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Performance of Single-Carrier Block Transmissions
Over Multipath Fading Channels

With Linear

Shuichi Ohno,

Abstract—We study uncoded bit-error-rate (BER) performances
of single-carrier block transmissions, zero-padded (ZP), and cyclic-
prefixed (CP) transmission, when linear equalizers are applied and
the BERs are averaged over one block. We show analytically that
the BER of ZP transmission with linear equalization degrades as
the bandwidth efficiency increases, i.e., there is a tradeoff between
BER and bandwidth efficiency in ZP transmission. It is also proven
that when minimum mean-squared-error (MMSE) equalization is
adopted, ZP transmission outperforms CP transmission and un-
coded orthogonal frequency-division multiplexing (OFDM) on the
average over random channels. However, the difference between
the ZP and the CP transmission becomes smaller as the block size
gets larger, since the average BER performance of the ZP transmis-
sion degrades, while the average BER performance of CP transmis-
sion improves, as a function of the block size. Numerical examples
are provided to validate our theoretical findings and to compare
the block transmission systems.

Index Terms—Block transmission, linear equalization, multipath
channel, orthogonal frequency-division multiplexing (OFDM).

1. INTRODUCTION

EVERE multipath channels often arise in high-rate digital
Stransmissions, which necessitates sophisticated equaliza-
tion at the receiver. Maximum-likelihood (ML) equalization
collects the available multipath diversity to improve bit-error-
rate (BER) performance, but is computationally demanding.
On the other hand, linear equalization often exhibits poor
performance due to intersymbol interference (ISI) resulting
from the multipath. Block transmissions, including orthogonal
frequency-division multiplexing (OFDM) adopted by many
standards, e.g., IEEE 802.11a [1] and HIPERLAN/2 [2], and
in digital audio/video broadcasting, have been introduced and
utilized to mitigate ISI.

In block transmissions, symbols are grouped into blocks.
Adding sufficient number of redundant symbols to each block
removes inter block interference (IBI), making efficient block-
by-block processing available. In OFDM, a copy of the tail of a
block, which is called cyclic prefix (CP) is appended at the top
of the block. CP with inverse fast Fourier transform (IFFT) at
the transmitter and fast Fourier transform (FFT) at the receiver
leads to multicarrier systems, including OFDM. OFDM renders
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a convolution channel into parallel flat channels, which enables
very simple one-tap frequency-domain equalization. How-
ever, OFDM suffers from 1) fading in the frequency domain,
which necessitates powerful but bandwidth consuming channel
coding; 2) intercarrier interference (ICI) due to frequency offset
between the transmitter and the receiver; and 3) high peak-
to-average power ratio, which makes the OFDM signal very
sensitive to nonlinear effects in the power amplifiers of the
transmitter or receiver [3].

Most of the drawbacks of OFDM arise from parallel transmis-
sion on multiple multicarriers due to IFFT at the transmitter. To
avoid these drawbacks, single-carrier CP transmission discards
the IFFT at the transmitter. Although there is no IFFT opera-
tion at the transmitter, efficient frequency-domain equalization
is available at the receiver [4], [5]. In single-carrier CP transmis-
sion, the symbols are transmitted on a single carrier so that it en-
joys the benefits of single-carrier transmissions as well as block
transmissions. Precoded OFDM has also been proposed, e.g., in
[6] and [7], where the transmitted block is precoded to enhance
the error-rate performance. Indeed, single-carrier CP transmis-
sion and OFDM can be considered as special cases of precoded
OFDM [8]. It has been shown in [9] and [10] that OFDM has the
worst performance among precoded OFDM systems and that
single-carrier CP transmission exhibits the best performance.

Zero-padded (ZP) transmission is another class of single-
carrier block transmissions [11], where it inserts redundant
zeros instead of CP into each transmitted block. Sufficient
number of guard zeros separate two consecutive received
blocks and eliminate IBI. It also has guaranteed symbol de-
tectability regardless of the zero locations of the underlying
finite impulse response (FIR) channel [6]. Guaranteed symbol
detectability ensures performance improvement at moderate
and high signal-to-noise ratio (SNR) [8], [12] and enables blind
unknown channel identification [6]. For ZP transmission with
ML equalization or even with zero-forcing (ZF) equalization
at high SNR [13], full multipath diversity gain is enabled to
enhance the system performance. However, with ML equal-
ization, conventional single-carrier transmissions with guard
zeros at the beginning and at the end of the transmission but
without zero insertions between blocks also exhibit maximum
diversity [14]. Since the bandwidth efficiency of ZP is reduced
by redundant zeros inserted between blocks, ZP transmis-
sion with ML equalization is inferior to conventional single-
carrier transmissions in terms of bandwidth efficiency. In this
sense, the benefits of ZP transmission should come from linear
processing.
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Fig. 1. Part of block transmission at the transmitter.

