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Abstract

We consider a multi-object detection problem over a sensor network (SNET) with limited range multi-modal
sensors. Limited range sensing environment arises in a sensing field prone to signal attenuation and path losses.
The general problem complements the widely considered decentralized detection problem where all sensors observe
the same object. In this paper we develop a distributed detection approach based on recent development of the false
discovery rate (FDR) and the associated BH test procedure. The BH procedure is based on rank ordering of scalar test
statistics. We first develop scalar test statistics for multidimensional data to handle multi-modal sensor observations
and establish its optimality in terms of the BH procedure. Wethen propose a distributed algorithm in the ideal case
of infinite attenuation for identification of sensors that are in the immediate vicinity of an object. We demonstrate
communication message scalability to large SNETs by showing that the upper bound on the communication message
complexity scales linearly with the number of sensors that are in the vicinity of objects and is independent of the total
number of sensors in the SNET. This brings forth an importantprinciple for evaluating the performance of an SNET,
namely, the need for scalability of communications and performance with respect to the number of objects or events
in an SNET irrespective of the network size. We then account for finite attenuation by modeling sensor observations
as corrupted by uncertain interference arising from distant objects and developing robust extensions to our idealized
distributed scheme. The robustness properties ensure thatboth the error performance and communication message
complexity degrade gracefully with interference.

1 Introduction

The design and deployment of sensor networks (SNET) for distributed decision making pose fundamental challenges
due to energy constraints and environmental uncertainties. While power and energy constraints limit collaboration
among sensors nodes, some form of collaboration is necessary to overcome uncertainty and meet reliability requirements
of the decision making process.

In this paper we focus on the problem of distributed detection of localized events, sources or abnormalities (from
here on objects), observed simultaneously over different sections of a large sensor network. Such problems arise nat-
urally in many settings such as environmental monitoring, species distribution and taxonomy, and wide area surveil-
lance [17, 20]. The common thread in all of these applications is that the objects are not observed by all the sensors in
the SNET. Rather, each object is in the field-of-view of only asmall subset of the sensors in the SNET. We consider all
such problems to be local information problems, and seek to devise a distributed detection strategy that satisfies certain
false alarm and communication cost constraints.

It is worth contrasting local information problem with its global counterpart. In a global information problem a
single object is observed across the entire network (see Figure 1 for an illustration of local and global information
problems). This type of problem has been extensively studied in the literature in the context of decentralized/distributed
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detection theory [6, 21, 24, 26, 28, 30]. In the centralized version of the problem one seeks asymptotically the optimal
exponent at which the error probability goes to zero as a function of the observations [23,27]. The decentralized version
involves a similar problem with quantized observations [28,30]. Motivated by network topologies researchers have also
investigated several architectures ranging from fusion centric to ad-hoc consensus based approaches [3, 6, 18, 21, 22,
24, 26, 28–30]. Local information problems and corresponding decentralized algorithms have only recently begun to
be addressed in the SNET setting [12–15]. A fundamental difference between local and global information problems

(a) Global information problem (b) Local information problem

Figure 1: In global information problems the sensors observe a singleglobal phenomenon, which leads to a binary hypotheses
testing problem with multiple observations. In local information problems only a subset of the sensors observe a numberof
phenomena, which leads to each sensor having its own set of hypotheses. This leads to a multiple hypotheses testing problem.

appears even in the centralized scenario. In the local information case, since each object is in the field-of-view of at
most a constant number of sensors the error probability cannot be made to go to zero. Furthermore, since there are
a multiple locations each location has to be simultaneouslytested for presence or absence of objects. In these cases
neither the total number of objects in the sensor field nor thelikelihood of finding an object in a specific location is
known a priori. It turns out that in these cases the error probability is dominated by the multiple tests (one for each
location) and this issue is referred to as multiple comparisons testing in the statistical literature [4, 19]. A fundamental
difference is in what performances are typically characterized. While, for global information problems, the asymptotics
of the error probability for a single object with increasingnumber of sensors (and quantized observations) is usually
derived, for local information problems, the scalability of error rates and communication costs with increasing number
of objects is characterized. An important aspect of our workis to show that both of these quantities, namely the error
rates and communication costs, scale with the number of sensors that are in the immediate vicinity of objects rather
than the size of the SNET.

We present a distributed detection scheme for local information problems based on the concept of false discovery
rate and the associated BH procedure [4]. The BH procedure relies on rank-ordering of test statistics. In several
SNET scenarios multi-modal sensors are employed, which generate multi-dimensional sensor observations, where rank
ordering is unclear. We also consider a sensing field with signal attenuation and path losses, which essentially imposes
an effective sensing range for the sensors.

To the best of our knowledge multi-dimensional settings in the context of FDR have not been subjected to sig-
nificant attention since it is generally difficult to rank-order the observations. Recent statistical work in [7] proposes
a coordinate-by-coordinate ordering but this generally leads to sub-optimal error performance. To account for multi-
dimensional observations we devise a transformation that maps multidimensional observations to scalar test statistics,
which turns out to have optimal error performance. These scalar statistics then forms a basis for a distributed detection
scheme. We show that the communication cost of the scheme scales linearly with the number of sensors that observe
an object, and not the number of sensors that are in the SNET. Furthermore, the proposed scheme guarantees detection
performance of centralized procedures. Next, we account for signal attenuation and path losses by modeling sensor ob-
servations as corrupted by uncertain interference resulting from unknown objects that are not in the immediate vicinity
of the sensor. The interference can be modeled as a perturbation to the nominal observed distributions and we establish
robustness of our test statistic to such perturbations.

The organization of the paper is as follows: in Section 2 we discuss the connection of distributed detection of local-
ized phenomena to the multiple hypotheses testing problemsconsidered in the statistical literature. We discuss possible
performance criteria in detail and present the reasoning behind our choice. We also discuss the main contributions of
this work in that section. In Section 3 we discuss the setup ofour problem and describe ideal and non-ideal sensing
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models. In Section 4 we propose a test statistic formulation, and discuss its important properties. In Section 5 we
present the distributed detection algorithm, and examine its scaling properties. We also show here that the distributed
algorithm is equivalent to its centralized counterpart with high probability. We then show, in Section 6, certain robust-
ness properties of the test statistics to uncertainties in the distribution of observations. We also show that our choice
of performance criterion scales gracefully with the perturbation of the distribution of observations. These results allow
us to address cases where we do not have the exact distributions. In Section 7 we present simulations and show that
the chosen method is able to meet the Bayes Oracle error performance. In this section we also present the scaling of
communication costs and discuss some interesting results.We finally present our concluding remarks in Section 8.

2 Discussion of Performance Metrics and Contributions

In this section we will propose different criteria and present empirical evidence for adopting the Benjamini-Hochberg
(BH) procedure, which is associated with the false discovery rate(FDR) criterion, as a basis for local information
problems. Local information problems invariably turn out to be multi-comparison test problems. There is currently
no consensus around a universally applicable performance metric for these problems. In the literature, location-by-
location Neyman Pearson (NP) tests, Family-Wide-Error (FWER, also known as Bonferroni criteria) tests, average
error probability and false discovery rate have all been proposed. Rather than discuss merits of the different criteria
we describe their performance in terms of average errors forour context, wherein both the object density as well as
observed distributions may only be partially known. The NP tests and FWER criterion are non-adaptive decision rules
(i.e. threshold rules which do not depend on observed realization). Generally these methods result in poor performance
in terms of the number of false alarms and missed detections.It turns out that the BH procedure, in contrast, is an
adaptive rule which adapts to the observed realization and generally results in good error performance.

To be concrete, consider a set ofm sensors,S. Associated with each sensors ∈ S, there is a null or alternative
hypothesisHs ∈ {H0, H1} corresponding to whether or not the sensor observes an object of interest. Sensors
generates an observationXs ∈ R independently (of other sensors) with probability densityg0s if Hs = H0; andg1s
if Hs = H1. The general problem involves situations where the actual number of objects are unknown and due to
path losses and multi-path effects the distributionsg0s, g1s are only partially known. To analyze different strategies
we denoteu(x1, x2, . . . , xm) to be any decision rule that selects a set of sensorsS1 = {s1, s2, . . . , sR} and assigns
to them the alternative hypothesis, i.e.,Hs = H1, s ∈ S1 andH0 otherwise. The outcome of a decision rule can be
summarized in the following table. HereR is the total number of sensors identified with objects.V is the number of
sensors falsely placed intoS1, i.e., number of false alarms. Obviously, we desire bothV andT to be small, and seek a
decision rule that makes this possible.

