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Fig. 9. RNMF convergence: Relative error versus Iteration number.

V. CONCLUSION

In this paper, we proposed a robust approach to nonnegative matrix
factorization of a spectral library. The proposed method is formulated
as an energy minimization problem whose solution is achieved by up-
dating alternatively two equations. Unlike the K—L method, the robust
nonnegative matrix factorization technique is based on a robust cost
function, resistant to outliers, and generates nonnegative basis func-
tions which balances the logical attractiveness of measurement func-
tions against their physical feasibility. We have successfully tested the
robust nonnegative factorization algorithm on a library of reflectance
spectra, and the experimental results clearly show that the proposed
technique outperforms the current reconstruction methods including
PCA, NNSC, NMFSC, NMF, and cNMF.
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Abstract—This correspondence deals with time-varying (TV)
single-input multiple-output (SIMO) channels, which are both frequency
selective (due to high data rate) and time selective (due to mobility). A
complex exponential basis expansion model (CE-BEM) is used to model the
channel. We consider a block transmission system, where on the transmit
side a precoder is employed to enable the maximum available diversity for
a CE-BEM channel. After direct decoding on the receive side, the resulting
channel resembles a finite-impulse-response (FIR) filter on both block and
symbol level. We therefore propose an equalizer that bears a structure
analogous to the effective channel. In comparison with a standard block
minimum mean-square error decision-feedback equalizer (BMMSE-DFE)
that involves the inversion of a large-size matrix, the proposed parametric
equalizer renders a similar performance but at a lower computational
cost if there are multiple outputs present. Another contribution of this
correspondence is a semiblind algorithm to estimate this equalizer when
the channel state information is not available: the equalizer taps and
the information symbol estimates are refined recursively by means of
normalized least-mean-squares (NLMS) adaptation.

Index Terms—Basis expansion model (BEM), diversity, time-varying
(TV) channel.

[. INTRODUCTION

In high-data-rate mobile communication systems, the relative ve-
locity between the transmitter and the receiver gives rise to a Doppler
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spread and makes the channel time varying (TV). Jakes’ model is often
adopted if there exist a large number of scatterers in the vicinity of the
mobile [1]. For simplicity, we adopt a parsimonious model called com-
plex exponential basis expansion model [(CE-BEM), see [2] among
others] to approximate the channel’s time variation in a discrete form.
This model utilizes truncated complex Fourier series as expansion basis
functions, i.e., the [th tap at the nth time interval of a TV channel h[n; []
is approximated as

Q
hinil] & D g7/ " (1)

q=0

where () indicates the order of the CE-BEM and P defines the size of
the observation window, within which the CE-BEM coefficients &,
are assumed to remain constant. In comparison with other parsimo-
nious models, e.g., the discrete prolate spheroidal BEM (DPS-BEM
[4]), the CE-BEM inflicts a larger modeling mismatch, especially on
the edges of the observation window. However, the average modeling
mismatch can be made arbitrarily small by increasing () [6] at the ex-
pense of system complexity.

The CE-BEM expression has the unique property that it has a finite-
impulse-response (FIR) structure in both time domain and frequency
domain [9]. Benefiting from this time—frequency duality, the authors
in [8] give a general analytical formulation of the delay-Doppler diver-
sity for a precoded scheme. However, the precoder in [8] destroys the
FIR structure of the channel and makes a standard maximum-likelihood
(ML) equalizer extremely expensive. Suboptimal equalizers such as a
sphere decoder (SD) [14], or a block minimum mean-square error deci-
sion-feedback equalizer (BMMSE-DFE) [13] have a complexity that is
exponential or polynomial in P, which could still be too high. [27, Sec.
IV-A] presents a decoder for one special case of [8] that makes smart
use of the commutability between the channel and the (de-)precoder.
The resulting effective channel, which associates the decoded samples
directly with the transmitted data symbols, can then be characterized
by a two-level (2-L) FIR filter incorporating certain frequency shifts.

