamformed
data with the CFSB estimation when the Alamouti scheme is
employed to transmit spatially white data remains largely the
same as that presented in the previous section, where we had
assumed that satisfies . With Alam-
outi white-data transmission, we have that ,
which causes the term to drop out in (41) of Section C of
the Appendix.

A. Performance of a 2 2 System With CLSE and CFSBl

In order to get a more concrete feel for the expressions ob-
tained in the preceding, let us consider a 2 2 system with

, 8, 6 dB and 110 total symbols per frame, i.e.,
two training symbols, eight white data symbols, and 100 beam-
formed data symbols in the semiblind case, and two training
symbols and 108 beamformed data symbols in the conventional
case. The average channel power gain versus training symbol
SNR , obtained under different CSI and signal transmis-
sion conditions are shown in Fig. 3. When the receiver has per-
fect channel knowledge (labeled perfect , ), the average
power gain is 5.5 dB, independent of the training
symbol SNR. The with CLSE as well as the semiblind tech-
niques asymptotically tend to this gain of 5.5 dB as the SNR
becomes large, since the loss due to estimation error becomes
negligible. The channel power gain with only white (Alamouti)
data transmission asymptotically approaches 3 dB (the gain per
symbol of the 2 2 system with Alamouti encoding).
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Fig. 3. Average channel gain of a t = r = 2 MIMO channel with L = 2,
N = 8, and P = 6 dB, for the CLSE and beamforming, CFSB and
beamforming (with and without knowledge of u ), CLSE and white data
(Alamouti-coded), and perfect beamforming at transmitter and receiver. Also
plotted is the theoretical result for the performance of Alamouti-coded data
with channel estimation error, given by (35).

The channel power gain at any is given by (35), which is
validated in Fig. 3 through simulation. Observe that at a given
training SNR, there is a loss of approximately 3 dB in
terms of the channel gain performance for the Alamouti scheme
compared to the beamforming with conventional estimation.
The results of the channel power gain obtained by employing
the CFSB technique with 8 Alamouti-coded data sym-
bols are shown in Fig. 3, and show the improved performance
of CFSB. By transmitting a few Alamouti-coded symbols, the
CFSB scheme obtains a better estimate of , thereby gaining
about 0.8 dB per symbol over the CLSE scheme, at a
training SNR of 2 dB.

If the frame length is 110 symbols, we have 100 beam-
formed data symbols in the semiblind case and 108
beamformed data symbols in the conventional case. Using the
beamforming vectors estimated by the CFSB algorithm, we then
have a net power gain given by

, or about 0.4 dB per frame. Thus, this simple example
shows that CFSB estimation can potentially offer an overall
better performance compared to the CLSE. Although we have
considered uncoded modulation here, in more practical situa-
tions a channel code will be used with interleaving both between
the white and beamformed symbols as well as across multiple
frames. In this case, burst errors can be avoided and the errors in
the white data symbols corrected. Furthermore, the performance
of the white data symbols can also be improved by employing
an MMSE receiver or other more advanced multiuser detectors
rather than the zero-forcing receiver, leading to additional im-
provements in the CFSB technique.

B. Discussion

We are now in a position to discuss the merits of the con-
ventional estimation and the semiblind estimation. Clearly, the
CLSE enjoys the advantages of being simple and easy to imple-
ment. As with any semiblind technique, CFSB being a second-
order method requires the channel to be relatively slowly time-
varying. If not, the CLSE can still estimate the channel quickly
from a few training symbols, whereas the CFSB may not be able
to converge to an accurate estimate of from the second-order
statistics computed using just a few received vectors. Another
disadvantage of the CFSB is that it requires the implementation
of two separate receivers, one for detecting the white data and
the other for the beamformed data. However, the CFSB estima-
tion could outperform the CLSE in channels where the loss due
to the transmission of spatially white data is not too great, i.e.,
in full column-rank channels. Given the parameters , ,
and , the theory developed in this paper can be used to de-
cide if the CFSB technique would offer any performance ben-
efits versus the CLSE technique. If the CFSB technique is to
perform comparably or better than the CLSE, the following two
things need to be satisfied.