DeclaredH0 DeclaredH1 Total
TrueH0 U V m0

TrueH1 T Z m−m0

Total m−R R m

2.1 Controlling False Alarm Probability: Non-Adaptive Str ategies

First consider the situation when the distributionsg0s, g1s are known butm1 is unknown and arbitrary. In this case
we can consider several possibilities. (a) Neyman-PearsonTest for each location: Maximize local detection powerP l

D

subject to local false alarm probability constraint,P l
F ≤ γ for each location. The optimal decision rule for this situation

is the well-known likelihood ratio test [27]. Although thisrule is locally optimal, it is not guaranteed to provide good
overall performance and is commonly referred to as uncorrected testing. Indeed the false alarms scale with the total
number of sensors, i.e.,E(V ) ≈ O(m). (b) Bonferroni procedure [4] overcomes this issue by imposing a highly
restrictive false alarm probability constraint on each sensor,γ′ = γ/m. This strategy guarantees control of global false
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alarm probability (i.e. Pr(V ≥ 1)1) at levelγ (follows from union bound), however this in turn leads to poor detection
performance, i.e, a large number of misses are incurred.

This leads to the fundamental question of whether there exist other local or global decision rules,u(·), that can
control both the false alarm and miss probability Pr(V ≥ 1), Pr(T ≥ 1) (or a close relaxation such as the probability
of k false alarms and misses for some constantk independent ofm).

The optimal decision rule for maximizing the worst-case global detection powerPD = 1− Pr{T ≥ 1} subject to a
global false alarm constraintPF = Pr{V ≥ 1} is generally intractable. It turns out that the worst-case false alarm and
miss probability can be bounded from below by an entropic term which is a function only of the local SNR.

Theorem 2.1 Let S be a set ofm hypotheses tests,Hs ∈ {H0,H1} the hypothesis for tests ∈ S, andXs the observa-
tion for the tests ∈ S. Suppose,u(X1,X2, . . . ,Xm) is any strategy that maps the observations to hypothesis decisions.
Then,

γw = min
u

max
Hs∈{H0,H1}

(Pr{V ≥ 1 | {Hs : s ∈ S}}+ Pr{T ≥ 1 | {Hs : s ∈ S}}) ≥ Φ(Hs | Xs)−
1

m

whereΦ(· | ·) is the conditional entropy computed with a Bernoulli prior with probability 1/2 over H1s andH0’s
over them tests. It follows that there exists no decision strategy forwhich both false alarm and miss probability can
simultaneously be smaller thanΦ(Hs | Xs)/2.

Proof: See Appendix.
Remark: Hs is a binary random variable and so its entropy (or conditional entropy) is always smaller than one.
Nevertheless, depending on measurement noise at each sensor, Φ(Hs | Xs) could be arbitrarily close to one.
Remark: We can generalize this result to lower bound probability ofk false alarms and misses as well using gener-
alized Fano bounds we developed in [2]. Based on those results it follows that the probability does not improve unless
we let eitherV or T grow withm.

The above discussion brings to light the fact that non-adaptive decision rules lead to poor performance.

2.2 Adaptive Strategies

To establish performance of adaptive strategies, i.e., strategies that adapt to the specific realization, we need lower
bounds on error performance. We do this by means of a Bayes Oracle where the distributionsg0s, g1s as well as
the likelihood probability of finding an object in the vicinity of a sensor is known (alternatively, we can consider
situations where the total number of objects are known). Define, the average ratio,m1/m as the object density and the
complement, namely, average ofm0/m as the sparsity level. Under this scenario it is easy to see that a thresholding
decision at each sensor is optimal, and the optimal threshold is a function of the object density and the distributions
under each hypothesis. Furthermore, the error performanceof the Bayes Oracle is a lower bound on the achievable error
probability.

The question therefore arises as to whether there exists a procedure that achieves Bayes Oracle bound for local
information problems, and does not depend on the knowledge of the object density and precise knowledge of distribution
under presence of an object. This is particularly relevant since path losses and attenuation are not precisely known.
Motivated by these issues Benjamini & Hochberg [4] formulate the false discovery rate (FDR) criterion and provide
a distribution invariant algorithm, the Benjamini-Hochberg (BH) procedure, that controls FDR. An interesting result
presented in [1] shows that controlling FDR can asymptotically result in asymptotic minimax optimality of the error
probability.The FDR [4] framework seeks to control the worst case expected ratio ofV/R, i.e.

FDR = max
{Hs∈{H0,H1}}s∈S

E{V/R | {Hs}s∈S}

1Strictly speaking, we should writemaxHs∈{H0,H1} Pr{V ≥ 1 | {Hs}s∈S} to denote that we are looking at worst-case probability. However
we avoid this cumbersome notation whenever clear from context.
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(a) Example definition of test
statistic transformation

(b) Ordered test statistics and
threshold line

Figure 2:BH procedure

whereS is the set of sensors andHs is the hypothesis at sensors. For simplicity of notation, from here on we will
write FDR = E{V/R} and Pr{· | {Hs}s∈S} = Pr{·} whenever it is clear from the context. It is easy to show that,
FDR ≤ Pr{V ≥ 1}, which implies that FDR is a relaxation of global false alarmprobability.

FDR can be controlled using the so called BH procedure, whichwe briefly explain here. As depicted in Figure 2
the test statistics are computed from the observations. Thetest statistic of an observation is obtained through any (non-
unique) transformation that generates a uniform distribution,U [0, 1], under null hypotheses. The test statistics are then
rank ordered and a desired FDR threshold,γ, is chosen. Lety(i) be theith smallest test statistic. The largest indeximax,
such thaty(i) ≤ i

m
γ is chosen as the decision point, and the test statistics whose rank indices are smaller thanimax

are labeled significant, i.e., mapped to alternative hypotheses. The BH procedure ensures thatFDR ≤ γ for a desired
thresholdγ, regardless of how the observations underH1 are generated.

Thus the BH procedure [4, 5] is an adaptive thresholding procedure and the final stopping point is itself a random
variable [16] and depends on the specific realization. Nevertheless, it can be shown that the BH procedure [4] is a
distribution invariant algorithm (i.e., regardless ofg1s) controls FDR belowγ.

Theorem 2.2 For independent test statistics under null hypothesis, andfor any configuration of alternative hypotheses,
the BH procedure controls the FDR at levelγm0/m, wherem0 is the number of true null hypothesis andm is the
number of observations.

For our purposes error performance of the BH procedure is of relevance. In [16] it is shown that the BH procedure
achieves the Bayes Oracle performance for reasonable signal-to-noise ratio and low-levels of target density even though
the distribution underH1 (they impose weak conditions ong1s) as well as actual number of objects maybe unknown. A
related result in [30] shows that adaptive procedures such as the BH procedure outperform fixed threshold procedures.
As seen in Figure 3, when we control the FDR criterion, the error rate closely tracks the error performance of the Bayes
Oracle risk policy. In conclusion, the above exercise showsthat adaptive procedures adapt their threshold to object
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Figure 3: Monte Carlo error rate comparison of Uncorrected Testing, Bayes Oracle, and the BH procedure for varying object
density. 150 samples with distributionsN(0, 1) underH0 andN(0, 4) underH1 were used with varying target density.

density in contrast to non-adaptive procedures. In addition they have inherent robustness properties that can be useful
in our SNET setting. With this justification we adopt the FDR framework for our problem.
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2.3 Contributions

First, although BH procedure ensures FDR control irrespective of the observed distribution under presence of object, the
detection performance can vary widely for different distributions. In particular, the reference distribution corresponding
to the null hypotheses can be transformed in several ways to obtain test statistics without changing the FDR control.
This leaves room for optimizing detection performance. Theproblem is particularly acute in multi-dimensional settings
since it is difficult to rank-order the observations. BH procedure works on scalar test statistics, where there is a clear
ordering. In [7] a coordinate-by-coordinate ordering is presented but this generally is sub-optimal. Our first contribution
is to present a transformation that maps multi-dimensionalobservations to scalar test statistics and enables rank-ordering
of the observations and application of BH procedure. We showthat our test statistics are optimal in the sense that it
leads to maximal detection power for a given level of FDR control.

