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The Plenacoustic Function and Its Sampling
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Abstract—The spatialization of the sound field in a room is
studied, in particular the evolution of room impulse responses
as a function of their spatial positions. It was observed that the
multidimensional spectrum of the solution of the wave equation
has an almost bandlimited character. Therefore, sampling and
interpolation can easily be applied using signals on an array. The
decay of the spectrum is studied on both temporal and spatial
frequency axes. The influence of the decay on the performance
of the interpolation is analyzed. Based on the support of the
spectrum, the number and the spacing between the microphones
is determined for the reconstruction of the sound pressure field up
to a certain temporal frequency and with a certain reconstruction
quality. The optimal sampling pattern for the microphone posi-
tions is given for the linear, planar and three-dimensional case.
Existing techniques usually make use of room models to recreate
the sound field present at some point in the space. The presented
technique simply starts from the measurements of the sound pres-
sure field in a finite number of positions and with this information
the sound pressure field can be recreated at any spatial position.
Finally, simulations and experimental results are presented and
compared with the theory.

Index Terms—Interpolation, plenoptic function, room impulse
response, sampling, sound pressure field sampling.

I. INTRODUCTION

SSUME you are in a concert hall, and you want to faith-

fully describe the sound pressure field at any location in
the hall. If you record the acoustic event with an array of mi-
crophones, how many do you need to be able to reproduce the
sound pressure field at any point?

Conversely, assume a virtual acoustical environment, where
sources are moving, while the sound pressure is measured in a
particular spot. How finely do you need to simulate the acoustic
impulse responses to be able to place the source at any location?

The answers to the above questions, as well as related ones,
lie in the spatio—temporal acoustic sound pressure field and its
properties. We call this field the plenacoustic function (PAF) in
reference to the plenoptic function introduced by Adelson and
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Bergen [1] and which defines “all views in a room.” More pre-
cisely, the plenoptic function is given by a seven dimensional
function f(z,y,z,6,Q, A, t), which describes the intensity of
the light field seen at location (z,y, z) when looking in direc-
tion (6, €2), at wavelength X and time ¢. Note that, in this case,
one can define a very precise direction (6, Q) of arrival of a light
ray. This is due to the very small wavelength of light (on the
order of 100 nm). Therefore, it is possible to build devices mea-
suring a good approximation of the plenoptic function. In the
acoustical case, the wavelengths are 10® time larger. This makes
it unfeasible in practice to construct a device that would mea-
sure the sound pressure at any arbitrary position and the com-
ponent of its gradient due to a source originating from a pre-
cise direction. Taking into account these physical differences
existing between the optical and the acoustical case, we define
the PAF p(z, y, z,t) as the sound pressure recorded at location
(z,y,2) and time ¢ given an acoustic event in a room. Note
that from the knowledge of the sound pressure in every point
in the three dimensions, one can calculate gradients of pres-
sure in all directions and obtain the particle velocity vector for
every point [2]. From this information, one can transform the
omnidirectional PAF into a directional PAF. This is achievable
since the PAF measures the instantaneous pressure containing
the phase information. This information is missing in the inten-
sity measurement given by the plenoptic function. Note that the
velocity particle can only be derived along all directions when
the PAF is known in all three spatial dimensions. In a practical
case, one would measure the PAF along a line. The knowledge
of the particle velocity as well as the directionality would then
only be partial. In the rest of the paper, the PAF is to be consid-
ered as an omnidirectional PAF. It is the solution of the scalar
acoustic-wave equation given by
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where c represents the speed of sound propagation and

s(z,y,z,t) represents a distribution of sources located in
space.

Often, one will be concerned with the case of a single point
source. Namely, for a given source S, we denote the room im-
pulse response (RIR) at location (z,y, z) by h(z,y, z,t), and
then, if the source generates a signal s(t), the PAF is

=s(z,y,2,t) (1)
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p(z,y,2,t) = /S(T)h(x-/yﬂ-/t—T)dT-
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When the emitted sound is a Dirac pulse, the PAF becomes
simply the spatio—temporal RIR. The PAF is then called the
Green’s function [2]. Assuming that our system is linear and
time invariant, we consider the presence of multiple sources as
the superposition of single sources. The sound pressure field can
then be regarded as the sum of all point sources convolved with
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their spatio—temporal RIR. Without loss of generality, the anal-
ysis of the PAF will be conducted by considering the excitation
signal as a Dirac impulse.

From the view of the physicist, the PAF is simply the solution
of the wave equation with appropriate boundary conditions, and
a given driving function. From the point of view of the numer-
ical analyst, the system would be very complex for any reason-
able room, even for very simple cases. For the signal processor,
acoustic RIRs have been studied, measured, and simulated for
many scenarios, and it is thus natural to study the PAF glob-
ally. A natural question for a signal processor is of course the
sampling question: Is there a discrete set of points in time and
space from which the full PAF can be reconstructed? The equiv-
alent question for the plenoptic function was posed and solved
by Chai et al. [3] with further results from Zhang et al. [4]. For
the time dimension, bandlimited sources are assumed to allow
sampling in time. The more interesting question is of course
sampling in space, which directly relates to the number of mi-
crophones necessary to acquire the PAF. When considering far
field assumptions, it can be shown [5] that the support of the
PAF is bandlimited to a spatial frequency ¢, which is related to
the temporal frequency w in a linear manner!

= 3)

Thus, if the time domain signal is bandlimited to wq, then the
spatial frequency is limited to wg /¢, and the far field PAF can
be sampled with any spatial distance Az satisfying

s

Az > —. 4)
wo

Without the far field assumption, the PAF is not perfectly ban-
dlimited anymore and contains energy in the region ¢ > (wq/c).
In this paper, the PAF is studied without the far-field assumption
and its spectral characteristics are derived both in the case of free
field and in reverberating rooms. From this analysis, we derive
a precise quantitative sampling theorem which trades off spatial
sampling density for signal reconstruction quality.

The name “plenacoustic function”? has been mentioned for
the first time in [6]. The first analysis of the function has been
given in [7]-[9]. As mentioned earlier, previous literature ex-
ists on the bandlimitedness of the spatial sound pressure field.
In [5], [10], [11] using microphone arrays, the sound pressure
field is studied both along the temporal and the spatial dimen-
sions. The spectrum of the spatio—temporal wave equation is
studied under the far field assumption which simplifies the ob-
tained sampling results [5], [10], [11]. Recently, and in parallel
to our work, Coleman [12], [13] has investigated the wideband
electromagnetic impulse response in far field, deriving sampling
results under this assumption for linear arrays and planar arrays
of sensors. In [14], Berkhout studies in detail the extrapolation
of waves in the field of seismic wave theory. Results on the sam-
pling and the extrapolation of wave fields are obtained using

ITn acoustics as well as in some array signal processing books, the spatial
and temporal frequencies are expressed as wave numbers. Then, w /¢ is usually
denoted as k and the spatial frequency ¢ as k...

2Note that the plenacoustic and plenoptic functions are expressions mixing
Greek and Latin roots. The Latin expression would be “the plenaudio function”
while the Greek expression would be “the panacoustic function.”
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the representation of the wave field by its spatio—temporal spec-
trum. Also practical aspects such as the aperture size of the array
are discussed. Recent techniques have shown interesting extrap-
olation results using one-dimensional (1-D) microphone arrays
(mostly circular arrays), but limitations occur when trying to
extrapolate real three-dimensional (3-D) RIRs [16]. Similarly
to the extrapolation of the sound field, a technique called wave
field synthesis (WFS) [15] has been presented. From the knowl-
edge of the sound field in a region of space, the WFS reproduces
the sound field in other regions of space. The WFS is based on
the Huygens’ principle stating that the propagation of a wave
through a medium can be described by adding the contribu-
tions of all secondary sources positioned along a wave front.
Measuring the sound field on an infinite plane of microphones
would allow us to reproduce it accurately at any point of the
source-free half space. The theory has been adapted to consider
1-D loudspeaker arrays and still be able to accurately reproduce
the sound field in the largest possible area [17]. Dual to the WFS
is the wave field analysis [18] where the ray parameter versus in-
tercept time-domain representation is used. This representation
is shown to be equivalent to taking the linear Radon transform
of the spatio—temporal RIRs. The method gives an improved in-
sight in the structure of complex sound pressure fields by being
able to separate the different contributions of the sound pressure
field (direct path and each reflection on the walls).

