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Blind frequency synchronization in OFDM via
diagonality criterion

Timo Roman, Samuli Visuri and Visa Koivunesenior Member, |IEEE

Abstract— In this paper we address the problem of blind inter-carrier interference (ICI) and reduction in ampdi¢u
carrier frequency offset (CFO) estimation in OFDM systems  for the desired subcarriers [2]. The issue is critical when
in the case of frequency selective channels. CFO destroysyigner data rates are required, and relatively large number

the orthogonality between the carriers leading to non- f sub . t th ith d band
diagonal signal covariance matrices in frequency domain, O' SUBCAITIErS fogether with very narrow guard bands are

The proposed blind method enforces a diagonal structure Used [4], [5]. Imperfect CFO estimation has also a detri-
by minimizing the power of non-diagonal elements. Hence, mental impact on channel estimation [6]. Consequently,

the orthogonality property inherent to OFDM transmission  frequency offset estimation and compensation must be
with cyclic prefix is restored. The method is blind since it accomplished with high fidelity.

does not require a priori knowledge of the transmitted data o .
or the channel, and does not need any virtual subcarriers. A Most of the existing CFO estimators for OFDM rely on

closed-form solution is derived, which leads to accurate ah Periodically transmitted pilot symbols [7]-[10]. Howeyer
computationally efficient CFO estimation in multipath fading  this takes place at the expense of bandwidth efficiency,
environments. Consistency of the estimator is proved and th especially in the case of continuous transmissions (e.g.

convergence rate as a function of the sample size is analyz_edDVB_T)_ Therefore, pilot-based schemes are mainly suited
as well. To assess the large sample performance, we derive

the Cramér-Rao bound (CRB) for the blind CFO estimation for pac.ket.—oriented applications. . ) .
problem. The CRB is derived assuming a general Gaussian ~S€Mi-blind approaches proposed in the literature aim at

model for the OFDM signal, which may be applied to both improving bandwidth efficiency [11]-[13]. Those usually

circular and non-circular modulations. Finally, simulati on re|y on various assumptions such as the usage of a Sing|e

results on CFO estimation are reported using a realistic pilot symbol, two identical consecutive OFDM data blocks

channel model. [11], decision-directed processing [13], or some specific
Index Terms—OFDM, frequency offset, blind methods, structure within the OFDM symbol [14].

Cramér-Rao bound, covariance matrix. Blind (non data-aided) methods have received consider-
able amount of attention over the past years. Among dif-
|. INTRODUCTION ferent classes of methods, one may distinguish subspace-

RTHOGONAL Frequency Division Multiplexing based methods [15]-[17], which were recently shown to

. equivalent to the maximum likelihood (ML) estimator
(OFDM) transmission has already proven successﬁ%]_ Those methods rely on the low rank signal model

for both wireless (e.g. DVB-T and WLAN) and ereImeinduced by either some unmodulated carriers or virtual

applications (e:g. ADSL). Multlparrlgr modulatlon_ 'S &\ bcarriers (VSC). VSC are unmodulated subcarriers at
powerfull tec_hmque .to handle |mp§urments of w!reles e edges of the OFDM block which aim at minimizing
communication media such as multipath propagation dH’nee interference caused to adjacent OFDM systems. Their
to its ability to turn frequency selective channels into a :

umber is dictated by system design requirements [19].

set of narrowband frequency flat channels [1], [2]. HenCWhile OFDM systems are suited by design to multipath

OFDM is a viable candidate for future beyond 3G wirelests o s .
o ransmission, many existing CFO estimators deal only
communications standards.

. . with frequency flat channels [20], [21]. A ML estimator
One of the main drawbacks of OFDM over Slngle\'/vas proposed in [20] assuming an additive white Gaussian

carrier systems is its high sensitivity to carrier frehoise (AWGN) channel. Unfortunately, it is not robust

quency ofisets (CFO) caused by oscillator inaccuraci% multipath propagation. Extension of ML methods to

and Doppler shift due to mobility [3]. This gives rise tomultipath Rayleigh fading channels may be found in [22].
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cyclic prefix (CP). In addition, higher-order statisticsvha reliable performance of the proposed method at different
been exploited in [30]. Joint frequency synchronizationoise levels for both fixed and random channel impulse
and channel estimation schemes have been proposedesponses. Finally, Section VIII concludes the paper.
well [31]. They typically require solving multidimensioha Proofs and additional derivations may be found in the

optimization problems. Hence, their complexity limitsAppendix.
their practical use.

In this paper, a blind method for CFO estimation and The following notation is used throughout the paper:

compensation in frequency selective channels is intro-

duced. The method does not require a priori knowledge ofy » **
the transmitted data or the multipath channel. BandwidthAl/’z Al
efficiency remains high as no pilot or virtual carriers o7
are needed. Information on the CFO is embedded in the, ~
received signal covariance matrix. Based on that propertyl »

a cost function may be derived, and the sample covarianc@v <~
matrix may be used to estimate the CFO in practicedi2d{a}
The cost function minimizes the total off-diagonal power
induced by ICI in frequency domain. Enforcing a diag- 1, =
onal structure aims at restoring the orthogonality of the|| ||»

scalara, column vectora, matrix A;
transpose ofA, conjugate transpose &;
Hermitian square-root oA, inverse ofA;
(,7) element of matrixA;

identity matrix of sizeN x N;

N x N matrix filled with ones;

N x N matrix filled with zeros;