A second contribution of our work is to show that our transformations and procedures are robust to perturbations
of the distribution of observations. This is particularly important in the SNET setting due to path-loss effects. Indeed,
due to complex nature of attenuations and randomness in the environment, signals from objects far away can interfere
with signals from objects in the immediate vicinity. However, the interfering signal is unknown and this motivates
development of robust techniques.

Our third contribution is in developing a distributed, communication efficient BH procedure for multi-object detec-
tion for SNETs. Our results indicate thatcorresponding to an FDR threshold, the communication message complexity
grows in proportion to the actual number of sensors observing objects (significant sensors) while achieving the same
centralized performance. Namely, the communication costs scale with event density for a pre-specified error perfor-
mance and is independent of the network size.

3 Setup

We consider a non-Bayesian setting where an unknown number of objects are distributed on a sensor field ofm sensors.
We consider a scheme in which the objects generate a signal field over the sensor network and the sensors sample the
field at their locations. In this scheme the significant hypothesis (H1) for a sensor is the event that the sensor is within
a radiusd0 of an object, and the null hypothesis (H0) is the event that the sensor is outside a radiusd0 from all objects.
We assume a sparse distribution of objects, i.e., at most a single object is allowed to be present in the immediate vicinity
of any sensor (we will comment on how to generalize the analysis to handle multiple objects in the immediate vicinity
in the following section). Note however that each object canbe in the immediate vicinity of multiple sensors.

We call the radiusd0 as the effective sensing range of a sensor. This is the radiuswithin which signal energy does not
decay significantly. Note that this situation models both active and passive sensing scenarios. In active sensing, sensors
transmit a waveform and the return signal undergoes path losses. In passive sensing objects radiate signal patterns,
which undergo path losses as well. Therefore, the object being in the vicinity of a sensor or the sensor being in the
vicinity of an object are mathematically equivalent. The observations at each sensor are multidimensional to account
for multi-modal sensors with different modalities such as magnetic, seismic, and acoustic.

In this work we separate the problem ofwhat to communicatefrom the problem ofhow to communicateby assuming
a broadcast model, wherein each sensor, once it decides on what to communicate, broadcasts that information to the
entire SNET. The reason for separating these two problems is, given we know what we want network to compute,
there are a number of methods that offer an efficient solutionand only require communication connectivity [11, 31].
Consequently, communication complexity is the aggregate number of messages broadcast by the sensors. Our objective
is a distributed decision rule, which has low communicationcomplexity and good error performance.

3.1 Mathematical Modeling of Multi-Modal Sensor Observations

We begin by considering an example of the following sensing model:

Xs =
∑

t

1

(d(s,t)
dmin

)α + 1
θt + νs (1)
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whereθt is the multidimensional signal (possibly random with knowndistribution) of objectt, d(s, t) is the distance
between sensors and an objectt. The minimum distancedmin is the distance below which the path loss model does
not hold and the signal saturates. The model above (with thedmin and one in the denominator) is a simplified model
to account for both near field and far-field effects and ensures that the received signal power is not larger than radiated
power, whenever the object is in the close vicinity of a sensor. The parameter,α, is the power decay exponent for the
path loss,νs is the multidimensional noise variable of known distribution.

Note that each sensor can consist of multiple modalities such as Electromagnetic (EM), Acoustic(AC) and Seismic
(SE) etc. Thus, with′ denoting transpose, the parameter (possibly random with known distribution)θt above can be
decomposed as

θt = (θEM
t , θAC

t , θSEt )′

Note thatdmin can be also be different for different modalities, however for simplicity of notation we have assumed that
it is the same for all modalities. With this observation model, we have the hypotheses as follows. Note that observations
at each sensor are conditionally independent when conditioned on the underlying hypothesis.

Hs = H0 : d(s, t) > d0 for all objectst

Hs = H1 : d(s, t) ≤ d0 for an objectt

The distanced0 is typically chosen to be the distance where the signal powerrelative to noise power is sufficiently large.
Therefore, in generald0 is close todmin for large attenuation coefficients (α).

For simplicity of exposition we assume in this paper that only one object can be present within the distanced0.
This is usually satisfied when we have a sparse objects distributed in the sensing field. However, we briefly discuss
how these techniques can be generalized to handle multiple objects withind0. We point out that multiple objects can
be incorporated by using an extended hypothesis space alongthe lines of [8]. There are two cases here to consider: (a)
Multiple objects lead to sufficiently different signal patterns; (b) Multiple objects do not lead to sufficiently different
discrimination. In the first case the hypothesis space can beexpanded to account for multiple objects. The main idea is
to have multiple null and significant hypotheses for each sensor,s. The kth null hypothesis,Hk0 at sensors corresponds
to the hypothesis that there are less thank objects in the vicinity of the sensors, while the kth significant hypothesis,
Hk1, corresponds to the hypothesis that there are exactlyk objects in the vicinity. For observations distributed as
exponential random variables, the generalized maximum likelihood test statistics are independent conditioned on the
null hypothesis. This fact is sufficient to apply Theorem 2.2and quantify performance of BH procedure. Thus this idea
can be integrated with the distributed sensors to form a expanded hypothesis set, which meets the conditions required
of BH procedure. For the second case when multiple objects donot result in sufficiently different signal patterns the
robustness techniques developed in the paper apply.

In summary, hypotheses are associated with each sensor. HypothesisH1 at sensors corresponds to existence of an
object within a radiusd0 of a sensor, while hypothesis,H0 corresponds to no object within radiusd0. An important
point to note here is that each object can be in vicinity of multiple sensors and so the hypothesisH1 at multiple sensors
can result from the same object.

Ideal Sensing Model(Case of Infinite Attenuation): Note that as the attenuation coefficientα gets larger, the distri-
bution of observations takes a nominal form, where within a radiusdmin of an objectt, the received signal has a mean
θt, (if θt is non-random parameter) and outside this radius the received signal has negligible mean. Thus sensors within
the minimum radius,dmin of the object receive the full signal power, while sensors outside this radius receive negligible
power. This leads to the following simplified model:

Hs = H0 : Xs = νs

Hs = H1 : Xs = θt + νs

Throughout the paper we refer to the first model as the non-ideal sensing model, and the limiting case as the Ideal
Sensing Model. Figure 4 illustrates these models for a hypothetical mode.

7



(a) Ideal sensing model (b) Non-ideal sensing model

Figure 4: Ideal and non-ideal sensing models: In ideal sensing model the objects have constant signal over a confined region,
whereas in the non-ideal sensing model the signal decays andis not confined.

These examples can be abstracted to a more general formulation, where the noise is no longer modeled as additive
andθt can belong to an arbitrary distribution. The cumulative probability distribution (resp. density) function of the
observation vectorXs at sensors under each hypothesisHs = Hi, i = 0, 1 is denoted byGis(·) (resp.gis(·)), where
Hs denotes the hypothesis at sensors. In the non-ideal case we have two composite family of continuous distributions,
gis(·) ∈ Gi, i = 1, 2. Observations at each sensor is conditionally independentwhen conditioned on the underlying
hypothesis. The observations are denoted by a vectorXs = (X1

s ,X
2
s , . . . ,X

d
s ), s ∈ S, whered is the number of

dimensions,Xj
s represents thejth dimension of the measurement taken by sensors ∈ S, andS represents the set of

sensors that form the SNET. The realization of observation vectorXs is denoted byxs = (x1s, x
2
s, . . . , x

d
s), s ∈ S.