CP and ZP transmission enable relatively low-complexity
block-by-block processing with linear ZF or minimum
mean-square-error (MMSE) equalization at the receiver
[5], [11]. Although their performances can be demonstrated by
numerical simulations, it still remains unclear which is better
in BER performance. As the block size gets larger, the perfor-
mances of CP and ZP transmission converge to conventional
single-carrier transmissions. However, the relation between
BER performance and bandwidth efficiency has not been fully
addressed when a linear equalization is employed. Studying
BER performances of CP and ZP transmission analytically, we
will answer these fundamental questions.

This paper deals with block transmissions with linear equal-
ization. Our performance measure is the BER averaged over one
block. We first show that for every channel, the performance of
ZP transmission with ZF or MMSE equalization degrades as its
block size increases. There exists a clear tradeoff between BER
and bandwidth efficiency. This implies that at low SNR, ZP
with long block size cannot take advantage of multipath diver-
sity gain. However, it is also proved that ZP transmission with
MMSE equalization outperforms the uncoded OFDM, which
justifies the advantage of zero insertions between blocks. We
also compare ZP transmission with CP transmission. ZP trans-
mission having a smaller block size by L than CP transmis-
sion has better performance than the CP transmission. Unlike
ZP transmission, the average BER performance of CP trans-
mission with MMSE equalization improves as the block size is
doubled. Based on these facts, we establish that when MMSE
equalization is adopted, on the average over random channels,
CP transmission is inferior to ZP transmission of the same block
size. However, their performance difference converges to zero,
as the block size gets larger. Numerical simulations are pro-
vided to validate our theoretical findings as well as to compare
single-carrier ZP and CP transmission.

II. BLOCK TRANSMISSION SYSTEM AND LINEAR EQUALIZATION

We consider point-to-point wireless block transmissions over
time-flat but frequency-selective fading channels. A schematic
diagram of baseband equivalent block transmissions is depicted
in Fig. 1. The information-bearing sequence {s(n)} is grouped
into blocks 8(n) = [s(Mn + 1),...,s(Mn + M)]T of size
M. To mitigate the effects of frequency selective channels, we
add M, redundant symbols to each information block to obtain
transmitted blocks {u(n)} of size N := M + M.

There are two major ways to insert redundant symbols: one is
to append a copy of the last M information symbols to the top
of the information block, which is the CP. At the receiver, the
received signals corresponding to the CP are discarded. CP with
IFFT at the transmitter and with FFT at the receiver results in
OFDM. Since single-carrier CP transmission without IFFT/FFT
exhibits better performance than the (uncoded) OFDM and pre-
coded OFDM [6], [7], as shown in [9], [10], we only consider
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single-carrier CP transmission, which we just call CP transmis-
sion in the following. Another insertion of redundant symbols is
to pad M, zeros at the end of each block to form ZP transmitted
blocks, which is known as ZP transmission [11].

Our discrete-time baseband equivalent FIR channel {h(l)}
has order L and is considered linear time-invariant. At the re-
ceiver, we assume perfect timing and carrier synchronization.
We collect N noisy samples in an N x 1 received vector. In
CP transmission, we remove the M samples which correspond
to the CP symbols. If the number M of redundant symbols is
greater than or equal to the channel order L, i.e., My > L, IBI
is completely eliminated, and we obtain [11]

x(n) = Hyrs(n) +v(n) M

where wv(n) is additive white Gaussian noise (AWGN)
with variance oZI. In CP transmission, z(n) has M en-
tries and Hj,; is an M X M circulant matrix with first
column [h(0),h(1),...,h(L),0,...,0]T. On the other
hand, in ZP transmission, £(n) has N entries and Hj; is
a tall N x M (truncated) Toeplitz matrix with first column
[1(0),h(1),...,h(L),0,...,0]T.

We assume that My > L so that the IBI is completely re-
moved and omit the block number 7 in (1) for notational sim-
plicity. Assuming that perfect knowledge of the channel is avail-
able at the receiver, let us first evaluate the symbol mean-square
error (MSE) of ZF (or, equivalently, least squares (LS)) and min-
imum mean-square-error (MMSE) equalization for our simple
model given by (1), which have been studied e.g., for CP trans-
mission [9], [10], for multiuser code-division multiple-access
(CDMA) systems [15], and for multiple-input multiple-output
(MIMO) systems [16].

