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Blind frequency synchronization in OFDM via
diagonality criterion

Timo Roman, Samuli Visuri and Visa KoivunenSenior Member, IEEE

Abstract— In this paper we address the problem of blind
carrier frequency offset (CFO) estimation in OFDM systems
in the case of frequency selective channels. CFO destroys
the orthogonality between the carriers leading to non-
diagonal signal covariance matrices in frequency domain.
The proposed blind method enforces a diagonal structure
by minimizing the power of non-diagonal elements. Hence,
the orthogonality property inherent to OFDM transmission
with cyclic prefix is restored. The method is blind since it
does not require a priori knowledge of the transmitted data
or the channel, and does not need any virtual subcarriers. A
closed-form solution is derived, which leads to accurate and
computationally efficient CFO estimation in multipath fading
environments. Consistency of the estimator is proved and the
convergence rate as a function of the sample size is analyzed
as well. To assess the large sample performance, we derive
the Cramér-Rao bound (CRB) for the blind CFO estimation
problem. The CRB is derived assuming a general Gaussian
model for the OFDM signal, which may be applied to both
circular and non-circular modulations. Finally, simulati on
results on CFO estimation are reported using a realistic
channel model.

Index Terms— OFDM, frequency offset, blind methods,
Cramér-Rao bound, covariance matrix.

I. I NTRODUCTION

ORTHOGONAL Frequency Division Multiplexing
(OFDM) transmission has already proven successful

for both wireless (e.g. DVB-T and WLAN) and wireline
applications (e.g. ADSL). Multicarrier modulation is a
powerful technique to handle impairments of wireless
communication media such as multipath propagation due
to its ability to turn frequency selective channels into a
set of narrowband frequency flat channels [1], [2]. Hence,
OFDM is a viable candidate for future beyond 3G wireless
communications standards.

One of the main drawbacks of OFDM over single-
carrier systems is its high sensitivity to carrier fre-
quency offsets (CFO) caused by oscillator inaccuracies
and Doppler shift due to mobility [3]. This gives rise to
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inter-carrier interference (ICI) and reduction in amplitude
for the desired subcarriers [2]. The issue is critical when
higher data rates are required, and relatively large number
of subcarriers together with very narrow guard bands are
used [4], [5]. Imperfect CFO estimation has also a detri-
mental impact on channel estimation [6]. Consequently,
frequency offset estimation and compensation must be
accomplished with high fidelity.

Most of the existing CFO estimators for OFDM rely on
periodically transmitted pilot symbols [7]–[10]. However,
this takes place at the expense of bandwidth efficiency,
especially in the case of continuous transmissions (e.g.
DVB-T). Therefore, pilot-based schemes are mainly suited
for packet-oriented applications.

Semi-blind approaches proposed in the literature aim at
improving bandwidth efficiency [11]–[13]. Those usually
rely on various assumptions such as the usage of a single
pilot symbol, two identical consecutive OFDM data blocks
[11], decision-directed processing [13], or some specific
structure within the OFDM symbol [14].

Blind (non data-aided) methods have received consider-
able amount of attention over the past years. Among dif-
ferent classes of methods, one may distinguish subspace-
based methods [15]–[17], which were recently shown to
be equivalent to the maximum likelihood (ML) estimator
[18]. Those methods rely on the low rank signal model
induced by either some unmodulated carriers or virtual
subcarriers (VSC). VSC are unmodulated subcarriers at
the edges of the OFDM block which aim at minimizing
the interference caused to adjacent OFDM systems. Their
number is dictated by system design requirements [19].
While OFDM systems are suited by design to multipath
transmission, many existing CFO estimators deal only
with frequency flat channels [20], [21]. A ML estimator
was proposed in [20] assuming an additive white Gaussian
noise (AWGN) channel. Unfortunately, it is not robust
to multipath propagation. Extension of ML methods to
multipath Rayleigh fading channels may be found in [22].
More recently, non-circularity introduced by real-valued
modulations (e.g., BPSK) was exploited in [23], [24].
Constant modulus (CM) constellations allow highly accu-
rate CFO estimation also, see e.g. [25], [26]. An approach
relying on a kurtosis type of criterion was proposed in
[27]. Most of the CFO estimation algorithms in the litera-
ture exploit second-order cyclostationarity [20], [28], [29].
Cyclostationarity in the received signal is induced by the
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cyclic prefix (CP). In addition, higher-order statistics have
been exploited in [30]. Joint frequency synchronization
and channel estimation schemes have been proposed as
well [31]. They typically require solving multidimensional
optimization problems. Hence, their complexity limits
their practical use.

In this paper, a blind method for CFO estimation and
compensation in frequency selective channels is intro-
duced. The method does not require a priori knowledge of
the transmitted data or the multipath channel. Bandwidth
efficiency remains high as no pilot or virtual carriers
are needed. Information on the CFO is embedded in the
received signal covariance matrix. Based on that property,
a cost function may be derived, and the sample covariance
matrix may be used to estimate the CFO in practice.
The cost function minimizes the total off-diagonal power
induced by ICI in frequency domain. Enforcing a diag-
onal structure aims at restoring the orthogonality of the
transmission inherent to perfectly synchronized OFDM
modulation. The proposed algorithm applies to both real
(e.g., BPSK, PAM) and complex modulations (e.g., QPSK,
8PSK, 16QAM, 64QAM), and extends to asymmetric
constellations as well. Hence it may be used in a wide
range of OFDM transceivers. Furthermore, accurate CFO
estimation is achieved at low SNR regime, where decision-
directed methods are most likely to fail.

A closed-form expression is found for the cost function
which leads to low complexity and accurate computational
solution. The proposed method is shown to yield a consis-
tent estimate of the CFO. Convergence in the mean square
is proved also, and the convergence rate of the algorithm
as a function of the sample size is analyzed in a closed-
form as well.