Hs = H0 : Xs ∼ g0s ∈ G0

Hs = H1 : Xs ∼ g1s ∈ G1

We letS0 = {s ∈ S : Hs = H0} with cardinalitym0 andS1 = {s ∈ S : Hs = H1} with cardinalitym1. Here both
m0 andm1 are unknown and the object locations are assumed to be arbitrary, i.e. not necessarily uniformly distributed.

Note that the class of distributionsG0s andG1s are singletons in the ideal model, regardless of the dimensionality
of the observed signal, if we assume that no two objects are within the radiusdmin of a single sensor. As we discussed
earlier, this is usually true for sparse set of objects in a sensing field. Our approach is to develop results first for the ideal
sensing model, where the families of distributions under the two hypothesis are characterized by singletons. We deal
with the more general case ofα < ∞ from a robustness perspective, i.e., as a perturbation of the ideal sensing model,
in the upcoming parts of the paper.

4 Proposed Test Statistics

In this section we describe the proposed statistic and establish some important properties. We show that these test
statistics can be used to perform detection through BH procedure, and allow for control of FDR at desired levels.
With our definition, the CDF of test statistics under significant hypotheses becomes a concave function. Based on this
concavity property, we can devise a scalable distributed procedure that achieves the detection power of its centralized
counterpart. In the remainder of this section we propose a definition of test statistics. The test statistics transform
multi-dimensional observations to scalar statistics and are based on volumes of level sets of the likelihood ratio function
(more precisely the Radon-Nikodym derivative). These teststatistics result in:

(a) The test statistics under null hypotheses are uniformlydistributed in[0, 1],

(b) The test statistics under significant hypotheses are “maximally” clustered around zero. Consequently, thresholds
near zero lead to detections with relatively few false alarms.

To this end, letµ0s andµ1s be the measures associated with the distributionsG0s andG1s respectively. We assume
throughout this work thatµ1s is absolutely continuous with respect toµ0s, denotedµ1s << µ0s. Let φs = dµ1s/dµ0s

be the Radon-Nikodym derivative, i.e. the likelihood ratiofunction. Define the following transformation of the random
variableXs from n dimensional space onto the one dimensional space:

Ys = χs(Xs) = µ0s{x : φs(x) > φs(Xs)} = µ0s{x : φs(x) ≥ φs(Xs)} (2)

8



where we assume thatφs is nowhere constant2. The nowhere constant assumption holds for example when theinvolved
distributions are Gaussians with different means or different variances. In this definition, the set{x : φs(x) > φs(Xs)}
is the most powerful decision region such that the probability of false alarm is less than someγ0; i.e., it is the solution
to argmaxA µ1s(A) subject toµ0s(A) ≤ γ0 for someγ0 ∈ (0, 1). Similarly, letµ1s{x : φs(x) > φs(Xs)} = γ1 for
someγ1. Then the set{x : φs(x) > φs(Xs)} is also the solution toargminA µ0s(A) subject toµ1s(A) ≥ γ1; i.e.,
it is the volume of the so called minimum volume sets at levelγ1. All of these results follow from the fact that the
Radon-Nikodym derivative is precisely the likelihood ratio function.

We now give an example to depict graphically the impact of transformation on a one dimensional distribution. Let
us assume that we are given two distributions, whose densities areg0s andg1s as depicted in Figure 5 (a). We first
calculate the Radon-Nikodym derivativeφs, as depicted in Figure 5 (b). For a givenXs we can now obtainφs(Xs).
We can next identify the set{x : φs(x) > φs(Xs)}, and obtainYs = χs(Xs) = µ0s{x : φs(x) > φs(Xs)}, as
depicted in Figure 5. The same intuition holds for multidimensional observations as well. The problem of obtaining

(a) g0s andg1s (b) φs andg0s (c) {x : φs(x) > φs(Xs)} andYs =
χs(Xs)

Figure 5:Depiction of how to obtain the test statistic with a 1-dimensional example.

test statistics for multidimensional random variables hasreceived attention from various researchers. It is worth noting
that the test statistics we propose through the transformation are distributedU [0, 1] under null hypotheses (which we
establish in the following section). Note that transformations that map null distributions to uniform distribution isnot
unique. For example, in [7], the authors propose to obtain test statistics in a dimension-by-dimension manner, and
in [25] a minimum volume set approach is taken. Some of these transformations are compared in Section 7. Our
method is relatively simple to implement and guarantees optimal FDR performance in comparison.

4.1 FDR Control Usingχ

We now establish that using test statistics obtained through χ as input to BH procedure guarantees FDR control below
any desired level. We show this by establishing that under the null hypothesis the test statisticsYs = χ(Xs) are
distributed uniformly.

LetY0s = χs(Xs) ∼ F0s be the random variable whenXs ∼ G0s andY1s = χs(Xs) ∼ F1s be the random variable
whenXs ∼ G1s. We begin by establishing thatY0s ∼ U [0, 1], which implies that we can control FDR at desired levels
through BH procedure if we use theYs as test statistics.

Theorem 4.1 If the derivativeφs = dµ1s/dµ0s is nowhere constant, thenYs = χs(Xs) of Equation 2 is uniformly
distributed in[0, 1]; i.e.,Ys ∼ U [0, 1].

Proof: See appendix.

Corollary 4.2 BH procedure applied toYs = χs(Xs) ∈ [0, 1], s = 1, 2, . . . ,m of Equation 2 controls FDR.

2If φs is constant in some regions, then the transformation can be modified toYs = χs(Xs) = µ0s{x : φs(x) > φs(Xs)} + ψ, where
ψ ∼ U(0, β) is a random variable used as a dither with amplitudeβs = µ0s{x : φs(x) = φs(Xs)}. This dither achieves is analogous to
randomized decision rules used in detection theory [27]. The results developed in the paper are valid for this general case but the proofs are more
involved.
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As we mentioned in Section 2, the main insight behind the proof of Theorem 2.2 lies in the simple fact that the test
statistics under null hypotheses are independent and uniformly distributed under null hypothesis. Then, the corollary
follows readily from Theorem 4.1.

4.2 Optimality Results for Transformation χ

Here we prove thatχ is the optimal transformation in the sense that it maximizesthe detection power of BH procedure
subject to any FDR constraintγ. We also establish that under the significant hypothesis, the distribution ofYs = χ(Xs)
is concave, which leads to the important result that the optimal decision rule in the space ofYs is a thresholding rule.
This result carries importance from the distributed detection perspective, as will be clear in the upcoming sections.

The following theorem will be necessary to formalize the fact that our proposed transformation of Equation 2 leads
to maximal detection power of BH procedure.

Theorem 4.3 LetZs = χ̂s(Xs) be any test statistic obtained from the observationsXs such thatZs ∼ U [0, 1] under
the null hypothesis. IfYs = χs(Xs) of Equation 2, then Pr{Ys ≤ γs} ≥ Pr{Zs ≤ γs}, where the probability measure
is µs = πµ1s + (1 − π)µ0s for some mixture parameterπ.

Proof: See appendix.
We next establish thatF1s, the distribution ofY1s, is concave; i.e. the density functionf1s is monotone decreasing

in [0, 1]. This result has strong implications in terms of the detection power and scalability of the distributed algorithm.

Theorem 4.4 If the derivativeφs = dµ1s/dµ0s is nowhere constant, thenF1s, is concave.

Proof: See appendix.
We next present an optimality result over a family of testingprocedures. Suppose,uγ(·), γ ∈ [0, 1] is a family of

testing procedures such thatuγ(·) controls the false alarm at levelγ. Let, Λγ be the set of observations,Xs that are
accepted as significant, i.e.,

Λγ = {Xs : uγ(Xs) = H1}
For each observation,Xs define the mapping,

χ̂(Xs) = inf
γ
{γ : Xs ∈ Λγ} ∈ [0, 1] (3)

It is easy to check that under suitable technical conditionsthe mapping is a Borel measurable function and induces a
uniform measure on[0, 1]. We then have the following theorem.

Corollary 4.5 Let R = [0, γ] be a decision region such that ifYs ∈ R we decideHs = H1, otherwise we decide
Hs = H0. If Ys are obtained through transformationχ(·), the decision regionR maximizes probability of detection
subject to a probability of false alarm constraintγ over any other family of decision rulesuγ(·) defined above.