The output of a ZF equalizer can be expressed as

s=s+H\ v )

where H ;ru is the pseudoinverse of Hj; defined as
H', = (H\Hy) "HY, with ()™ denoting complex
conjugate transposition. Since v is white Gaussian with vari-
ance 021, the covariance of the effective noise H ;rw'v is found
to be o2(H 7 H ;) t. Let us define the SNR as

2
g
v=— 3

where o2 is the variance of s(n). We also define the mth diag-
onal entry of (yH3;Hyy) * as

)\1(31) — [(WH?\EHAI)_I} )

m,m

for m=1,...,M 4)

where [-],,, , stands for the (m, n)th entry of a matrix. Then, the

received SNR for the mth symbol is expressed as 1/ AsnM).
On the other hand, the MMSE equalizer for (1) is found to be
[17, ch. 12]

—1
Gy =c’HY, (O’?H]\[H%[ + cer)

1
—~H", (’yH wH 4 I) . (5)
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The mth entry of the equalized output § = G, can be ex-

pressed as

(6)

§m = AmSm + W

where a,,, is the mth diagonal entry of Gy H pr. From (5), we
have

E{388""} =Gy E{z2" )G,
—1
:O';iH?]\—Z (O’?H}\[H';\-f[—l-(fgf) H]\[
= UgGMHM

(7
®)

where E{-} stands for expectation. Since a,, is the mth diag-
onal entry of GyH, = J?Hﬁ(d?H]V[H?\{[ + 051)_1H1V[,
we obtain from (7) that E{|3,,|?} = 02a,,. Then, from (6), the
noise w,, in (6) is found to have zero mean and variance given
by

E{|lwml’} = E{|3m|’} — a2 E {|sm|*} = 02an (1 — am).
©))

It follows that the signal-to-interference-noise-ratio (SINR) for
the mth symbol is 02a?2, [JZam(l - am)] =a,/(1- amg.
The (m, m)th entry of ’yH [HM +I)~1, denoted as un]l\ ,
is related to a,, such that /Lm 5\ — am,. (See Appendix I for
a derivation.) We can therefore re-express the SINR for the mth
symbol as
Am 1

SINR,, — = —= —1.

(10)
T1- Am ’ugrfl” )

We note that for MMSE equalization, §,, is affected by the
other transmitted symbols and hence the noise w,,, is not strictly
Gaussian. However, the Central Limit Theorem guarantees that
as the block size gets larger, the noise becomes Gaussian. Thus,
we assume that w,,, is Gaussian.

Both the A2 for ZF equalization and the 3! for MMSE
equalization are the MSE of the mth symbol. The SINR is re-
lated to the MSE by SINR = 1/MSE for ZF equalization and
by SINR = 1/MSE — 1 for MMSE equalization as pointed out
in [10] and [16].

Let us define a function f(-) in SINR to describe a BER or
SER performance for a digital modulation with a finite con-
stellation. For all digital modulation schemes, if a symbol-by-
symbol detection is employed, f(-) is in general a monotoni-
cally decreasing function in SINR. Using f(-), we will inves-
tigate the BER or SER performance averaged over one block
defined as

M

TN

m=1

f(SINR,, an

Take, for example, the symbol-by-symbol hard detection
of quadrature phase-shift keying (QPSK) signaling. The
probability of the bit error for the mth symbol is given by
f(SINR,,) = Q(v/SINR,,) [18], where Q(-) is the error
function such that Q(z) = 1/v2r [° e~t*/2dt. As has been

shown, SINR,, is a function of /\E,Jlu) for ZF equalization and

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 10, OCTOBER 2006

M
pin

investigate the properties of

) for MMSE equalization. Thus, all we have to do is to
)\1(711\[ ) (M ).

and finm,
III. PERFORMANCE OF ZP TRANSMISSION
WITH LINEAR EQUALIZERS

In this section, we consider ZP transmission. We remark that
since ZP transmission has a tall and full column rank matrix H 5,
except for null channels, (H 7 H ;)" always exists, which im-
plies that symbols can be detected for any channel of order up
to L except for null channel.

Let us define a square Hermitian Toeplitz matrix R of infinite
size such that [R)],, , = 0if |m —n| > L+ 1. Then, we denote
an M x M matrix having the first M rows and M columns of
R as R);. The following property of Toeplitz matrices is a key
to our analysis. (See Appendix II for a proof.)

Lemma 1: Let 1/,(7? ") be the mth diagonal entry of the inverse

of the M x M matrix Ry; Then, form =1,... M
l/ﬁnM"'l) > l/ﬁnM) (12)
Vst 20, (13)

Using (12) and (13), we show in Appendix III the proof of
Lemma 2.