N x N diagonal matrix with
a=lai1,...,an]” on the main diagonal;
expectation operator;

trace operator, elementwise conjugation;
Frobenius norm;

Kronecker product, Hadamard product;
proportional to, modulaV operator;
stacks columns of a matrix on top of
each other;

real part, imaginary part;

argument of a complex number;

transmission inherent to perfectly synchronized OFDM®, ©
modulation. The proposed algorithm applies to both reap: mod N
(e.g., BPSK, PAM) and complex modulations (e.g., QPSK,VeC

8PSK, 16QAM, 64QAM), and extends to asymmetricre |m
constellations as well. Hence it may be used in a wideurg

range of OFDM transceivers. Furthermore, accurate CFQx, Sy =1if k=106, =01if k#1;
estimation is achieved at low SNR regime, where decisionki-d- independent and identically distributed;
directed methods are most likely to fail. wp. 1 convergence with probability one.

A closed-form expression is found for the cost function Il. SYSTEM MODEL

which leads to low complexity and accurate computational we use a general OFDM transmission model [16] (see

solution. The proposed method is shown to yield a consisiy. 1). Thek-th modulated OFDM block may be written
tent estimate of the CFO. Convergence in the mean squgge

is proved also, and the convergence rate of the algorithm b(k) = Fya(k), 1)
as a function of the sample size is analyzed in a closed-
form as well. whereFy = 1/VN {exp (j2rmn/N)},, o n_; iS

In order to assess the efficiency of the estimator, v&ge N x N inverse discrete FOU”‘?r transform (IDFT)
derive the Cramér-Rao bound (CRB) for blind cgdnatrix, N is the number of subcarriers, aadk) is the
estimators. We model the OFDM signal as a Gaussigﬂmplex-vqlued\f x1 symbo! vector. I .
process. Depending on the modulation in use, the receivef(érhe rec_elved _OFDMV x1 S|_gnal b_IOCk in time domain
signal may be complex circular (proper) or not [32](3 er cyclic prefix remova.l, including frequency offset,
Consequently, the CRB has to be derived for a gener[Hfiy he expressed as [19];

Gaussian model which includes both signal covariance and r (k) = eJ’?TfE(kPJrL)/NC(e)ﬁb(k) +w(k), (2)
pseudo-covariance matrices [23], [33]. Simulation result

for the presented estimator show a performance clo§&€re:

to the CRB. Numerical results are also in par with the « The length of the cyclic prefix id. and the total
theoretical analysis of the convergence rate. OFDM block length isP = N + L.

The rest of the paper is organized as follows. Section Il * The _matrle of S_'Z€N x Nis a cwcglant channel
introduces the system model. In Section 11, second order Matix [1], [19] built from the channel impulse vector
statistics for real and complex random vectors are briefly D in time domain of sizeL, x 1, with L, < L.
reviewed. In Section IV, we define a cost function for the Furt_hermore, the channel IS assumed to be quasi-
blind method and derive a closed-form expression for it.  Stationary over the observation period.

Then, a new blind frequency offset estimation algorithm * | N€ diagonal matrixC(e) of size V x N introduces

is introduced. Consistency of the CFO estimator is tNe frequency offset:

proved in Section V, and the convergence rate is analyzed
as well. In Section VI, we derive the CRB for the
blind CFO estimation problem. Simulation results are «
reported in Section VII, where we demonstrate the

Cle) = diag{ej%,n: 0,...,N — 1}. 3)

The noise termw in (2) is assumed to be circular
complex Gaussian [32] with covariance mawil v .
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Fig. 1. OFDM transmission chain.

The signal and noise processes are assumed to b®epending whether complex or real symbol modu-
mutually independent, and i.i.d. over time index lations are used, the received signal becomes complex
The quantitye is referred to as normalized frequenc}ﬁ)ifCUlar or non-circular. More Specifically, let us assume
offset with respect to inter-carrier spacing. The effeztivi.i.d. data bits, which are mapped onto the complex zero
frequency deviation i Af [Hz], where Af = B/N mean data vectas(k). From now on, we drop the time
is the inter-carrier spacing anbl [Hz] is the bandwidth index & for simplicity. Let us denote the covariance and
allocated to the system. The proposed algorithm is aim@geudo-covariance matrices afby Q. = cov(a) and
at estimating the fractional CFO, i.e., we assume thBa = pcov(a), respectively. For instance, with BPSK
e € [0,1]. Hence, it may track small CFO or the residuagymbols, bothQ. and P, are non-zero. With QAM
offset when the initially larger CFO has been significantlgymbols,P. = Onx n, since real and imaginary parts of

reduced by other means [7], [14], [18], [34]. a are independent. Hence, complete second order statistics
In case of perfect frequency synchronization (.e: 0, inclu_de both signal covariance and pseudo-covariance
C(0) = Iy), the received signal becomes matrices [33].
r(k) = Hb(k)+w(k). (4)

IV. BLIND CFOESTIMATION IN OFDM VvIA
Given an estimaté of the true values, CFO compen- DIAGONALITY CRITERION

sation may be performed in time domain at the receiv
prior to the discrete Fourier transform. Based on (2), t
resulting CFO compensated received vector, may be In this section, we introduce a carrier frequency offset
expressed as (CFO) estimation method for OFDM based on the signal
covariance matrix. Hence, it applies to both real- and

ro. . .
. Signal covariance matrix

k(2 H vk
Vee(k)=0i ()F N C™ (€)re (k) _ ®) complex-valued modulations. This derivation extends the
=p}(é—e)FRC* (é—e)Hb(k) + ... preliminary results presented in [29]. Without loss of
.+ oL (OFECH (@)w(k), (6) generality, we assume that unit energy QPSK constellation