In this correspondence, we present a low-complexity DFE to
equalize such a channel. Motivated by the fact that a DFE with
time-invariant FIR feedforward and feedback filters can accurately
equalize a time-invariant FIR channel at a low complexity cost, we
here also consider a DFE with feedforward and feedback filters that
both have the same structure as the effective channel, i.e., a 2-L. FIR
incorporating certain frequency shifts. We will show how to acquire
the DFE coefficients in two cases. In the first case, we need the channel
(CE-BEM) knowledge; in the second case, we estimate the DFE
coefficients semiblindly following an adaptive approach.

Notation: We use upper (lower) boldface letters to denote matrices
(column vectors). (-)*, (-)T, (-)H, and (-)+ represent conjugate, trans-
pose, complex conjugate transpose (Hermitian), and pseudoinverse, re-
spectively. £{-} stands for the expected value. @ represents the Kro-
necker product. [z] represents the smallest integer that is greater or
equal to x. We denote the N x N identity matrix as I, and the M x N
all zero matrix as Onsx .

II. SYSTEM MODEL

Let us consider a block transmission system with one input and A4
outputs [single-input multiple-output (SIMO)]. Let us further assume
that all the channels are FIR with a maximum order of L. If s represents
an (M — L)(N — K) x 1 data symbol vector and y**> an MN x 1
received sample vector, the corresponding I/O relationship for the a*"
channel with precoding is described by [for details, see [8], in partic-
ular (16)]

y('-’l) — H(a)(.)s + W(a) (2)
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where w(® denotes the additive noise. The M N x M N matrix H(*
stands for the a*® channel matrix, given by [H(“)]k’m = h(a)[k, k—
m]. If we assume that all the channels can be modeled by a CE-BEM
as defined in (1) within an observation window of length P = M N,
we have [H(“)]; ., := X% Al")_ e727ak/(MN) The MN x (M —

q,k—m

L)(N — K) precoder © is defined as in [8] [27, Sec. IV-A]
0= (F%Tl) © Ty 3)

where F n is a unitary N -point DFT matrix with entries [Fn], 4 :=
(1/,\/‘7\_7)6*J’(27F/N)(P*1)(qfl), T, = [INng O(N—r\’)xI\"]T, and
Ty := [I]\,T_L./O(J\,[_L)XL]T. It is proved in [8] that if @ > K,
then © enables a diversity order up to (L + 1)(K + 1) under the
assumption of a CE-BEM channel (1). For such a precoder, [27, Sec.

IV-A] proposes a decoder ¥ := Fx @ Ins. As aresult, the a'" channel
output after decoding becomes

7 = oy = PH W Os + W' )
with w(¥ := ¥w . Next, we partition the data symbol sequence s

into N — K blocks, i.e., the i data block s(#) contains the symbols

[8licaz—1)+1 tO [8](i41y(ma—ry- Likewise, the decoded sequence y(“)
is partitioned into IV blocks with the 5 block 7 ) containing the
symbols [§(]; 1741 t0 [F'](j+1yas - Accordingly, we are able to split
the expression in (4) up into smaller blocks!

Q
v i) =Y Hs(i — ) + W () 5)
=0

where w(* (i) is similarly defined as y(*)(i), and I:I(qa) =
A?MH(qa) with H(Y being an M x (M — L) Toeplitz matrix
H ] = hfﬁ,l_m and A! being a diagonal frequency shift matrix
A? = diag([1, dGrU/MN) L oiCra/MN)(x=D]) Note that in
(5), we assume ¥\ (i) = W (i) = Oprxq fori < Oandi > N,
and s(7) = s(IV + i) for =@ < i < 0and s(i) = Oqs—ryx1 for
i> N - K.

III. PARAMETRIC DFE

For the standard SIMO DFE, which contains a set of A linear feed-
forward filters (FFs), and a feedback filter (BF), we can readily apply a
classical BMMSE-DFE on (4), with a design complexity of O((M —
L)*(N — K)*) and an implementation complexity of AM N (M —
L)(N — K) + (M — L)*(N — K)?/2 complex multiply/add (MA)
operations per data symbol vector. Note that since we are dealing with
TV channels, both design and implementation steps have to be carried
out in every observation window.