Corollary 4.5 follows immediately from Theorems 4.3 and 4.4. Recall thatF0s is a uniform distribution in[0, 1], any
set (in[0, 1]) of Lebesgue measureγ has probability of false alarm exactlyγ. Since, according to Theorem 4.4,F1s is
concave, its density is monotone decreasing. Therefore among the sets of lengthγ, R = [0, γ] carries the most mass
underF1s. Furthermore, as a consequence of Theorem 4.3, among all transformations that generate a uniformF0s, χ
maximizesF1s(γ) and the corollary follows.

We now state an important corollary regarding the maximal detection power of BH procedure with the proposed
test statistics.

Corollary 4.6 The BH procedure when applied toχ of Equation 2 is larger that any other transformation̂χ for which
the null distribution is alsoU [0, 1].

Note that in the BH procedure, the test statisticsYs is compared against a thresholdγs, this result follows immediately
from Corollary 4.5.
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4.3 Convexity Properties of Ordered Test Statistics

We present another important implication of Theorem 4.4 next. We show that the expected value of ordered test statistics
are samples of a convex function, an important property for designing the scalable distributed detection algorithm. In
fact, it is due to this result that we can achieve the centralized performance through a decentralized method.

Corollary 4.7 Let Y(1), Y(2), . . . , Y(m) be the rank ordered test statistics such thatY(i) is theith smallest ofYs, s =
1, 2, . . . ,m. E(Y(i)), i = 1, 2, . . . ,m are samples of a convex function, i.e.,E(Y(i)) ≤ (E(Y(i−1))+E(Y(i+1)))/2, i =
2, 3, . . . ,m− 1 asymptotically, asm → ∞.

Asymptotically, theE(Y(i)) = F−1
s (i/(m+ 1)) [9] whereFs = πF1s + (1− π)F0s for any mixing parameterπ. But,

according to Theorem 4.4,F1s is a concave distribution. SinceF0s is uniform,Fs is also a concave distribution, and
F−1
s is convex. Then the corollary follows.

5 Distributed Detection Algorithm

In this section we present the distributed detection algorithm. Our algorithm has the property that the communication
cost scales with the number of sensors that observe an object, and not the total number of sensors in the SNET. We
also present the equivalence of the distributed detection algorithm to its centralized counterpart, the BH procedure,by
resorting to the switching relation [1] and Chernoff bound.First, we describe our distributed algorithm.

Observe that the BH procedure requires ordering of test statistics. Since ordering is not cost efficient in terms of
communications, we use a sequential method to accomplish the linearly increasing thresholding of BH procedure. For
reasons discussed earlier we consider communication complexity to be the number of broadcast messages.

Distributed BH Algorithm: First, each sensor obtains test statisticsys through the proposed transformation. Every
sensor carries an indicator variableξs(t), such thatξs(t) = 1 if sensors has not transmitted a decision before iteration
t, andξs(t) = 0 otherwise. Sensors also carry a decision variableρs(t) such thatρs(t) = 1 if sensors decidesH1,
andρs(t) = 0 otherwise. At iterationt each sensor has a threshold variablel(it) = itγ/m and a bit countercountt.
Initialize i1 = 1 andcount0 = 0. Then:

1. Sensors decidesHs = H1 if ys ≤ l(it) andHs = H0 otherwise. (ρs(t) takes its corresponding value)

2. s announces its decision to the network only ifξs(t)ρs(t) = 1

3. Assumert sensors decideH1 and declare to the network. Setit+1 = it + 1 & countt = countt−1 + rt

4. If countt ≥ it set variabletmax = t

5. If it = m or rt = 0 label sensors that declareHs = H1 until iteration tmax as observing an object and quit
algorithm, else go to step 1

The distributed algorithm described above leads to the samedecision rule as the centralized BH procedure. However
when there is a communication constraint ofC messages, we only need to put a cap on thecount variable and perform
the distributed BH algorithm whilecountt ≤ C. Observe that due to the concavity ofF1s (Theorem 4.4), capping the
count variable does not increase theFDR. In addition we argue that since the expected test statistics are samples of a
convex function(Corollary 4.7), capping thecount variable amounts to performing distributed detection algorithm with
a smaller thresholdγ′ ≤ γ, and hence theFDR is generally smaller. Capping the count variable has an adverse effect
in terms of fewer detections. Our main point here is to show that FDR and detection power gracefully degrades due to
the monotonicity properties of the transformation. In other words smaller count does result in smaller detections but in
a proportionate manner.

Figure 6(a) demonstrates this effect with a simple simulation study based on Monte Carlo simulations. For this
demonstration we usedm1 = 300, m = 1000, g0s = N(0, 1), g1s = N(3, 1), with the transformation of Equation 2.
We then variedC, the communication bit budget, between 20 and 920 with increments of 100, and plotted the actual
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FDR as a function ofC for various values of FDR thresholds,γ. Figure 6(a) exhibits the FDR results of this empirical
study. We will extensively simulate error rates (false alarms and misses) in Section 7. We note here that the detection
power decreases accordingly when we cap thecount variable. It was shown in [4] that the BH procedure controls FDR

(a) Effect of capping the communications
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Figure 6:Left: We capped the communicationcountt variable at{20, 120, 220, . . . , 920} for various FDR levelsγ. Observe that
the smaller the bit budget (C), the smaller the actual FDR. Notice that FDR tapers off at levels(m0/m)γ. Herem0 = 700, m =
1000. Right: Threshold update through learning: The sequentialestimate ofm0 allows for sequential update of thresholdγ for
better detection rates. The distribution under null and significant hypotheses wereN(0, 1) andN(0, 3) respectively.

at γm0/m. Depending on the unknown variablem0, there may be an inherent conservatism in this strategy. We have
analyzed an alternative strategy in [10], wherein at each update of thecountt variable an estimate of actual number of
objects,m̂1, is sequentially estimated based on the number of sensors that chooseHs = H1 at stage,t. The threshold
l(it) is then adjusted based on the estimated object density. Our simulation results indicated that this strategy leads to a
much better detection power, as seen in Figure 6(b).

5.1 Distributed BH Algorithm: Optimal Communication Cost w ith Centralized Performance

We next establish an important scaling property of the BH procedure. It is due to this property that we can limit the
communication budget with an upper bound that depends on thenumber of sensors that have an object within their
sensing range, and not the total number of sensors in the SNET.

Theorem 5.1 Letm1 = m−m0 be the number of sensors with significant hypothesis. The expected ratio ofm1 to the
number of sensors that are declared to be significant (R) is lower bounded by1− γ; i.e. E{m1/R} ≥ 1− γ.

Proof: We know that the BH procedure guaranteesE{V/R} = E{V/(V + Z)} ≤ γ. EvidentlyZ ≤ m1, meaning the
number of correct detections cannot exceed the number of sensors with significant hypotheses. Then:

E{V/(V + Z)} = 1−E{Z/(V + Z)} ⇒ E{Z/(V + Z)} ≥ 1− γ

1− γ ≤ E{Z/(V + Z)} ≤ E{m1/(V + Z)} = E{m1/R}
which concludes the proof of this theorem.

We caution the reader that the above bound does not guaranteedetection performance. It only points to the fact that
the number of eventual detections are generally smaller than the total number of actual objects.

Equivalence to Centralized Algorithm: The communication efficiency of our distributed BH procedure is that it is
a first-crossing procedure, in contrast to the optimal centralized BH procedure, which is a last crossing procedure. Last
crossing procedures are inherently inefficient. Although the number of eventual detections is typically smaller than the
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number of objects according to Theorem 5.1, we need to aggregate data from all the sensors in general to determine last
crossing. On the other hand, by definition, the first crossingprocedures must stop before last crossing. Moreover, the
FDR guarantee on the first crossing is bounded from above by the last crossing. Consequently, the number of detections
(and hence the communication efficiency) in first crossing procedure must be smaller than the actual number of objects.
Nevertheless, there may be loss in performance. Below we argue that with our proposed transformation first and last
crossing procedures lead to same performance. This establishes optimality of the distributed BH procedure in terms of
both communication efficiency and performance.

