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Abstract—Recent results have underlined the impor-
tance of incoherence in redundant dictionaries for a
good behavior of decomposition algorithms like Match-
ing and Basis Pursuit. However, appropriate dictionar-
ies for a given application may not be able to meet
the incoherence condition. In such case, decomposition
algorithms may completely fail in the retrieval of the
sparsest approximation. This paper studies the effect of
introducing a priori knowledge when recovering sparse
approximations over redundant dictionaries. Theoret-
ical results show how the use of reliable a priori in-
formation (which in this work appears under the form
of weights) can improve the performances of standard
approaches such as greedy algorithms and relaxation
methods. Our results reduce to the classical case when
no prior information is available. Examples validate and
illustrate our theoretical statements.

Index Terms—Sparse Approximations, Redundant
Dictionaries, Relaxation Algorithms, Greedy Algo-
rithms, A Priori Knowledge, Weighted Basis Pursuit
Denoising, Weighted Matching Pursuit.

I. Introduction

In many applications, such as compression, denoising or
source separation, one seeks an efficient representation or
approximation of the signal by means of a linear expan-
sion into a possibly overcomplete family of functions. In
this setting, efficiency is often characterized by sparseness
of the associated series of coefficients. The criterion of
sparseness has been studied for a long time and in the
last few years has become popular in the signal processing
community [1], [2], [3], [4]. Natural signals, though, are
very unlikely to be exact sparse superpositions of vectors.
In fact the set of such signals is of measure zero in C

N [1].
In the present work, we thus analyze the case of sparse
approximations:

min
c

‖f − Dc‖2

2 s.t. ‖c‖0 ≤ m, (1)

where f ∈ H is the function to be approximated and H is
a Hilbert space (unless otherwise stated, it is assumed that
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H ≡ R
n). D is the n×d synthesis matrix of the dictionary

(D), where each one of the columns corresponds to an
atom (gi). D is defined such that D = {gi : i ∈ Ω} where
∀i ‖gi‖2 = 1, Ω is the index set for the whole dictionary
and |Ω| = d. Finally, c is the vector of coefficients to be
recovered.

In general, the problem of recovering the sparsest signal
approximation (or representation) over a redundant dic-
tionary is a NP-hard problem. However, when particular
classes of dictionaries are used, this does not impair the
possibility of solving this problem using faster sub-optimal
methods.

As demonstrated in [1], [2], [4], [5], in order to ensure the
good behavior of algorithms like General Weak Matching
Pursuit (Weak-MP) and Basis Pursuit Denoising (BPDN),
dictionaries need to be incoherent enough. Under this main
hypothesis, sufficient conditions have been stated such
that both methods are able to recover the atoms from the
sparsest m-term expansion of a signal.

However, experience and intuition dictate that good
dictionaries for approximations of natural signals can be
very redundant and, depending on the kind of signal
structures to describe, they may be highly coherent. This is
a strong discrepancy between theory and practice. In order
to tackle this problem, in this paper we discuss the poten-
tiality of using a priori knowledge in the atom selection
procedure for sparse approximations. In this work, prior
information is inserted by means of a weighting procedure.
We do not treat here the issue of how to find a reliable and
useful a priori knowledge about a signal. This problem
strongly depends on the nature of a given signal and on the
kind of dictionary used. Nevertheless, we give an insight
through a realistic example in Section V. The question of
achieving sparseness in some class of coherent dictionaries
have already been faced in [6], but for the particular
case of Vandermonde and Fourier dictionaries, while the
use of weights into some highly nonlinear approximation
algorithms was previously suggested in [7] and [8].

The aim of this paper is the theoretical study of
weighted algorithms in the prospective of achieving sparse-
ness. Our main results are:

• The definition of the Weighted Basis Pursuit De-
noising (Weighted-BPDN) and Weighted Matching
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Pursuit (Weighted-MP) algorithms for approximation
purposes. We reformulate classic BPDN and Weak-
MP in order to take a priori information into account
when decomposing a signal.

• A theoretical study of the approximation properties
of Weighted-BPDN and Weighted-MP/OMP.

• An example, on natural signals, of the effect of us-
ing prior models at the decomposition stage, when
coherent overcomplete dictionaries are used. Models
exploit the relationship between the class of signals
and the internal structure of the selected dictionary.

This paper is structured as follows. Section II recalls
some aspects of the state of the art in sparse signal
approximations. In Section III and IV we study the effect
of introducing a priori information, respectively, in greedy
and relaxation algorithms. Examples on natural signal de-
compositions are presented in Section V, while conclusions
are drawn in Section VI.

II. Sparse Approximations: An Overview

In this section, the basic principles of Weak-MP and
BPDN are reviewed together with very recent theoretical
results concerning their ability to succeed in recovering
best m-term signal approximations.

A. Greedy Algorithms

General Matching Pursuits [5], [9], [10] iteratively build
m-term approximants by selecting at each step the most
appropriate term from D according to a certain rule. Each
iteration k (where k ≥ 0) can be seen as a two step
procedure:

1) A selection step where an atom gik
∈ D is chosen.

2) A projection step where an approximant
fk+1 ∈ span(gil

: l ∈ {0, ..., k}) and a residual
rk+1 = f − fk+1 are generated.

The selection step, at iteration k, can be generally
formulated as the maximization of a similarity measure
C(rk, gi) between the signal to approximate (the residual
at the kth iteration: rk = f−fk) and the dictionary atoms:

gik
= arg max

gi∈D
C(rk, gi). (2)

Pure Matching Pursuit uses the modulus of the scalar
product as similarity measure, i.e. C(rk, gi) = |〈rk, gi〉|.
More generally, Weak-MP allows an additional flexibility
factor α ∈ (0, 1] allowing the selected atom gik

to be such
that |〈rk, gik

〉| ≥ α maxi∈Ω |〈rk, gi〉|. The sub-optimality
factor α, as demonstrated in [9], does not necessarily
prevent the greedy algorithm from converging to a solution
(i.e. limk→∞ ‖rk‖2

2 = 0 ), though it may affect negatively
the convergence speed.

The projection step determines whether Matching Pur-
suit (MP) or Orthogonal Matching Pursuit (OMP) is in
use. The former just guarantees that the atom selected at
iteration k is orthogonal to the residual rk+1 [10]. The
latter, constructs the approximant fk+1 by finding an

orthogonal projection of f over the space spanned by all
selected atoms until iteration k [11].

Even though greedy algorithms do not directly solve the
problem of Eq. (1), in some cases, the solution they supply
coincides with that of (1). Depending on the characteris-
tics of the dictionary, one can establish some guaranties
that Weak-MP is able to recover the atoms of a m-term
sparsest approximation of a signal f [1]. This is performed
by means of a set of sufficient conditions obtained by Tropp
in [1], for the particular case of OMP, and further extended
to the case of Weak-MP by Gribonval and Vandergheynst
in [5]. All sufficient conditions rely on the fact that D
must be incoherent enough. Indeed, given D and m, if a
cumulative coherence measure [1] of the dictionary, defined
as

µ1(m,D) , max
|Λ|=m

max
i∈Ω\Λ

∑

λ∈Λ

|〈gi, gλ〉| , (3)

where Λ ⊂ Ω has size m, is small enough such that

µ1(m)

1 − µ1(m − 1)
< α,

then Weak-MP(OMP) works as desired. Remark that the
measure known as coherence of a dictionary µ, and often
used to characterize redundant dictionaries corresponds to
the particular case µ = µ1(1,D). Furthermore µ1(m,D) ≤
mµ.

Based on the coherence measure of Eq. (3), some results
concerning the behavior of Weak-MP (or OMP) algo-
rithms have been also obtained. For example, two of them
are: an upper bound on the decay of the residual energy
(‖rk‖2

2) as a function of k and µ1(m,D), and a condition
on the recoverability of a “good” atom at iteration k
depending on the residual energy ‖rk‖2

2. Indeed, if the

remaining residual energy at the kth iteration (‖rk‖2

2) is
bigger than a certain factor, which depends on the optimal
residual energy for an m-term approximation (‖ropt

m ‖2

2) and
the cumulative coherence for m terms, then an additional
atom belonging to Γm (Γ of size m) can be recovered. This
last condition is called General Recovery Condition in [1],
and Robustness Condition in [5].