In order to assess the efficiency of the estimator, we
derive the Cramér-Rao bound (CRB) for blind CFO
estimators. We model the OFDM signal as a Gaussian
process. Depending on the modulation in use, the received
signal may be complex circular (proper) or not [32].
Consequently, the CRB has to be derived for a general
Gaussian model which includes both signal covariance and
pseudo-covariance matrices [23], [33]. Simulation results
for the presented estimator show a performance close
to the CRB. Numerical results are also in par with the
theoretical analysis of the convergence rate.

The rest of the paper is organized as follows. Section II
introduces the system model. In Section III, second order
statistics for real and complex random vectors are briefly
reviewed. In Section IV, we define a cost function for the
blind method and derive a closed-form expression for it.
Then, a new blind frequency offset estimation algorithm
is introduced. Consistency of the CFO estimator is
proved in Section V, and the convergence rate is analyzed
as well. In Section VI, we derive the CRB for the
blind CFO estimation problem. Simulation results are
reported in Section VII, where we demonstrate the

reliable performance of the proposed method at different
noise levels for both fixed and random channel impulse
responses. Finally, Section VIII concludes the paper.
Proofs and additional derivations may be found in the
Appendix.

The following notation is used throughout the paper:

a, a, A scalara, column vectora, matrix A;
A

T , A
H transpose ofA, conjugate transpose ofA;

A
1/2, A

−1 Hermitian square-root ofA, inverse ofA;
[A]ij (i, j) element of matrixA;
IN identity matrix of sizeN × N ;
1N N × N matrix filled with ones;
0N×N N × N matrix filled with zeros;
diag{a} N × N diagonal matrix with

a = [a1, . . . , aN ]T on the main diagonal;
E expectation operator;
Tr, ∗ trace operator, elementwise conjugation;
‖ ‖F Frobenius norm;
⊗, � Kronecker product, Hadamard product;
∝, mod N proportional to, moduloN operator;
vec stacks columns of a matrix on top of

each other;
Re, Im real part, imaginary part;
arg argument of a complex number;
δk,l δk,l = 1 if k = l, δk,l = 0 if k 6= l;
i.i.d. independent and identically distributed;
w.p. 1 convergence with probability one.

II. SYSTEM MODEL

We use a general OFDM transmission model [16] (see
Fig. 1). Thek-th modulated OFDM block may be written
as

b(k) = FNa(k), (1)

where FN = 1/
√

N {exp (j2πmn/N)}m,n=0,...,N−1 is
the N × N inverse discrete Fourier transform (IDFT)
matrix, N is the number of subcarriers, anda(k) is the
complex-valuedN × 1 symbol vector.

The received OFDMN×1 signal block in time domain
after cyclic prefix removal, including frequency offset,
may be expressed as [19]:

rε(k) = ej2πε(kP+L)/NC(ε)H̃b(k) + w(k), (2)

where:
• The length of the cyclic prefix isL and the total

OFDM block length isP = N + L.
• The matrixH̃ of sizeN × N is a circulant channel

matrix [1], [19] built from the channel impulse vector
h in time domain of sizeLh × 1, with Lh ≤ L.
Furthermore, the channel is assumed to be quasi-
stationary over the observation period.

• The diagonal matrixC(ε) of sizeN ×N introduces
the frequency offsetε:

C(ε) = diag
{
ej 2πnε

N , n = 0, . . . , N − 1
}

. (3)

• The noise termw in (2) is assumed to be circular
complex Gaussian [32] with covariance matrixσ2IN .
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Fig. 1. OFDM transmission chain.

The signal and noise processes are assumed to be
mutually independent, and i.i.d. over time indexk.

The quantityε is referred to as normalized frequency
offset with respect to inter-carrier spacing. The effective
frequency deviation isε ∆f [Hz], where ∆f = B/N
is the inter-carrier spacing andB [Hz] is the bandwidth
allocated to the system. The proposed algorithm is aimed
at estimating the fractional CFO, i.e., we assume that
ε ∈ [0, 1[. Hence, it may track small CFO or the residual
offset when the initially larger CFO has been significantly
reduced by other means [7], [14], [18], [34].

In case of perfect frequency synchronization (i.e.ε = 0,
C(0) = IN ), the received signal becomes

r(k) = H̃b(k) + w(k). (4)

Given an estimatêε of the true valueε, CFO compen-
sation may be performed in time domain at the receiver
prior to the discrete Fourier transform. Based on (2), the
resulting CFO compensated received vector,vε̂ε, may be
expressed as

vε̂ε(k)=ϕ∗
k(ε̂)FH

NC∗(ε̂)rε(k) (5)

=ϕ∗
k(ε̂−ε)FH

NC∗(ε̂−ε)H̃b(k) + . . .

. . . + ϕ∗
k(ε̂)FH

NC∗(ε̂)w(k), (6)

whereC(ε̂) andC(ε̂− ε) possess the structure defined in
(3) andϕk(ε) = exp (j2πε(kP + L)/N).

III. SECOND ORDER STATISTICS FOR REAL AND

COMPLEX MODULATIONS

In order to fully characterize the second order statistics
of a complex-valued random vectoru, two matrices are
needed [33]:

cov(u) , E
[
(u− E [u]) (u− E [u])

H
]

(7)

pcov(u) , E
[
(u− E [u]) (u− E [u])

T
]
, (8)

where cov(u) is the covariance matrix ofu and pcov(u)
is the pseudo-covariance matrix ofu. The pseudo-
covariance matrix is sometimes also referred to as con-
jugate covariance matrix or complementary covariance
matrix [32], [33]. A complex-valued random vectoru
is called circular (or proper [32]) random vector if its
pseudo-covariance vanishes, i.e., pcov(u) = 0N×N .