Our contribution to the existing theory is the detailed study of
the decay of the spatio—temporal sound pressure field spectrum
along the spatial and temporal frequency axes both in free field
and in rooms with reverberation. Given this characterization,
sampling theorems and interpolation formulas can be derived.
In extension of the results considering far field assumptions, we
introduce a signal-to-noise ratio (SNR) on the reconstruction of
the sound pressure field at the different spatial positions. The
theoretical results are verified both through simulation experi-
ments and through measurements in actual rooms.

Beyond the fundamental interest of characterizing precisely
the PAF and its sampling, the results are useful in spatial audio
applications. For example, it indicates to what extent a micro-
phone array can be used to interpolate any spatial location. Or
conversely, how many spatial positions of a source are needed
to synthesize arbitrary positions for a virtual source. This prin-
ciple can be applied to the interpolation of head-related transfer
functions (HRTFs) [19]. HRTFs are filters measuring the effects
of head, pinnae and torso of a person on the sound measured at
the entrance of the ear canal. HRTFs are measured in anechoic
chambers using circular arrays of loudspeakers. The impulse re-
sponses as functions of time and loudspeaker positions corre-
spond to the PAF defined on circles and is studied in [20].

The outline of the paper is the following. In Section II, the
PAF and its construction is presented. Section II-A reviews RIRs
and how they can be simulated, while Section II-B constructs
the space—time representation. Section III studies the spectrum
of the PAF on a line in a room. Its spatial and temporal fre-
quency decay are described in Section III-A and III-B, respec-
tively. Section IV studies the sampling of the PAF. The sam-
pling theorem of the PAF is presented in Section IV-A followed
by a discussion on different sampling patterns in Section IV-B.
Based on the sampled function, one would like to reconstruct the
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field in every possible position which is shown in Section IV-C.
Limitations due to the finite length of the array are taken in ac-
count in Section V. The theory presented in this paper is then
verified using simulations in Section VI-A and measurements
done in real environments in Section VI-B. Section VII is de-
voted to the generalization of the PAF to multidimensional spa-
tial positions. The conclusions are drawn in Section VIII.

II. CONSTRUCTION OF THE PLENACOUSTIC FUNCTION

To study the sound pressure field along a line of microphones
in aroom, one needs to study the sound pressure field from every
possible source position in the room to any possible microphone
position on the line. For simplicity, the technique is presented
for a single source but it will be shown later that the technique
works as well for multiple sources. Consider a source S emit-
ting a signal s(¢). The microphones located on the line will not
record exactly s(t). The sound at microphone m is s(t) con-
volved with the RIR corresponding to the direct path between S
and mq, followed by a possibly infinite number of reflections on
the walls (each microphone will receive a sum of delayed and at-
tenuated versions of s(¢)). At another microphone position m.,
the recorded signal will be different since the RIR from S to
my is different than the RIR from S to m;. The only param-
eter changing between the different spatial positions is the RIR.
Therefore, the rest of the analysis of this paper will be focused
on the spatial evolution of the RIRs. Also for that reason, the
name of the PAF will be used for the rest of the paper as the
spatio—temporal RIRs.

A. Modeling the Room

In order to construct the PAF in a room, the RIRs at any point
in the room need to be known. The image method discussed in
[21] for the simulations of RIRs is used. The method is based
on the creation of virtual sources in order to simulate the effect
of the reflections on the walls. In the case of a rectangular rigid-
walls room of size (L, L,, L), the RIRs are given by [21]

=6 (= |ldy + doll/0)
D> Trlldy + ] ®

p=0v=—0c0

p(t, S, M)

where dp, = (Zs £ @Tm,Ys £ Ym:2s £ 2Zm), dy =
(2lL.,2nL,,20L.), (I,n,0) is an integer vector triplet.
The RIR is a function of time and is dependent on the
source S = (ws,Ys,2s) and the microphone position
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PAF in time and space: (a) in free field and (b) inside a room.

M = (Tm,Ym,2m). The first sum shows that in a 3-D
field, seven virtual sources are created in addition to the orig-
inal source due to the first reflections on three walls. The
second sum shows that sound between two parallel rigid walls
is infinitely reverberated. More general formulas taking into
account the reflection factors of the walls are given in [21].
Special attention has to be given to the problem of the quan-
tization rounding in the computation of the RIR. In [21], the
delay corresponding to each virtual source was rounded to the
closest sample in time in order to reduce the complexity of the
simulations. This leads to aliasing in time and space. In our
simulations, each dirac has been replaced by a sinc function
of appropriate bandwidth delayed with the exact non integer
delay. This removes the aliasing effect. However, as the sinc
functions have a very slow decay in time, one has to consider
long enough RIRs to allow the sincs to sufficiently vanish.

B. Space-Time Representation

With the RIRs as defined in (5), the PAF is constructed for a
line in the room. In that case, one can construct a two-dimen-
sional (2-D) function by gathering all the RIRs at any position
on the line, leading to a 2-D continuous function of space and
time. Space represents the position, time being the duration of
the RIR. This representation is shown in Fig. 1(a) when a pulse
is recorded on a line of microphones in free field and in Fig. 1(b)
for the case of a room.

III. SPECTRUM OF THE PAF ON A LINE

In this section, the PAF on a line and its associated spectrum
are studied. An analytical expression of the 2-D Fourier trans-
form (2D-FT) of the PAF is given. Further, the spatial and tem-
poral frequency decay of the spectrum of the PAF are studied in
the case of a single source and further in the case of a rectan-
gular room.

To study the decay of the PAF, the following notations are
used:

* f(z) ~ g(x) means that hm( (x)/g(z)) =

* f(z) € O(y(z)) means that there exist posmve constants
c and k, such that |f(z)| < cg(x), Vz > k.

A. Spatial Decay of the Spectrum of the PAF

An analytical expression for the 2D-FT of the PAF is given.
This is first reviewed for the free-field case, followed by a gen-
eral formula in the case of a rectangular room.
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Fig. 2. Theoretical 2-D spectrum of the PAF according to (8).

1) Free-Field Case: The evolution of the RIR along the x
axis is studied. The PAF in space and time domain is given by
the following formula [2]:

5 (t . \/(70—965)2+(ym—ys)2+(zm—zs)2)

(&

p(z,t) = ©)

471—\/(51j - $S)2 + ('l/m - ys)2 + (Zm - 25)2.