R . _ _is used. Hence, the symbol vector covariance matrix is
whereC(¢) and C(é — €) possess the structure defined IRov(a) = Iy. However, even though the QPSK case

(3) andyy (¢) = exp (j2me(kP + L)/N). is considered only, results presented in this paper extend
to any other kind of real- or complex-valued modulation
[1l. SECOND ORDER STATISTICS FOR REAL AND scheme, e.g., BPSK, 8PSK, 16QAM, 64QAM. From the

COMPLEX MODULATIONS transmission equation (4 = cov(r) may expressed as
In order to fully characterize the second order statistics ~ ~ "
of a complex-valued random vectar, two matrices are Q = E{(Hb +w) (Hb + w) } (©)
needed [33]: = HFycov(a) FEYHY 1 cov(w)  (10)

cov(w) 2 E[(u-E[)(u-Em)"] @ = HH" 45’1y, (11)

pcov(u) £ E [(u— Eu)) (u— E[u])T} . (8) where (10) folllows from the independence between the
zero-mean noise and data processes. From (10) to (11),

where coy(u) is the covariance matrix ai and pcou) we used coya) = Iy, the unitary property of the IDFT
is the pseudo-covariance matrix af. The pseudo- matrix, and the fact that cqw) = 0?1 y.
covariance matrix is sometimes also referred to as con-
jugate covariance matrix or complementary covarian%e Cost f . inimizing th | off-di |
matrix [32], [33]. A complex-valued random vectar ' Oit unction minimizing the total off-diagonal power
is called circular (or proper [32]) random vector if its Let Qj (1) = cov(vye(k)), wherev,,. denotesve. in
pseudo-covariance vanishes, i.e., pe@y= Oy xn. (5) evaluated at = u. Then Qg (1) and Q are related
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by The proposed method is blind in a sense that minimization
~ . ~ ~ of Jx may be performed without any knowledge of the
Qi (1) =FNC" (n—e)HH" C(u—)Fx + 0" In'(12) | icless channel or pilot symbols.
=F{C*(u—€) QC(u—€)Fy (13)  Note that exploiting the pseudo-covariance matrix alone
2Q (), (14) instead of the covariance is not a viable choice here.
) ] In theory, Py, (1) = pcov(v,(k)) contains information
where we followed the same intermediate steps and &gy the CFO for real-valued modulations. However, the
sumptions as for equations (9)-(11). block dependent phase term (¢) in (2) drives its sample
Null or perfectly compensated frequency offsgt=t €)  ostimate to zero for large sample sizes.
leads to a perfectly orthogonal transmission, d@@u)
becomes diagonal. Proof is straightforward and may Ig Closed-form expression for the cost function
found in Appendix |. Off-diagonal elements are introduced |, orger to find a computationally efficient way to
by inter-carrier interference and should be minimizedigiimate the CFO, a closed form expression of the cost
Hence, for a given offset compensation vajyeve cho0se f,nction is derived next. To begin with, let us state the
the total off-diagonal powet7 (x) of Q(u) as a cost following useful lemma:
function to be minimized:

_ e 2 Lemma 1:Given any non-zero matriR of size N x N,

J () = HQ(MG (Ly = In) HF’ ne ol a9 and matricesF y and C(n) as defined in (1) and (3),
where® stands for the Hadamard product ang denotes respectively, the functioklr of the real parameter given
a N x N matrix of 1's. Notice that the noise does not havéy
any influence in theory provided that its covariance matrix 2
is ()j/iagonal, i.e., itis Li/niorrelated. K (1) = [|(FRC (WRC(1Fx) © (v —In)|[,

In order to guarantee the identifiability of the CFOcan be written a&’r (1) = a+bcos (2mu) + csin (27p),
the channel covariance matrldH*" should have off- where scalars, b, c € R are specific to the matriR.
diagonal term& Otherwise, the matri is diagonal and Proof of Lemma 1 as well as expressions forb and ¢
C(e)QC*(¢) does not contain information ananymore. are given in Appendix II.

Now, Theorem 1 proves the existence of a unique
minimum of 7 at e in [0, 1]. Let us defineR = C(e)QxC*(¢), whereQy is the

sample covariance matrix fer= 0 (see (24)-(25)). Then,

Theorem 1:Let J : u— J (1) be defined as in (15). QK (1) = FEC*(1)RC(u)F v, and by applying Lemma

~

Then, assuming a non-diagonal channel covariance ma{iXthe estimate7; of the cost function in (17) may be

HH", expressed as
1) J(e) =0. ~ .
2) jgu)) S OVp e pel01] Jk (1) = a+bceos (2mp) + csin (2mpu) , (18)

wherea, b, c € R. From (18),fK is obviously a periodic
Proof is given in Appendix I. Hence, true CFO mayynction of; with periodl. Hence, we may further restrict
be found by driving7 (1) to zero. In practice, only an gyr analysis to the intervd0, 1]. An example of the cost
estimateQ (1) of Q () is available (subscripk refers function is depicted in Figure 2, a6 dB SNR and with
to the sample size). Then, an estimataf the CFOe may K = 200 observed blocks. The minimum is reached at

found by R n = 0.4379, while the true offset ise = 0.43. The
€x = arg min Jx (), (16) sinusoidal form may be clearly observed, which is in par
rel0.1 with the result in (18).