B. Convex Relaxation of the Subset Selection Problem

Another instance of problem (1) is given by

(P0) min
c

‖f − Dc‖2

2 + τ2‖c‖0. (4)

In statistics this problem is also known as Subset Selection.
It searches for a sparse approximation of f , considering a
trade-off between the error and the number of elements
that participate into the expansion.

Unfortunately, solving P0 is NP-hard. A possible way of
simplifying the computation is to substitute the `0 quasi-
norm with the convex `1 norm. This relaxation leads to
problem P1:

(P1) min
b

1

2
‖f − Db‖2

2 + γ‖b‖1. (5)

P1 is the minimization of a convex functional that can be
solved by classical Quadratic Programming methods. This
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relaxation is similar to the one leading to the definition
of the Basis Pursuit (BP) principle for the case of exact
signal representation [12]. Note that, if D is orthonormal,
the solution of P1 can be found by a soft shrinkage of the
coefficients [13], [12], while, if D is a union of orthonormal
sub-dictionaries, the problem can be solved recurring to
the Block Coordinate Relaxation method [14], faster than
Quadratic Programming.

In [2], the author studies the relation between the subset
selection problem (4) and its convex relaxation (5), and
shows that, given an index subset Λ ⊂ Ω, any coefficient
vector which minimizes Eq. (5) is supported inside Λ if the
following condition is satisfied:

‖D∗(f − aΛ)‖∞ < γ(1 − sup
i/∈Λ

‖D+
Λ gi‖1),

where aΛ = DΛD+
Λf , DΛ is the sub-matrix containing only

the atoms indexed by Λ, and + denotes the Moore-Penrose
matrix inverse. In particular, the relationship between the
trade-off parameters τ and γ is studied, proving that
if the coefficient vector b∗ minimizes the function (5)
with threshold γ = τ/(1 − supi/∈Γ

∥

∥D+
Γ gi

∥

∥

1
), where Γ

indicates the optimal set of atoms of a m-term sparsest
approximation, then the relaxation never selects a non-
optimal atom and the solution of the convex relaxation is
unique.

C. Lessons Learned

From all these results, one can infer that the use of inco-
herent dictionaries is very important for the good behavior
of greedy and `1-norm relaxed algorithms. However, as
discussed in the introduction, experience seems to teach
us that highly redundant and, often, coherent dictionaries
are more powerful for natural signals approximation. In
the following sections, we solve this problem by carefully
studying the relationship between the signal and the dic-
tionary, through the introduction of a priori information
in the decomposition process.

III. Including A Priori Information in Greedy

algorithms: Weighted-MP

In this section we explore the effect of using a priori
knowledge in greedy algorithms for the recovery of the best
m-term approximant (fopt

m = D · copt) of a signal f . For
this purpose we define a Bayesian formulation of Matching
Pursuit that we call Weighted-MP.

In Sec. II, we recall how MP and OMP use the scalar
product as similarity measure for the selection of the
most appropriate atom. This bears some similarity with
searching the atom gik

with “Maximum Likelihood” for
a given residual rk. Indeed, the selection procedure in
MP may be seen as a maximization of the probability
p (gi|rk), that is like to consider C(rk, gi) ∼ p (gi|rk) in
Eq. (2). |〈rk, gi〉| may be intuitively seen as a measure of
the conditional probability p (rk|gi), assuming that each
residual rk is composed by the superposition of an atom
gik

and gaussian noise, i.e. rk = gik
+nk. In the event that

all atoms are a priori equiprobable, maximizing p (rk|gi)
is equivalent to maximize p (gi|rk). Let us now consider
the case where the atoms do not have the same a priori
probability to appear in the optimal set Γm, and let us
assume that we have at our disposal a prior knowledge
about the likelihood of each gi. By means of the Bayes’
Rule, when some a priori p (gi) is available, the probability
to maximize becomes

p (gi|rk) =
p (rk|gi) p (gi)

p (rk)
, (6)

where the denominator is a constant for each signal rk.
Emulating this, the selection rule of MP can, thus, be
modified multiplying the modulus of the scalar product by
a weighting factor wi ∈ (0, 1], which depends on the atom
index i. This is done in order to represent the insertion of
some heuristic measure of prior information. Hence, now
C(rk, gi) in Eq. (2) can be considered such that:

C (rk, gi) = |〈rk, gi〉| · wi.

We call this family of weighted greedy algorithms
Weighted-MP. The Weighted-MP approach does not mod-
ify the projection step of the algorithm, allowing to freely
select the MP or OMP projection strategy. For the sake
of simplicity, Weighted-MP is used in the remaining of
the paper as a general term to refer to both projection
approaches. The kind of projection will not be specified
unless judged relevant. In this work, we assume for sim-
plicity that the a priori knowledge (appearing under the
form of weights wi) is independent of the iteration of the
algorithm1.

One may interpret Weighted-MP as a greedy algo-
rithm where the use of non-unit norm atoms within the
dictionary is allowed. Unit norm atoms are re-weighted
according to some heuristic measure of prior information,
which gives some hint about their likelihood to belong
to the optimal set Γ. Based on that, in the following,
sufficient conditions for the recovery of a “correct” atom of
the sparsest m-term approximant are established. Later,
we study how a priori knowledge affects the rate of
convergence of greedy algorithms, and finally, an example
is presented. Even if Weighted-MP can be considered a
kind of weak greedy algorithm, we will see that it can
perform better than Pure MP.

A. Influence on Sparse Approximations

In this work, the a priori knowledge is expressed by the
diagonal matrix W (f,D).

Definition 1: A weighting matrix W = W (f,D) is a
square diagonal matrix of size d × d. Each of the entries
wi ∈ (0, 1] of the diagonal corresponds to some measure of
the a priori likelihood of a particular atom gi ∈ D to be
part of the sparsest decomposition of f .

Notice that all the atoms in the dictionary are assumed
to have some a priori non-zero probability. In effect,

1However, one could decide to update the atom weights at every
iteration. This would introduce more flexibility in the formulation of
Weighted-MP
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those that would have a zero weight are considered to
be excluded from the dictionary. We define also wmax

Γ
as

the biggest weight corresponding to the subset of atoms
indexed in Γ = Ω \ Γ, hence:

wmax
Γ

, sup
γ∈Γ

wγ . (7)

Moreover, an additional quantity is required in the results
depicted below:

εmax , sup
γ∈Γ

(

1 − w2
γ

)

. (8)

Eqs. (7) and (8) concern the goodness of the a priori
information. The reader will notice that these quantities
depend on the optimal set of atoms Γ, preventing from
establishing a rule to compute them in advance. The role of
these magnitudes is to represent the influence of the prior
in the results obtained below. Notice that 0 ≤ εmax < 1
and 0 < wmax

Γ
≤ 1.

Definition 2: εmax is close to zero if “good” atoms (the
ones belonging to Γ) are not penalized by the a priori
information. In such a case we state that the a priori
knowledge is “reliable”.

The quantity wmax
Γ

becomes small if all “bad” atoms
are strongly penalized by the a priori knowledge. Notice
that the “reliability” of a prior model does not impose any
condition on wmax

Γ
.

The weights are not arbitrary and are not supposed to
be independently and blindly optimized by the algorithm
during the subset selection procedure. These values alone
are not meant to determine whether an atom shall be
included in the selection or not. The weights introduce
a fuzzy likelihood that could be derived from a good
parametric model2 on the interaction between signals and
the dictionary.