However, it is easy to observe from (5) that the effective channel
takes on a 2-L FIR structure incorporating certain frequency shifts, as is
illustrated in Fig. 1: on the block level, the channel can be viewed as an
FIR filter with I:Ig“) being its block-level taps; on the symbol level, ex-
cept for the frequency shifts captured in A}, there is again an FIR filter
with hf;f,) being its symbol-level taps. The fact that a time-invariant FIR
channel can be accurately equalized by a DFE with time-invariant FIR
FFs and a BF at a low cost motivates the consideration to similarly
structure the DFE in the present context using a 2-L FIR incorporating
certain frequency shifts for both the FFs and BF. An important obser-
vation is that the induced design and implementation complexity will
generally decrease, at the cost of a slight BER degradation, as we will
show later on.

I'The proof can be found in [27, Sec. IV-A] with the difference that we deal
in this correspondence with the more general case (Q > K.
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A. Structure of the DFE

In line with the aforementioned ideas, we design the FFs and the BF
using a 2-L FIR incorporating certain frequency shifts, i.e., we estimate
s(i) as

A 0
(i) = Z Z ng)Ty(a)(i_
a=1ge=—Q¢

with §(7) standing for the quantized estimate §(¢) = Q(§(¢)). In (6),
the first summation on the right-hand side represents the operation of
the FFs and the second summation the operation of the BF.

We notice that each FF is equipped with () +1 block-level taps F(
of size M x (M — L). Like in the time-invariant case where a delay is
often incorporated in the equalizer, we introduce here a parameter d()
to denote the block-level delay for the FF, which must satisfy — Q) <
dg < Q. to ensure that s(7) is present in the equalizer input. To stick
to the 2-L FIR structure, we construct each block-level tap ng) to be
the product of a frequency-shift matrix and a Toeplitz matrix, i.e.,

Qp
dg—qc)= Y By,sli—a) (6)

qp=0

a)

F(a) A‘le"t‘dQF(aJ %
where [FS Jxm = [£571k 1, +1. with £{") collecting all the L. +1
symbol-level taps of the ¢'" FIR filter for the a'" channel output. d;,
is the symbol-level delay and should satisfy —L < d;, < L. to avoid
all-zero columns in F{*.

A similar structure is imposed upon the BF: it is assigned Q) + 1
block-level taps B, of size (M — L) x (M — L), each of which is
again the product of a frequency-shift matrix and a Toeplitz matrix, i.e.,

By, == Aj;_; By, ®)
where [Bg, |k,m = [bPg,|k—m+da,+1, with by, collecting all the L, + 1
symbol-level taps of the ¢i" FIR filter. d} is the delay parameter in-
trinsic to the BF and should satisfy 0 < d < L; to avoid all-zero
rows in B, . Because the BF must take the channel causality into ac-
count, we require [bo]; = 0for: = 1,---,dp + 1.

The proposed DFE is therefore characterized by A(L. + 1)(Q. +
1)+ Qs(Ly+ 1) + L, — d,, coefficients. From the description above,

Block diagram of the a'®

effective channel.

we understand that the implementation complexity is about AM (N —
K) Qe+ 1)(Le+2)+(M—L)(N—-K)(Qs+1)(Ls+2) MA oper-
ations per data vector. In general, it is smaller than that of the classical
BMMSE-DFE that entails AMN(M — L)(N = K)+ (M —L)*(N —
K)?/2 MA operations per data vector.

B. Assuming Channel (CE-BEM) Knowledge

If the past decisions are correct, it is straightforward to transform (6)
into
A Q T,
= > (ALHPs( - ) F

i@

a=1ge e ¢=0
A 0 T
XY (i) Ry
a=1g.=—0Q
Q g
— Y sli—a)' B, AL, ©)
q,=0

with ¢ := d¢g + ¢ + ¢ and ¢’ := d¢ + q.. We need to express the
above equation as an explicit function of fr(i:') and by, . First, it can be
derived after some mathematical manipulation that

! a . r a
(ALEs(-q)) T

= g OTAY L HOS - )AL, (10)

where wg = 2mqdy/P. 'H(“ is a Toeplitz matrix with
[hq [ 0:1x7.]" as its first column and [hq Tl lg LleL ]
as its first row, and 8(¢) denotes an (L. + L + 1) x (M — L) Hankel
matrix [S()]i,m = [8()]ktm—r—d,—1-