Depending whether complex or real symbol modu-
lations are used, the received signal becomes complex
circular or non-circular. More specifically, let us assume
i.i.d. data bits, which are mapped onto the complex zero
mean data vectora(k). From now on, we drop the time
index k for simplicity. Let us denote the covariance and
pseudo-covariance matrices ofa by Qa = cov(a) and
Pa = pcov(a), respectively. For instance, with BPSK
symbols, bothQa and Pa are non-zero. With QAM
symbols,Pa = 0N×N , since real and imaginary parts of
a are independent. Hence, complete second order statistics
include both signal covariance and pseudo-covariance
matrices [33].

IV. B LIND CFO ESTIMATION IN OFDM VIA

DIAGONALITY CRITERION

A. Signal covariance matrix

In this section, we introduce a carrier frequency offset
(CFO) estimation method for OFDM based on the signal
covariance matrix. Hence, it applies to both real- and
complex-valued modulations. This derivation extends the
preliminary results presented in [29]. Without loss of
generality, we assume that unit energy QPSK constellation
is used. Hence, the symbol vector covariance matrix is
cov(a) = IN . However, even though the QPSK case
is considered only, results presented in this paper extend
to any other kind of real- or complex-valued modulation
scheme, e.g., BPSK, 8PSK, 16QAM, 64QAM. From the
transmission equation (4),Q = cov(r) may expressed as

Q = E
[(

H̃b + w
)(

H̃b + w
)H

]
(9)

= H̃FN cov(a) FH
NH̃H + cov(w) (10)

= H̃H̃H + σ2IN , (11)

where (10) follows from the independence between the
zero-mean noise and data processes. From (10) to (11),
we used cov(a) = IN , the unitary property of the IDFT
matrix, and the fact that cov(w) = σ2IN .

B. Cost function minimizing the total off-diagonal power

Let Q̃k (µ) = cov(vµε(k)), wherevµε denotesvε̂ε in
(5) evaluated at̂ε = µ. Then Q̃k (µ) and Q are related
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by

Q̃k (µ)=FH
NC∗(µ−ε)H̃H̃HC(µ−ε)FN + σ2IN

1(12)

=FH
NC∗(µ−ε)QC(µ−ε)FN (13)

,Q̃ (µ) , (14)

where we followed the same intermediate steps and as-
sumptions as for equations (9)-(11).

Null or perfectly compensated frequency offset (µ = ε)
leads to a perfectly orthogonal transmission, andQ̃(µ)
becomes diagonal. Proof is straightforward and may be
found in Appendix I. Off-diagonal elements are introduced
by inter-carrier interference and should be minimized.
Hence, for a given offset compensation valueµ, we choose
the total off-diagonal powerJ (µ) of Q̃(µ) as a cost
function to be minimized:

J (µ) =
∥∥∥Q̃ (µ) � (1N − IN )

∥∥∥
2

F
, µ ∈ [0, 1[, (15)

where� stands for the Hadamard product and1N denotes
a N×N matrix of 1’s. Notice that the noise does not have
any influence in theory provided that its covariance matrix
is diagonal, i.e., it is uncorrelated.

In order to guarantee the identifiability of the CFO,
the channel covariance matrix̃HH̃H should have off-
diagonal terms2. Otherwise, the matrixQ is diagonal and
C(ε)QC∗(ε) does not contain information onε anymore.

Now, Theorem 1 proves the existence of a unique
minimum ofJ at ε in [0, 1[.

Theorem 1:Let J : µ 7→ J (µ) be defined as in (15).
Then, assuming a non-diagonal channel covariance matrix
H̃H̃H ,

1) J (ε) = 0.
2) J (µ) > 0, ∀µ 6= ε, µ ∈ [0, 1[.

Proof is given in Appendix I. Hence, true CFO may
be found by drivingJ (µ) to zero. In practice, only an

estimatễ
QK (µ) of Q̃ (µ) is available (subscriptK refers

to the sample size). Then, an estimateε̂ of the CFOε may
found by

ε̂K = arg min
µ∈[0,1[

ĴK (µ) , (16)

where the estimated cost function̂JK after K received
OFDM blocks is given as

ĴK (µ) =
∥∥∥ ̂̃
QK (µ) � (1N − IN )

∥∥∥
2

F
, µ ∈ [0, 1[. (17)

The cost functionĴK penalizes the off-diagonal energy

of ̂̃
QK . It measures the loss of orthogonality due to CFO.

1The block dependent phase termϕk(ε) in (2) cancels out in the
derivation of

�

Qk (µ) = cov(vµε(k)). Hence
�

Qk (µ) does not depend
on the block indexk and will be further denoted by

�

Q (µ).
2The channel is required to be multipath, i.e., it has at leasttwo non-

zero taps in time domain. The latter assumption is fulfilled in practical
OFDM transmissions.

The proposed method is blind in a sense that minimization
of ĴK may be performed without any knowledge of the
wireless channel̃H or pilot symbols.

Note that exploiting the pseudo-covariance matrix alone
instead of the covariance is not a viable choice here.
In theory, P̃k (µ) = pcov(vµε(k)) contains information
on the CFO for real-valued modulations. However, the
block dependent phase termϕk(ε) in (2) drives its sample
estimate to zero for large sample sizes.

C. Closed-form expression for the cost function

In order to find a computationally efficient way to
estimate the CFO, a closed form expression of the cost
function is derived next. To begin with, let us state the
following useful lemma:

Lemma 1:Given any non-zero matrixR of sizeN×N ,
and matricesFN and C(µ) as defined in (1) and (3),
respectively, the functionKR of the real parameterµ given
by

KR (µ) =
∥∥(

FH
NC∗(µ)RC(µ)FN

)
� (1N − IN )

∥∥2

F

can be written asKR (µ) = a+ b cos (2πµ)+ c sin (2πµ),
where scalarsa, b, c ∈ R are specific to the matrixR.
Proof of Lemma 1 as well as expressions fora, b and c
are given in Appendix II.