Lemma 2: Let f(zx) be an increasing function in z. Then, for
{9} satisfying (12) and (13), it holds that

| M e M on
M+1mz::1f(l/m )Zﬁmz::lf(um )

From the definition, A2") is the (m,m)th entry of the in-
verse of yH ﬁH a- Itis easily verified that yH ﬁ,H ar 1s a Her-
mitian Toeplitz matrix. Thus, {)\5,11”)} have the same proper-
ties as { 1/,(,?[)}. Similarly, vH; Hy; + I is also a Hermitian
Toeplitz matrix. Since p" is the (m,m)th entry of the in-
Verse of YH Hy + 1, { /L(M)} exhibit the same properties as
" Usua}llly, the BER (or SER) function is a decreasmg function
in SINR. SINR is a decreasing function in )\ ) for ZF equal-
ization and in /LSn ) for MMSE equalization. Thus the BER (or
SER) function is an increasing function in )\ ) for ZF equal-
ization and in ;L,(n ) for MMSE equalization. From Lemma 2,
we can state our first main result, as follows.

Theorem 1: Suppose ZP transmissions with ZF or MMSE
equalization. Let the number of padded zeros be My > L, where
L is the channel order. Then, for every channel realization, the
BER of ZP transmission is a non-decreasing function in the in-
formation block size M, that is

(14)

BER;, 1 <BER;,,» < --- <BER,; o (15)
where BER;;, 5 is the BER of a ZP transmission of information
block size M.

This theorem states a deterministic and universal character-
istics of the BER performance of ZP transmission with linear
equalization. It should be remarked that no specific modulations
are imposed. Theorem 1 holds true for all digital modulations,

as long as they can be characterized by a function relating the
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SINR with the BER. For a fixed modulation, the performance
depends on the block size and degrades as the block size of the
information-bearing symbols increases. It makes sense that if
the redundancy per transmitted symbol decreases, i.e., as M in-
creases with M, fixed, then the performance gets worse. It is
also noted that all the results in this paper are developed for un-
coded systems. For coded BER, more analyses are required but
are beyond the scope of the paper.

The bandwidth efficiency of a block transmission can be de-
fined as

M
Ei= ——.
M + My

For a fixed M, the bandwidth efficiency improves as the block
size M increases, while the performance degrades as proven in
Theorem 1. There exists a clear tradeoff between BER perfor-
mance and bandwidth efficiency. One has to carefully design the
block size to obtain the target BER. Theorem 1 also suggests a
simple adaptive transmission scheme similar to the adaptive rate
control of error correcting codes: if the target BER performance
is not attained with a block size, the receiver asks the transmitter
to reduce the block size to obtain a better BER, but we will not
pursue further here.

The lower limit of BER is BER,, 1, which is realized
by ZP with M = 1 and is known as the matched filter
bound (MFB). The SINR for both ZF and MMSE equal-
ization is ZZL=0 |h(1)|*y. For BPSK or QPSK modulation,
the BER can be expressed as Q((321—, |h(1)|2v)/2), which
is identical with the approximate BER at high SNR of ML
equalization with and without zero padding [8], [12], [14].
On the other hand, as M goes to oo, BER,, ps converges
o Q([y/ [, |[H(e>™F)|=2df]"/?) for ZF equalization and

QU/1/Iy J; 1H (e727)|=2df + 1] ~ 1) for MMSE equaliza-
tion. They are found to be equal to the BER of conventional
single-carrier transmissions with ZF and with MMSE equal-
ization, having (ideal) infinite length coefficients. We can con-
clude that ZP transmission always outperforms conventional
single-carrier transmissions if both employ linear equalization.

Since Theorem 1 holds true for every channel realization, av-
eraging the BER over the channel probability density function,
we establish Theorem 2.

Theorem 2: Consider ZP transmissions with ZF or MMSE
equalization as in Theorem 1. Then, the BER of ZP transmission
averaged over random channels is a non-decreasing function in
the information block size such that

(16)

BERzp,l S BERZp,Q S e S BERZp,oo (17)

where ﬁzp_, m denotes the average BER of a ZP transmission
of information block size M.

Suppose, for example, independent and identically dis-
tributed (i.i.d.) Rayleigh channels. The average BER of ML
equalization is approximated at high SNR by (Gy)~(Z+1) with
G a constant. The constant G can be viewed as a coding gain
if the linear channel convolution is considered as coding over
complex field [8], [12]. The slope of the BER-SNR curve,
L + 1, is the diversity order, which comes from i.i.d. Rayleigh
channels. Although ZP transmission with ZF equalization has

3681

the full diversity gain at high SNR [13], Theorem 2 states that
its performance gain gets lost as the block size gets larger.

IV. PERFORMANCE OF CP TRANSMISSION WITH
LINEAR EQUALIZERS

ZP transmission exhibits the same performance characteris-
tics both in ZF equalization and MMSE equalization. However,
as will be shown below, this does not always hold true for CP
transmission. In CP transmission, H 57 in (1) is an M x M cir-
culant matrix, which we denote H, 5.