Likewise, we can show that
(atlwi =)' B
= C_]Wq”fé:)r (Aq W(ﬂ)( QH)AM r) (1D
where W) (i) is an (L. 4+ 1) x (M — L) Hankel matrix with

[W(a) (D]k,m = [W(a) ()]k4m—ay —1 . Finally, it holds that

s(i — qb)TBquA?xILL = bePS(i a)AY 1 (12)
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with P := [0(z, 41)x (L—Ly+dp+dy)» Lo +1.0(Ly+1)x (Lo —dy —dy)]-
Substituting (10), (11), and (12) in (9), we obtain

A 0
=> 2 ZfS?T
a=1 qe=—Qe q=0
( e /Aq +1H(G)S (i—q )Aw r)
A 0
£y >
a=1qe=—Q¢

X (C_'Mq”A%EHW(a)(i - q”)A?V/T’—L)

(Ib

Qp
— > by, PS(i — qn)AT;_,.

(13)
=0
To avoid the multiple summations, we define f(*) =
[f(ga)Tv ) f(_aéf]T, b := [bTﬂ B b’cg,,]T, and
e
= diag {[c_'m‘iQ*Q, e c_’w‘lQ’Qf]} O Ir 141
,f_t(a)
A dQTRay(a a
ALTTHG AL MY
d@+Q—Qeq (a) d Qeqy(a
L ARG e AP
8(7)
- oy do+
S(i —dg — QA
. ) do—Q.
LS(i —dg + QG)AA?fLQ
W (i)
r eI AT W (i — dg)AYT,
|t AL O W — g + QAL

such that (13) can be written in a compact form as

A
87(i) =3 1T (H 03(i) + Wi )) = b"PS()

=f" (7:{@3(17) + W(i)) — b PS(i) (14)
with £ := [f(l)T,n_’f(A)T]T; 7:‘ — [,H(l)l' . ,H(A)'L]T;
L - (0T WT
Wii) = v @ WO and
p = [0<Lb+1)(<eb+1>x(dQ+Q—Qb><Le+L+1>vIQb+1 ®

P01, +1)(Qu+1) x(Qe=dg)(Le+141)]-

The MMSE solution for the DFE coefficients is found by minimizing
the mean-square error (MSE) J := £{|8(¢) —s(¢)|”}. With the obser-
vation thats” (i) = €7 8(i), whereeisan (L. +L+1)(Q+Q.+1)x1

unit vector with a one in the position (do+Q)(L.+L+1)+L+dr+1,

we can derive the MMSE solution in a similar way as done in [13], as
follows:

Ruvmsee ) — Pe
el RMMSEe
Ryse =07 H" Ry, HO + R3
p g~ Ho~
fuvise = (bMMSF)P +e ) MMSEOHH R,y

buvise =P <

15)
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where R denotes the data covariance matrix Rs := £{8(:)8 " (i)}
and f{W denotes the noise covariance matrix f{w =
E{W(i)W" (i)}, both of which are assumed to be known at the
receiver. It is easy to derive the expressions for Rs and Ry, but we
have to omit them here due to space considerations.

From the expressions in (15), it can be seen that most computational
effort is invested in inverting the matrix Rarvsr with a design com-
plexity of O((L+ L. +1)*(Q+ Q. +1)*). Again, this is cheaper than
the classical BMMSE-DFE, which requires O((M — L)*(N — K)?)
per data vector.

C. Direct Semiblind Equalization

In the previous section, we have seen how to obtain the DFE co-
efficients based on channel (CE-BEM) knowledge, which is often not
available in practice. In that case, direct equalizer estimation can be ap-
pealing because it skips the intermediate channel estimation step [23].
In this correspondence, we will follow this approach using an adaptive
algorithm [28].