In the asymptotic case the first-crossing and the last-crossing procedures are the same, and they terminate at the
same decision point. This is because according to Corollary4.7 the ordered test statistics are asymptotically samples
of a convex function. However, this is not true in finite sample cases and therefore the first-crossing and the last-
crossing procedures can have different termination points. Below we show that the distributed BH procedure achieves
the last-crossing performance with high probability.

Theorem 5.2 LetY(k) be thekth smallest test statistic. IfE(Y(⌈ k
1−ǫ

⌉)) ≤ lk, then Pr{Y(k) > lk} decays exponentially

fast withk.

Proof: See appendix.
The implication of this theorem is that after a certain number of test statistics, sayk, are tested against their corre-

sponding thresholds, one can decide whether or not to continue the distributed algorithm with an exponentially small
probability of error.

This result further suggests presettingk tests at the beginning of the algorithm, which must be performed regardless
of the outcome. Note, however, thatk can be fixed a priori and does not depend on the size of the SNET.We next show
that such a modification does not affect important properties of our distributed algorithm.

Theorem 5.3 Consider the distributed detection algorithm withk preset tests for suitably largek. Then:
(a) FDR ≤ γ, and (b) With the expected number of messages equal tomax{k,E( m1

1−γ
)} the distributed algorithm

achieves detection power of the centralized BH procedure with high probability.

Proof: a) We show this part by showing that the distributed algorithm is in fact equivalent to the centralized algorithm,
and that presettingk tests affects only the communication cost. If there exists ayi ≤ iγ/m, i ≥ k, thenk is immaterial.
The upper bound then follows from Theorem 5.1. This is because the centralized algorithm would also map all test
statistics less thanyi to the significant hypothesis. ThereforeFDR ≤ γ in this case. If there is no suchyi, i ≥ k, then
the algorithm chooses the largest test statisticyj ≤ jγ/m, j < k, and maps all smaller test statistics to the significant
hypothesis. But here from Theorem 5.2 it follows that there is no otherj > k such thatyi ≤ iγ/m, i ≥ k with high
probability. Hence in both cases detection power of the centralized algorithm is achieved with high probability.

6 Robustness Properties and Non-Ideal Sensing Model

Our development so far offers a solution to the distributed detection problem in the ideal model. Observe that since the
familiesG0s andG1s are singletons, we can useG0s andG1s to define the transformationYs = χs(Xs), and use the
distributed BH procedure to perform detection. We have shown that this leads to optimal detection rate under the FDR
criterion using BH procedure, and it has important scaling properties. In the non-ideal sensing model the sensors that
are outside the radiusdmin receive a small residual signal from the objects. Since the received signal is not known, the
exact distribution of observations are not available, i.e., G0s andG1s are no longer singletons. This leads to a deviation
of F0s from U [0, 1], andF0s becomes a member of a family of distributionsF0s. Similarly,F1s becomes a member of
family of distributions,F1s.

In this section, we establish certain robustness properties of the proposed test statistics. These properties show that
if we knowG0s andG1s to within ǫ in terms of a certain distance measure, then we can identify the familiesF0s andF1s

to within ǫ as well. We also establish that FDR scales gracefully when the distribution ofY0s deviates fromU [0, 1] by
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ǫ under a suitable metric. Combining these results leads to efficient distributed detection for non-ideal sensing model
with guarantees on performance. We begin by the robustness properties of the proposed test statistics.

Theorem 6.1 Letµ0s, µ̂0s, andµ1s be three measures such thatµ1s << µ0s. LetXs ∼ µ0s, Ys = χs(Xs) = µ0s({x :
φ(x) > φ(Xs)}), andX̂s ∼ µ̂0s, Ŷs = χs(X̂s) = µ0s({x : φ(x) > φ(X̂)}). If supA | µ0s(A) − µ̂0s(A) |≤ ǫµ0s(A),
then| F̂s(ys)− ys |≤ ǫys whereF̂s is the distribution of̂Ys = χs(X̂s).

Proof: See appendix.
Note that we can obtain the robustness properties under significant hypothesis as well. To formalize that result we

state the theorem here and omit its proof as it is a repetitionof that of Theorem 6.1 with minor modifications.

Theorem 6.2 Letµ0s, µ̂1s, andµ1s be three measures such thatµ1s << µ0s. LetXs ∼ µ1s, Ys = χs(Xs) = µ0s({x :
φ(x) > φ(Xs)}), andX̂s ∼ µ̂1s, Ŷs = χs(X̂s) = µ0s({x : φ(x) > φ(X̂)}). If supA | µ1s(A) − µ̂1s(A) |≤ ǫµ1s(A),
then | F̂s(ys) − Fs(ys) |≤ ǫFs(ys) whereF̂s is the distribution ofŶs = χs(X̂s) andFs is the distribution ofYs =
χs(Xs).

Proof: Follows similarly to proof of Theorem 6.1.
With these robustness properties of the test statistics, for continuous familiesF0s such thatF0s = {F0s : |F0s(y)−

y| ≤ ǫy}, we have an immediate non-asymptotic robustness result, which states that the FDR scales gracefully as a
function ofǫ.

Theorem 6.3 Let Y0s have continuous distributionF0s(y). If |F0s(y) − y| ≤ ǫy, the BH procedure bounds the false
discovery rate byγ(1 + ǫ), i.e.FDR ≤ γ(1 + ǫ).

Proof: See appendix.
The robustness result stated in Theorem 6.3 presents us withan immediate modification to the distributed BH

algorithm in order to control FDR. It suggests that if we wishto control FDR at levelγ, we only need to input the
thresholdγ′ = γ/(1 + ǫ). The distributed BH algorithm with this modification can account for the non-ideal sensing
model. Next using Theorem 6.2 we can establish a theorem parallel to Theorem 5.3. We omit the proof since it follows
along the same lines as Theorem 5.3. The only modification is that each of the probability expressions are perturbed by
a small amount on account of the perturbation of the underlying distributions.

Theorem 6.4 Consider the distributed detection algorithm withk preset tests for suitably largek. Let the distributions
satisfy the hypothesis of Theorem 6.1, 6.2. Then: (a)FDR ≤ γ′, and (b) with expected number of messages equal
to max{k,E( m1

1−γ′ )} the distributed algorithm achieves detection power of the centralized BH procedure with high
probability.

7 Simulations

In this section we present some empirical studies based on Monte Carlo simulations on the proposed method. To
obtain each data point in our simulation study we performed over 5000 monte-carlo iterations and found that this was
sufficient to ensure confidence in our estimates. In this section we first show that the test statistics we propose performs
better than other multi-dimensional transformations thathave been proposed: namely, the radial transformation, the
multidimensional counterpart ofp values, as well as the method proposed in [7]. Based on this result, we choose to use
the proposed test statistics, and show that the BH procedureachieves a near Bayes Oracle error rate whereas Bonferroni
procedure and Uncorrected testing cannot. We then present an SNET simulation, where we vary several parameters and
examine the error rate and communication cost. For both studies we discuss the relevant parameters and setup in the
corresponding sections.
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7.1 Synthetic Data with Known Distributions

In our first study, we use the BH procedure to perform detection, and compare the error rate with that of Bayes Oracle.
The setup is as follows: There arem = 1000 hypotheses tests, the number of objectsm1 is varied from10% to
90%. UnderHs = H0, Xs ∼ N(0, I3) and underHs = H1, Xs ∼ N(1.5, I3). Here I3 denotes the3 × 3
identity matrix,0 denotes the3 × 1 zero vector, and1.5 denotes the3 × 1 vector (1.5 1.5 1.5)′, where ′ denotes
transpose operator. The test statistics are computed in three ways: first, we use the method proposed in this work, i.e.,
Ys = µ0s{x : φs(x) > φs(Xs)}, next we use the radial transformation, i.e.,Ys = µ0s{x : g0s(x) ≤ g0s(Xs)}, and
finally we use dimension-by-dimension transformation proposed in [7]. In the dimension-by-dimension approach, the
test statistics are calculated for each dimension separately by using the marginal distribution.