Let us defineR = C(ε)Q̂KC∗(ε), whereQ̂K is the
sample covariance matrix forε = 0 (see (24)-(25)). Then,
̂̃
QK (µ) = FH

NC∗(µ)RC(µ)FN , and by applying Lemma
1, the estimateĴK of the cost function in (17) may be
expressed as

ĴK (µ) = a + b cos (2πµ) + c sin (2πµ) , (18)

wherea, b, c ∈ R. From (18),ĴK is obviously a periodic
function ofµ with period1. Hence, we may further restrict
our analysis to the interval[0, 1[. An example of the cost
function is depicted in Figure 2, at15 dB SNR and with
K = 200 observed blocks. The minimum is reached at
µ = 0.4379, while the true offset isε = 0.43. The
sinusoidal form may be clearly observed, which is in par
with the result in (18).

DifferentiatingĴK with respect toµ yields

∂

∂µ
ĴK (µ) = −2πb sin (2πµ) + 2πc cos (2πµ) . (19)

The extrema ofĴK in [0, 1[ are found in closed form as

ν̂Ki
=

1

2π
arctan

{c

b

}
+

i

2
mod 1, i = 0, 1. (20)

Given the form in (18), it is sufficient to evaluatêJK

at three points in order to solve fora, b andc. We choose
the following equi-spaced points3 0, 1/3 and 2/3 within

3A similar minimization/maximization procedure in closed-form was
employed in [27].
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the interval[0, 1[. Hence, the extrema of̂JK may be given
in closed form by

ν̂Ki
=

1

2π
arctan

{ √
3
(
ĴK

(
1
3

)
−ĴK

(
2
3

) )

2 ĴK (0)−ĴK

(
1
3

)
−ĴK

(
2
3

)
}

+ . . .

. . .+
i

2
mod 1, i = 0, 1. (21)

Finally, the frequency offset estimate is found by choosing
the value corresponding to the minimum of the cost
function

ε̂K =

{
ν̂K0 if ĴK (ν̂K0) < ĴK (ν̂K1) ,
ν̂K1 otherwise.

(22)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

35.5

36

36.5

37

37.5

38

38.5

µ=0.4379

µ

�

J
2
0
0

(µ
)

Fig. 2. Estimate of cost function
�

J200 (µ), K = 200, ε = 0.43 and
SNR=15 dB. The cost function is sinusoidal.

V. PERFORMANCE ANALYSIS

In this section, we assess the large sample performance
of the proposed CFO estimator. First, both the finite
sample covariance matrix and cost-function are given in
closed-form. Then, we prove both the consistency of
the estimator and the convergence in the mean square.
Finally, we study the finite sample mean square error and
conclude on the asymptotic behavior of the method. The
convergence rate in mean square error is shown to be
proportional to1/K as the sample sizeK tends to infinity.

A. Sample covariance matrix

In practice, the covariance matrix̃Q(µ) has to be esti-

mated at the receiver. Let̃̂QK(µ) be the sample estimate
computed with a total numberK of observed blocks:

̂̃
QK(µ) =

1

K

K−1∑

k=0

vµε(k)vH
µε(k) (23)

= FH
NC∗(µ − ε) Q̂K C(µ − ε)FN , (24)

wherevµε(k) denotesvε̂ε(k) in (5) evaluated at̂ε = µ,
andQ̂K denotes the sample covariance matrix in case of
perfect frequency synchronization (i.e., no offset),

Q̂K =
1

K

K−1∑

k=0

[
H̃b(k)+w̄(k)

][
H̃b(k)+w̄(k)

]H

, (25)

with w̄(k) = ϕ∗
k(ε)C∗(ε)w(k). First, notice that the

CFO does not change the noise statistics since the matrix
ϕ∗

k(ε)C∗(ε) is unitary and the noise vectorw(k) is
assumed to be circular complex Gaussian. Second, the
matrix Q̂K can not be evaluated in practice because the
received signal is corrupted by unknown frequency offset.
However, it provides insight to the theoretical performance
of the proposed algorithm as a function of the sample size.

B. Consistency and convergence in the mean square

In order to analyze the convergence of the algorithm
as a function of the sample size, an alternate equivalent
expression for the cost function is provided. With finite
sample support ofK observations, the estimate of the
cost function defined in (17) is expressed as

ĴK (µ) = ‖ (FH
NC∗(µ − ε)Q̂KC(µ − ε)FN ) � . . .

. . . � (1N − IN ) ‖2
F , µ ∈ [0, 1[ . (26)

Then, according to Lemma 1 withR = Q̂K , and noticing
that ĴK (µ) = K �

QK
(µ − ε), we get the following closed-

form expression

ĴK (µ) = aK − 2

N
Re{Γ �

QK
} cos (2π (µ − ε)) . . .

. . . − 2

N
Im{Γ �

QK
} sin (2π (µ − ε)) , (27)

whereaK ∈ R, andΓ �
QK

is equal toΓR in the Proof of

Lemma 1 (see Appendix II) evaluated atR = Q̂K . The
quantityΓ �

QK
represents the sample estimate ofΓQ (see

(31)), and is given by

Γ �
QK

=
N−1∑

u1=0

N−1∑

u2=0
(u1−v1)−(u2−v2)=N

N−1∑

v1=0

N−1∑

v2=0

q̂K,u1,v1 q̂∗K,u2,v2
. (28)

The notationq̂K,u,v refers to the(u, v) element of the
matrix Q̂K . Differentiating (27) with respect toµ, the
extrema ofĴK (µ) in [0, 1[ are found as

µ̂Ki
=ε+

1

2π
arctan

Im{Γ �
QK

}
Re{Γ �

QK
}+

i

2
mod 1, i=0, 1.4(29)

Hence, the quantityΓ �
QK

and more specifically its phase
plays a key role for the proposed blind CFO estimation
algorithm, as it causes estimation errors. Notice that the
distribution of Γ �

QK
does not depend onε. Hence, the

performance of the proposed estimator does not depend
on the value of the CFO. The frequency offset estimate
is found by choosing the value corresponding to the
minimum of the cost function:

ε̂K =

{
µ̂K0 if ĴK (µ̂K0) < ĴK (µ̂K1) ,
µ̂K1 otherwise.