1) The estimation performance of CLSE and CFSB should
be comparable, i.e., the number of white data symbols

and the data power should be large enough to en-
sure that the estimate is accurate, so that the resulting

can perform comparably to the conventional estimate.
For example, since the channel gain with semiblind esti-
mation is given by (33), should be chosen to be of the
same order as ; and both and should be of the
order higher than . With such a choice, the
term will dominate the SNR loss in the CFSB, thus en-
abling the beamformed data with CFSB estimation to out-
perform the beamformed data with CLSE.

2) The block length should be sufficiently long to ensure that
after sending symbols, there is sufficient room
to send as many beamformed symbols as is necessary
for the CFSB technique to be able to make up for the
performance lost during the white data transmission. In
the above example, after having obtained the appropriate
value of , one can use (35) to determine the loss due
to the white data symbols (for the case), and then
finally determine whether the block length is long enough
for the CFSB to be able to outperform the CLSE method.

In Section VI, we demonstrate through additional simulations
that the CFSB technique does offer performance benefits rela-
tive to the CLSE, for an appropriately designed system.

C. Semiblind Estimation: Limitations and Alternative
Solutions

The CFSB algorithm requires a sufficiently large number of
spatially-white data to guarantee a near perfect estimate of

and this error cannot be overcome by increasing the white-
data SNR. It is therefore desirable to find an estimation scheme
that performs at least as well as the CLSE algorithm, regardless
of the value of and . Formal fusion of the estimates ob-
tained from the CLSE and CFSB techniques is difficult, hence
we adopt an intuitive approach and consider a simple weighted
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linear combination of the estimated beamforming vectors as
follows:

(36)
The above estimates will be referred to as the linear combination
semiblind (LCSB) estimates. The weights and

are a measure of the accuracy of the vectors
estimated from the CLSE and CFSB schemes respectively. The
scaling factor of and is introduced because obtained
from known training symbols is more reliable than the blind
estimate when and . In our simulations,
for , the choice was found to perform
well. Analysis of the impact of and is a topic for future
research.

VI. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
performance of the different estimation schemes. The simula-
tion setup consists of a Rayleigh flat fading channel with 4
transmit antennas and 4 receive antennas . The data
(and training) are drawn from a 16-QAM constellation. 10 000
random instantiations of the channel were used in the averaging.

Measuring the Error Between Singular Vectors: In the
simulations, and are obtained by computing the SVD
of two different matrices and respectively. However,
the SVD involves an unknown phase factor, that is, if is a
singular vector, so is for any . Hence, for
computational consistency in measuring the MSE in , we
use the following dephased norm in our simulations, similar
to [18]: , which satisfies

. The norm con-
sidered in our analysis is implicitly consistent with the above
dephased norm. For example, the norm in (14) is the same as
the dephased norm, since the perturbation term is real (as
noted in Section III-A). Also, for small additive perturbations,
it can easily be shown that (for example) in (24), the dephased
norm reduces to the Euclidean norm.

Experiment 1: In this experiment, we compute the MSE of
conventional estimation and the MSE of the semiblind estima-
tion with perfect , which serves as a benchmark for the per-
formance of the proposed semiblind scheme. Fig. 4 shows the
MSE in versus , for two different values of pilot SNR (or

), with perfect . CFSB performs better than the CLSE tech-
nique by about 6 dB, in terms of the training symbol SNR for
achieving the same MSE in . The experimental curves agree
well with the theoretical curves from (15), (25). Also, the results
for the performance of the semiblind OPML technique proposed
in [8] are plotted in Fig. 4. In the OPML technique, the channel
matrix is factored into the product of a whitening matrix

and a unitary rotation matrix . A blind algorithm is
used to estimate , while the training data is used exclusively to
estimate . Thus, the OPML technique outperforms the CFSB
because it assumes perfect knowledge of the entire and
matrices (and is computationally more expensive). The CFSB
technique, on the other hand, only needs an accurate estimate of

from the spatially-white data.