The x component of the microphone is only varied. For sim-
plicity, the subscript in the variable z,,, was removed, denoting it
by x. The variables y,,,, Zm, Ts, Ys, and z, are constant. Calling
d? = (Ym — Ys)? + (2m — 2,)?, (6) is rewritten as

s <t _ \/(x—zs)2+d2>

c

p(z,t) = (7

4/ —z )2+ d2
The 2D-FT of this function is calculated in Appendix 1. The
obtained result for w € Rt and ¢ € R is3

P(gw) = T3 Hy <d (%)2—&) ®)

with ¢ and w being, respectively, the spatial and temporal fre-
quencies. The magnitude of (8) is plotted for d = 1 in Fig. 2
for positive frequencies. H represents the complex conjugate
of the zero-order Hankel function of the first kind. This function
is infinite at zero. Therefore, when either d = 0 or |¢| = w/c,
the plenacoustic spectrum becomes infinite. When d = 0, it cor-
responds to the situation where the source is located on the line
of the microphones. For the case of |¢| = w/c, a more intuitive
explanation is given. Consider a sinusoid of temporal frequency
w rad/s emitted from a certain position. The signal acquired by
the microphones located at positions tending to infinity is at one
instant an attenuated sinusoid of spatial frequency w/c rad/m.
For these microphone positions, the source appears as being on
the line. This explains the infinite value of the spectrum for this
spatial frequency.

The values where |¢| > (w/c) correspond to the evanescent
mode of the waves. The waves lose their propagating character
to become exponentially fast decaying waves [14], [22]. There-

3Since p(x, t) is a real function, one has that P(—¢, —w) = P*(¢,w), with
P* the complex conjugate of P. To simplify the notation, all further derivations
are done forw € RT.
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fore, considering w, ¢ € R, most of the energy is contained in
the part of the spectrum satisfying
ol < . ©)
c
This result will be used later in the sampling of the PAF. As the
spectrum is decaying very fast along the spatial frequency axis,
one will be able to derive a sampling theorem to sample and
reconstruct the PAF along the spatial axis (see Section IV). Note
also that for |¢| > (w/c), the argument of the Hankel function
in (8) becomes imaginary and (8) can be rewritten as

P(pw) = 5-e I Ky (d\/ # - (%)2) (10)

where K is a modified Bessel function of the second kind and
order zero. The modified Bessel function of the second kind has
the following asymptotical behavior (see [22]):

™ —x
K(](LL’)N1/%B . (11)
Note that further numerical computations show that
™ _
Ky(z) < 1/2—6 * for z>0. (12)
T

For large ¢, (10) can be rewritten using (11) as

13)
For a fixed w = wy, (13) asymptotically behaves as
e—itTs o=dd
2V Vdg
The decay along the spatial frequency axis is faster than expo-
nential.

2) Rectangular Room: In the case of a rectangular room
of size (L, Ly, L.) with perfectly reflecting walls, all the re-
flections are considered as virtual sources as explained in Sec-
tion II-A and the superposition principle is applied. The expres-
sion for the PAF is then given by (5). Each virtual source leads
to a spectrum that follows (8). The total spectrum of the PAF
is the sum of the spectra of each virtual source taken separately,
leading to an infinite sum. One would like to know how this sum
is decaying for large spatial frequencies.

Results on the decay of the spatial frequency are presented
in the easier case of all the virtual sources located in the plane.
Similar results can be obtained in the general case of sources
located in space.

The image model given in Fig. 3 was used. Our original
source is 1 (with coordinates (s, , ys, )) and in its immediate
neighborhood, one can see three other virtual sources (s,
s3 and s4). These four mother sources will create an infinite
number of repetitions to form all the virtual sources in the
plane. These four mother sources will be repeated in the z and
y direction with a periodicity of 2L, and 2L, respectively.

As the room has finite size, an infinite line of microphones
cannot be considered. The microphone line is considered to

P(p,wo) ~ (14)
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Fig. 3. Image source model with the original source s, and all the other virtual
sources.

cover the whole length of the room. In Fig. 3, the line is par-
allel to the x axis.

Define the distances from sources s; and s» to the line of
microphones as d; and ds, respectively (with d; < d5). The
other distances for the sources s4 and s3 to the line are in this
case also d; and ds.

An interesting aspect of this construction is that by the 2L,
periodicity of the source positions along the x axis, the sound
recorded on an infinite line is also periodic with period 2L, .
Further, using the symmetry of the construction, one realizes
that the sound heard at position a is the same as the one heard
at position 2L, — a with a € [0, L.].

By sampling the spectrum of the PAF on the ¢ axis on the
multiples of ¢g = /L., one exactly obtains the Fourier series
of the sound pressure field recorded on a line from 0 to 2L,
when this sound pressure field is 2L, periodic.

Considering the four mother sources (s to s4) with their pe-
riodic repetitions along the x axis, the discrete spectrum of the
PAF can be expressed as follows (for large ngg):

e~ IndoTs,
+
)
e*‘bnd)o

e~ d1ndo 15
* (\/dln% * \/d2"¢>0> -

e~ Indors,

2V

P(ngo,wo) ~ (

Therefore

e*d1n</)0 + edQ'nd)O)
Vidingo  Vdango
with C1(n) a bounded function in n.

Consider now the 2L, periodic repetitions of the sources
along the y axis. Call the sources sy ; the sources with coor-
dinates (xs,,ys, + 2L, ) and similarly so; the sources with
coordinates (zs,, ys, + i2L,). Call Dy ; the distances between

the line of microphones and the sources si;, and D5 ; the
distances between the line of microphones and the sources 52 ;.

P(’I’L(f)g,&]o) ~ Cl(’l’b) ( (16)

D, ,; =|dy + 2L,
D2,i = |d2 + 7,2Ly|

a7)
(18)
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When considering all the source repetitions in the z and y di-
rections, the spectrum becomes

e—D1,indo

V/D1,ingo * \/D2,m¢0> '

19)

e~ D2,in¢o

P(ngo,wo) ~ Ci(n) Y <

The right-hand side of (19) can be upperbounded by

e~ (d2 +i2Ly )’n(f)o

Vdangg

o —(d14i2Ly)ndo
(&
Ci(n
1 );< Vdingo
e—(d’1+i2Ly)n¢o e—(d;+i2Ly)n¢o
+ (20)

vV dyneo vV dyneo

with d} = 2L, — dy and d5 = 2L, — ds. Since d1 < dy < L,
(20) can be upperbounded by

C1(n) (efdlmbo 1 e-dendo 4 o—dindo e*dén%)
(1 — 6_2Lyn¢0)\/’ﬂd1¢0

Asymptotically for large n, the above expression is of the fol-
lowing order:

2L

—dingg
P(n¢o,wo) € O <67) . (22)

n

This shows that for a reverberant room, the decay is faster than
exponential when the line of microphones is parallel to a wall.4

B. Temporal Frequency Decay

The study of the temporal frequency decay is of interest to
fully characterize the plenacoustic function. Nevertheless, in
most cases sounds are bandlimited along the temporal frequency
due to the bandwidth of the emitters and receivers. Therefore,
the results of this section will be briefly presented since they
only are interesting from a theoretical point of view. The more
detailed analysis of the presented results can be found in [23].
Similarly to Section III-A, results on the temporal frequency
decay for the free-field case are first presented before general-
izing them for a rectangular room.

1) Free Field: The spectrum of the PAF is given by expres-
sion (8). The asymptotic behavior of the Hankel function is
given by [22]

2 .
Ho(x) ~ | —el@=m/4), (23)
T
For large w, (8) can be rewritten using (23) as
jemilbw—n/4) o—idy/ () —¢?
P(¢7w> ~ - (24)
2\/ 27'!' 2
d\/(2)" - ¢

4The case where the line of microphones is not covering the whole length
of the room can be seen as a windowing and is discussed in Section V. The
case where the line is not parallel to the wall is studied in [23]. There, the line
is extended along the periodic repetitions of the room and it is shown that the
measured sound field has a spectrum decaying slightly faster than an exponen-
tial. The restriction of this infinite line inside the room can then again be seen
as a windowing as explained in Section V.
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Considering a fixed ¢ = ¢, (8) asymptotically behaves as

IVE  iooze—na € 0"
P(¢g,w) ~ — e~ i($ozs—m/4) . 25
Therefore
Cy(w
P(go,w) ~ 2 6)

Jo

with C3(w) a bounded function of w. This last relation shows
that the decay of the PAF spectrum along the temporal frequency
is, up to a constant, asymptotic as 1//w.