The a priori matrix W allows a new signal dependent
definition of the cumulative coherence µ1(m) introduced in
[1]. Indeed, the conditions that ensure the recoverability
of the best m-term approximant relay on this quantity.
Using a priori information, some atom interactions can
be penalized or even dismissed in the cumulative coherence
measure:

Definition 3: The Weighted Cumulative Coherence
function of D is defined as the following data dependent
measure:

µw
1 (m,D,W ) , max

|Λ|=m
max

i∈Ω\Λ

∑

λ∈Λ

|〈gλ, gi〉| · wλ · wi. (9)

Note that if W = I, then µw
1 (m,D, I) = µ1(m,D).

Moreover, ∀m,D,W we have that µw
1 (m,D,W ) ≤

µ1(m,D).
We can now observe the behavior of greedy algorithms

when a priori information is used.
Theorem 1: Let {rk} : 0 ≤ k ≤ m, be the set of

residuals generated by Weighted-MP in the approximation
of a signal f , and let fopt

m be its best m-term approximant.

2Hereby, fuzzy is used in the sense that the prior information is
not precise, i.e the a priori model is not able to totally determine
good and bad atoms by itself.

Then, for any positive integer m such that µw
1 (m − 1) +

µw
1 (m) < 1 − εmax and

‖rk‖2

2 >
∥

∥f − fopt
m

∥

∥

2

2
·

(

1 +
m (1 − (µw

1 (m − 1) + εmax))
(

wmax
Γ

)2

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

,

(10)

Weighted-MP will recover an atom that belongs to the
optimal set Γm (in the sense of (1)).

In the case that fopt
m can not be reached or just

an approximate solution exists, a sub-optimality factor
η ≥ 0 can be introduced by substituting ‖f − f opt

m ‖2

2 by

‖f − fopt
m ‖2

2 (1 + η)
2

in Eq. (10).
Flavor of the Proof: To prove Theorem 1, we follow

[1] and [5]. In order to ensure the recovery of any atom
belonging to the optimal set Γ = Γm, the following a priori
dependent condition needs to be satisfied:

ρw (rk) =
‖DΓ · WΓ · rk‖∞
‖DΓ · WΓ · rk‖∞

< α,

where α ∈ (0, 1] is a weakness factor [9]. We compute an
upper bound on ρw (rk). This must be smaller than α so
that the recovery condition holds. As detailed in the proof
appearing in our report [15], this yields

ρw (rk) ≤

wmax
Γ

√

(1 − µw
1 (m − 1) − εmax) m · (1 + η) ·

∥

∥ropt
m

∥

∥

2

(1 − µw
1 (m − 1) − εmax)

∥

∥fopt
m − fk

∥

∥

2

+

∥

∥fopt
m − fk

∥

∥

2
µw

1 (m)

(1 − µw
1 (m − 1) − εmax)

∥

∥fopt
m − fk

∥

∥

2

< α,

(11)
where ropt

m = f − fopt
m . Considering that ‖fopt

m − fk‖2

2 =

‖rk‖2

2−‖ropt
m ‖2

2 and solving (11) for ‖rk‖2

2, in the particular
case of α = 1, yields the result of Theorem 1.

�

Theorem 1 means that, if the approximation error at
the kth iteration is still bigger than a certain quantity,
then another term of the best m-term approximant can
be recovered. This is similar to the result of [5], but here
the use of a priori information results in a smaller bound.
More terms may, thus, be recovered.

Finally, the general effect of using a priori knowledge
can be summarized by the following Corollary.

Corollary 1: Let W (f,D) express a reliable a priori
knowledge and assume α = 1, then for any positive integer
m such that µ1(m−1)+µ1(m) ≥ 1 but µw

1 (m−1)+µw
1 (m) <

1−εmax, Weighted-MP (unlike MP) will recover the atoms
belonging to the best m-term approximant f opt

m . Moreover,
for any positive integer m such that µw

1 (m− 1) + µw
1 (m) +

εmax ≤ µ1(m − 1) + µ1(m) < 1, Weighted-MP has a
weaker sufficient condition than MP for the recovery of
correct atoms from the best m-term approximant. Hence,
the correction factor of the right-hand side of expression
(10) is equal or smaller in the weighted case for any value
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of wmax
Γ

∈ (0, 1]:


1 +
m
(

1 − (µw
1 (m − 1) + εmax)

(

wmax
Γ

)2
)

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2



 ≤

(

1 +
m (1 − µ1(m − 1))

(1 − (µ1(m − 1) + µ1(m)))
2

)

.

(12)

See the Appendix for a proof. Therefore, Weighted-MP is
guaranteed to recover equally good or better approximants
than classic MP when reliable a priori information is used
(if for some case µw

1 (m)+µw
1 (m+1)+ εmax < µ1(m−1)+

µ1(m) < 1, then the better behavior is guaranteed).

B. Rate of Convergence of Weighted-MP

The energy of the series of residuals rk generated by the
greedy algorithm progressively converges toward zero as k
increases. In the same way, Weighted-MP with reliable a
priori information is expected to have a better behavior
and a faster convergence rate than Weak-MP. A tighter
measure of the dictionary coherence conditioned to the
signal to be analyzed is available: µw

1 (m) (where µw
1 (m) ≤

µ1(m)). Then a better bound for the rate of convergence
can be found for the case of Weighted-MP. To prove this,
we follow the path suggested in [1] and [5], introducing as
before the consideration of the a priori information in the
formulation. The results formally show how Weighted-MP
can outperform Weak-MP when the a priori knowledge is
reliable.

Theorem 2: Let W (f,D) be a reliable a priori infor-
mation matrix and {rk} : k ≥ 0 a sequence of residuals
produced by Weighted-MP, then as long as ‖rk‖2

2 satisfies
Eq. (10), Weighted-MP picks up a correct atom and

(

‖rk‖2

2 − ‖ropt
m ‖2

2

)

≤

(

1 − α2 (1 − µw
1 (m − 1) − εmax)

m

)k−l

·
(

‖rl‖2
2 − ‖ropt

m ‖2

2

)

,

(13)
where k ≥ l.

As observed for Theorem 1, if f opt
m can not be reached or

just an approximate solution exist, ‖ropt
m ‖2

2 is substituted

by ‖ropt
m ‖2

2 (1 + η)
2

in Eq. (13).
Flavor of the Proof: The proof is technical but it is a

simple adaptation of the proof of Theorem 7 in [5]. We
just sketch it here and refer the interested reader to [15]
for further details.

Consider k such that ‖rk‖2

2 satisfies Eq. (10). Then, it
is known that for Weak-MP:

‖rk−1‖2

2 − ‖rk‖2

2 ≥ |〈rk, gik
〉|2 ,

where the inequality applies for OMP, while in the case of
MP the equality holds. Moreover, considering the weighted
selection, then

‖rk−1‖2

2 − ‖rk‖2

2 ≥ α supγ∈Γ |〈rk, gγ · wγ〉|2 1
w2

γ

= α supγ∈Γ |〈fopt
m − fk, gγ · wγ〉|2 1

w2
γ

,

where the last equality follows from the assumption that
Eq. (10) is satisfied and because (f − f opt

m ) ⊥ span(Γ).
As described in [15], supγ∈Γ |〈fopt

m − fk, gγ · wγ〉|2 may be
lower bounded as a function of the smallest square singular
value (σ2

minw
) of G , (DΓWΓ)T (DΓWΓ), the size of the

subset Γm, and a residual energy:

‖rk−1‖2

2 − ‖rk‖2

2 ≥ α
σ2

minw

m

∥

∥fopt
m − fk

∥

∥

2

2
. (14)

Finally, combining this with the fact that ‖f opt
m − fk−1‖2

2−
‖fopt

m − fk‖2

2 = ‖rk−1‖2

2 − ‖rk‖2

2 allows to easily derive, as
stated in [15], that, for 0 ≤ l ≤ k,

‖rk‖2

2 − ‖ropt
m ‖2

2 (1 + η)2 ≤

(

1 − α
σ2

minw

m

)k−l

·
(

‖rl‖2

2 − ‖ropt
m ‖2

2 (1 + η)2
)

,

and the Theorem is proved since σ2
minw

≥ 1−µw
1 (m−1)−

εmax (see Lemma 1 in [15]).
�

Theorem 2 implies that the rate of convergence of
Weighted-MP has an upper bound with exponential decay,
as well as Weak-MP. Moreover, when reliable a priori
information is used, the bound is lower. This result sug-
gests that the convergence of suitably weighted greedy
algorithms is faster than in the case of pure greedy
algorithms. Of course, this is subject to the use of a
model that puts in relation both the signal and dictionary.
Some fuzzy (i.e. wmax

Γ
= 1) and non-penalizing indication

about the appropriate atoms may be of great help for the
convergence of the algorithm.