(30)

4Extrema in (29) are indeed identical to those of (21), exceptthat
their respective ordering may differ.
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Now, Lemma 2 below plays a central role in establishing
the asymptotic performance of the algorithm.

Lemma 2:Let

ΓQ =

N−1∑

u1=0

N−1∑

u2=0
(u1−v1)−(u2−v2)=N

N−1∑

v1=0

N−1∑

v2=0

qu1,v1 q∗u2,v2
, (31)

with qu,v defined as a general element ofQ in (11).
Moreover, letΓ �

QK
be as given in (28). Then,

1) As K → ∞, Γ �
QK

→ ΓQ w.p.1.
2) Im{ΓQ} = 0 and Re{ΓQ} > 0.

Proof is given in Appendix III. As a consequence of
the above lemma and equations (29)-(30), we get the
following:

Theorem 2 (Strong consistency):As K → ∞,

ε̂K → ε w.p.1.

Proof is given in Appendix IV. As convergence with
probability 1 implies convergence in probability [35,
p.10], the proposed estimator yields a consistent estimate
of the CFO ε. In addition, convergence in the mean
square follows from Theorem 2 and from the fact that
ε̂K is bounded:

Corollary 1: ε̂K converges toε in the mean square.

Proof is given in Appendix V. Consequently, the proposed
estimator is asymptotically unbiased.

C. Convergence rate

Corollary 1 showed that the mean square error (MSE)
of ε̂K tends to zero asK → ∞. We next study the
convergence rate of the estimator. Let us define the MSE
after K received blocks by

MSEK = E
[
(ε − ε̂K)

2 ]
. (32)

From expression (29), and by using similar arguments to
[36]–[38], we may approximate the MSE as

MSEK
∼= 1

4π2

E
[
Im2{Γ �

QK
}
]

E
[
Re2{Γ �

QK
}
] . (33)

It is shown in Appendix VI that the expression in (33)
may be written as a quotient of polynomials. Hence the
approximated MSE becomes

MSEK
∼= 1

4π2

P(≤3)(K)

Q(4)(K)
∝ 1/K, (34)

whereQ(4) is a polynomial of degree four inK, while the
polynomialP(≤3) is of degree at most three. Hence, it fol-
lows that forK sufficiently large, the rate of convergence
in MSE is proportional to1/K.

VI. CRAMÉR-RAO BOUND

To assess the large sample performance of the proposed
method, we derive the Cramér-Rao bound (CRB), under
the assumption that the transmitted symbol vectorb in
(1) is Gaussian. Since we are interested in both real
and complex modulations,b cannot always be modeled
as a complex circular random vector. Complete second
order statistics require both signal covariance and pseudo-
covariance matrices (see Section III and [33]).

The Gaussian approximation has been widely used in
the literature related to OFDM [11], [20]. This approxi-
mation is justified by the central limit theorem. Hence,
we may assume that the vectors(k) = H̃FNa(k) is
multivariate Gaussian. Then, the OFDM transmission with
imperfect frequency synchronization in (2) may be written
using the model

z(k) = C̄ε,k s(k) + w(k), (35)

where C̄ε,k = ϕk(ε)Cε and w is the complex circular
Gaussian noise vector. The stochastic CRB for blind
frequency offset estimation in OFDM and the associated
Fisher information matrix (FIM) with finite sample size
K are respectively given by

CRBK (ε) =
[
FIM−1

K

]
1,1

(36)

FIMK =
1

2

K−1∑

k=0

[
gH

k

∆H
k

] [
gk ∆k

]
, (37)

where the vectorgk ∈ C4N2×1 and the matrix∆k ∈
C4N2×(M+1) are defined respectively as

gk = vec(Ω−1/2
k (D̃ε,kΩ̃C̃H

ε,k+C̃ε,kΩ̃D̃H
ε,k)Ω

−1/2
k )

∆k =
[
Vk uk

]
, Vk ∈ C

4N2×M , uk ∈ C
4N2×1,

with the following notation:

• Covariance matrix ofz(k): Ωk = C̃ε,kΩ̃C̃H
ε,k.

• Inverse ofΩk in vector form:uk = vec
(
Ω−1

k

)
.

• Covariance matrix ofs: Ω̃ =

[
Q P

PH Q∗

]
.

• Q = cov(r) andP = pcov(r) wherer is as in (4).
• Frequency offset matrix and its derivative wrt. toε:

C̃ε,k =

[
C̄ε,k 0

0 C̄∗
ε,k

]
, D̃ε,k =

∂

∂ε
C̃ε,k.

• Vk =
(
(Ω

−1/2
k C̃∗

ε,k) ⊗ (Ω
−1/2
k C̃ε,k)

)
J.

The matrixJ above is such that vec(Ω̃) = Jρ, and the
entire statistics{P,Q} depend only on a finite number
M of real-valued unknown parameters stacked into the
vector ρ = [ρ1, . . . , ρM ]

T . Detailed derivations may be
found in [38] and [39]. Note that an alternate expression
for the stochastic CRB for a similar model has also
been independently derived in [24]. Even though the
component-wise Gaussian approximation is reasonable,
the assumption on the joint Gaussianity of the compo-
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nents is more questionable, and this may lead to slight
differences compared to the exact CRB.

VII. S IMULATIONS

In this section, simulation results are reported. Perfor-
mance is compared to the Cramér-Rao bound derived in
Section VI. Asymptotic results presented in Section V are
validated through numerical experiments as well.