2) Rectangular Room: In the case of a rectangular room, one
follows the same construction as in Section III-A-2. Considering
the four mother sources (s; to s4) in Fig. 3 with their periodic
repetitions along the z axis, the discrete spectrum of the PAF
can be expressed as follows (for large w and a finite n = ng):

N i /4
_J\/Eeﬁr/ (e—jn0¢0w51 +e—jn0¢ow52)

P(nogo,w) ~ Tovar

e*jdlf e*jdzf .
X<vd1w + vdzw> @7
o p—idi e —jda¥ 2

’“3(”0)(@*@) @5)

with C5(ng) being independent of w.
Considering the 2L, periodic repetitions of the sources along
the y axis, one obtains

oo e—iD1:% e—JDz2i%
P(nopo,w) ~ Cs(no) Z VD1,iw + /D2 iw '

i=—o00

(29)
It can be shown [23] that this sum converges and that
Cylw
P(nogo,w) ~ 4(w) (30)

Vo

with Cy4(w) a bounded function of w.

IV. SAMPLING AND RECONSTRUCTION

In the previous sections, the decay of the 2-D spectrum of the
PAF has been studied both along the temporal and the spatial
frequency axes. One has observed that the spectrum of the PAF
lies on a support that is almost bandlimited. This result is valid
for a single source, but also for a finite number of sources. In
the scope of this paper, we are mostly interested in the sampling
of the sound pressure field along the spatial axis. We consider
that the sound pressure field positions are recorded with omnidi-
rectional point microphones.5 Since no spatial antialiasing filter
can be applied in the spatial direction, the speed of the spatial
frequency decay of the 2-D spectrum of the PAF is the key factor
for the quality of the reconstruction. Along the temporal direc-
tion, the signal can be filtered in order to avoid aliasing.

In this section, the sampling theorem of the PAF is presented.
The quality of the reconstruction is studied when sampling the
sound pressure field in space. Further, interpolation techniques
are discussed in order to reconstruct the signal from the available
samples.

SIf the membrane of the microphone has a finite dimension, a spatial filtering
is applied on the recorded sound.
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P

Fig. 4. Magnitude of the spectrum of the PAF. (a) Cut of the spectrum of the
PAF for a particular temporal frequency. (b) Spectrum of the sampled PAF (de-
noted as Pg) for a particular temporal frequency consisting of spectral repeti-
tions of the original PAF spectrum.

A. Sampling Theorem for the PAF

In order to uniformly sample the PAF along the spatial direc-
tion, a uniformly spaced infinite number of impulse responses
are considered. Call ¢ the spatial sampling frequency defined
as 27/ Ax where Az is the sampling interval between two con-
secutive positions of the measured impulse responses. Next to
the spatial sampling, the RIRs also need to be sampled at a
certain temporal sampling rate depending on the desired audio
bandwidth. Call wg the temporal sampling frequency, or wg =
27 / At with At the sampling period of the impulse responses.

Consider now the spectrum of the PAF given by (8) at a par-
ticular temporal frequency wy. It has approximately the shape
given in Fig. 4(a). When the PAF is sampled, repetitions of
the spectrum occur as shown in Fig. 4(b). As the spectrum is
not perfectly bandlimited, the repetitions will affect the recon-
struction. A theorem quantifying the SNR of the reconstruction
of the PAF is presented for one source emitting in free field.
Call SNR(¢s, wp) the SNR of the reconstruction for a sinusoid
emitted at frequency w = wq with the microphones positioned
with a spatial sampling frequency ¢s. In the present case, the
SNR is defined as follows:

o2 |P(d,w0)[ do
4 [;2 s |P(wo)[* do

SNR(¢s,wp) = (31)

The numerator in (31) corresponds to the energy of the spectrum
of the PAF at temporal frequency wg. The denominator in (31)
corresponds to the energy contained in the spectral repetitions
that will contaminate the reconstruction in the spectral domain
of interest. Two different kinds of energy are present in this de-
nominator: the “in band” and the “out of band” energy. The “in
band” energy corresponds to the energy of all the spectral rep-
etitions in the domain of interest, namely [—(¢s/2), (¢s/2)]-

?
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The “out of band energy” is the energy present in the spectrum
that is outside of the domain of interest. It can be shown that the
“in band” and the “out of band” energies are equal in the case
of an infinite line of microphones. This explains the factor 4 in
the denominator of (31).

Theorem 1: Assume one single source emitting in free field
at a frequency w = wp. When sampling the PAF at a spatial
sampling frequency of ¢g, for a particular w = wy, and recon-
structing it using an ideal interpolator, the SNR of the recon-
structed signal in the band [—(¢s/2), (¢s/2)] can be expressed
as

SNR(¢57 u)o) =

1
2
o (ay/(2)7 = )| a0
(32)
where Hj, is the zero-order Hankel function of the first kind.
When considering ¢5 > (2wp/c) and using the exponential

integral function defined as E;(z) = [ (e™"/t)dt, the SNR
can be lowerbounded, as follows:

2df4?i¢75

ae (;)2 -2r)

Proof: The numerator in (31) can be rewritten using the
Parseval’s relation as follows:

SNR(¢s,wp) > (33)

oo

2 [ lplew)l do (34)
with  p(z,wg) the inverse Fourier transform of
P(¢,wo) along the spatial axis. We have that

p(r,wo) = (e (woVw? + d?/c)/4m/22 + d?), and there-

fore the numerator in (31) is

om [ 1 1
i — dr= . 35
1672 / 2+ 2T 8d (35)

Using (8) and (35) in (31) leads to (32).
When considering ¢s > (2wo/c), the denominator in (31) is

o'} 2
1 wo\ 2
- / Ko (d » - (<) ) dg.  (36)
p=8
Using (12), (36) can be upperbounded by
1 ® —2d 2—(u70)2
— | - _dg. (37)
. wq
plre Y — (%)

Using the change of variable z = /¢? — (wo/c)2, (37) can be

rewritten as

(38)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 10, OCTOBER 2006

1601
140}
1201
1001

SNR [dB]

Olod=1 ©d=2000 ®©d=4000 «d=6000 ®d=8000
-20 od in [rad m/s]
10 20 30 40 50
q)Sd [rad]

Fig. 5. In full lines, SNR on the reconstruction signal for different ¢sd for
normalized temporal frequencies ranging from 1 rad m/s to 8000 rad m/s. In
dotted line, the corresponding SNR lower bounds are given.

Then, (38) can be upperbounded by

1 < e—2dz
— d
27d / z ?

) ()

(%)
_ QdW@g_s)Z_(w_;)Z

where E; represents the exponential integral function. Using
(39) and (35), (33) is obtained. [ |

As a numerical check of the tightness of the bound, the SNR
has been computed as a function of the spatial sampling fre-
quency and the temporal frequency. To take into account the
distance d, it was observed that (32) and (33) can be expressed
as a function of normalized frequencies ¢sd and wd. This al-
lows to obtain a numerical evaluation for these two equations
independently of d. The results are shown in Fig. 5 in full lines
for (32) and in dotted lines for (33). In order to avoid numerical
instability due to the infinite value of the spectrum at the posi-
tion ¢s = (2w/c), the simulations start for each wd at a value
of ¢gd larger than ¢psd = 2wd/c. At one normalized temporal
frequency, it can be observed that the SNR increases for larger
normalized spatial sampling frequencies. Note that the lower-
bound follows tightly the SNR obtained numerically.