Depending on the sufficient conditions specified in
Sec. III-A, it will be possible to recover the optimal set Γ.
However, it is not yet clear how long a non-orthogonalized
greedy algorithm (Weighted-MP in our case) will last iter-
ating over the optimal set of atoms in the approximation
case. Let us define the number of correct iterations as
follows:

Definition 4: Consider a Weighted-MP algorithm used
for the approximation of signals. We define the number of
provably correct steps Nm as the smallest positive integer
such that

‖rNm
‖2

2 ≤
∥

∥f − fopt
m

∥

∥

2

2
·



1 +
m
(

1 − (µw
1 (m − 1) + εmax)

(

wmax
Γ

)2
)

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2



 ,

which corresponds to the number of atoms belonging to
the optimal set that can be recovered given a signal f , a
dictionary D and an a priori information matrix W (f,D).

In the case of OMP and Weighted-OMP, Nm will be
always smaller or equal to the cardinality of Γ. For Weak-
MP and Weighted-MP, provided that µw

1 (m−1)+µw
1 (m)+

εmax < 1, the provable number of correct iterations will
depend on the final error of the best m-term approxima-
tion. In the following theorem, bounds on the quantity Nm
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are given for Weighted-MP. To obtain the results we follow
[5].

Before stating the theorem, the reader should note that
from now on, wmax

Γl

defines the same concept as in (7) for
an optimal set of atoms Γ of size l, i.e. for Γl.

Theorem 3: Let W (f,D) be a reliable a priori informa-
tion and {rk} : k ≥ 0 a sequence of residuals produced by
Weighted-MP when approximating f . Then, for any integer
m such that µw

1 (m−1)+µw
1 (m)+εmax < 1, we have N1 ≤ 1

and for m ≥ 2:

• if 3
∥

∥ropt
1

∥

∥

2

2
≥ m ·

∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2

, then

2 ≤ Nm < 2 + m
1 − µw

1 (m − 1) − εmax
·

log







3
∥

∥ropt
1

∥

∥

2

2

m ·
∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2






.

(15)

• else Nm ≤ 1.
In order to prove Theorem 3, several intermediate lem-

mas are necessary. We omit these, as well as the general
proof of the Theorem since they follow easily by taking
into account the use of a priori information in the proofs
of Theorem 7 in [5]. We refer again to [15] for a detailed
description of the proof.

From (15) we can draw that the upper bound on
the provably correct number of steps Nm is tighter for
Weighted-MP if a reliable a priori knowledge is used.
Indeed, in accordance with Theorem 2, which states a
tighter residual error convergence bound for Weighted-MP,
one can also have a tighter estimate for Weighted-MP
about which is the maximum number of good iterations
the algorithm might do. If some a priori is available, some
atom interactions will not influence µw

1 (m−1) in Eq. (15),
unlike in the case of Theorem 7 in [5] where µ1(m−1) was
used.

Moreover, in a situation where the reliable a priori
model was discriminative enough, we know from (15), that
there would be additional room for an improvement on
the number of correct iterations recovered by the greedy
algorithm with respect to [5]. The term wmax

Γm

helps to
increase the value of the bound, describing the fact that
Weighted-MP can recover a higher number of correct
iterations than MP. In addition, compared to the case
when no a priori information is available, the condition
for the validity of bound (15) is softened.

The assumption of good discrimination capabilities of
the a priori model is somehow unrealistic in practice, i.e. a
small value for wmax

Γm

indicates that the model can already

discriminate between Γ and Γ. Nevertheless, the result of
Theorem 3, gives a better estimate on the upper bound of
Nm thanks to the use of µw

1 (m− 1) instead of µ1(m− 1),
and furthermore it suggests that using an a priori model
should have a positive effect on the stability of Weighted-
MP. In practice, if the prior information is capable to
handle some punctual ambiguity (i.e. somewhere where the
greedy algorithm may get confused and make a mistake)

Wavelet+Footprints Dictionary

Function index

Te
m

po
ra

l A
xi

s

Fig. 1. Dictionary formed by the Symmlet-4 [16] (left half) and its
respective footprints for piecewise constant singularities (right half).

W
avelet subbands

Piecewise−constant Function

Footprint

Fig. 2. Wavelet Footprints description scheme for a piecewise-
constant signal [17].

that may affect the choice of the appropriate function at
a given MP step, then the benefits for the convergence of
the algorithm can be of extreme relevance. This can be
the case even if the a priori model does not supply a good
discrimination between Γ and Γ. Examples in Sec. III-C
and Sec. V illustrate this situation.

C. Example: Use of Footprints and Weighted-OMP for
Sparse Approximations.

To give an example of approximation using a priori in-
formation, we consider the case where a piecewise-smooth
signal is decomposed over an overcomplete dictionary.
The dictionary is built by the union of an orthonormal
basis defined by the Symmlet-4 family of wavelets [16]
and the respective family of footprints for all the possi-
ble translations of the Heaviside function (see [17]). The
former is intended to represent the smooth part of the
signal, while the latter is used to model the discontinuities.
Footprints are functions composed by the superposition
of all wavelet coefficients that a given deterministic sin-
gularity model (translations of the Heaviside function in
our case) generates on a wavelet basis (see Fig. 2). The
graphical representation of the dictionary matrix can be
seen in Fig. 1, where the columns are the waveforms that
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Fig. 3. Comparison of OMP based approximation with 10 terms using the footprints dictionary (Fig. 1). Left: Original signal. Middle:
“blind” OMP approximation. Right: OMP with prior knowledge of the footprints location.

compose the dictionary. Such a dictionary is far from
satisfying the sufficient condition required to ensure the
recovery of an optimal approximant with more than one
term. Moreover, even if the best a priori was available,
it is also far from satisfying the sufficient condition based
on the weighted cumulative coherence. Nevertheless, we
consider this example because of two main reasons. First,
because the sufficient theoretical conditions exposed in
the literature are very pessimistic and reflect the worst
possible case. The second reason is that, as previously
discussed, experience seems to teach us that good dictio-
naries for efficient approximation of signals, are likely to
be highly coherent (see [18], [19] for some dicussion on
the use coherent dictionaries). This fact conflicts with the
requirement of incoherence for the good behavior of greedy
algorithms. Hence, we find this example of special interest
to underline the benefits of using a priori information and
additional signal modeling for nonlinear expansions.

The estimation of the a priori information is based
on a signal adaptive parametric model that establishes a
relationship between the dictionary, its internal structure
and the input data. Roughly speaking, the a priori model
used here is composed of two steps: first, an estimate of
the location of edges in the signal is generated; then, W
is configured so that footprints are favored to describe
discontinuities, while wavelets are privileged for smooth
regions. For a more detailed explanation on the model
configuration as well as for the parameter optimization,
we refer to Sec. V, Algorithm 1.

Fig. 3 presents, from left to right, the original signal
and the two approximations obtained by OMP without
and with a priori information. The input signal has a
polynomial degree which is higher than the number of
vanishing moments of the Symmlet-4. With very few
components, the algorithm benefits from the a priori
information estimated from the signal, and gives a much
better approximation. A more global view of this enhance-
ment can be seen in Fig. 4 where the convergence of the
approximation error is presented. The use of weights is
definitively helpful and a considerable reduction of the
error is achieved for a small number of terms.