Fig. 4. MSE in v versus training data length L, for a t = r = 4 MIMO
system. Curves for CLSE, CFSB and OPML with perfect u are plotted. The
top five curves correspond to a training symbol SNR of 2 dB, and the bottom
five curves 10 dB.

Fig. 5. SER of beamformed data versus number of training symbols L,
t = r = 4 system, for two different values of white-data length N , and data
and training symbol SNR fixed at P = P = 6 dB. The two competing
semiblind techniques, OPML and CFSB, are plotted. CFSB marginally
outperforms OPML for N = 50, as it only requires an accurate estimate of u
from the blind data.

Experiment 2: Next, we relax the perfect assumption.
Fig. 5 shows the SER performance of the CLSE, OPML and
the CFSB schemes at two different values of , as well as the

(perfect knowledge of ) case. At 50 white
data symbols, the CLSE technique outperforms the CFSB for

, as the error in dominates the error in the semiblind
technique. As white data length increases, the CFSB performs
progressively better than the CLSE. Also, in the presence of a
finite number of white data, the CFSB marginally outper-
forms the OPML scheme as CFSB only requires an accurate
estimate of the dominant eigenvector from the white data.
In Fig. 6, we plot both the theoretical and experimental curves
for the CFSB scheme when 100, as well as the simula-
tion result for the LCSB scheme defined in Section V-C. The
LCSB outperforms the CLSE and the CFSB technique at both
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Fig. 6. SER versus L, t = r = 4 system, for two different values of N , and
data and training symbol SNR fixed at P = P = 6 dB. The theoretical
and experimental curves are plotted for the CFSB estimation technique. Also,
the LCSB technique outperforms both the conventional (CLSE) and semiblind
(CFSB) techniques.

Fig. 7. SER versus data SNR for the t = r = 2 system, withL = 2,N = 16,

 = 2 dB. “CLSE-Alamouti” refers to the performance of the spatially-white
data with conventional estimation, “CLSE-bf” is the performance of the
beamformed data with v̂ , “CFSB” and “LCSB” refer to the performance of
the corresponding techniques after accounting for the loss due to the white
data. “CFSB-u1” is the performance of CFSB with perfect-u , and “Perf-bf”
is the performance with the perfect u and v assumption.

and . Thus, the theory developed in this paper
can be used to compare the performance of CFSB and CLSE
techniques for any choice of and .

Experiment 3: Finally, as an example of overall performance
comparison, Fig. 7 shows the SER performance versus the data
SNR of the different estimation schemes for a 2 2 system,
with uncoded 4-QAM transmission, training symbols,

16 white data symbols (for the semiblind technique) and
a frame size 500 symbols. The parameter values are
chosen for illustrative purposes, and as and increase, the
gap between the CLSE and CFSB reduces. From the graph, it is
clear that the LCSB scheme outperforms the CLSE scheme in
terms of its SER performance, including the effect of white data
transmission.

VII. CONCLUSION

In this paper, we have investigated training-only and semi-
blind channel estimation for MIMO flat-fading channels with
MRT, in terms of the MSE in the beamforming vector , re-
ceived SNR and the SER with uncoded M-ary QAM modula-
tion. The CFSB scheme is proposed as a closed-form semib-
lind solution for estimating the optimum transmit beamforming
vector , and is shown to achieve the CRB with the perfect
assumption. Analytical expressions for the MSE, the channel
power gain and the SER performance of both the CLSE and the
CFSB estimation schemes are developed, which can be used to
compare their performance. A novel LCSB algorithm is pro-
posed, which is shown to outperform both the CFSB and the
CLSE schemes over a wide range of training lengths and SNRs.
We have also presented Monte Carlo simulation results to illus-
trate the relative performance of the different techniques.