A. Simulation parameters

1) OFDM parameters:The OFDM system parameters
are chosen as follows: the carrier frequency isf0 = 2.4
GHz, the number of subcarriers is set toN = 64 and
the available bandwidth isB = 0.5 MHz. The length
L of the cyclic prefix is4. The subcarrier symbol rate
is of 7.8 KHz. QPSK and 16QAM symbol modulations
are considered. The normalized frequency offset isε =
0.43. In most of the simulations, independent runs of
the algorithm overK OFDM blocks are performed. This
is referred to as a realization. Ensemble averages of the
quantities of interest are computed over100 realizations.

2) Channel model:We proceed in two steps. First,
to allow the comparison with the CRB, the wireless
channel is considered to be deterministic but unknown
to the receiver. The channel impulse response chosen for
our simulations has four transmission paths and is the
following:

h =

[
0.0731 − 0.8702j
0.3613 − 0.4503j

−0.1098 + 0.4476j
−0.0270 − 0.0942j

]
.

As a second step, a4-tap random channel impulse re-
sponse is chosen for each realization. Channel coefficients
are assumed to be i.i.d. Rayleigh distributed with unit
variance.

B. Performance of the proposed algorithm

First, convergence as a function of sample size is
investigated. Blind frequency offset estimation over one
realization and the associated value of the cost function are
shown in Figure 3. The sample estimate of received signal
covariance matrix improves over time as more OFDM
blocks become available. Consequently, the estimate of the
CFO gets more accurate as well. The speed of convergence
may be significantly improved by enforcing a Toeplitz
structure for the sample covariance matrix in time domain,
i.e., by averaging over its diagonals.

The reduction of the level of inter-carrier interference
is depicted in Figure 4 where the covariance matrix of
the signal in frequency domain is plotted before and after
compensation for the frequency offset. Dark colors in the
figure correspond to high absolute values. As shown by
Figure 4, accurate offset compensation efficiently removes
off-diagonal terms caused by ICI and restores the initial
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Fig. 3. Estimated frequency offset and cost function over time (1
realization),ε = 0.43 and SNR=15dB.
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Fig. 4. Covariance matrix structure without (on the left) and with (on the
right) frequency offset compensation forε = 0.43, QPSK modulation
and SNR=15 dB. Dark colors correspond to high absolute values.
Estimation has been performed over10000 blocks. Total off-diagonal
power gets reduced by19.8 dB. In successful CFO compensation, non-
diagonal elements are zero and only the diagonal terms remain.

orthogonality of the OFDM transmission. The initial off-
diagonal power is reduced by more than19 dB, afterK =
10000 blocks.

Then, we present results in terms of mean square error
(see eq. (32)), which is chosen as error criterion for offset
estimation. The plot of the MSE versus the number of
observed blocks at10 dB SNR is depicted in Figure 5. The
MSE falls below5.10−4 (5% residual error on the CFO)
after 100 blocks on average. The MSE reaches7.10−5

after600 blocks, leaving a residual error less than2% for
both QPSK and 16QAM modulations. The difference in
performance between fixed and randomly chosen channel
impulse responses is not significant. OFDM systems are
commonly considered to tolerate synchronization errors
up to a few percents of the carrier spacing [2]. For
instance, QPSK modulation may tolerate up to5% error
whereas 64QAM requires at least1% accuracy for a loss
of 0.5 dB in SNR [40]. Hence, the proposed approach is
a feasible solution for practical receivers.

The graph of the MSE versus SNR is depicted in Figure
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6 for sample sizesK=200, 2000 blocks. As expected,
there is no significant dependence of the performance on
the noise level. In theory, the covariance matrix of the
noise is diagonal on average for complex white noise.
Hence, the performance of the algorithm should not
depend on the SNR if noise is uncorrelated. However,
in practice the sample estimates of the covariance matrix
experience perturbations because of noise which degrades
the performance at small sample size and low SNR.

The mean square error of the estimator is plotted against
the stochastic CRB derived in Section VI (Fig. 5 and 6).
The proposed method may be biased for small sample
size (gap to the CRB in Figure 6). But, there is no error
floor present in the plot of the MSE as a function of
the sample size (Fig. 5). Indeed, the MSE curve stays
parallel to the CRB. These remarks support the claim of
asymptotic unbiasedness. However, even though the CRB
is not attained, the residual estimation error is small (less
than2% on average after600 blocks). Hence, the proposed
method performs accurately almost regardless of the SNR.

Unlike [25], the proposed method performs well for
multipath channels with unknown channel length, pro-
vided that the latter is smaller than the duration of
the cyclic prefix. In addition, as seen in Figure 6, the
algorithm performs equally well for QPSK and 16QAM
modulations5 and offers robust performance at low SNR.
Hence, the method allows efficient use of the spectrum
as it is not restricted to constant modulus constellations.
Note that no pilot or virtual subcarriers are exploited
here. VC usually improve the performance of blind CFO
estimation significantly [16], [23], as they induce a low
rank signal model, which allows using high resolution
subspace techniques. But this is at the expense of band-
width efficiency, since virtual carriers do not carry any
information symbols.

C. Convergence rate

It was shown in Subsection V-C that for large sample
size K, the MSE decreases as1/K. In Figure 7, the
quantityK×MSEK is plotted as a function of the sample
size. Curves are ensemble averages over100 realizations.
It is clearly seen from Figure 7 that the productK×MSEK

is approximately constant forK ≥ 200 blocks, for both
fixed and randomly chosen channels impulse responses.
Hence numerical results validate the previously derived
asymptotic result. Furthermore, theoretical analysis con-
ducted in Section V did not show any dependence on the
value of the CFO of the distribution of the error term.
Hence, the performance of the proposed estimator does
not depend on the value of the CFOε in the interval[0, 1[.