10 20 30 40 50 60 70 80
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102
Rate of convergence of the residual error
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si

du
al

 e
ne

rg
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OMP with a priori
OMP

Fig. 4. Rate of convergence of the error with respect to the iteration
number in the experiment of Fig. 3

IV. Approximations with Weighted Basis

Pursuit Denoising

Another sub-optimal method to solve the problem in
Eq. (1) is given by relaxation algorithms, whose recovery
capabilities, in presence of a priori knowledge, are treated
in this section. More precisely, we investigate the effects
of inserting a priori knowledge in the convex relaxation
of the subset selection problem (see Sec. II), i.e. in the
approximation case.

A. A Bayesian Approach to Weighted Basis Pursuit De-
noising

Let us now study the problem of signal approximation
from a Bayesian point of view. We examine under which
hypotheses BPDN is an appropriate approach. This leads
us to generalize the BPDN principle through the definition
of Weighted Basis Pursuit Denoising (WBPDN).

First, we write our model for the data approximation
problem, where f̂ is the approximant and r is the residual:

f = f̂ + r = Db + r. (16)

Assuming r to be an iid Gaussian set of variables, the
probability that f corresponds to f̂ , given D and b is:

p(f |D,b) =
1

√

2πσ2
r

· exp

(

−‖f − Db‖2
2

2σ2
r

)

,
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where σ2
r is the variance of the residual. In the approx-

imation problem, one aims at maximizing the likelihood
p(b|f,D). Formally, by the Bayes rule, we have

p(b|f,D) =
p(f |D,b) · p(b)

p(f,D)
,

and thus, assuming p(f,D) uniform, it follows that the
most probable signal representation is:

bP = arg max
b

p(f |D,b) · p(b). (17)

Let us now assume that the coefficients bi are independent
and have a Laplacian distribution with standard deviation
σi:

p(bi) =
1√
2σi

· exp

(

−
√

2|bi|
σi

)

.

From (17), by computing the logarithm, it follows that

bP = arg max
b

(

ln(p(f |D,b)) +
∑

i

ln p(bi)

)

= arg min
b

(

‖f − Db‖2
2

2σ2
r

+
∑

i

√
2|bi|
σi

)

.

Making the hypothesis that σi is constant for every index
i, the previous equation means that the most probable b

is the one found by the BPDN algorithm [20]. In fact, this
hypothesis does not often correspond to reality. On the
contrary, if the variances of the coefficients are not forced
to be all the same, it turns out that the most probable
signal representation can be found by solving the following
problem:

(Pw
1 ) min

b

1

2
‖f − Db‖2

2 + γ‖W−1b‖1, (18)

where the diagonal matrix with entries in (0, 1] is defined in
Sec. III. One can notice that in Eq. (18), the introduction
of weights allows to individually model the components of
b. This approach is analogous to the one introduced in [21]
and, from now on, we will refer to P w

1 as Weighted Basis
Pursuit Denoising or WBPDN.

The assumption often made about the Gaussianity of
the residual is quite restrictive. However, for another
particular problem, one could make the hypothesis that
this residual has a Laplacian3 distribution. This problem
is faced, for example, in [21].

B. Weighted Relaxed Subset Selection

In this subsection, the relationship between the results
obtained by solving problem P w

1 and P0 are studied. Note
that in the following cΛ and bΛ lay in R

Λ but sometimes
these are extended to R

Ω by padding with zeros. The same

3It is then possible to prove that the most probable signal repre-
sentation can be found substituting the L2 measure of the error with
the L1 in Eq. (18), leading to the following minimization problem:

min
b

1

2
‖f − Db‖

1
+ γ‖W−1

b‖1.

is valid for the matrix WΛ. First, let us introduce the
Weighted Recovery Factor:

Definition 5: Given a dictionary D indexed in Ω and
an index subset Λ ⊂ Ω, we define the Weighted Recovery
Factor (WRF) as:

WRF (Λ) = sup
i/∈Λ

∥

∥

∥
(DΛWΛ)

+
gi · wi

∥

∥

∥

1
. (19)

The best approximation of the input signal over the
atoms indexed in Λ is given by aΛ = DD+

Λf . The next
lemma, similarly to the Correlation Condition Lemma in
[2], basically states that, if the atoms of Λ have a small
correlation with the residual (f −aΛ), then the support of
any vector that solves P w

1 is a subset of Λ. This result will
be used to prove Theorem 4.

Lemma 1: Given an index subset Λ ⊂ Ω, suppose that
the following condition is satisfied:

‖DT (f − aΛ)‖∞ <
γ

wmax
Λ

· (1 − WRF (Λ)), (20)

where wmax
Λ

∈ (0, 1] is the quantity defined by equation
(7). Then, any coefficient vector b∗ that minimizes the cost
function of problem P w

1 must have a support contained in
Λ.

Proof: Assume that b∗ minimizes (18), but it uses an
index outside Λ. One can compare b∗ with its projection
D+

ΛDb∗, which is supported in Λ, obtaining:

2γ
(∥

∥W−1b∗

∥

∥

1
−
∥

∥W−1
Λ (D+

ΛDb∗)
∥

∥

1

)

≤
∥

∥f − DD+
ΛDb∗

∥

∥

2

2
− ‖f − Db∗‖2

2 .

(21)

First, we shall provide a lower bound on the left-hand side
of the previous inequality. Let us split the vector b∗ into
two parts: b∗ = bΛ+bΛ, where the former vector contains
the components with indexes in Λ, while the latter the
remaining components from Λ = Ω \ Λ. Acting as in the
proof of the Correlation Condition Lemma in [2] it follows
that:

∥

∥W−1b∗

∥

∥

1
−
∥

∥W−1
Λ (D+

ΛDb∗)
∥

∥

1
≥

(1 − WRF (Λ)) ·
∥

∥W−1bΛ

∥

∥

1
.

(22)

For more details, see [15]. The quantity appearing on the
right-hand side of (21) does not depend on the weighting
matrix, thus, exactly as in [2], it can be upper bounded
by 2‖bΛ‖1 ·

∥

∥DT (f − aΛ)
∥

∥

∞
. This, together with (21) and

(22), gives:

γ (1 − WRF (Λ)) ·
∥

∥W−1bΛ

∥

∥

1
≤

‖bΛ‖1
·
∥

∥DT (f − aΛ)
∥

∥

∞
.

(23)

Since the weights are in (0, 1], and the vector bΓ, by
assumption, cannot be null, it can be written:

γ (1 − WRF (Λ)) ≤ ‖bΛ‖1
∥

∥W−1bΛ

∥

∥

1

·
∥

∥DT (f − aΛ)
∥

∥

∞

≤ wmax
Λ

·
∥

∥DT (f − aΛ)
∥

∥

∞
.

(24)
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If (20) is valid , then (24) fails and so one must discard
the hypothesis that b∗ is non-zero for an index in Λ.

Suppose now that cΓ is the sparsest solution to P0 and
that its support is Γ, with |Γ| = m. DΓ will be the matrix
containing all the atoms participating to the sparsest
approximation of f and fopt

m will be the approximant given
by cΓ, i.e fopt

m = DcΓ = DD+
Γ f = DΓD+

Γ f . Assuming
WRF (Γ) < 1, we have the following result.

Theorem 4: Given τ > 0, trade-off parameter of the
problem P0, suppose that b∗ minimizes the cost function
of problem P w

1 with threshold

γ =
τ · wmax

Γ

1 − WRF (Γ)
, (25)

where wmax
Γ

is defined in (7). Then:

1) WBP never selects a non-optimal atom since
support(b∗) ⊂ Γ.