The circulant matrix H, »s can be diagonalized by the dis-
crete Fourier transform (DFT) matrix F' and its inverse (IDFT)
[19, p. 202], such that

?

FH, v F" =diag [H (W), H (W) ..., H(WM=1)]

where Wy, = exp(j2r/M), [Flmm = (1/VM)
WJE/T_I)(”_I), and H(z) is the channel transfer function
H(z) := 2520 hnz~™. We assume that there is no channel
null at the DFT grids, i.e., at Wy for m € [0, M — 1], so that
the channel matrix H, s can be inverted. From (18), one finds
that the diagonal entries of (vH, Z:i avHep 1)1 have the same
value given by

| M2 1
(). L Z S
Mry [H (Wil

m=0

19)

Unlike ZP transmission, CP transmission does not exhibit an
ordered BER performance. To see this, suppose a channel re-
alization hg, h1, ..., hr. The ZF BER performance of the CP

transmission of block size 2M is a function of A(2M)_ which
can be expressed as

1 2M—1 1
)\(2]”): Z .
ZMW m=0 |H (ngl\/[”
B 1[ 1 ]‘il Lo ]‘il 1
9 M~ 7 (vrmN 2 T My I T Trm |2
2| My = |H(Wipl™ My o= |H (Wan W)

_ % [ 2D ;(M)} (20)

where A = (1/M~) M0 (1/|H(Wars Wi)|2). Now
we utilize a property of ) function [10, Lemma 2] such that
Q(+/1/y) is convex when y < 1/3 and concave wheny > 1/3.
Suppose a channel such that (1/M) M= (1/|[HWD)?) >

m=0
(/M) M ([ HWorWi2)|?). Then, BERgar =

Q(/1/XBDY) > Q(1/1/AXMD) for any ~y. For ~ such that
M) XM) - < 1/3, it follows from the convexity of the Q
function that

1 o
BERp o1 < 3 [BERCP,M +Q <\/1/,\(M>>

Suppose  another channel such that (1/M) Zﬁl[:_ol
(1/|HWiD[?) < (1/M) X0 2y (1/|H(WearWii)[2). Then,

m

< BER¢ 1
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BER, 1y = Q(+/1/ABD) < Q(1/1/ABD) for any ~. For ~y
such that \(M), AM) S 1/3, since the () function is concave
in this region, we obtain

1 ~
BEch,2]\[ > 5 |:BEch,AI + Q <H 1/)\(]\1)>:| > BEch,M~

This shows that there are no universal orders in the BER perfor-
mance of CP transmission with ZF equalization.

Let us compare CP transmission of block size M with ZP
transmission of block size M — L. Similar to the derivation for
the ZF case, even for MMSE equalization, all the the diagonal
entries of (vH th aiH o ar + ) ™1 have the same value given by

1 & 1
(M) ._
W= =S @1
M 'mZ:(] vIH Wil +1
We prove in Appendix IV that for ZF equalization
A > NM=L) = forallme [I,M — L], (22
and that for MMSE equalization
D > ML) forall moe [1,M — L) (23)

where the equality holds if and only if the channel is a pure
delay, that is, H(z) = cz~! for ¢ # 0. Since the BER function
f(z) increases with z, we can conclude Theorem 3.

Theorem 3: Consider CP transmission of block size M and
ZP transmission of block size M — L. If ZF or MMSE equaliza-
tion is used, the BER of CP transmission is worse than the BER
of ZP transmission, i.€.,

BERp, s > BER,p v 1 (24)
where the equality holds if and only if the channel is a pure
delay.

We have evaluated the performance in terms of the SNR ~.
For a fixed SNR, E;/Nq = + for ZP transmission and E; /Ny =
(M + My)~/M for CP transmission, where F; denotes the en-
ergy per symbol and Ny = o2. If we set the same E, /N, for ZP
and CP transmission, the value of v of CP transmission becomes
smaller than the value of v of ZP transmission. In other words,
to keep the same value of +, additional power in E is required
for CP transmission. Equation (24) holds true not only in -y but
also in E5/Ny. When comparing the BER for CP and ZP for the
same total transmit power per symbol, Fs, the inequality in (24)
will only get accentuated further.

Since single-carrier CP transmission with MMSE equaliza-
tion exhibits better performance than the OFDM [10, Theorem
2], Theorem 3 also leads to Theorem 4.

Theorem 4: For any block size M, ZP transmission with
MMSE equalization outperforms the OFDM transmission.