where the estimated cost functighyc after K received  Differentiating 7x with respect tou yields

OFDM blocks is given as -
J EJK (n) = —2mbsin (27p) 4 2wccos (2mp) . (19)

~ = 2

Tic(m) =@ wo @y -1 . welpil an . |
F The extrema of7x in [0, 1[ are found in closed form as

The cost function7x penalizes the off-diagonal energy 1 c i _

of Q. It measures the loss of orthogonality due to CFO. VK: = 5 arctan {5} +g modl, i=0,1(20)

1The block_dependent phase teray(e) in (2) cancels out in the Given the for_m n (18)’ it is sufficient to evaluatéy
derivation ofQy, (1) = cov(ve(k)). HenceQy, (1) does not depend at three points in order to solve far b andc. We choose

on the block indext and will be further denoted b@® (1). the following equi-spaced poirit$), 1/3 and2/3 within
2The channel is required to be multipath, i.e., it has at leastnon-
zero taps in time domain. The latter assumption is fulfillecpractical 3A similar minimization/maximization procedure in clostatm was

OFDM transmissions. employed in [27].
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the intervall0, 1[. Hence, the extrema gfx may be given with w(k) = ©5(e)C*(e)w(k). First, notice that the

in closed form by CFO does not change the noise statistics since the matrix
) \/§(jK(,l)—AK(3)) i (e)C*(e) is unitary and the noise vgctow(k:) is

Dy, =— arctan A 3 3 4+ ... assumed to be circular complex Gaussian. Second, the
2 2Tk (0) =Tk (3) —Tk (3) matrix Qx can not be evaluated in practice because the

i . received signal is corrupted by unknown frequency offset.
.e.+= mod1l, i=0,1

2 : (21) However, it provides insight to the theoretical performanc

Finally, the frequency offset estimate is found by choosin%f the proposed algorithm as a function of the sample size.
the value corresponding to the minimum of the cost

function

o ik 1 Tk (i) < Tk (0,
K { Uk, Otherwise. (22)

B. Consistency and convergence in the mean square

In order to analyze the convergence of the algorithm
as a function of the sample size, an alternate equivalent
expression for the cost function is provided. With finite
sample support of observations, the estimate of the
cost function defined in (17) is expressed as

T ()= || FRC* (u—e)QrCn—e)Fn) O ...
Oy —In)  F pe[0,1]. (26)

Then, according to Lemma 1 wifR = Q, and noticing

that Jx (1) = Kg,. (1 — €), we get the following closed-

0 01 02 03 04 05 06 07 08 09 1 form expression

J200 (1)

~ 2
Fig. 2. Estimate of cost functiodano (1), K = 200, € = 0.43 and Ik (1) = ax — NRe{FQK} cos (27 (p —€)) ...
SNR=15 dB. The cost function is sinusoidal. 2
ce— NIm{FQK}Sln 27 (u—r¢€)), (27)

whereag € R, andFQK is equal tolI'r in the Proof of
V. PERFORMANCE ANALYSIS Lemma 1 (see Appendix Il) evaluated Bt= Q. The

In this section, we assess the large sample performangentity '~ represents the sample estimatelef (see
of the proposed CFO estimator. First, both the finit€31)), and is given by

sample covariance matrix and cost-function are given in Nel Nl N—1 N—1

closed-form. Then, we prove both .the consistency of Ta, = Z Z Z ZQK#MI iy (28)
the estimator and the convergence in the mean square. 1=0 13—=0 91=0 15=0

Finally, we study the finite sample mean square error and (u1—v1)—(uz—v2)=N

conclude on the asymptotic behavior of the method. Thehe notationgy ..., refers to the(u,v) element of the

convergence rate in mean square error is shown t0 RRirix Q. Differentiating (27) with respect tqu, the
proportional tol / K as the sample sizE tends to infinity. extrema of 7, (1) in [0,1[ are found as

Im{FQK} i )
——=K_ 4 —mod 1,i=0, 1.29)
RE‘{FQK} 2
Hence, the quantitYQK and more specifically its phase
plays a key role for the proposed blind CFO estimation
algorithm, as it causes estimation errors. Notice that the
= 1= H distribution of 'y~ does not depend onm. Hence, the
Qx(n) = e > Vie(F)viie (k) (23) performance of the proposed estimator does not depend
H’“zo . on the value of the CFO. The frequency offset estimate

= FNC'(u—¢)Qx C(p—€e)Fn, (24) is found by choosing the value corresponding to the

minimum of the cost function:

. . . 1
A. Sample covariance matrix uK,L:EJrQ— arctan
. . = . ™
In practice, the covariance matr@(u:) has to be esti-

mated at the receiver. LQK(M) be the sample estimate
computed with a total numbek of observed blocks:

wherev,,(k) denotesve (k) in (5) evaluated at = p,

and Qx denotes the samplg co_varie_mce matrix in case of e = { fr, if fK (/}KO) < fK (ik,), (30)
perfect frequency synchronization (i.e., no offset), i, Otherwise.