2) The solution of WBPDN is unique.
3) The following upper bound is valid:

‖cΓ − b∗‖∞ ≤
τ ·

wmax
Γ

wmin
Γ

·
∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞

1 − WRF (Γ)
. (26)

4) The support of b∗ contains every index j for which

|cΓ(j)| >

τ ·
wmax

Γ

wmin
Γ

·
∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞

1 − WRF (Γ)
. (27)

The scalar wmin
Γ appearing in Eqs. (26) and (27) is

defined as

wmin
Γ , inf

i∈Γ
wi. (28)

Proof: Considering the first stated result, note that
every atom indexed by Γ has zero inner product with
the optimal residual (ropt

m = f − fopt
m ) since fopt

m is the
best approximation of f using the atoms in Γ. Using
Proposition 5.1 in [2] and recalling that D is finite, it can
be stated that

∥

∥DT (f − fopt
m )

∥

∥

∞
< τ. (29)

Moreover, Lemma 1 guarantees that for any γ satisfying

∥

∥DT (f − fopt
m )

∥

∥

∞
<

γ

wmax
Γ

· (1 − WRF (Γ)), (30)

the solution b∗ to the convex problem P w
1 is supported on

Γ. From (29) and (30) it follows that for any γ that satisfies
the following condition, it is insured that support(b∗) ⊂ Γ:

γ ≥
τ · wmax

Γ

1 − WRF (Γ)
. (31)

In the following, the smallest possible value for γ is chosen,
so that, Eq. (31) becomes an equality. The uniqueness of
the solution follows from the use of a priori weights on
the optimality conditions for BPDN found by Fuchs in
[22]. With regard to the third point, it can be proved that

(see [15]) if b∗ minimizes the cost function of problem P w
1 ,

then the following bound holds:

‖cΓ − b∗‖∞ ≤ γ

wmin
Γ

·
∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞
.

This yields

‖cΓ − b∗‖∞ ≤
τ ·

wmax
Γ

wmin
Γ

1 − WRF (Γ)
·
∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞
.

Using equation (31), the fourth result of the theorem can
be proved exactly as in [2].

This theorem states two important concepts. First, if the
trade-off parameter is correct and the weighted cumulative
coherence of the dictionary is small enough, WBPDN is
able to select the correct atoms to obtain the sparsest
signal approximation. Furthermore, the error made by
the algorithm to compute the coefficients with respect to
the optimal ones is bounded. The quantities wmin

Γ and
wmax

Γ
depend on the reliability and goodness of the prior

knowledge respectively. In particular, if W tends to be
optimal (i.e. its diagonal entries tend to 1 for the elements
that should appear in the sparsest approximation and to
0 for the ones that should not: wmin

Γ → 1 and wmax
Γ

→ 0),
then this results in an improved bound for the error of the
coefficients and a condition for γ in Eq. (25) that is easier
to respect. The reader will notice that such an “optimal”
W is quite improbable to exist in practice. Indeed, the
typical information supplied by an a priori model will
be quite imprecise (this, however, does not prevent an a
priori model of being reliable and helpful). This aspect is
discussed and justified at the end of Sec. IV-C.

Note that, once the algorithm has recovered the atom
subset, the appropriate amplitudes of the coefficients can
be computed by the orthogonal projection of the signal
onto the space generated by the selected atoms. Hence, the
error made by the algorithm in the coefficient computation
is avoided (see Eq. (26)). This method is used in Sec. IV-D
to generate some examples.

C. Relation with the Weighted Cumulative Coherence

In this subsection, the previous results are described
using the weighted cumulative coherence function defined
in (9). In this way a comparison is made between the
results achievable by BPDN and WBPDN.

Theorem 5: Assume that the real vector b∗ solves P w
1

with

γ =
wmax

Γ
· τ(1 − εmax − µw

1 (m − 1))

1 − εmax − µw
1 (m) − µw

1 (m − 1)
.

Then support(b∗) ⊂ Γ and

‖b∗ − cΓ‖∞ ≤

τ ·
wmax

Γ

wmin
Γ

(1 − εmax − µw
1 (m − 1))

(1 − εmax − µw
1 (m) − µw

1 (m − 1))(1 − µ1(m − 1))
.

(32)
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Proof: This result can be obtained from [2] and
Theorem 4, since:

‖b∗ − cΓ‖∞ ≤ γ
wmin

Γ

∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞
=

τ ·
wmax

Γ

wmin
Γ

(1 − εmax − µw
1 (m − 1)) ·

∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞

(1 − εmax − µw
1 (m) − µw

1 (m − 1))
.

Considering that

‖
(

DT
Γ DΓ

)−1 ‖∞,∞ = ‖
(

DT
Γ DΓ

)−1 ‖1,1 ≤ 1

1 − µ1(m − 1)
,

(see [2] and [22]) proves equation (32). See [15] for a more
detailed version of the proof.

This result is valid in general and illustrates how the
distance between the optimal coefficients and the solution
found by solving P w

1 can be bounded. In case no prior
knowledge is given, the bound on the coefficient error is
obtained from Eq. (32) setting W = I. Consequently,
wmin

Γ = 1, εmax = 0 and wmax
Γ

= 1 (see also [2]):

‖b∗ − cΓ‖∞ ≤ τ

1 − µ1(m) − µ1(m − 1)
. (33)

Comparing the two bounds, one can observe how the
availability of reliable prior information can help in finding
a sparser signal approximation. Let W (f,D) be a reliable
a priori knowledge, with wmax

Γ
/wmin

Γ ≤ 1 . Then for any
positive integer m such that µw

1 (m− 1)+µw
1 (m)+ εmax <

µ1(m − 1) + µ1(m) < 1, the error ‖b∗ − cΓ‖∞ given by
the coefficients found by WBPDN is smaller than the one
obtained by BPDN.

Hence, the bound stated by Eq. (32) is lower than the
one in Eq. (33), i.e.

τ ·
wmax

Γ

wmin
Γ

(1 − εmax − µw
1 (m − 1))

(1 − εmax − µw
1 (m) − µw

1 (m − 1))(1 − µ1(m − 1))
≤

τ
1 − µ1(m) − µ1(m − 1)

.

(34)
This result can be proved in the same way as Corol-

lary 1, whose proof is reported in the Appendix. See [15]
for more details.

The reader may notice that if
wmax

Γ

wmin

Γ

< 1 the a priori

information already tells which is the right support of the
solution. Indeed, a simple threshold on the weights would
find the appropriate set of atoms. This is an unrealistic
situation in practice. However, provided that the a priori

information is reliable, we do not need
wmax

Γ

wmin

Γ

< 1 to

justify an improvement on the behavior of the algorithm.
Suppose that the weights do not penalize the optimal
atoms, but only some (not all) of the “wrong” ones: in

this case
wmax

Γ

wmin

Γ

= 1. In such a situation, if µw
1 (m − 1) +

µw
1 (m) + εmax ≤ µ1(m − 1) + µ1(m) < 1, Eq. (34) is still

valid. This means that, even if the a priori knowledge is
imprecise (but reliable), WBPDN can behave significantly

better than BPDN. The same consideration applies to Eqs.
(26) and (27).

D. Example: Use of Footprints and WBPDN for Sparse
Approximation

We examine again the example presented in section
III-C, this time using the Basis Pursuit Denoising and
Weighted Basis Pursuit Denoising methods. For an ex-
planation of the prior model and the extraction of the a
priori matrix, see Sec. V. The signal f is decomposed by
solving BPDN (problem P1) and WBPDN (problem P w

1 ),
where the a priori knowledge is introduced. Both solutions
are numerically found using Quadratic Programming tech-
niques. The trade-off parameter γ controls the `1 norm of
the coefficient vector and indirectly its sparseness. The re-
sulting signal approximations still present many non-zero
components with negligible values due to the numerical
computation: a hard thresholding is, thus, performed in
order to get rid of these insignificant elements. In this
way, it is possible to measure the `0 norm of the vector b.
The data reported here refer to a threshold value of 10−9.
However, in general, the threshold value should depend
on the algorithm used to solve the minimization problem,
on the machine precision and on the “typical” amplitude
of primitives composing the signal to approximate. Of
course, the reconstructions are computed starting from the
thresholded coefficients. Fig. 5 shows the reconstructions
of the input signal given by a 10-terms approximation
found by BPDN and WBPDN. The left-hand side of Fig. 6
illustrates the mean square error of the approximations.