Assuming that the noise in (6) is Gaussian, the BER can
be (approximately) evaluated from a linear function of @
functions, which is specific to the underlying modulation
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scheme. Take, for example, QPSK modulation. Then, the BER
is given by Q(y/1/u®) —1). Since ™) lies between 0 and
1, Q(\/1/u®) —1) is a strictly convex function in ()
[10, Lemma 4]. The convexity for other modulations was also
shown in [16].

Since SINR is inversely proportional to x(*), we may say
that the BER is a concave function of SINR. Similar to (20),
one can show that

y 1 (M
u(zM) -2 (N(M) n M(]\[)) (25)
where i) = (1/M) 3025 (1/ (v H(War Wi)? + 1)). 1t
follows from the convexity of the ) function that

1 "y
BERc 21 < 5 [BERCP,M +Q <\/1/M<M> - 1)} . (26)

Averaging (26) over random channels, we prove Theorem 5 in
Appendix V.

Theorem 5: Consider CP transmission with MMSE equal-
ization, where CP meets My > L. If the BER performance is
a concave function in SINR, then the BER of CP transmission
averaged over random channels satisfies

BEch,QM < BEch,J\J (27)
where BER;, 1/ denotes the average BER of a CP transmission
of information block size M.

Interestingly, unlike ZP transmission, the BER performance
of CP transmission with MMSE equalization improves by
doubling the block size. However, it should be noted that this
theorem holds true only for non-time-selective channels. If the
channel is time selective, the performance may get worse as the
block size gets large due to time selectivity.

Averaging (24) over random channels, we obtain

BER(, ar > BER,, 17— 1 (28)
since the equality in (24) holds only for pure delay channels.
Combining this with Theorem 2 and Theorem 5, we have for
M > L that

BER;, ar < BER,p 20— < BER¢ 207 < BERp v (29)

which proves Theorem 6.

Theorem 6: Consider ZP and CP transmission with MMSE
equalization. Suppose M > L and My > L. If the BER per-
formance can be expressed by a concave function in SINR, then
for any block size M, the average BER of ZP transmission is
always smaller than the average BER of CP transmission, i.e.,

BER,, v < BER(, ar, forany M. (30)
This theorem gives an answer to our questions: on the
average over random channels, ZP transmission outper-

forms CP transmission. However, at M = oo, BER, o« =
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Fig. 2. Magnitude response of the channel, where frequency is normalized
by 27.

BER;p o0 ZQ(\/l/[V fol |H (e727F)|=2df + 1] — 1) and hence
BER(p oc = BER,p . Thus, as the block size gets larger, the
performance difference decreases and converges to zero, since
BER,, 5 increases (cf. Theorem 2), while BER, 5; decreases
at least for M = 2K with integer K (cf. Theorem 5).

V. NUMERICAL EXAMPLES

To validate our theoretical findings, we test ZP and CP
transmission with ZF and MMSE equalization, abbreviated
by ZF-ZP, MMSE-ZP, ZF-CP, and MMSE-CP, with different
block sizes for a fixed channel and for random channels,
where the number of redundant symbols is set to be eight.
The performance of uncoded OFDM with 64 subcarriers is
evaluated when hard-decoding was used at their corresponding
ZF equalizer outputs. The information symbols are drawn from

QPSK constellation.
The fixed channel is of order 3, whose coefficients
are [0.5957+0.01017, -0.3273-0.34727, -0.2910-0.0533%,

0.1285-0.5599:]. Its amplitude response is illustrated in Fig. 2.
Fig. 3 shows BER performance as a function of Ej/Ng. Note
that the BER performance of ML is approximately equal to
the BER of the ZF-ZP with M = 1, i.e., MFB. It is clear
from the figure that the performance of ZF-ZP degrades as its
information block size increases, which is analytically proved
in Theorem 1. ZF-CP does not have such a property. Indeed,
ZF-CP of block size 64 has better performance than ZF-CP of
block size 32. Remember, however, that this does not always
hold true. Even with the same block size, ZF-ZP outperforms
ZF-CP, while Theorem 3 assures that ZF-ZP of block size
M — L outperforms ZF-CP of block size M. It is also observed
that at moderate and high SNR, ZF-ZP has better performance
than the uncoded OFDM.

The BER performances of MMSE equalization for the same
channel are presented in Fig. 4. Again, we can observe the or-
dered performance for ZP transmission. However, the perfor-
mance degradation is not so severe. MMSE-ZP outperforms
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BER comparison for a fixed channel of order 3 (ZF equalization).
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ZP 64
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CP 64
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Eb/No

Fig. 4. BER comparison for a fixed channel of order 3 (MMSE equalization).