N 1 K=o _ H

Qx = 7 [Hb(k:)—i—ﬁf(k;)} [Hb(k:)—i—ﬁf(k)} , (25)  “Extrema in (29) are indeed identical to those of (21), exdbpt

k=0 their respective ordering may differ.
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Now, Lemma 2 below plays a central role in establishing VI. CRAMER-RAO BOUND

the asymptotic performance of the algorithm.
ymp P g To assess the large sample performance of the proposed

method, we derive the Cramér-Rao bound (CRB), under
the assumption that the transmitted symbol vedioin
- 1 . . . . .
Z Gos s O (31) (1) is Gaussian. Sln(_:e we are interested in both real
B e e 1L Huz,v20 and complex modulationdy cannot always be modeled
(u1—v1)—(ug—v2)=N as a complex circular random vector. Complete second
order statistics require both signal covariance and pseudo
covariance matrices (see Section Ill and [33]).

The Gaussian approximation has been widely used in
the literature related to OFDM [11], [20]. This approxi-
mation is justified by the central limit theorem. Hence,

olve may assume that the vectetk) = HFya(k) is
[[]Téultivariate Gaussian. Then, the OFDM transmission with
imperfect frequency synchronization in (2) may be written
using the model

Lemma 2:Let
N—1 N—-1 N—1 N—
I'q =
0

with ¢, ., defined as a general element @f in (11).
Moreover, letl's ~be as given in (28). Then,

1) As K — oo, I'g. = Tqw.p.1.

2) Im{T'q} =0 and Re(T'q} > 0.

Proof is given in Appendix Ill. As a consequence
the above lemma and equations (29)-(30), we get t
following:

Theorem 2 (Strong consistency)s K — oo, z(k) = Ce . s(k) + w(k), (35)

€x — e W.p.1. where C., = ¢i(e)C. and w is the complex circular
o . . _ Gaussian noise vector. The stochastic CRB for blind
Proof is given in Appendix IV. As convergence withfrequency offset estimation in OFDM and the associated

probability 1 implies convergence in probability [35Fisher information matrix (FIM) with finite sample size
p.10], the proposed estimator yields a consistent estimateare respectively given by

of the CFOe. In addition, convergence in the mean

square follows from Theorem 2 and from the fact that CRBg (¢) = [F”V'f(lhg (36)
éx is bounded: | Kl oH
FIMg = 52[%1{}[& Ay ], (37)
Corollary 1: éx converges ta in the mean square. k=0 k

here the vectolg, € C4N*<1 and the matrixAy €

Proof is given in Appendix V. Consequently, the proposeg4N2X(M+1) are defined respectively as

estimator is asymptotically unbiased. o T
g =vedQ, *(D.,QCH +C. QD )0, )
C. Convergence rate Ar=[Vi w], Vie CANZXM e CANTXT,
Corollary 1 showed that the mean square error (MSE), ) )
of éx tends to zero ak — oco. We next study the With the following notation: o
convergence rate of the estimator. Let us define the MSE. Covariance matrix ok(k): Q; = Ce,kﬂcfk-

after K received blocks by o Inverse ofQ2; in vector form:u, = vec(Q,;l).
MSEx = E[ (e — éx)*]. (32) « Covariance matrix of: € = gH 1(;*
From expression (29), and by using similar arguments tos Q = cov(r) andP = pcov(r) wherer is as in (4).
[36]_[38], we may approximate the MSE as . Frequency Offset matriX and |tS deriVatiVe wrt. 40
1 E[Im?{T5 & _[Cur O 5 .-9¢
MSEK ~ [ { QK}] (33) Ce,k — |: 0 C:k ) De,k - e Ce,k~

472 E[RE{Tg, )]

o —1/2 Nk —1/2 X
It is shown in Appendix VI that the expression in (33) ° Vi = ((, Cir) @ (2 Cer))J.
may be written as a quotient of polynomials. Hence thehe matrixJ above is such that vé@) = Jp, and the

approximated MSE becomes entire statistics{P, Q} depend only on a finite number
1 PEIK) M of real-valued unknown parameters stacked into the
MSEj = 7 OO (K) x 1/K, (34) vectorp = [p1,...,pu]" . Detailed derivations may be

found in [38] and [39]. Note that an alternate expression
whereQ® is a polynomial of degree four i, while the for the stochastic CRB for a similar model has also
polynomialP(=3) is of degree at most three. Hence, it folbeen independently derived in [24]. Even though the
lows that for K sufficiently large, the rate of convergenceomponent-wise Gaussian approximation is reasonable,
in MSE is proportional tol / K. the assumption on the joint Gaussianity of the compo-
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nents is more questionable, and this may lead to sligt !
0.8

differences compared to the exact CRB.

Y 0.6
0.4F

)

VII. SIMULATIONS 0.2

In this section, simulation results are reported. Perfor
mance is compared to the Cramér-Rao bound derived
Section VI. Asymptotic results presented in Section V art

ITY CRITERION

— — —True offsete ]
Estimated offset

20 40 60

80

100 120
OFDM block index

140 160 180 200

validated through numerical experiments as well. 1

10

T (éx)

A. Simulation parameters
1) OFDM parameters:The OFDM system parameters

sH

Cost function

. . 0
are chosen as follows: the carrier frequencyfis= 2.4 0

GHz, the number of subcarriers is set d = 64 and
the available bandwidth i3 = 0.5 MHz. The length Fig. 3

is of 7.8 KHz. QPSK and 16QAM symbol modulations
are considered. The normalized frequency offset is
0.43. In most of the simulations, independent runs ol

60

80

100 1.
OFDM block index

20

. Estimated frequency offset and
L of the cyclic prefix is4. The subcarrier symbol raterealization),e = 0.43 and SNR5dB.