APPENDIX

A. Proof of Lemma 1

Let , , and
. Then, since the training sequence is orthogonal,

holds. Substituting into (5), we have

(37)

Thus, we seek the estimate of as the solution to the following
least-squares problem

(38)

Note that

The that maximizes the above expression is readily found
to be . Substituting for and , the
desired result is obtained.

B. Received SNR With Perfect

Here, we derive the expression in (27). For notational sim-
plicity, define and . Then, we
have

(39)

where is the complex conjugate of . Also,
, and
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. Thus, the power amplification for perfect is given
by .

C. Proof for Equations (29) and (30)

In order to derive an expression for , we write
as a perturbation of . Since

, equating components, we have

Substituting in (28), we get

(40)

It now remains to compute . Recall that is computed
from the SVD in (4). Stacking the transmitted and received data
vectors into matrices and and the
noise vectors into , with appropriate scaling we can
rewrite (4) as

where

and , ,
, and finally , as before.

Observe that, since the white data and AWGN are mutu-
ally independent, the elements of , and are pairwise
uncorrelated. Also,

, , and
. Thus, from the

first-order perturbation analysis (8), ,
and therefore

(41)

Simplifying the different components in the above ex-
pression, we have ,

and .
Substituting into (41), we get (30).

D. Performance of Alamouti Space–Time-Coded Data With
Conventional Estimation

In this section, we determine the performance of Alamouti
space–time-coded data for a general matrix channel with
estimation error and a zero-forcing receiver. Similar results for
other specific cases can be found in [19], [20]. Denote the
channel matrix in terms of its columns as . Also,
let the orthogonal training symbol matrix be defined
in terms of its rows as . Thus, from (3), the
channel is estimated conventionally as

(42)

The effective channel with Alamouti-coded data transmission
can be represented by stacking two consecutively received
vectors and vertically as follows:

(43)

where , 1, 2 is the AWGN affecting the white data
symbols. When a zero-forcing receiver based on the estimated
channel is employed, the received vectors are decoded using

as

(44)

It is clear from symmetry that the performance of and will
be the same; hence, we can focus on determining the SER per-
formance of . Now, contains three components, the signal
component coming from , and a leakage term coming from
the symbol and the noise term coming from the white noise
term as follows:

(45)

The coefficient of the term, denoted is

(46)

(47)

From the above equation, it is clear that the performance of the
symbol is dependent on the training noise instantiation .
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However, we can consider the average power gain, averaged
over the training noise, as follows:

(48)

(49)

(50)

where, in (48), the cross terms disappear since the noise is
zero-mean and due to the orthogonality of the training . Sim-
ilarly, the coefficient of the term, denoted , can be simpli-
fied as

(51)

We will assume for simplicity that the term is an additive
white Gaussian noise impairing the estimation of , i.e., we do
not perform joint detection. This noise term is independent of
the AWGN component . Similar to the coefficient of , we
can consider the average power gain of the term, which can
be obtained after a little manipulation as

(52)

Finally, the noise term, denoted , is

(53)

from which we can obtain the noise power as

(54)

Thus, the SNR for detection of a white data symbol is given by

(55)

E. Other Useful Lemmas

In this section, we present three useful lemmas without proof
for the sake of brevity.

Lemma 4: Let be an orthogonal set of vectors
(i.e., ), and let contain i.i.d. ZM-
CSCG entries with mean and variance . Then, the
elements of are uncorrelated, and the variance of
each element of is .

Lemma 5: A transformation of (defined in Lemma 4) by
any orthogonal matrix (i.e., )

to get , leaves the second-order statistics of unal-
tered, that is

where when , and 0 otherwise.
Lemma 6: If the random vector has zero-mean

circularly symmetric i.i.d. entries, then so does , where
. Further, if satisfies , then the variance of

an element of is the same as that of .
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