To estimate s(i), let us useU (i) to denote the corresponding FF input
in (6). Now that the channel is transparent to the receiver, we have to
express U (i) as a function of 3% ()

[ ﬂWdQAdQ 1y(1)(7 _dQ)Au L T

dg—Qe

M—L

e a2 APV (i = dg + Qo)A

6_]”@AJQ y(A)(l - dQ)Au L

—jwg do—Qeny(A) ;- d .
| Ivig QPALC:_HQ y(A)(Z dg + Qo )ATS” LQ |

16)

Here, Y (i) denotes an (L. + 1) x (M — L) Hankel matrix with
YV (@D)]km = [F (1)]k4m—d, —1 . Including the corresponding BF
input PS(7), we obtain the following estimate prior to quantization:

§(i) =U(i)v

where U(i) = [U(i))",(=P8(i))7]", and v contains both the FF
and BF coefﬁcients v = [f*,b"]". In particular, we have [8(i)]; =
@/ /v with @} ; denoting the j*" row of U(i).

Wlth the above notations, we are in a position to use the normal-
ized least-mean squares (NLMS) algorithm [28] to minimize the square
error between the input and the output of the quantizer. Suppose v
contains the DFE coefficients at the '™ iteration. Then, it is refined at

the next iteration as
)) w
||11z, II° "

where [§(4)]; is the output of the quantizer, || - || denotes the Frobenius
norm, and g is the step size, which satisfies the convergence require-
ment. It is noteworthy that the iterations operate on the symbol level and
need to go through the whole data symbol sequence for multiple loops
until convergence is reached. Therefore, the iteration index x must be
associated with the block index ¢ and symbol index j as

an

V("'+1) ( ) +

(E (18)

mod (k,(M — L)Y(N —K))=i(M —-L)+j (19)
with mod(p, ¢) standing for the residue of p divided by ¢. To ensure
proper convergence, training symbols will be inserted at the head of the
data symbol sequence.

Direct equalizer estimation has a design complexity that is linear

in the length of the data symbol vector. It does not rely on channel
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Fig. 2. With channel (BEM () = 2) knowledge.

(CE-BEM) knowledge; the CE-BEM channel assumption is basically
not relevant here. Perhaps more important, we can apply this approach
without assuming any specific channel model, in which sense the
channel modeling error is no longer a key concern.

IV. SIMULATION RESULTS

For the simulations, we generate TV channels using a Jakes’ simu-
lator as given in [31]. We assume the channels have an order L = 3
and a maximal normalized Doppler spread vmax = 0.0025. In order to
explore the full Doppler diversity with the precoder in (3) for an obser-
vation window of length P = 400, we choose K = 2, satisfying the
Nyquist criterion & = [2vmax .

We assume the transmitted data symbol sequence is white and zero-
mean and consists of NV — K = 18 blocks, with each block containing
M — L = 17 quadrature phase-shift keying (QPSK) symbols (note
that N = M = 20 in order to reach P = M N = 400). We employ
one transmit antenna and two receive antennas that are corrupted by
additive white Gaussian noise A'(0, o2 ). All the antennas are equipped
with a rectangular filter. At the receive side, the received signals are
further oversampled by a factor of two. Hence, we deal with a SIMO
system with A = 4 channel outputs. Note that due to the oversampling,
the noise from each channel output is not necessarily uncorrelated with
each other, but we will still use this assumption in the equalizer design.
The obtained bit error rate (BER) is averaged over 5000 Monte Carlo
runs across an SNR range from 0 to 20 dB. Here, the SNR is defined
as (M — L)(N — K)/Ps?, taking the precoder-induced redundancy
into account.

Test Case 1 (Equalizers Based on Channel (BEM) Knowledge): In
Fig. 2, we first list the performance of four BMMSE-DFEs, the first
three of which are based on a precoded system and are constructed
using the knowledge of the true Jakes’ channel, the best DPS-BEM
fit with Q = 2, and the best CE-BEM fit with () = 2, respectively.
The last BMMSE-DFE also utilizes the channel knowledge of the best
CE-BEM fit with ¢ = 2, but the transmission system is only zero-
stuffed, e.g., F& = Iy in (3) (referred to as “no precoding” in the
figure). For those BMMSE-DFEs, the design complexity is O(316°)
and the implementation complexity is about 536418 MA operations
per data vector. In contrast, the proposed DFE entails a much lower
cost: for the DFE scaled by [Le, Qc, Ls, Q] = [3,2,0,0] (thus no
decision feedback), the design complexity is O (35%) and the imple-
mentation complexity is 22212 MA operations per data vector. Af-
fording a bit more design complexity of O¢(143) and implementation
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Fig. 4. Semiblind performance.