As an example, it can be observed from Fig. 5 that to recon-
struct the soundfield up to 8000 rad/s (or 1.3 kHz), a spatial
distance of 12.35 cm is necessary to achieve a reconstruction
quality of 100 dB when considering a unitary distance between
the source and the line of microphones. Note that when making
the far-field assumption, using (4) would lead to a spacing of
13.35 cm.

Instead of considering the SNR at a specific temporal fre-
quency, the previous result for the SNR on the reconstruction
can be generalized when the signal is in a frequency band

(39)
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Fig. 6. PAF spectrum. (a) Top view of the PAF spectrum. (b) Top view of the
PAF spectrum with its repetitions due to the spatial sampling.

[w1,ws] with power spectral density |3(w)|?. The SNR on the
reconstruction is then given by the following formula:

SNR (¢S7 [wh wz])
S 1B(w)I dw

i 2d [ |B(w)]” (fi Hy (d (%)2‘¢2>

(40)

- .
d¢> dw

When considering ¢s > (2 max(wi,w2)/c), (40) can be lower-
bounded as follows:

SNR (s, [w1, wo])
™[22 1B(w)]* dw

(/)= 772w

Generalization of the sampling theorem for the cases of mul-
tiple sources in free field or inside a room is matter of current
research.

>
412 1BW)I* E;

(41)

B. Plenacoustic Sampling

In this section, the effect of the sampling in time and space
of the PAF is represented in the spectral domain. This repre-
sentation takes into account the results of the previous section.
Sampling in space is done considering a margin taking into ac-
count the evanescent decay of the PAF spectrum. The sampling
of the PAF will first be shown in details for the rectangular sam-
pling pattern. Further, it will be shown that quincunx sampling
can also be used to sample the PAF.

1) Rectangular Sampling: The schematic top view of the
spectrum of the PAF is shown in Fig. 6(a). When sampling the
PAF along the spatial dimension with a spatial sampling fre-
quency of ¢g, repetitions of the spectrum occur as shown in
Fig. 6(b). When one considers the far field approximation of the
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Fig. 7. PAF spectrum. (a) PAF spectrum with its spectral repetitions along the
temporal and the spatial frequencies. (b) PAF spectrum with its spectral repeti-
tions along the temporal frequencies. In both figures, the region in bold cor-
responds to the original spectrum bandlimited along the temporal frequency
without spectral repetitions.

sound pressure field, the spatial sampling frequency needed to
reconstruct the PAF up to a temporal frequency wy is given by

2&)0

bs > (42)
When one does not consider any far field approximation,
Fig. 5 has to be considered. In that figure, the spatial sampling
frequency is given for each possible temporal frequency for a
wanted reconstruction SNR. When one wants to ensure that
the highest frequency of the signal is still reconstructed with a
given SNR, the spatial sampling frequency needs to be slightly
increased compared to (42). To reconstruct the sound pressure
field up to wy with a given SNR at that frequency, the spatial
sampling frequency is given by
¢S > 2_2)0 + E(SNR[), (,do) (43)

where £(SNR,w) is obtained from Fig. 5 when considering a
specific temporal frequency and a given SNR. It represents the
difference between the value read on the graph and the far field
approximation (42). Inside the region in bold in Fig. 6(b), it can
be observed that for a particular ¢s chosen according to (43):

V|w| < wp SNR(¢s,w) > SNRy. (44)
When |w| > wyp, due to the periodic repetitions along the spatial
axis, the SNR(¢s,w) decreases.

The temporal sampling of the PAF is now considered. The
signal is first bandlimited to wy satisfying (43) and sampled with
a temporal sampling frequency of wg 2wq. Repetitions of
the spectra occur now also along the temporal frequency. The
obtained spectrum for the PAF sampled in space and time is
shown in Fig. 7(a).

Conversely, considering temporal sampling first, one can say
that if the maximal temporal frequency present in the signal is
wp, then sampling the signal at a temporal sampling frequency
ws = 2wy, one obtains the signal whose spectrum is shown in
Fig. 7(b). When sampling this signal along the spatial dimen-
sion, it is necessary to choose ¢g as in (43) in order to avoid
aliasing as shown in Fig. 7(a). Using the rectangular sampling,
the sampling of the PAF happens in space and time domain as
shown in Fig. 8(a). The corresponding spectrum is shown in
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Fig. 8. Sampling and interpolation of the PAF. (a) Rectangular sampling grid.
(b) Plenacoustic spectrum with its repetitions for a rectangular sampling grid
with the interpolation filter in bold. (c) Quincunx sampling grid. (d) Plenacoustic
spectrum with its repetitions for a quincunx sampling grid with the interpolation
filter in bold.

Fig. 8(b). The final expression for our sampled PAF 2-D spec-
trum (denoted as Pg) becomes

1 - 21k 21k
Ps(@) = Komi ;_OOP<¢_A—:E"‘)_ A7 )

(45)

2) Quincunx Sampling: A tighter packing of the spectrum
can be achieved by using quincunx sampling. In time domain,
the grid to be used is shown in Fig. 8(c). In the corresponding
spectrum, the spectral repetitions are placed such that they fill
better the whole frequency space as shown in Fig. 8(d). In the
quincunx sampling the spatial sampling frequency is now only
¢s/2. This corresponds to a distance between two samples on
the space axis of 2Az = 47 /¢g. This shows that using quin-
cunx sampling one only needs to sample the even microphones
at even times while the odd microphones are sampled at odd
times. This leads to a gain of factor 2 in the processing. How-
ever it does not reduce the number of necessary microphones.
Similar approaches have been used in [13] in the study of the far
field electromagnetic field. The precise value of ¢g to be used
in the case of quincunx sampling to ensure a SNR of reconstruc-
tion at a certain temporal frequency is not given in this paper but
could be derived similarly to the expression (32).

C. Reconstruction by Interpolation

Knowing the sound field at every point of the sampling grid,
the usual interpolation techniques [24], [25] are applied in order
to reconstruct the sound pressure field at any location. The in-
terpolation filter to be used is dependent on the sampling grid,
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Fig. 9. Effect of the windowing due to the finite length of the array.

and may be separable in time and space. When the samples have
been obtained by rectangular sampling, the interpolation filter is
a lowpass filter with support [—(¢s/2), (¢5/2)]. The support of
the filter is shown in bold in Fig. 8(b). When the samples have
been obtained by quincunx sampling, the filter used for interpo-
lation is a “fat fan filter” [25]. The support of the filter is shown
in bold in Fig. 8(d). One can compute the ideal filters in closed
forms, however these ideal interpolation filters are not realizable
in practice. Therefore, one needs to slightly increase the spatial
sampling frequency to take into account the decay of the real
filter. For their design, standard techniques can be used [25].

V. FINITE-LENGTH APERTURE

In this section, the field is not measured along an infinite line
but on a finite interval inside the room. This can be seen as a
windowing of the PAF in the spatial domain. Consider a rectan-
gular window w(z). In the present case, the window is simply
a function of the spatial position. Calling the windowed PAF
q(z,t). It satisfies q(z, t) = p(x, t)w(x). In frequency domain,
this is written as

Q($,w) = P(,w)  W(,w) = P(,w) + (W(9)5(w))
(46)
The situation is schematically shown in Fig. 9.

The size of the aperture has an influence on the decay of the
windowed PAF. Taking measurements from positions between
—L/2 and L/2 leads to a convolution of the PAF spectrum with
the following sinc function:

vl

W(p) = e %%y = Lsinc (¢—L> . 47)
2

At a given ¢, the larger the value of L, the faster the decay
will be. This fact can be observed in Fig. 10. A section of the
2-D spectrum of the PAF at a particular temporal frequency
(20007 rad/s) is presented. One can observe that for larger aper-
ture sizes the spectrum decays more rapidly as given in (47).