140 160 180 200

cost function overeti(l

Without freq. offset compensation With freq. offset compensation

the algorithm over’’ OFDM blocks are performed. This i I ‘gf:'
is referred to as a realization. Ensemble averages of tt o[ g
quantities of interest are computed ou®0 realizations. E 2ol

2) Channel model:We proceed in two steps. First, 3 540;_51_1;,_. Syt
to allow the comparison with the CRB, the wireless 5[ st h
channel is considered to be deterministic but unknow 60},

20 40
column index

to the receiver. The channel impulse response chosen f
our simulations has four transmission paths and is th
Estimation has been performed ovBs000 blocks. Total off-diagonal

following:
b [
As a second step, &tap random channel impulse l,e_power gets reduced b}9.8 dB. In successful CFO compensation, non-

; o ..~ diagonal elements are zero and only the diagonal terms remai
sponse is chosen for each realization. Channel coefficients
are assumed to be i.i.d. Rayleigh distributed with unit

variance.

40
column index

60

Fig. 4. Covariance matrix structure without (on the leftjl avith (on the
right) frequency offset compensation fer= 0.43, QPSK modulation
and SNR#5 dB. Dark colors correspond to high absolute values.

0.3613 — 0.45035
—0.1098 + 0.4476;

0.0731 — 0.87025
—0.0270 — 0.0942j5

orthogonality of the OFDM transmission. The initial off-
diagonal power is reduced by more thethdB, afterK =
10000 blocks.

First, convergence as a function of sample size is Then, we present results in terms of mean square error
investigated. Blind frequency offset estimation over ongee eq. (32)), which is chosen as error criterion for offset
realization and the associated value of the cost functien @&stimation. The plot of the MSE versus the number of
shown in Figure 3. The sample estimate of received sigrabserved blocks dt) dB SNR is depicted in Figure 5. The
covariance matrix improves over time as more OFDNWISE falls below5.10~* (5% residual error on the CFO)
blocks become available. Consequently, the estimate of tféer 100 blocks on average. The MSE reaches0—°
CFO gets more accurate as well. The speed of convergeaéer 600 blocks, leaving a residual error less thi# for
may be significantly improved by enforcing a Toeplithoth QPSK and 16QAM modulations. The difference in
structure for the sample covariance matrix in time domaiperformance between fixed and randomly chosen channel
i.e., by averaging over its diagonals. impulse responses is not significant. OFDM systems are

The reduction of the level of inter-carrier interferenceommonly considered to tolerate synchronization errors
is depicted in Figure 4 where the covariance matrix ofp to a few percents of the carrier spacing [2]. For
the signal in frequency domain is plotted before and aftérstance, QPSK modulation may tolerate up5t@ error
compensation for the frequency offset. Dark colors in theghereas 64QAM requires at leasi accuracy for a loss
figure correspond to high absolute values. As shown fof 0.5 dB in SNR [40]. Hence, the proposed approach is
Figure 4, accurate offset compensation efficiently removasfeasible solution for practical receivers.
off-diagonal terms caused by ICI and restores the initial The graph of the MSE versus SNR is depicted in Figure

B. Performance of the proposed algorithm
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6 for sample sizesx=200, 2000 blocks. As expected, 10 S S e~

there is no significant dependence of the performance ¢ S - - - Random channel

the noise level. In theory, the covariance matrix of the 2} . [ CRB

noise is diagonal on average for complex white noise

Hence, the performance of the algorithm should no,

depend on the SNR if noise is uncorrelated. Howeve 2 1°

in practice the sample estimates of the covariance matr %

experience perturbations because of noise which degrac € 10|

the performance at small sample size and low SNR. <
The mean square error of the estimator is plotted again | ’

the stochastic CRB derived in Section VI (Fig. 5 and 6)

The proposed method may be biased for small samp

size (gap to the CRB in Figure 6). But, there is no erro 10760 1000 2000 3000 4000 5000 6000 7000 8OO0 9000 ;(;000

floor present in the plot of the MSE as a function of OFDM block index

the sample size (Fig. 5). Indeed, the MSE curve stays

parallel to the CRB. These remarks support the claim g{g 5. MSE and stochastic CRB vs. number of observed blooks f

. . d and random channel impulse responses at SN&B; ensemble

asymptotic unbiasedness. However, even though the C rage over00 realizations;e = 0.43; QPSK modulation. No error

is not attained, the residual estimation error is smalls(le§oor as the sample size increases, since convergence raftSH is

than2% on average afte#00 blocks). Hence, the proposedProportional tol /K.

method performs accurately almost regardless of the SNR.

Unlike [25], the proposed method performs well for 42

multipath channels with unknown channel length, pro imgg ?;QS:M
vided that the latter is smaller than the duration of -__-CRB

the cyclic prefix. In addition, as seen in Figure 6, the ;|

algorithm performs equally well for QPSK and 16QAM K=200

modulation8 and offers robust performance at low SNR.
Hence, the method allows efficient use of the spectrur
as it is not restricted to constant modulus constellation:
Note that no pilot or virtual subcarriers are exploited
here. VC usually improve the performance of blind CFC
estimation significantly [16], [23], as they induce a low
rank signal model, which allows using high resolution
subspace techniques. But this is at the expense of bar
width efficiency, since virtual carriers do not carry any *° o 5 10
information symbols.

averaqu MSE

15 20 25 30
Eb/No [dB]

Fig. 6. MSE and stochastic CRB vs. SNR for QPSK and 16QAM
modulation8; fixed channelX = 200 and K = 2000 blocks; ensemble
C. Convergence rate average overl00 realizations;e = 0.43. With small sample sizes bias
' may be present (error floor), but estimator is asymptoticaiibiased.