MMSE-CP but, compared with ZF case, their BER differences
are not so large. As suggested by Theorem 4, MMSE-ZP ex-
hibits better performance than the uncoded OFDM for all range
of Eb / N 0-

To verify Theorem 2, we generated 10* Rayleigh dis-
tributed channels of order L = 7, having complex zero-mean
Gaussian taps with exponential power profile: E{|h(l)|?} =
exp(—1)/[>_, exp(—1!)], and averaged the results.

The BER curves are depicted in Fig. 5. At low SNR, OFDM
has smaller BER than ZF-ZP and ZF-CP except for M = 1.
ZF-CP has the worst performance at least till 20 dB. There is
no distinguishable difference between ZF-CP with M = 32 and
with M = 64. On the other hand, ZF-ZP gets better than OFDM
at high SNR, which is a benefit of the multipath diversity gain.
As block size becomes large, however, both BER performances
will converge to Q([v/ [, [H (e72%)|=2df]'/?).

ZP and CP transmission with MMSE equalization are com-
pared in Fig. 6. We can verify that as the block size increases,
the performance of MMSE-ZP degrades, while the performance
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Fig. 5. Average BER comparison for Rayleigh channels of order 7 (ZF
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Fig. 6. Average BER comparison for Rayleigh channels of order 7 (MMSE
equalization).

of MMSE-CP improves, as suggested by Theorem 2 and by
Theorem 5, respectively. Compared with ZF equalization, for
moderate block size, there is no significant difference between
MMSE-ZP and MMSE-CP, which shows the advantage of
MMSE equalization over ZF equalization. Their performance
limits, i.e., at M infinity, lie between the BER curves of
MMSE-ZP with M = 64 and MMSE-CP with M = 64.

VI. CONCLUSION

We have studied two major single-carrier block transmis-
sions, CP and ZP transmission, proposed to mitigate frequency
selective multipath propagation. We have shown that when ZF
equalization is utilized, the advantage of ZP transmission due
to multipath diversity gain is lost as the block size increases.
When MMSE equalization is adopted, the BER performance of
CP transmission improves as the block size increases, while the
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BER performance of ZP transmission degrades. We have also
proved that on the average over random channels, ZP transmis-
sion with MMSE equalization outperforms CP transmission
with MMSE equalization and OFDM, which highlights the
advantage of ZP transmission with MMSE equalization.

APPENDIX I

DERIVATION FOR a,,, = 1 — u%\’{)

Let us express the singular value decomposition of H ?\{[H M
as USU", where U is a unitary matrix and ¥ is a diagonal

matrlx It follows froméfyHﬁHM + ' = (WUZU™ +
n-t (WX +1) that
(M) _ 2 31
Hia Z e 31)
where y,, is the (m, n)th entry of U.
The MMSE estimator is given by Gu =
YHY, (yHyHY, + I)7'. From the matrix inversion

lemma, we obtain YH),(yHyHY, + I Hy,
~(yH Y Hyp + )~ H; H ). Using this, since a,, is the mth
diagonal entry of GMHM 2HM(U HMHM +

O'EI)_IHA[ —’YHA (’YHMHM + I) 1H]u =
YH Hy + DT'HGHYy = AUGRE + I7'EU™,
we have

V[E]n n
], +1

am—Z| mn|2

(32)

Using the identity Zi‘il [thmn|? = 1, we finally obtain

M
_ 2 (4 1 1 (M)

APPENDIX II
PROOF OF LEMMA 1

If R is diagonal, then (12) and (13) follow immediately. Thus,
we only consider the case where R is not diagonal.

Since R, is a Hermitian Toeplitz positive definite matrix,
it can be interpreted as the autocorrelation matrix of some sta-
tionary process. To prove the lemma, we borrow the results on
linear prediction of stationary processes.

Let us consider Yule—Walker equations [20, sec. 3]:

1 P
R =
wn|_a] =[]
where a; is the predictor vector of size M and Py is the (for-

ward) prediction error variance.
We partition Ryr41 as

(34)

RM‘ B
BH
T ‘

Ry = [ (35)

- [
B 7‘M|RM
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where 1% and 7, are M x 1 vectors and 7 > 0. Applying the
block matrix inversion lemma to (35), since the forward predic-
tion variance is identical with the backward prediction variance,

we obtain
1 T =by || =bus "
- fﬁw{ 1 }{ 1 } (0

_1 R;Ml 0

Ry = o | o
0| 0" 1] 1 11"

= —_— 37

[ 0 R]T/Il]+ Py |:_0'M:||:_0'M:| 37)

where by = R;jlrﬁ, and ay; = R;}r - Comparing diagonal
entries of both sides of (36) and (37), we reach to (12) and (13).