The decay of the spectrum of the PAF along the spatial fre-
quency will now be slower than the one in (10). For a particular
temporal frequency w = wy, the decay is

—Jjozs
¢ 5 Ko (d,/qu _ (%)j «W(p). (48)

In the case of arectangular window, this decay is the convolution
of a sinc with a modified Bessel function K.

Q(¢ WU) =
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Fig. 10. A section of the PAF at a particular temporal frequency (20007 rad/s).
The curves represent data acquired on intervals of different lengths: 50 cm (full
line), 100 cm (dotted line), and 150 cm (dashed line). A larger interval leads to
a faster decay. For this graph, we used d = 1 in (8).

Combining the finite aperture effect with the sampling of the
PAF, the following expression for the 2D-FT of the sampled
windowed PAF (denoted as (Qs) is obtained:

QS(¢7 w

1 - 2k, 27ks
)= AzAL Z::_OOQ<¢_ Ar YT A )
’ (49)

VI. SIMULATIONS AND MEASUREMENTS

In this section, simulation results are presented for the in-
terpolation of RIRs. These results are then compared with real
measurements.

A. Simulation Results

RIRs have been simulated on a line in a room using the image
source model. For simulation purposes, one derives a dense
set of impulse responses, keeps a subset, and interpolates the
missing ones. In the simulations, the case of rectangular sam-
pling of the sound field was considered. To compare the inter-
polated with the simulated RIRs, the normalized mean-square-
error (MSE) criterion was used:

iy (i)~ 7li])”

Sl
with IV the length in samples of the simulated RIRs, 7 the sim-
ulated RIR and 7 the interpolated RIR.

In the presented simulations, 2n + 1 RIRs were simulated
every cm along a line in the room. From these simulations, we
kept n 4+ 1 measurements spaced with 2 cm to interpolate the n
“in-between” positions. With the spacing of 2 cm, the RIRs were
reconstructed up to a temporal frequency of 16 000w rad/s. In
this setup, due to the limited length of the array, the decay of the
spectrum is mostly determined by the decay of the windowing
function as discussed in Section V. We chose ¢ large enough
in (43) to ensure a sufficient decay in the spectrum of the finite
length aperture PAF. Note that this € can be substantially larger
than the one obtained in Fig. 5. The MSE for those n positions is

MSE =

(50)
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Fig. 11. Interpolation error for different array sizes. We use the same spacing
between the microphones, namely 2 cm.

shown in Fig. 11. Different lengths of the array centered around
the same spatial position were considered, namely n = 8§, 17,
35 and 71. Note that the MSE is only given for the interpolated
positions since the positions used to apply the interpolation are
perfectly reconstructed. One can observe that using the array
corresponding to n = 71 leads to a very small error (less than
—60 dB) for the interpolation in the middle of the array. When
using the same spacing between the microphones but reducing
the number of RIRs, the interpolation error increases due to the
border effects introduced by the finite length of the array. Note
also that the curves on Fig. 11 are not symmetric. This is due to
the fact that the microphone array was not symmetrically located
inside the room.

B. Experimental Results

Experimental results were carried out in a partially sound in-
sulated room with RIRs measured at different spatial positions.
One loudspeaker (Genelec 1029A) was used together with a mi-
crophone array (composed of eight Panasonic WM61A). A fre-
quency logarithmic sweep [26] was used to measure the RIRs.
71 RIRs were measured with a microphone spacing of 2 cm
along a line in the room.® The spectrum of the measured PAF
is shown in Fig. 12(a). Similarly to the technique presented in
the simulations, we kept 36 measurements spaced with 4 cm to
interpolate the 35 “in-between” positions. The RIRs were low-
pass filtered to 80007 rad/s. Considering (43), € was chosen
large enough to ensure a sufficient decay in the spectrum of the
windowed PAF. The MSE on the 35 interpolated RIRs mea-
surements is shown in Fig. 12(b). Note that the MSE shown
in Fig. 12(b) is obtained when using only the first 100 ms of
the RIRs. When considering the full RIRs (1 s) poorer results
are obtained (on the order of —25 dB). This results leads to the
thinking that only the beginning of the RIRs is well interpo-
lated. To justify this conjecture, successive measurements were
performed at the same spatial positions with a 30-s interval. We
studied the MSE between two successive measurements using
a sliding window of 25 ms. The results were averaged over 100

6All the measurements are available online at http://lcavwww.epfl.ch/
~thibaut/Measurements/Acoustic.html
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Fig. 12. Experimental PAF. (a) 2D-FT of the measured plenacoustic function.
(b) Interpolation error on measured RIRs.
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Fig. 13. MSE on successive RIRs along a sliding window of 25 ms. The results
were averaged over 100 pairs of successive measurements.

measurements. It can be observed in Fig. 13 that the MSE is
very low at the beginning of the RIR and increases with time.
After 100 ms, the MSE between consecutive measurements is
already of about —38 dB. This fact can probably be understood
by a variation of the speed of sound propagation over time. This
effect will be the most severe for waves traveling over a wider
area. Therefore, the reverberant part of the RIR will undergo
the largest relative timing changes. The speed of sound fluctu-
ation will also have a larger impact for larger microphone to
loudspeaker distances. This speed of sound variation can be the
consequence of variation of different parameters such as tem-
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perature, humidity, and pressure in the room. In [27], similar
observations have been done and attributed to variation of tem-
perature. They showed that a variation of 0.1° can create a mis-
alignment between RIRs of more that 25 dB.

Note finally that due to the limit of our 8 inputs microphone
array, we had to move the array to the next positions in order
to measure the 71 RIRs (our intrusion in the room probably
modified the temperature and other factors between two sets
of measurements). Better results would be obtained if all the
measurements could be captured simultaneously, which was not
possible due to hardware limitations.

VII. PLENACOUSTIC FUNCTION FOR MULTIDIMENSIONAL
SPATIAL POSITIONS

The previous sections were devoted to the detailed study of
the sampling and interpolation of the sound pressure field on the
line. This study can obviously be generalized to other spatial po-
sitions of microphones (or loudspeakers). Therefore, one wants
to study the shape of spectra associated with different micro-
phones setups. Section VII-A studies the spectrum of the PAF
associated to a plane of microphones. The optimal sampling pat-
tern for positioning the microphones is studied. Further, the 3-D
space filled of microphones is presented in Section VII-B.

Due to lack of space, these different setups are analyzed in
less details than the line of microphones. Temporal and spatial
decay analysis in rooms as well as spatial windowing are not
presented but can be generalized from the study of the line of
microphones.

A. Plenacoustic Function on a Plane

1) Study of the Spectrum: In Section III, the shape and the
properties of the PAF on a line in the room were studied. In this
section, one considers a more general case where the RIRs are
studied on a plane. Consider a plane in the space filled with re-
ceivers in the 2 and the y directions. Further, a source is located
at position (z, ys, zs). At any receiver position (Zp,, Ym, Zm)
the direct path coming from the source is

5(e-2)

dma

p(xm7ym7t) = (51)

with @ = /(Zm — 25)2 + (Ym — Ys)% + (2m — 25)2. The
derivation of the 3D-FT of (51) is done in Appendix II and
follows the same approach as the one presented in [14]. The
result is

o o~z (2)7-e2
_—;@% for [ <
£) —42 '
P(¢x,¢y,w) = el éz,(ﬁf
e "V 1) for ¥ <
2 Ver-(e) P =l
(52)

with ¢ = ¢2 + ¢2 and & = e~ I(9exsF+éuys) Note that ¢,
and ¢, represent the spatial frequencies for the microphones in
the z and y directions respectively. The obtained spectrum has
a conical shape as shown in Fig. 14. The surface of the cone is
given by

(53)
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Fig. 14. Schematic view of the 3-D spectrum of the PAF.
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Fig. 15. Sampling of the PAF on a plane. (a) Placement of the microphones
on the plane on a rectangular sampling grid. (b) Plenacoustic spectrum with
its repetitions for a rectangular sampling grid. (¢) Hexagonal sampling grid.
(d) Plenacoustic spectrum with its repetitions for a hexagonal sampling grid.
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Similarly to the results obtained with the line of microphones,
one sees that the decay of the spectrum is also faster than an ex-
ponential outside of the conical shape. Remark that in the spe-
cific case of the source located on the plane of the microphones,
the decay becomes slower and is, up to a constant, asymptotic
as 1/¢,.