It was shown in Subsection V-C that for large samplBesidual error remains well belods.
size K, the MSE decreases ag K. In Figure 7, the
quantity K x MSEg is plotted as a function of the sample
size. Curves are ensemble averages @v6rrealizations. VIIl. CONCLUSIONS
Itis clearly seen from Figure 7 that the produi€k MSEx ) ) _
is approximately constant fak” > 200 blocks, for both In this paper, we introduced a blind frequency offset
fixed and randomly chosen channels impulse respons@stimator for OFDM systems using real- and complex-
Hence numerical results validate the previously derivéglueéd modulations, under frequency selective fading. It
asymptotic result. Furthermore, theoretical analysis-col$ Pased on the property that perfect carrier frequency
ducted in Section V did not show any dependence on ta¥nchronization implies a diagonal covariance matrix for
value of the CFO of the distribution of the error termthe received signal in frequency domain. Cost function
Hence, the performance of the proposed estimator ddB¥limization is accomplished in a closed-form, which

not depend on the value of the CkGn the interval[o, 1[. €@ds to an accurate and computationally efficient solu-
tion. No knowledge of the underlying multipath wireless

channel is required, nor the use of virtual carriers. Chan-
Sdentical performance is achieved with complex random Gans N€l estimation may then be perfo_rm(_ed as a ?Ubsequem
distributed signals as well. step, after the frequency synchronization is achieved. The
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Convergence rate

: : : ‘ ‘ ‘ ate in [0,1]. Hence,J (n) > J (€), Vu # €, u € [0,1].

K x MSEK, fixed channel ]
1=-- K x MSEK, random channel
107 ; : : : E APPENDIXII
X
0 PROOF OFLEMMA 1
s P LomsLn st
< g Proof: First, let us define the matrid (u) of size
N x N asM (p) = FEC*(1)RC(p)F v, with its (s, t)
- | element given by
: | | s 275( t+( D)
; i ; ; ; i ; i i mj(ugs—vptt(ug —vy)p
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Mg = e~ r, 41
OFDM block index st = N Z Z 1,017 ( )
ul_() V1= =0
Fig. 7. Analysis of the convergence rate: plot &f x MSEx over with s,¢ =0,..., N —1 and wherer,, ., is the (uy,v1)

time, for fixed and random channels; SNRRB; ensemble average over ; ; ;
100 realizations. The produck” x MSEg is approximately constant element of the matrbR of size N x N. Then, Kr is

for K& > 200 blocks. Hence, the MSE decreasesldds as K tends €Xpressed as
to infinity. Convergence of the MSE as a function of the sanste is

depicted in Figure 5. —1N-1

Kr (1) =M (1) © (Ly—Ly) HFfZ 3l
=0 128

(42)
performance remains practically constant regardless |ﬂf5ert|ng|ms % = ms m?, from (41) into (42) and re-
the SNR if the noise is white. The proposed methogrranging terms leads to
is shown to yield a consistent estimate of the CFO. Nl N1 N1N_1
Hence, it is asymptotically unbiased. The proposed CF Z Z Z Z o 2mil(u) —up) = (v1 —vg)lu
estimator performs close to the (stochastic) Cramér- Ra N N2

bound established for the general multivariate Gaussian

u1=0 uz—O v1=0v2=0

model. aron e Z - itz Z et (43)
17
APPENDIXI First, we notice that
PROOF OFTHEOREM 1 T R
_ Proof: 1) Forp = ¢, C(0) = Iy and the matrix Ye N T =N N T e N (44)
Q (u) in (12) becomes b =0
Q (¢) = Fﬁf{ﬁHFN + o2y, (38) Second, we recall the following well known result:

. HTrorH . . . N-1 I . _
Now, the matrix FXHH”Fy in (38) is diagonal as - Zejo _ {N, if v=~kN,k ¢ Z. (45)

HHY is circulant as a product of two circulant matrices. 0, otherwise.

P u=0
Thus, sinces?Iy is diagonal,Q () is diagonal as well

Finally, by applying (44) and (45) onto (43) we get the

d =0 ! .
andJ (e) following closed-form expression fo€r ():
2) A straightforward way to prove uniqueness of the Kr(p) = a+bcos(2mpu) + csin (2wp)  (46)
minimum is to apply Lemma 1 wittR = Q in (11),
and to notice that/ (1) = Kq (1 — ¢€). Then, N-1N-1 )
) 0@ = Py |
J(p)=a-— NRE‘{FQ}COS(Q?T(M—G))... =0 v, =0
9 N—-1N—-1N-1N-1
= Im{Tq}sin(2r (=), (39) zo DD IP SR,
7J,1 U2 =UvV1=U V2=
wherea € R andI'q are given as in the proof of Lemma (w1 —v1)—(ug —v2)=0
1. As a consequence of Lemma 2,{Rg} > 0, and 2 2
: . = ——Re{l — ——Im{I 4
Im{T'q} = 0. Then, the cost function may be rewritten as b N e{lr}, c N m{lr} (48)