FIR equal
I I

complexity of 155412 MA operations per data vector, the DFE with
[Le,Qe, L, Q] = [9,8,12,2] yields a performance close to that of
the BMMSE-DFE based on the same CE-BEM channel knowledge.

It can be observed that due to the channel modeling error, all the
BEM-based equalizers suffer from a performance gap with respect to
the one that utilizes the true Jakes’ channel knowledge. However, this
performance gap can be mitigated if we adopt a larger () for both
the CE-BEM and DPS-BEM. As revealed in Fig. 3, the DFE with
[Le, Qe, Ly, Qs] = [9,6,12,2] that is based on the best CE-BEM fit
with Q = 4 exhibits a 2-dB improvement at a BER of 10™° than its
counterpart in the () = 2 case. In addition, the induced implementation
complexity is even reduced to 123 732 MA operations per data vector,
while the same design complexity is maintained. Actually, the perfor-
mance of all the BEM-based equalizers is improved.

Test Case 2 (Semiblind Equalizers): For the semiblind equalization,
we implement a moderate DFE with [L., Q., Ly, Q5] = [3,2,2,2] to
reduce the number of unknowns in the estimation. If we assume the
first N, data symbol blocks are pilots, the overall bandwidth efficiency
becomes (M — L)(N — K — N)/P. We follow the NLMS in (18)
using ;¢ = 0.3 and plot the performance in Fig. 4. For the case N; = 1,
equivalent to a bandwidth efficiency of 72%, the performance of the
proposed DFE suffers from a BER floor at high SNR. This is alleviated



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 9, SEPTEMBER 2006

T T T T
4 : : : : —A— proposed equal. Nt = 1
. —— proposed equal. Nt =

Number of Loops

» ‘ ‘ L ‘ L

10 12 14 16 18 20
SNR

Fig. 5. Number of average loops until convergence.

if the system can afford more overhead, e.g., N; = 2 equivalent to a
bandwidth efficiency of 68%. For comparison, we list the performance
of the equalizer given in [23] (referred to as “MRE”) and a classical
time-invariant FIR DFE. The MRE is less accurate since it is unable to
explore the finite-alphabet property of the data symbols. The classical
DEFE is obviously not capable of tracking fast-fading channels.

The proposed DFE also has the virtue of fast convergence. As re-
vealed in Fig. 5, the average number of loops until convergence de-
creases to around 3 for an SNR higher than 12 dB. In such cases, the
resulting design complexity is O(316 x 3) and the implementation
complexity is about 75 816 MA operations per data vector, which are
lower than the DFE based on channel (CE-BEM) knowledge.

V. CONCLUSION

In this correspondence, we have proposed an equalization/decoding
scheme for a precoded transmission system. The precoder enables
the maximum available diversity for a CE-BEM channel, but makes
most existing equalizers ineffective or very expensive. By adopting
a CE-BEM to approximate the TV channel and commuting the
CE-BEM with the (de-)precoder, we can apply a parametric DFE after
the decoder, which is computationally attractive for a channel with
moderate L and (). Two approaches are proposed to construct the
equalizer: 1) utilizing the channel (CE-BEM) knowledge and 2) in a
semiblind adaptive fashion.

The first approach affords higher bandwidth efficiency and yields
better performance but relies on the CE-BEM assumption of the TV
channel. Consequently, the equalizer is penalized by the channel
modeling error. From the simulations, we observe that the precoder
combined with a larger CE-BEM helps to mitigate the influence
of the channel modeling error, without increasing the equalization
complexity. Of course, this could pose more pressure on any possible
channel estimator, which has not been treated in this correspondence.
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Narrowband Interference Suppression Using
Undecimated Wavelet Packets in Direct-
Sequence Spread-Spectrum Receivers

Emilia Pardo, Miguel A. Rodriguez-Herndndez, and
Juan J. Pérez-Solano

Abstract—A new algorithm for narrowband interference suppression in
direct-sequence spread-spectrum (DS-SS) communications is presented.
The algorithm combines the undecimated wavelet packet transform
(UWPT) with frequency shifts to confine the interference energy in a
subband that is subsequently eliminated. Computer simulation shows a
robust performance that appears to be independent of the interference
frequency.