2) Optimal Sampling Pattern: Similarly to the analysis pre-
sented in Section IV-C, the optimal sampling pattern for the po-
sitioning of the microphones on the plane is studied. The first ap-
proach is to use the rectangular sampling as shown in Fig. 15(a).
A spacing of Az; and Ay; was used for the spacing between
the microphones in the x and y directions. Fig. 15(b) shows the
corresponding packing of the circles in the Fourier spectrum for
one temporal frequency (typically the highest frequency present
in the emitted signal).

3801

The conical shape of the spectrum allows us to obtain a tighter
packing of the circles. The use of an hexagonal sampling pattern
leads to a reduction of about 15% in the number of necessary
microphones. Fig. 15(c) shows the new positions of the micro-
phones on the plane. In this case

Ax2=-3§Az1,Ay2=:AyL (54)

7
Fig. 15(d) shows the corresponding spectrum with its spectral
repetitions. Other packings of the cones can be realized to lower
the temporal sampling frequency of the analog—digital (A/D)
converters but do not reduce further the number of microphones
needed to sample the sound pressure field on a plane [12].

3) Simulation Results: We simulated RIRs on a plane in a
room using the image source model. The 3-D Fourier transform
was applied on the gathered data. By looking at sections of this
spectrum for w = 1500 rad/s and w = 3000 rad/s, one obtains
Fig. 16(a) and (b) respectively. One can see that with growing
temporal frequencies, the support of the PAF spectrum also in-
creases as given by (53).

B. Plenacoustic Function in Space

In this section microphones located in the 3-D space are con-
sidered. Similarly to the setup presented in Section VII-A, a
source is located at position (s, ys, 25 ) and microphones at po-
sitions (Zm, Ym, 2m ). The PAF is also given by (51). Note that
in the present setup also z,, is a variable. Call ¢, the spatial
frequency of the microphone positions in the z direction. Cal-
culating the fourth-dimensional Fourier transform (4D-FT) of
(51) is done in Appendix III. The result is

e_j(¢xms+¢yys+¢:zs)
= o 2
P2+ P2+ 2 — (£)

which represents a cone in four dimensions. For a particular
temporal frequency, the section of this cone is a sphere. The size
of the sphere obeys the following rule:

A R

Note that the decay outside of the sphere is not exponential
as it was for the plane and line of microphones. This is due
to the presence of the source at one of the microphone posi-
tions. At a particular temporal frequency, the optimal packing
of the spheres is given by face-centered cubic lattice packing
[28]. It allows to reduce the number of samples by a factor of
about 29.3% when compared to a normal rectangular sampling
pattern.

P(¢e, by, ¢z, w)

(55)

(56)

VIII. CONCLUSION

In this paper, we have introduced and studied the plenacoustic
function. It characterizes the sound pressure field at any point in
space. This function has been studied and its spectrum for the
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Fig. 16. Spectrum of the PAF obtained by simulations at different temporal
frequencies. (a) w = 1500 rad/s. (b) w = 3000 rad/s.

linear, planar, and three-dimensional case has been calculated
without making any far field assumption. The decay of the spec-
trum has been studied along both the temporal and spatial fre-
quency axis. Based on the support of the spectrum, the number
and the spacing between the microphones needed to reconstruct
the sound pressure field up to a certain temporal frequency has
been determined. A quantitative sampling theorem, trading off
sampling rate for SNR, has been presented. As an example, it
has been shown that to reconstruct the soundfield up to 1.3 kHz,
a spatial distance of 12.35 cm is necessary to achieve a recon-
struction quality of 100 dB for a source located at unitary dis-
tance from the line of microphones. Using the far-field assump-
tion, this spacing would be of 13.35 cm. The optimal sampling
pattern for the microphone positions has also been given for the
linear, planar, and three-dimensional case. Finally, simulations
and experimental results were presented and compared with the
theoretical results.

APPENDIX [
DERIVATION OF THE 2D-FT OF THE PAF ON A LINE

5 (t _ \/(m—ms)2+d2)

(x —z )2 +d?

p(z,t) (57)
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The 2D-FT of (57) is

P(p,w) = / /p(x,t)e‘j(d’““’”dtdx.

(58)
r=—00 t=—00
Call u = x — z4; therefore
e—idze oI (dut e VP d®)
P = d 59
_ e—JTs ¥ e~ IS Vur+d? cos(¢pu) du. ©60)
2T VuZ + d2
u=0
Using existing formula in [29], one obtains
— _Z —jbzs * g 2 _ hH2
P(g,w) = =37 H; <d (C) 4)). 61)

APPENDIX II
DERIVATION OF THE 3D-FT OF THE PAF ON A PLANE

P(@m Y 1) = — =
with a = /(Tm — 25)2 + (Ym — Ys)2 + (2m — 2)2. Call
Wy = [Tm,Ym]" and @ = [¢, P,]T. One can calculate the

spectrum of this function

S(t—2) .o
P($,w) = / / %e—ﬂ'ﬁ umtel) qu,, dt.  (62)

R2 R

This expression can be rewritten as

/

R2

e—i(¢Tunmtws)

du,,. (63)

P(¢,w)

4ma

Introducing u = [,,, — T4, Ym — ys|*, the integral is rewritten
as

efj(¢TU+uJ%)

P(¢p,w) = e 7 (P=et o) / du. (64

R2

dra

Call r2 = 22 4+ 2, & = e~ IP=metduys) o = 5 — 2 and
¢2 = ¢2 + ¢2. The integral can be rewritten as [30]

o [ rdo(éer) —i(EEE) "

= — ——e¢ 65
2 ) Vet ©

P(¢,w)
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Call m = Vr2 + 22, we have that r = vVm?2 — 22, and also
dm = (r/v/r? 4+ z2)dr. The integral becomes

+oo
Pw) =3 / To(pgV/m? = 22)e~ 9 E)dm. (66)
m=|z|

Using existing formulas in [29], one obtains that

. glzl
Sy O for |pg| < %
P, by ) = 1l ¢21(”)Zq
de a \e w
- = for £ <
el Sl
(67)

APPENDIX III
DERIVATION OF THE 4D-FT OF THE PAF IN SPACE

p($m7,1/m7 Zmat) =

with @ = \/(a:m —25)2+ (Ym — ys)%2 + (2m — 25)2. Call
W = [T, Yy Zm] " and @ = [¢., ¢y, ¢-]T. The spectrum of
this function can be calculated

t _a
// —i(e" umtwt) quy,, dt. (68)

By introducing u = [z
can be rewritten as

m = Ts: Ym — Ys: Zm — 25| » the integral

. —i(¢Tutwt)
P(¢p,w) = eI (Gemetduptonz) / £ du (69)
4ma
HS

Introducing ¢2 = ¢2 + ¢2 + ¢2, the integral becomes [30]

P(¢7w) — 67j(4)m-rs+4)yys+d)zzs ¢ m e ImE Am.

|| \+

(70)
The solution of this integral can be found in [29]
e~ (Pt dyysto-z:)
P(¢ma¢y:¢z>w): 5 o 2 (71)
¢ — (%)
REFERENCES

[1] E. Adelson and J. Bergen, “The plenoptic function and the elements of
early vision,” in Computational Models of Visual Processing. Cam-
bridge, MA: MIT Press, 1991, pp. 3-20.