N—1 N-1 N-1 N-1

2 *
J(u)=a— NRG{FQ} cos (27 (n —¢€)). (40) ' = Z Z Z Z Tus 01 Ty oo (49)
7J,1:0 u2:0 V1 =0 ’1)2:0
From (40) and since R&q} > 0, the function () is (u1—v1)—(u2—v2)=N

obviously periodic with period and has uniqgue minimum ]
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APPENDIXIII 0 w.p.1. Using Theorem 1.7 in [35, p.24] and the fact

PROOF OFLEMMA 2 that RgI'q,} > 0 (see Lemma 2), we then get that
Proof: We start by proving the part 1). The stronglm{riﬁxi — 0 w.p.1 as K — oco. Now, sincearctan

law of large humbers (see, for example, Theorem 1.8 . ®lg, ) . . ,
in [35]) implies thatQx — Q w.p.1, as K — oo, Using iS dl-fferennable IPmF{?Z r;elghborhood df, we finally
this result and Theorem 1.7 in [35, p.24], we get that obtain thatarctanﬁ — O0wp.lasK — oo (see

(50) Theorem 1.7 in [35, p.1§4]). Hence, by using the form
in (29), we obtain the convergence of the extrema, as
as K — oo, for any uy,vi,uz,v9 = 0,...,N — 1. K — oo,
Therefore, also
N—-1 N—-1 N—1 N—-1

~ Ak *
qKﬂHWl qK,ug,'Ug - qulﬂ’l qug,’ug Wp]—a

ﬂKi—>e+% mod1 wp.l, i=0,1. (54)

Z Z Z de,ul,m@kuwz Second, by applying Lemma 2, it follows from (27) that
’U,1:0 ug:() 1)1:0 ’02:0 Y
()= (e mv2) =N Tk (1) = T () wp.1, Vp € [0,1[,  (55)

N—1 N—-1 N—-1 N-1
N Z Z Z Z Quy o1 Ty vy W.P.1,  (51) whereJ (1) is defined as in (40). Therefore, & — oo,

u1=0 u=0 v1=0 v=0 Ik (fx,) < Jk (ix,) w.p.1, and we get thatx —
(ur—v1)—(ug—v2)=N ik, W.p.1, asK — oco. Finally (54) implies thafix, —
as K — oo, which completes the proof of part 1). ew.p.1, as K — oo. [ |
We now continue by proving the part 2). The proof is
based on structural properties of circulant matrices. it ca APPENDIXV
be verified that matrixQ = HH" + ¢?Iy in (11) is PROOF OFCOROLLARY 1
circulant @H is circulant asH is a circulant matrix, Proof: Dominated convergence w.p. 1 implies con-

ando?Iy is a diagonal matrix). A® is circulant, it first vergence inr-th mean (cf. [35], page 11). Hence, since
inherits the Toeplitz structure (equal elements along thg — ¢ w.p.1 as K — oo, and |éx| < 1, then ég

diagonals). Hencey,, ., in (31) may be replaced by, converges ta in the mean square: & 2). ]
with s = u; — vy, s = —(N —1),...,N — 1. Based on
this observation, we rewrite the suliy, as APPENDIX VI
N_1 N-1 CONVERGENCE RATE
Tq= > > BBrasqr, (52) Proof: We provide here a sketch of the derivation for
s=—(N—1) t=—(N—1) the finite sample MSE as well as its rate of convergence,
s—t=N due to lack of space. Detailed derivation follow the ones in

where we made the change in variables= u; — v;  [39]. Let us start from the approximated MSE (see eq. (33)
andt = wuy — vy. Notice that indicess and ¢ both in Section V-C). We derive expressions for the quantities
index diagonals (i.e. as the difference of row and columﬂlmQ{FQK }] and E[ReQ{FAK}] in terms of polynomials
indices). The number of elements on the diagonals index@dthe sample sizd(, as follows:

by s andt are denotedB, and 3;, respectively. Now, the

1
constraints — t = N with s,t = —(N —1),...,N — 1 E[|m2{FQKHZﬁ{K‘l'm{FQ}QWD(Q) (K)}
translates intd¢ = s — N with s = 1,..., N — 1. Then, 1<)
equation (52) becomes =gl (K) (56)

N—-1 N—-1
* 1
Tq=) B:Benasgin=) Bfonle:f’, (83)  E[RE(lg, }]=7{K 'Re(Tq}*+Q!=") (K)}.(57)
s=1 s=1
where the second equality is due to the fact thpis whereP(§3> and Q=¥ are polynomials of degree at most
GIrCUlant, i.. gu, v = Guy—vy) mod N- TNUSGs = s N three inK, and RéT'q} > 0, Im{F_Q} =0 follows from
Since3; > 0, B,_n > 0 and |gs|2 > 0, we hence Lemma 2. The term [ReQ{FQK}] is obviously of order
conclude thal'g > 0 andT'q € R. Moreover, assuming four in K. To conclude with, substituting the results in
a non-diagonal channel covariance matfsf, there (96) and (57) into (33), we may approximate the mean
square error at sample siZé by

exists at least one non-zero off-diagonal term@n =

" + 02Ty, and thusT'q > 0. " MSE, ~ L PEY () (58)
K = 7 5 “AA
APPENDIX IV i O (K)
PROOF OFTHEOREM 2 O™ being a polynomial of degree four, while the polyno-

Proof: First, as a consequence of Lemma 2, asial P(<3) is of degree at most three. The latter implies
K — oo, Re{l'y } — Re{l'q} w.p.1 and Im{I'g } — that MSE decreases at ral¢K for large K. |
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