Index Terms—Direct-sequence spread spectrum (DS-SS), interference
suppression, tree structuring algorithm (TSA), undecimated wavelet
packets.

I. INTRODUCTION

Spread-spectrum (SS) communication systems have certain inter-
ference rejection capacities that make them suitable for transmitting
information in congested or noisy channels. Nevertheless, the perfor-
mance of these systems is strongly degraded by high-power interfer-
ences. In this context, interference suppression improves the immu-
nity of the system without increasing the bandwidth. Two classes of
interference rejection schemes have been extensively used: time-do-
main adaptive filtering [1] and transform-domain suppression [2].
Time-domain adaptive filtering can eliminate completely sine-wave
interferences but needs a convergence time to reach the optimal
solution. On the other hand, transform-domain techniques present
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quick tracking of changing interferences, but their performance de-
pends on the ability of the transform to confine the interference in
a few bins [1].

This correspondence is focused on narrowband interference suppres-
sion by transform-domain excision. The received signal is represented
in the transform domain, and the frequency bands that exceed a certain
energy threshold are eliminated. In this way, most of the interference
energy is removed with low distortion of the desired broadband signal.
The inverse transformation is then applied to reconstruct the interfer-
ence-suppressed SS signal.

A fundamental aspect in the preceding process is the choice of the
transform. The objective is to obtain a set of basis functions that gen-
erate a compact representation of the interference. Previous approaches
were based on the Fourier transform [1], [3], [4] but their performance
is limited due to the windowing effect, which spreads the interference
energy. Subsequently, more general multichannel filter bank structures
were proposed, of which the Fourier transform is a particular case [5].
These transforms offer greater design freedom. Different types of per-
fect reconstruction multichannel filter banks have been applied to the
interference suppression problem, some examples of which are mod-
ulated filter banks [6], paraunitary filter banks [7], and lapped trans-
forms [2].

The wavelet transform [8] has also been employed to eliminate in-
terferences in DS-SS communications [9]. The multiresolution time—
frequency decomposition implemented by this transform performs rel-
atively well with various types of interference, but the spectral partition
provided is fixed, in the same way as those obtained with multichannel
filter banks, and presents similar limitations, such as interband spectral
leakage and fixed time—frequency resolution.

An evolution of the wavelet transform is the wavelet packet trans-
form [8]. It provides greater flexibility than previous transforms, of-
fering a variety of unequal bandwidth spectral decompositions. Wavelet
packet transform allows the implementation of adaptive algorithms in
the sense that they select the best decomposition tree according to the
interference frequency location for each processed frame. In this group,
the algorithm proposed in [10] deserves special attention. It is called
adaptive time—frequency algorithm because interference suppression
can be accomplished in the time or the frequency domain. The switch
between time and frequency methods depends on the kind of interfer-
ence to be eliminated. Pulsed interference is eliminated better in the
time domain, because its energy is localized in time and expanded in
frequency. On the other hand, narrowband interference suppression is
easier in the frequency domain because the energy is localized in fre-
quency and expanded in time. The dual treatment in time or in fre-
quency provides significant performance improvements. When trans-
formation from time to frequency is required, it is carried out by the tree
structuring algorithm (TSA) [10]. The TSA employs adaptive subband
tree decompositions or wavelet packets. This method has demonstrated
superior performance over conventional fixed transforms for narrow-
band interference suppression [2], [10], but the results are slightly de-
pendent on the interference frequency.

A new algorithm based on wavelet packets for narrowband inter-
ference suppression in spread spectrum communications is described
here. Its novelty lies in the application of frequency shifts to the SS
signal in order to concentrate the interference in a subband and thus
eliminate it completely. The method has been successfully applied to
frequency-hopping and direct-sequence SS (DS-SS) systems [11], [12].
In this paper, a detailed description of the scheme for interference sup-
pression in DS-SS systems is presented, and experimental results con-
firming the improvements are provided.
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