3803

[2] P. Morse and K. Ingard, Theoretical Acoustics. New York: McGraw-
Hill, 1968.

[3] J. Chai, X. Tong, S. Chan, and H. Shum, “Plenoptic sampling,” in Proc.
Conf. Computer Graphics, 2000, pp. 307-318.

[4] C. Zhang and T. Chen, “Generalized plenoptic function,” Carnegie
Mellon Univ., Pittsburgh, PA, Tech. Rep. 01-06, Sep. 2001.

[5] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts
and Techniques. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[6] M. Kubovy and D. Van Valkenburg, “Auditory and visual objects,”
Cognition, vol. 80, pp. 97-126, 2001.

[71 T. Ajdler and M. Vetterli, “The plenacoustic function and its sampling,”
presented at the IEEE Benelux Workshop on Model Based Processing
and Audio Coding (MPCA), Leuven, Belgium, Nov. 15, 2002.

[8] ——, “The plenacoustic function, sampling and reconstruction,” in
Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP),
2003, vol. 5, pp. 616-619.

[9] ——, “Acoustic based rendering by interpolation of the plenacoustic
function,” in Proc. SPIE/IS&T Visual Communication and Image Pro-
cessing Conf., 2003, pp. 1337-1346.

[10] P. S. Naidu, Sensor Array Signal Processing. Boca Raton, FL: CRC
Press, 2001.

[11] L.J. Ziomek, Fundamentals of Acoustic Field Theory and Space-Time
Signal Processing. Boca Raton, FL: CRC Press, 1995.

[12] J. Coleman, “Three-phase sample timing on a wideband triangular
array of 4/3 the usual density reduces the Nyquist rate for far-field
signals by two thirds,” presented at the 38th Annu. Asilomar Conf.
Signals, Systems, Computers, Pacific Grove, CA, 2004.

[13] ——, “Ping-pong sample times on a linear array halve the Nyquist
rate,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP), 2004, vol. 4, pp. 925-928.

[14] A.Berkhout, Applied Seismic Wave Theory. ~Amsterdam, The Nether-
lands: Elsevier Science, 1987.

[15] D. de Vries and M. Boone, “Wave field synthesis and analysis using
array technology,” presented at the IEEE Workshop Applications
Signal Processing Audio Acoustics, New Paltz, NY, 1999.

[16] E. Hulsebos, D. de Vries, and E. Bourdillat, “Improved microphone
array configurations for auralization of sound fields by wave field syn-
thesis,” presented at the 110th Audio Engineering Society (AES) Con-
vention, Amsterdam, The Netherlands, Apr. 2001.

[17] A.J. Berkhout, D. de Vries, and P. Vogel, “Acoustic control by wave
field synthesis,” J. Acoust. Soc. Amer., vol. 93, no. 5, pp. 2764-2778,
May 1993.

[18] A. Berkhout, D. de Vries, and J. Sonke, “Array technology and wave
field analysis in enclosures,” J. Acoust. Soc. Amer., vol. 102, pp.
2757-2770, 1997.

[19] J. Blauert, Spatial Hearing. Cambridge, MA: MIT Press, 2001.

[20] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic function on
the circle with application to HRTF interpolation,” in Proc. IEEE Int.
Conf. Acoustics, Speech, Signal Processing (ICASSP), Barcelona,
Spain, May 2005.

[21] J.B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics,” J. Acoust. Soc. Amer., vol. 65, pp. 943-950,
1979.

[22] E. G. Williams, Fourier Acoustics. New York: Academic, 1999.

[23] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic function and
its sampling,” Ecole Polytechnique Federale de Lausanne, Lausanne,
Switzerland, 2005, Tech. Rep..

[24] M. Vetterli and J. Kovacevié, Wavelets and Subband Coding, ser. Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[25] P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

[26] S. Miiller and P. Massarani, “Transfer function measurement with
sweeps,” J. Audio Eng. Soc., vol. 49, pp. 443-471, 2001.

[27] G. Elko, E. Diethorn, and T. Génsler, “Room impulse response varia-
tion due to thermal fluctuation and its impact on acoustic echo cancella-
tion,” in Proc. Int. Workshop Acoustic Echo Noise Control (IWAENC),
Kyoto, Japan, 2003, pp. 67-70.

[28] T. TheuBl, T. Moller, and E. Groller, “Optimal regular volume sam-
pling,” in Proc. IEEE Visualization, 2001, pp. 91-546.

[29] 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts, 4th ed. New York: Academic, 1965.

[30] R. N. Bracewell, The Fourier Transform and Its Applications. New
York: McGraw-Hill, 2000.



3804

Thibaut Ajdler (S’03-M’06) received the B.Sc.
and the M.Sc. degrees in electrical engineering from
the Free University of Brussels (Vrije Universiteit
Brussel), Belgium, in 2001. He is currently working
towards the Ph.D. degree in communication sys-
tems at Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland.

From July to September 2000, he was a Research
Assistant at the Massachusetts Institute of Tech-
nology (MIT), Cambridge. From October 2002 to
February 2003, he was an intern at Intel Corporation,
Santa Clara, CA, working on acoustic source localization using distributed
sensor networks. His research interests include audio signal processing,
acoustics and signal processing for communications.

Luciano Sbaiz (M’98) received the “Laurea in In-
gegneria” degree in electronic engineering and the
Ph.D. degree from the University of Padova, Padova,
Italy, in 1993 and 1998, respectively.

Between 1998 and 1999, he was Postdoctoral
Researcher at the Audiovisual Communications
Laboratory at Ecole Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland, where he
conducted research on the application of computer
vision techniques to the creation of video special
effects. In 1999, he joined Dartfish, Ltd., Fribourg,
Switzerland, as Project Manager. Within the company, he developed video
special effects for television broadcasting and sport analysis. In 2004, he took a

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 10, OCTOBER 2006

position as Senior Researcher at the Audiovisual Communications Laboratory
at EPFL, where he conducts research on signal processing. His activities are
in the field of image and audio processing, superresolution techniques, and
acoustics.

Martin Vetterli (S’86-M’86-SM’90-F’95) re-
ceived the Engineering degree from Eidgendssische
Technische Hochschule (ETH), Zurich, Switzerland,
in 1981, the M.S. degree from Stanford University,
Stanford, CA, in 1982, and the Ph.D. degree from
Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland, in 1986.

In 1986, he joined Columbia University, New
York, first with the Center for Telecommunications
Research and then with the Department of Electrical
Engineering, where he was an Associate Professor
of Electrical Engineering. In 1993, he joined the University of California at
Berkeley, were he was Full Professor until 1997. Since 1995, he has been a
Professor at EPFL, where he headed the Communication Systems Division
(1996-1997) and heads the Audiovisual Communications Laboratory. From
2001 to 2004, he directed the National Competence Center in Research on
mobile information and communication systems. He has also been Vice-Presi-
dent for International Affairs at EPFL since October 2004. He has held visiting
positions at ETH Zurich (ETHZ) (1990) and Stanford University (1998). His
research interests are in the areas of applied mathematics, signal processing,
and communications. He is the coauthor of a textbook on Wavelets and Subband
Coding and of over 100 journal papers.