We next input these test statistics to the BH procedure to identify the tests whereHs = H1. The FDR constraint is
chosen to beγ = .1. Figure 7(a) presents the error rates associated with each of these methods versusm1/m. Observe
that the BH procedure with proposed test statistics comes close to the Bayes Oracle performance for high sparsity levels
(smallm1/m). Furthermore, even at low sparsity levels it achieves the smallest error rate.

(a) Different Multi-dimensional Transformations (b) Different Testing Procedures

Figure 7:Monte Carlo simulations for comparing Error rate vs object density for different multi-dimensional transformations and
different decision criteria. BH procedure on the proposed test statistics dominates other transformations and testing strategies.

With the same setup, we now use the proposed test statistics and assess the error rate of the following detection
schemes: BH procedure, Bonferroni procedure, and Uncorrected testing. The Bonferroni procedure takes the test
statistics as input and tests ifYs ≤ γ/m in order to decide which ones haveHs = H1. Similarly, uncorrected testing
checks ifYs ≤ γ. We compare the error rate of these three methods with that ofthe Bayes Oracle form1 varying from
10% to 90%. The results clearly indicate that the performance of the BHprocedure is close to that of the Bayes oracle.
Figure 7(b) demonstrates these results. Note that the performance of BH procedure is strikingly similar to that of Bayes
Oracle at high sparsity levels (lowm1/m).

7.2 SNET Simulation with Nonideal Model

In our next study we setup a SNET simulation to study the effects of SNET size, object density, and attenuation on
the performance of the proposed method. We present the performance of the Bayes Oracle as a reference point when
appropriate.

First we set up an× n grid of sensors, where the distance between each sensor is 4 units. Then we place a number
of objects at randomly chosen locations over the SNET, wherethe possible locations are at the center of grid squares.
Figure 8 depicts this setup with a3× 3 grid and one object.
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Figure 8:A 3× 3 sensor grid and an object.

The observation model is given by

Xs =
∑

t

θt

(d(s, t)/dmin)α + 1
+ νs

whered(s, t) is the distance between sensors and an objectt, d0 = 2
√
2 is the distance between an object and the

nearest sensor,α is the attenuation coefficient, andνs ∼ N(0, I3) is the noise. Here we have

Hs = H0 : d(s, t) > d0 for all objectst

Hs = H1 : d(s, t) ≤ d0 for an objectt

We choosedmin = d0 for the attenuation model. This choice fixes the nominal signal-to-noise (SNR) ratio at the
sensors. In other words in the presence of a single object in the entire sensor field, the sensor in the immediate vicinity
of the object receives a signal with the same SNR irrespective of attenuation coefficient,α. On the other hand objects
not in the immediate vicinity suffer from path losses allowing us to study the impact of perturbations. Other choices for
dmin are possible, however, they lead to scaling of both interference as well as nominal signal.

In our setup note that the second smallest distance between asensor and an object is
√
62 + 22 =

√
40 units.

This implies that we have two candidates for nominal null distributions: (a) Nominal null distribution,g0s is a normal
distribution with zero mean and noise variance; (b) Nominalnull distribution g0s is a normal distribution with mean
equal to signal received from a hypothetical object locatedat

√
40 units. For the significant hypothesis, we always

assume the nominal distribution,g1s = N(θt, I3). In our experiments we notice that error rates for two different
nominal null distributions to be similar. The differences appeared to be in the composition of false alarms and misses.
This is because the second assumption is conservative, i.e., a distant object is assumed even if there does not exist any
object. Our simulations allowed more than one object in the immediate vicinity of a sensor. However, we did not notice
any degradation in performance.
Effect of Object Density: In our first study we haven = 25, which leads tom = 625 sensors. We chooseγ = 0.1,
θt = (2 2 2)′, andα = 2. We then vary the number of objects such thatm1/m ∈ {.03, .06, . . . , .15}, and observe
the error rate and communication cost of distributed BH procedure, Bonferroni procedure, Uncorrected testing, and
Bayes Oracle. Figures 9(a) and 9(b) demonstrate the resultsof this study. Notice that the error rate of the distributed
BH procedure again closely tracks that of the Bayes Oracle. However, while the Bayes Oracle uses the knowledge of
m1/m, and the actual distribution of observations at each sensor, the distributed BH procedure only uses the assumed
distributions.

The expected proportion of communication cost tom1 remains near 1 for the distributed BH procedure, whereas
it significantly deviates from 1 for Bonferroni procedure and Uncorrected testing. This is because, the Bonferroni
procedure, due to its stringent thresholdγ = 0.1/625, misses most of the sensors that are withindmin of an object. On
the other extreme, the Uncorrected testing suffers from a large number of false alarms, which is a constant proportion
of m, and therefore the communication cost is significantly larger thanm1.
Effect of Attenuation Coefficient: We next study how the attenuation coefficientα affects the error rates and com-
munication costs of the competing schemes. For this setup weagain haven = 25, which leads tom = 625 sen-
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(a) Error vs. Target Density (b) Comm. Cost vs. Target Density

Figure 9:Monte Carlo simulations for comparing error rate vs object density for the proposed statistics in the SNET setup: the
distributed BH procedure using the proposed test statistics achieves the minimal error rate and closely tracks the performance of
Bayes Oracle. Herem = 625, θt = (2 2 2)′, νs ∼ N(0, I3), α = 2.

sors, and we chooseγ = 0.1 andθt = (1.5 1.5 1.5)′. The object density is fixed, wherem1/m = 0.1. We vary
α ∈ {2, 2.2, 2.4, . . . , 4} and observe the error rate and communication cost versusα. Intuitively, as we increase the
attenuation coefficient, the distributionsg0s = N(θ̂t, I3) andg1s = N(θt, I3) become more separable. This in turn is
expected to decrease the error rate, and increase the detection rate. Increasing the detection rate increases the commu-
nication costs. These are precisely the effects we observe in Figures 10(a) and 10(b).
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(a) Error Rate vs. Attenuation (b) Comm. Cost vs. Attenuation

Figure 10:Monte Carlo comparison of error rate & communication cost asa function of attenuation coefficient (α) for different
strategies. Monte-Carlo simulations with 625 multi-modalsensors, with 62 sensors in immediate vicinity of a target were sim-
ulated. The parameters governing the sensing model wereθt = (1.5 1.5 1.5)′, with νs ∼ N(0, I3).The proposed distributed
BH procedure achieves the minimal error rate and closely tracks the performance of Bayes Oracle when we use the proposed test
statistics. Asα increases, the distributions become more separable and theerror rate decreases. Note that asα increases, the
distributions become more separable, which in turn increases the detection rate and associated communication cost.

Effect of SNET size: In our final study we examine the size of the SNET on the communication costs. What we wish to
do is to fix the number of objects and increase the size of the SNET grid. The effect we wish to show is that for the BH
procedure, no matter the size of the SNET, the communicationcost scales withm1, the number of sensors that are in the
vicinity of an object, and notm, the size of the SNET. For this study we fixα = 2, γ = 0.1, m1 = 60, andθt = (2 2 2)′.
We then varyn ∈ {25, 35, 45, 55}, which leads tom ∈ {625, 1225, 2025, 3025}. Figure 11 demonstrates the results
of this study. Observe that for the uncorrected testing the communication cost linearly increases as a function of the
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SNET size, whereas the distributed BH procedure is able to retain a near constant fraction of communication cost to
m1. Notice that Bonferroni procedure has the lowest communication cost, however this is due to the fact that detection
rate of Bonferroni procedure is very small.

Figure 11:Monte Carlo simulation of communication cost/m1 with SNET size (m) using the proposed statistics for the SNET
setup: asm increases, the communication cost of the Uncorrected testing increases whereas the distributed BH procedure retains
a near constant fraction of communication costs tom1. Bonferroni procedure has the lowest communication cost, however this is
due to the detection rate being very small. Hereα = 2, γ = 0.1, m1 = 60, andθt = (2 2 2)′.

8 Conclusion

In this paper we developed tools for detection of localized events, sources, or abnormalities within SNETs. Unlike
decentralized detection where the information is globallyavailable, the focus here was on problems, where only a
small number of sensors in the vicinity of the phenomena are in the field of observation. We call these problems
local information problems. For such problems the main difficulty arises from the coupling of:a) uncertainty in the
number of events, sources or abnormalities and uncertaintyin the possible locations;b) multiplicity of false alarms.
Although not evident at first sight, these fundamental difficulties call for collaboration in the SNET in order to meet
global constraints.