5Identical performance is achieved with complex random Gaussian
distributed signals as well.
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Fig. 5. MSE and stochastic CRB vs. number of observed blocks for
fixed and random channel impulse responses at SNR=10dB; ensemble
average over100 realizations;ε = 0.43; QPSK modulation. No error
floor as the sample size increases, since convergence rate inMSE is
proportional to1/K.
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Fig. 6. MSE and stochastic CRB vs. SNR for QPSK and 16QAM
modulations5 ; fixed channel;K = 200 andK = 2000 blocks; ensemble
average over100 realizations;ε = 0.43. With small sample sizes bias
may be present (error floor), but estimator is asymptotically unbiased.
Residual error remains well below2%.

VIII. C ONCLUSIONS

In this paper, we introduced a blind frequency offset
estimator for OFDM systems using real- and complex-
valued modulations, under frequency selective fading. It
is based on the property that perfect carrier frequency
synchronization implies a diagonal covariance matrix for
the received signal in frequency domain. Cost function
minimization is accomplished in a closed-form, which
leads to an accurate and computationally efficient solu-
tion. No knowledge of the underlying multipath wireless
channel is required, nor the use of virtual carriers. Chan-
nel estimation may then be performed as a subsequent
step, after the frequency synchronization is achieved. The
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Fig. 7. Analysis of the convergence rate: plot ofK × MSEK over
time, for fixed and random channels; SNR=5dB; ensemble average over
100 realizations. The productK × MSEK is approximately constant
for K ≥ 200 blocks. Hence, the MSE decreases as1/K as K tends
to infinity. Convergence of the MSE as a function of the samplesize is
depicted in Figure 5.

performance remains practically constant regardless of
the SNR if the noise is white. The proposed method
is shown to yield a consistent estimate of the CFO.
Hence, it is asymptotically unbiased. The proposed CFO
estimator performs close to the (stochastic) Cramér-Rao
bound established for the general multivariate Gaussian
model.

APPENDIX I
PROOF OFTHEOREM 1

Proof: 1) For µ = ε, C(0) = IN and the matrix
Q̃ (µ) in (12) becomes

Q̃ (ε) = FH
NH̃H̃HFN + σ2IN . (38)

Now, the matrix FH
NH̃H̃HFN in (38) is diagonal as

H̃H̃H is circulant as a product of two circulant matrices.
Thus, sinceσ2IN is diagonal,Q̃ (ε) is diagonal as well
andJ (ε) = 0.

2) A straightforward way to prove uniqueness of the
minimum is to apply Lemma 1 withR = Q in (11),
and to notice thatJ (µ) = KQ (µ − ε). Then,

J (µ) = a − 2

N
Re{ΓQ} cos (2π (µ − ε)) . . .

. . . − 2

N
Im{ΓQ} sin (2π (µ − ε)) , (39)

wherea ∈ R andΓQ are given as in the proof of Lemma
1. As a consequence of Lemma 2, Re{ΓQ} > 0, and
Im{ΓQ} = 0. Then, the cost function may be rewritten as

J (µ) = a − 2

N
Re{ΓQ} cos (2π (µ − ε)) . (40)

From (40) and since Re{ΓQ} > 0, the functionJ (µ) is
obviously periodic with period1 and has unique minimum

at ε in [0, 1[. Hence,J (µ) > J (ε), ∀µ 6= ε, µ ∈ [0, 1[.

APPENDIX II
PROOF OFLEMMA 1

Proof: First, let us define the matrixM (µ) of size
N × N asM (µ) = FH

NC∗(µ)RC(µ)FN , with its (s, t)
element given by

ms,t =
1

N

N−1∑

u1=0

N−1∑

v1=0

e−
2πj(u1s−v1t+(u1−v1)µ)

N ru1,v1 , (41)

with s, t = 0, . . . , N − 1 and whereru1,v1 is the(u1, v1)
element of the matrixR of size N × N . Then,KR is
expressed as

KR (µ)= ‖M (µ) � (1N−IN )‖2
F =

N−1∑

s=0

N−1∑

t=0
t6=s

|ms,t|2.

(42)
Inserting|ms,t|2 = ms,tm

∗
s,t from (41) into (42) and re-

arranging terms leads to

KR(µ) =
1

N2

N−1∑

u1=0

N−1∑

u2=0

N−1∑

v1=0

N−1∑

v2=0

e−
2πj[(u1−u2)−(v1−v2)]µ

N . . .

. . . ru1,v1r
∗
u2,v2

N−1∑

s=0

e−
2πj(u1−u2)s

N

N−1∑

t=0
t6=s

e
2πj(v1−v2)t

N . (43)

First, we notice that
N−1∑

t=0
t6=s

e
2πj(v1−v2)t

N =

N−1∑

t=0

e
2πj(v1−v2)t

N − e
2πj(v1−v2)s

N . (44)

Second, we recall the following well known result:

∀ v ∈ Z,

N−1∑

u=0

ej 2πuv
N =

{
N, if v = kN, k ∈ Z.
0, otherwise.

(45)

Finally, by applying (44) and (45) onto (43) we get the
following closed-form expression forKR (µ):

KR (µ) = a + b cos (2πµ) + c sin (2πµ) (46)

a =

N−1∑

u1=0

N−1∑

v1=0

|ru1,v1 |2 . . .