Let us call b∗ the approximation found by BPDN and
bw
∗ the one found by WBPDN. As just explained, these

vectors are thresholded removing the numerically negligi-
ble components, and in this way we are able to individuate
a sparse support and thus a subset of the dictionary. Let
us label the sub-dictionary found by WBPDN with Dw

∗

(composed by the atoms corresponding to the non-zero
elements of bw

∗ ). Once this is given, there are no guarantees
that the coefficients that represent f are optimal (see The-
orem 4 and [2]). These are, thus, recomputed projecting
the signal onto the subspace spanned by Dw

∗ and a new
approximation of f named bw

∗∗ is found. Exactly the same
is done for BPDN, ending up with a sub-dictionary D∗

and a new approximation b∗∗. Of course, support(b∗) =
support(b∗∗) and support(bw

∗ ) = support(bw
∗∗). Formally

the approximants found by BPDN and WBPDN after the
projection step are respectively:

f∗∗ = D∗D
+
∗ f = Db∗∗ and

fw
∗∗ = Dw

∗ (Dw
∗ )+f = Dbw

∗∗.
(35)

Fig. 5 and 6, show how this technique considerably im-
proves the results obtained by solving problems P1 and
Pw

1 . Moreover they confirm the advantages of the weighted
algorithm.
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Fig. 5. The original signal reconstructed from a 10-terms approximation computed by BPDN (left) and WBPDN (right). The comparison
shows the improvement given by recomputing the projections once the algorithm has selected a sub-dictionary. For the errors see Fig. 6.
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Fig. 6. Errors (in log scale) of the m-term approximations with BPDN and WBPDN. On the right-hand, the approximations are computed
projecting the signal onto the sub-dictionary selected by the algorithm (see Eq. (35)).

V. Examples: Natural Signal Approximation

with an A Priori Model

In this section, we apply the methodology introduced
in Sections III and IV to natural signals. We also discuss
the problem of finding reliable a priori information on a
concrete example. Moreover, we show how the a priori
weights can be automatically extracted from the data
and optimized in order to maximize the performance of
weighted algorithms. We approximate several 1D signals,
extracted from a variety of columns of cameraman and
Lena images, considered to be piecewise-smooth, by using
an overcomplete coherent dictionary.

A. Modeling the Relation Signal-Dictionary

The dictionary is composed by the union of the Symm-
let-4 orthonormal basis, used to model smooth parts of
the signal, and the set of piecewise-constant footprints
meant to model discontinuities (see Sec. III-C and Fig. 1).
Since our input signals have 256 samples, D is a ma-
trix of size 256 × 512. The weighting matrix W (f,D) is
generated by means of a pre-estimation of the locations
where footprints are likely to be used (there wi are set
to 1). In such locations wavelets are assumed to have a
lower probability to be necessary, hence a certain penalty
(β ≤ 1 is introduced by means of the corresponding
wi). Wavelets are favored for areas where no appreciable

edge is detected (thus, setting the concerned wi to 1). In
such smooth areas, footprints are, thus, penalized. More
formally, the modeling of the interaction between signals
and the dictionary is performed using the following simple
algorithm:

Algorithm 1 W (f,D) estimation

Require: D = DSymmlet ∪DFootprints, define a threshold
λ , define a penalty factor β

1: fdiff = D+
Footprints · f {Footprints location estimation

(edge detection)}
2: Threshold fdiff by λ putting greater values to 1 or β

otherwise.
3: W diag

footprints = fdiff {Diagonal of the sub-matrix of
W (f,D) corresponding to footprints.}

4: Create W diag
wave s.t. all wavelets intersecting the found

footprint locations equal β, set to 1 otherwise.

5: W (f,D) = diag
([

W diag
wave W diag

footprints

])

;

As one can observe, two parameters configure the model
generating W (f,D): a threshold λ and a penalty weight
β. We will show later that these can be selected by an
optimization procedure minimizing the average energy of
the approximation error.
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B. Signal Approximation

We resume the general procedure for signal approxima-
tion by these two steps:

1) Estimation of the a priori information from the“real
world” signal using an a priori model.

2) Use of a weighted algorithm (greedy or relaxed)
based on the estimated a priori knowledge to find
the appropriate atoms subset. Optionally, once these
have been selected, their coefficients can be com-
puted again, by means of a simple projection.

Furthermore, an iterative version of this algorithm can
be considered in order to optimize the parameters that
configure the a priori model used in the first step (λ and
β in our examples). This can be seen as a kind of Expec-
tation Maximization algorithm. The simplest approach for
parameter tuning can be a grid search, or a multi-scale grid
search. Nevertheless, much more sophisticated and efficient
search techniques may be used to optimize the a priori
models. See [23] for some global optimization techniques.

C. Results

In this subsection we show the quantitative impact of
using weighted algorithms in terms of the residual error
energy. Then, we describe how atoms can represent the
main features of a signal. We also explore the influence
of tuning the two parameters that configure our penalty
model, and finally, an empirical consistency analysis is
performed on Weighted-MP.

1) Approximation Results with OMP: The improvement
of Weighted-OMP is assessed by the rate of convergence
of the residual energy, on the right-hand side of Fig. 7:
the graph shows that after few iterations, Weighted-OMP
selects better atoms than classic OMP. Hence the conver-
gence of the error improves and this yields a gain of up to
2 dB.

We stress again that, extracting relevant footprints and
wavelets by simply selecting those with higher a priori
weights does not yield good sparse approximations. The
a priori model is just supposed to give rough hints about
which functions are useful for every particular signal fea-
ture. For instance, the weights computed in our example
equal 1 for more than 200 functions, making thus impos-
sible to use thresholding on W as a self-standing selection
criterion. Indeed, the use of simple thresholding would
imply that β = 0 in the model. As one can see in Fig. 10
(“probability weight” axis), β = 0 does not supply the best
approximation error average. The model must be, thus,
used in conjunction with the atom selection procedure of
an appropriate nonlinear subset selection algorithm.

2) Approximation Results with BPDN: The same signal
is now approximated by BPDN and WBPDN. As ex-
plained in section IV-D, the pursuit algorithm is used only
to select a dictionary subset and then the coefficients of the
approximation are computed again, by means of a simple
projection. Fig. 8 shows the decay of the error versus the
number of atoms. It is clear how the use of the a priori
helps the algorithm in finding a better approximation of
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Fig. 8. Error (in dB) obtained by BPDN and WBPDN. Both
results are obtained by using quadratic programming for selecting a
dictionary subset and then recomputing the coefficients by projecting
the signal onto the span of the sub-dictionary. The procedure is
illustrated in Sec. IV-D.

the signal. The results concerning WBPDN are obtained
by adopting a weighting matrix that corresponds to λ = 90
and β = 0.2. Notice that these values are not optimal
for all the numbers of non-zero coefficients, as can be
seen in the area between 34th and 43rd coefficients in the
graph of Fig. 8. Better results can be achieved by tuning
appropriately β and γ for any desired m.

3) Capturing the Piecewise-smooth Component with
Footprints: Here, the results intend to underline the im-
portance of selecting the appropriate atom to represent
a particular signal feature. In the top row of Fig. 9 we
can see the resulting approximants after 50 iterations
of OMP (left) and Weighted-OMP (right). The result
obtained by including the a priori is 1.5 dB better than
the one obtained by OMP. At this point, it is important
to observe the bottom row of Fig. 9. These waveforms
represent the signal components captured exclusively by
the footprints and wavelet scaling functions. These com-
ponents should correspond to the piecewise-smooth parts
of the signal. However, in the case of OMP (bottom left)
the piecewise-smooth component captured by footprints
and low-pass functions is far from what one could expect.
Intuitively one can understand that OMP is failing in
the selection of atoms. On the other hand, the result
obtained by Weighted-OMP (bottom right) clearly shows
that footprints and Symmlet-4 scaling functions capture
a much more accurate approximant of the piecewise-
smooth component of the signal. We can thus argue that
a better approximation is achieved by using the a priori
information, and this leads to a sparser approximation too.