APPENDIX III
PROOF OF LEMMA 2

Let us denote ¢, = f(;/,(,i”)) and b, = f(l/,(é\“'l)). Then,
all we have to prove is

M+41

M
MZb (M +1) Zcmz
m=1

Since f(x) is an increasing function in x, we have from (12)
and (13) that form =1,..., M

(38)

bm Z Cm, bm-l—l Z Cm. (39)
Forevery k = 1,..., M, the following equation holds:
M41 M+1
3 b= 3 e =t 3 et 3 (b
m=1 m=k-+1

(40)
Then, since b,,, — ¢, > 0 and b,,, — ¢,,,—1 > 0 from (39), we
have
M41 M

Zcmzbk for k=1,..., M.

m=1

(41)

D b=
m=1

We can express the left-hand side of (38) as

M
M+1)Zcm
m=1

M+1 M M
_M<Zb Z )—Zcm. (42)

M+1

MZb

m=1 m=1

On the other hand, from (41), we obtain

(g

M+1 " 11\[ M+1 M
(zz) +(zb 5>
m=1 m=1 m=1
>0
m=1

Cm) (43)

>bi+ba+-+by = (44)
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Thus, (42) is lower-bounded such that
M+1 M M M
MY b =040 Y e b= Y e
m=1 m=1 m=1
M
= (b — ). (45)
m=1
It follows again from (39) that
M+1 M M
Mme— 1)Zc Z ) >0 (46)
m=1 m=1 m=1
which completes the proof of (38).
APPENDIX IV
PROOF OF (22) AND (23)
For CP transmission with ZF equalization, let us define
ch’]\,[ = 'YHZ-;,JMHCP,M- (47)
We also define
Rzp,JM = VHZ?;?MHZp,JM (48)

where H,;, ys stands for the channel matrix of ZP transmission
of block size M.
It is easy to check that R, 5s can be expressed as

(49)

Ryy_r| C
ch,]M =

c" | R;

where Ry, is an L x L matrix and C is an (M — L) x L matrix.
Using the block matrix inversion lemma, we find that

) Ry |0 -R., .C
ch.]\/[ = +
’ 0 0 I,
-RY, ,c1™
% A_l[ szM L } (50)
L
where
A =R, -C"R},C. (51)

The matrix A is the Schur complement of R, »s with respect
to Ry ar—1.. If R,y ar— 1 is positive definite, then the number of
zero eigenvalues of A equals the number of zero eigenvalues of
R, ar. Hence, if R, 5/ is positive definite then so is A.

It follows from (50) and A > 0 that at least one diagonal entry
of the second term of the right-hand side of (50) is greater than
or equal to zero. Noting that all the diagonal entries of ch ar has
the same value A(*) and comparing the first M — L diagonal
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entries in (50) leads to A) > A~ forallm € [1,M—L].
Since R, as is circulant, one finds that C' = 0 if and only if the
channel is a pure delay. Thus, A(M) = )\snM_L) only when the
channel is a pure delay.

When MMSE equalization is used, one can similarly derive
p D > M0 forallm € [1, M — L], replacing R, s with
R, s+ I'in (47) and R, ar with R, o + I in (48).

APPENDIX V

Let us denote the probability density function of a channel
with coefficients {ho, h1,...,hr} as p(ho,h1,...,hr). Aver-
aging (26) over random channels results in

_ 1|
BERp 201 < B [BEch,M +/Q <\/ 1/ — 1)

X p(h07 h17 ey hL)d}L(]dhl s dhL] (52)

where BER;, 2/ is the average BER of CP transmission with
MMSE equalization and

BER, v = /Q (W)

X p(ho, }Ll7 ey }LL)dh()dhl s dhL (53)
with M) = (1/M) 30 20 (1/ (I H(WE? + 1))
We notice that
L
H (Wz]\,[W]\[ Z In WQA[W]\[)
"
= Z (7 Won) Wa™" (54)
and change variables such that
hi = Wyyihi, (55)
for I € [0, L]. Then, i) can be expressed as
M-1
aon L L
M =y [H (Wane Wip)[™ +1
M-1
1 1
=M§j (56)

’Zn o W™ 1

The J acobian of the transformation (55) is found to be
W2 uWs A rx W{ﬁ so that the probability density function of
{hi} can be expressed as

_ plloh.
WQM

7hL)
_I°
2M

(57)
2M T
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Thus, we obtain

/Q (\/ 1/ — 1) p(ho, b, ... hr)dhodhy - - - dhy,

(58)
- [a (Y -1)
X p(ho, by, ..., hy)dhodhy - - dhy. (59)
This is identical with BER, 5 given by (53). Thus
— 1 — _ —
BERCp,?M < E[BERCP,M + BEch,M] = BEch,]\I (60)

which completes the proof.
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