. . . − 1

N

N−1∑

u1=0

N−1∑

u2=0
(u1−v1)−(u2−v2)=0

N−1∑

v1=0

N−1∑

v2=0

ru1,v1r
∗
u2,v2

(47)

b = − 2

N
Re{ΓR} , c = − 2

N
Im {ΓR} (48)

ΓR =

N−1∑

u1=0

N−1∑

u2=0
(u1−v1)−(u2−v2)=N

N−1∑

v1=0

N−1∑

v2=0

ru1,v1r
∗
u2,v2

. (49)
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APPENDIX III
PROOF OFLEMMA 2

Proof: We start by proving the part 1). The strong
law of large numbers (see, for example, Theorem 1.8 D
in [35]) implies thatQ̂K → Q w.p.1, asK → ∞. Using
this result and Theorem 1.7 in [35, p.24], we get that

q̂K,u1,v1 q̂
∗
K,u2,v2

→ qu1,v1q
∗
u2,v2

w.p.1, (50)

as K → ∞, for any u1, v1, u2, v2 = 0, . . . , N − 1.
Therefore, also

N−1∑

u1=0

N−1∑

u2=0
(u1−v1)−(u2−v2)=N

N−1∑

v1=0

N−1∑

v2=0

q̂K,u1,v1 q̂
∗
K,u2,v2

→
N−1∑

u1=0

N−1∑

u2=0
(u1−v1)−(u2−v2)=N

N−1∑

v1=0

N−1∑

v2=0

qu1,v1 q∗u2,v2
w.p.1, (51)

asK → ∞, which completes the proof of part 1).
We now continue by proving the part 2). The proof is

based on structural properties of circulant matrices. It can
be verified that matrixQ = H̃H̃H + σ2IN in (11) is
circulant (̃HH̃H is circulant asH̃ is a circulant matrix,
andσ2IN is a diagonal matrix). AsQ is circulant, it first
inherits the Toeplitz structure (equal elements along the
diagonals). Hence,qu1,v1 in (31) may be replaced byqs,
with s = u1 − v1, s = −(N − 1), . . . , N − 1. Based on
this observation, we rewrite the sumΓQ as

ΓQ =

N−1∑

s=−(N−1)

N−1∑

t=−(N−1)
s−t=N

βs βt qs q∗t , (52)

where we made the change in variabless = u1 − v1

and t = u2 − v2. Notice that indicess and t both
index diagonals (i.e. as the difference of row and column
indices). The number of elements on the diagonals indexed
by s and t are denotedβs andβt, respectively. Now, the
constraints − t = N with s, t = −(N − 1), . . . , N − 1
translates intot = s − N with s = 1, . . . , N − 1. Then,
equation (52) becomes

ΓQ =

N−1∑

s=1

βs βs−N qs q∗s−N =

N−1∑

s=1

βs βs−N |qs|2, (53)

where the second equality is due to the fact thatQ is
circulant, i.e.,qu1,v1 = q(u1−v1) mod N . Thus,qs = qs−N .

Since βs > 0, βs−N > 0 and |qs|2 ≥ 0, we hence
conclude thatΓQ ≥ 0 andΓQ ∈ R. Moreover, assuming
a non-diagonal channel covariance matrix̃HH̃H , there
exists at least one non-zero off-diagonal term inQ =
H̃H̃H + σ2IN , and thusΓQ > 0.

APPENDIX IV
PROOF OFTHEOREM 2

Proof: First, as a consequence of Lemma 2, as
K → ∞, Re{Γ �

QK
} → Re{ΓQ} w.p.1 and Im{Γ �

QK
} →

0 w.p.1. Using Theorem 1.7 in [35, p.24] and the fact
that Re{ΓQK

} > 0 (see Lemma 2), we then get that
Im{Γ �

QK
}

Re{Γ �
QK

}
→ 0 w.p.1 as K → ∞. Now, sincearctan

is differentiable in the neighborhood of0, we finally

obtain thatarctan
Im{Γ �

QK
}

Re{Γ �
QK

}
→ 0 w.p.1 asK → ∞ (see

Theorem 1.7 in [35, p.24]). Hence, by using the form
in (29), we obtain the convergence of the extrema, as
K → ∞,

µ̂Ki
→ ε +

i

2
mod 1 w.p.1, i = 0, 1. (54)

Second, by applying Lemma 2, it follows from (27) that

ĴK (µ) → J (µ) w.p.1, ∀µ ∈ [0, 1[ , (55)

whereJ (µ) is defined as in (40). Therefore, asK → ∞,
ĴK (µ̂K0) < ĴK (µ̂K1) w.p.1, and we get that̂εK →
µ̂K0 w.p.1, asK → ∞. Finally (54) implies that̂µK0 →
ε w.p.1, asK → ∞.

APPENDIX V
PROOF OFCOROLLARY 1

Proof: Dominated convergence w.p. 1 implies con-
vergence inr-th mean (cf. [35], page 11). Hence, since
ε̂K → ε w.p.1 as K → ∞, and |ε̂K | ≤ 1, then ε̂K

converges toε in the mean square (r = 2).

APPENDIX VI
CONVERGENCE RATE

Proof: We provide here a sketch of the derivation for
the finite sample MSE as well as its rate of convergence,
due to lack of space. Detailed derivation follow the ones in
[39]. Let us start from the approximated MSE (see eq. (33)
in Section V-C). We derive expressions for the quantities
E[Im2{Γ �

QK
}] and E[Re2{Γ �

QK
}] in terms of polynomials

in the sample sizeK, as follows:

E
[
Im2{Γ �

QK
}
]
=

1

K4
{K4Im{ΓQ}2+P(≤3) (K)}

=
1

K4
P(≤3) (K) (56)

E
[
Re2{Γ �

QK
}
]
=

1

K4
{K4Re{ΓQ}2+Q(≤3) (K)},(57)

whereP(≤3) andQ(≤3) are polynomials of degree at most
three inK, and Re{ΓQ} > 0, Im{ΓQ} = 0 follows from
Lemma 2. The term E[Re2{Γ �

QK
}] is obviously of order

four in K. To conclude with, substituting the results in
(56) and (57) into (33), we may approximate the mean
square error at sample sizeK by

MSEK
∼= 1

4π2

P(≤3) (K)

Q(4) (K)
, (58)

Q(4) being a polynomial of degree four, while the polyno-
mial P(≤3) is of degree at most three. The latter implies
that MSE decreases at rate1/K for largeK.
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