4) Parameter Search: Let us now consider the influence
of the parameters λ and β in the average quadratic error
of the residues obtained by Weighted-OMP, i.e.

E {rk|λ′, β′} =

K−1
∑

k=0

‖rk‖2

K
, (36)

such that rk is obtained fixing λ = λ′ and β = β′.
In Fig. 10, the magnitude of Eq. (36) is shown as a

function of λ (model threshold) and β (penalty weight).
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Fig. 7. Experiment of approximating the 1D signal extracted from the 140th column of cameraman (On the left). On the right, the rate of
convergence of the residual error for OMP and Weighted-OMP.
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Fig. 9. Top: Approximation after 50 iterations of OMP with (right) and without (left) a priori information. Bottom left: Signal components
captured by Symmlet scaling functions and Footprints using OMP. Bottom right: Signal components captured by Symmlet scaling functions
and Footprints using Weighted-OMP.

The lower the value of E {rk|λ′, β′}, the higher the proba-
bility of the parameters to be the good ones. Hence, it can
be easily observed that a unique global optimum in the
parameter space exists. In this example, it looks like the
set of parameters, which best fit the data model, could
be easily found by some iterative procedure based on a
nonlinear optimization method. Additional experimental
results may be found in [15].

5) Behavior of Weighted-OMP on a Large Set of
Piecewise-Smooth Signals: Finally, a larger data set has
been tested in order to give a better overview on how
our algorithm behaves in average. For this particular
experiment, we selected 86 columns of cameraman (one
out of three) and 46 columns from Lena (one out of six).
Then, the average residual error for all signals is compared,

as a function of the greedy iteration, for Weighted-OMP
and OMP in Fig. 11 (left). On the right of Fig. 11,
we also give a representation of the approximation gains
supplied by the weighted algorithm for each of the selected
columns of cameraman. This shows that, depending on
the particular structure of the signal, Weighted-MP may
supply very significant improvements (up to 4.5 dB better
in approximation error). It also reflects the fact that, if
the prior model is properly defined, one can not get worse
results than those of the pure greedy approach.

VI. Conclusions

Sparse approximation requires the use of dictionaries
capable to efficiently catch the main features and salient
structures of signals. Particular applications often focus



14 IEEE TRANSACTIONS IN SIGNAL PROCESSING VOL. XX, NO. X, XXX 200X

5 10 15 20 25 30 35 40 45 50
35

40

45

50

55

60

65

70

R
es

id
ua

l E
ne

rg
y 

[d
B

]

iteration #

Rate of convergence of the average residual error using Weighted−OMP

OMP on 86 Cameraman columns
OMP with a priori on 86 Cameraman columns
OMP on 46 Lenna columns
OMP with a priori on 46 Lenna Columns

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
pp

ro
xi

m
at

io
n 

G
ai

n 
[d

B
]

Cameraman column (the real picture column corresponds to 3 times the number in this axis)

Gain of convergence using Weigthed−OMP for each of the approximated Cameraman columns

Fig. 11. Left: Average residual error convergence for Weighted-OMP and OMP for 86 columns sampled from image cameraman and 46
columns sampled from image Lenna. Right: Approximation gain when using Weighted-OMP depending on the column sampled from image
cameraman.

Expectation map cameraman column 140

probability weight

m
od

el
 th

re
sh

ol
d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10

20

30

40

50

60

70

80

90

100

less probable more probable
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on a certain class of signals, thus a wise strategy is to
use dictionaries adapted to this class. Such dictionaries
often have high internal coherence, while practical algo-
rithms for the retrieval of sparse approximations, like MP
or BPDN, have been proved to work well with quasi-
incoherent dictionaries. In order to overcome this conflict,
adaptive subset selection algorithms are of key importance
to obtain optimal m-term signal approximations. Hence,
we have introduced weighted variants of the MP and
BPDN algorithms called: Weighted-MP and WBPDN.
Theoretical results show that these may supply much
better approximations than classic approaches.

In order to guarantee this, sufficiently reliable prior
knowledge must be used. Our practical examples show how
appropriate a priori models may be able to characterize
the interaction between signal and dictionaries, giving
very good results even for highly coherent dictionaries. A
possible direction to explore is to determine some bound
on the quantity εmax (i.e. the reliability factor), depend-
ing on the class of signals to approximate, the selected
dictionary and the practical estimators in use (those that
generate the a priori weights). The knowledge of some

bound on εmax for certain model may be of great help in
determining in advance whether a model can be suitable
for a particular application. In general, very good feature
estimators exist and a lot of experience about them is
available in literature. For every particular application,
models exploiting particular signal features may be found
in order to marry them with most common algorithms
used for sparse approximations/representations. In fact,
the examples presented in this work may be subject to
improvement if a higher order model was used.

Some practical applications of the concepts discussed in
this work are: the eventual use of edge estimators (e.g.
edginess measurements) to better approximate images
using multi-component edge/smooth adapted dictionaries
[21], or the use of QRST point estimators for the sepa-
ration of ventricular and atrial activities in electrocardio-
gram signals through sparse decompositions [24].

Appendix

Proof of Corollary 1 of Section III-A:

Proof: For simplicity, let us use an upper bound on
the left hand side of Eq. (12). Indeed, the factor 0 <
(wΓ

max)
2 ≤ 1 is removed:

(

1 +
m (1 − (µw

1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

≤

(

1 +
m (1 − (µw

1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

.

Let us suppose the a priori knowledge in use is reliable.
Then the following relations can be assumed:

µw
1 (m − 1) + µw

1 (m) + εmax ≤ µ1(m − 1) + µ1(m) < 1,

µw
1 (m − 1) + εmax ≤ µ1(m − 1). (37)

Now we can prove the inequality. Let us make the hypoth-
esis that the following is true:

(1 − (µw
1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2 ≤

(1 − µ1(m − 1))

(1 − (µ1(m − 1) + µ1(m)))
2 .
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Then,

1 ≤ (1 − µ1(m − 1))
(1 − (µw

1 (m − 1) + εmax))
·

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

(1 − (µ1(m − 1) + µ1(m)))
2 .

(38)

According to the relations in (37), the following can be
considered:

τ1 , µ1(m − 1) − (µw
1 (m − 1) + εmax) (39)

τ2 , µ1(m − 1) + µ1(m) −
(µw

1 (m) + µw
1 (m − 1) + εmax) (40)

where 0 ≤ τ1 � µ1(m) and 0 ≤ τ2 � µ1(m − 1) + µ1(m).
Hence, being δ , τ2/ (1 − (µ1(m − 1) + µ1(m))) the

second fraction in (38) can be substituted:

1 ≤ (1 − µ1(m − 1))

(1 − (µw
1 (m − 1) + εmax))

· (1 + δ)
2
. (41)

Moreover, being δ′ , τ1/ (1 − µ1(m − 1)), the remaining
fractional term of (41) may be considered such that

1 ≤ 1

1 + δ′
· (1 + δ)

2
= (1 + δ) · 1 + δ

1 + δ′
. (42)

From this, clearly (1 + δ) ≥ 1. So, if (1 + δ) ≥ (1 + δ′),
then Corollary 1 is proved. Hence, let us check, finally, if
this last condition holds. Inserting in (1+δ) ≥ (1+δ′) the
definitions of δ and δ′ we find:

τ2

(1 − (µ1(m − 1) + µ1(m)))
≥ τ1

(1 − µ1(m − 1))
,

which will be always true if τ2/τ1 ≥ 1. Let us assume,
then, that τ2 ≥ τ1. This, together with (39) and (40),
yields (µ1(m) − µw

1 (m)) ≥ 0, which asserts all hypothesis
and concludes the whole proof.
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