We proposed FDR as a performance criterion for local information problems in SNETs. The reasoning behind
FDR was the fact that FDR adapts to the unknown object density, which is of great importance for distributed detection
problems. Namely, we do not know not only how many events takeplace at any time, but also where these events occur.
The adaptive nature of FDR made it a very valuable tool to address these issues.

We next introduced a transformation that maps multidimensional observations to single dimensional test statistics,
which has important properties for distributed algorithms. Namely, asymptotically the ordered test statistics are samples
of a convex function. This allowed us to devise a distributedBH procedure, which is a first crossing procedure that also
has desirable scaling properties in terms of the communication costs. Namely, the communication cost of the distributed
algorithm scales with the number of significant sensors (sensors in the close vicinity of an object), and not the whole
SNET. We also showed that the distributed BH procedure achieves the performance of its centralized counterpart.

We quantified robustness of the distributed algorithm and the proposed transformation to unknown perturbations in
the nominal distribution. This issue is particularly relevant in a sensing field where the path losses and attenuation coef-
ficients are not known. The simulation studies confirmed thisassertion by demonstrating that distributed BH procedure
tracks the performance of the Bayes Oracle in terms of the error rate, even in the non-ideal model, with communication
costs scaling with the number of significant sensors.
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Appendix
Proof of Theorem 2.1

First note that from Lagrangian duality it follows that,

γw = min
u

max
Hs

(Pr{V ≥ 1 | {Hs : s ∈ S}}+ Pr{T ≥ 1 | {Hs : s ∈ S}}) ≥ max
Pr{(Hs): s∈S}

min
u

Pr(V ≥ 1)+Pr(T ≥ 1)

where, we can substitute any prior distribution for Pr{(Hs) : s ∈ S}. Consequently, we are left to establish a bound
for the Bayesian problem. Now we observe that the error event,

E = {u(X1,X2, . . . ,Xm) 6= {Hs : s ∈ S}} = {V ≥ 1} ∪ {T ≥ 1}

Therefore, from Fano’s inequality it follows that for any strategyu(·):

Pr(V ≥ 1) + Pr(T ≥ 1) ≥ Pr(E) ≥ 1

m
Φ{Hs : s ∈ S} | X1,X2, . . . ,Xm)− 1

m
= Φ(Hs | Xs)−

1

m

whereΦ{Hs : s ∈ S} is the conditional entropy. The last equality follows by substituting a independent Bernoulli
prior for presence or absence of objects.

Proof of Theorem 4.1

Note that for any sequenceφ1 > φ2 > . . . the setsAi = {x : φs(x) > φi} form a nested sequence of sets such that
A1 ⊂ A2 ⊂ . . .. Then

Pr{Ys ≤ ys} = Pr{µ0s{x : φs(x) > φs(Xs)} ≤ µ0s{x : φs(x) > φs(xs)}}
= Pr{µ0s{x : φs(x) > φs(Xs)} < µ0s{x : φs(x) > φs(xs)}}
= Pr{{x : φs(x) > φs(Xs)} ⊂ {x : φs(x) > φs(xs)}}
= Pr{φs(Xs) > φs(xs)} = Pr{x : φs(x) > φs(xs)} = µ0s{x : φs(x) > φs(xs)} = ys

where the probability measure isµ0s, the second inequality follows from the continuity ofYs, and the third equality
follows from the fact that the sets are nested. The independence of the test statistics under null hypothesis follows from
our conditional independence assumptions of Section 3.

Proof of Theorem 4.3

We can write forYs andZs:

Pr{Ys ≤ γs} = πPr{Ys ≤ γs | Hs = H1}+ (1− π)Pr{Ys ≤ γs | Hs = H0}
= πPr{Ys ≤ γs | Hs = H1}+ (1− π)γs

Pr{Zs ≤ γs} = πPr{Zs ≤ γs | Hs = H1}+ (1− π)Pr{Zs ≤ γs | Hs = H0}
= πPr{Zs ≤ γs | Hs = H1}+ (1− π)γs

Then, to prove our result, it suffices to show that Pr{Ys ≤ γs | Hs = H1} ≥ Pr{Zs ≤ γs | Hs = H1}. To show
this, letAχs = {x : φs(x) > φ1} be the set such thatµ0sA

χs = γs. Notice that forZs, the uniform distribution under
the null hypothesis assumption implies Pr{z : z ≤ γs | Hs = H0} = µ0s{x : χ̂s(x) ≤ γs | Hs = H0} = γs.
Write Aχ̂s = {x : χ̂s(x) ≤ γs | Hs = H0}. Then,µ1sA

χs = µ1s(A
χs − Aχ̂s) + µ1s(A

χs ∩ Aχ̂s), and similarly
µ1sA

χ̂s = µ1s(A
χ̂s −Aχs) + µ1s(A

χs ∩Aχ̂s), whereA−B denotes the removal of setB from setA.
Observe that showing Pr{Ys ≤ γs | Hs = H1} ≥ Pr{Zs ≤ γs | Hs = H1} is equivalent to showingµ1sA

χs −
µ1sA

χ̂s = µ1s(A
χs −Aχ̂s)−µ1s(A

χ̂s −Aχs) ≥ 0. To show this, observe thatµ0s(A
χs −Aχ̂s) = µ0s(A

χ̂s −Aχs) = γ′

for someγ′ = γ − µ0s(A
χs ∩Aχ̂s). But, overAχs −Aχ̂s , dµ1s/dµ0s = φs > φ1, and henceµ1s(A

χs −Aχ̂s) > φ1γ
′.

Similarly, overAχ̂s − Aχs , dµ1s/dµ0s = φs ≤ φ1, and henceµ1s(A
χ̂s − Aχs) ≤ φ1γ

′, which impliesµ1s(A
χs) −

µ1s(A
χ̂s) ≥ 0 and concludes the proof.
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Proof of Theorem 4.4

Again noting that for any sequenceφ1 > φ2 > . . . the setsAi = {x : φs(x) > φi} form a nested sequence of sets such
thatA1 ⊂ A2 ⊂ . . ., we can write:

F1s(ys) = Pr{Ys ≤ ys}
= Pr{µ0s{x : φs(x) > φs(Xs)} ≤ µ0s{x : φs(x) > φs(xs)}}
= Pr{µ0s{x : φs(x) > φs(Xs)} < µ0s{x : φs(x) > φs(xs)}}
= Pr{{x : φs(x) > φs(Xs)} ⊂ {x : φs(x) > φs(xs)}}
= Pr{φs(Xs) > φs(xs)} = Pr{x : φs(x) > φs(xs)} = µ1s{x : φs(x) > φs(xs)}

Observe that here the probability measure isµ1s, becauseXs is sampled with respect toG1s.
Now, let φ1 > φ2 > φ3 be such that forAi = {x : φs(x) > φi}, i = 1, 2, 3, µ0s(A1) = y1s , µ0s(A2) =

y2s = y1s + δ0, andµ0s(A3) = y3s = y2s + δ0 for some appropriatey1s and δ0. Also, F1s(y
1
s) = µ1s(A1) = z1s ,

F1s(y
2
s) = µ1s(A2) = z2s = z1s + δ1, andF1s(y

3
s) = µ1s(A3) = z3s = z2s + δ2 for some appropriatez1s , δ1 andδ2.

Notice thatδ1 = µ1s(A2 − A1) andδ2 = µ1s(A3 − A2). Noting thatµ0s(A2 − A1) = µ0s(A3 − A2) = δ0 and
noting thatAi are constructed using the Radon-Nikodym derivative, it follows thatδ1 ≥ δ2. Thus we can write

F1s(y
2
s)− F1s(y

1
s)

y2s − y1s
=

δ1
δ0

≥ δ2
δ0

=
F1s(y

3
s)− F1s(y

2
s)

y3s − y2s

But this holds true for allφ1 > φ2 > φ3 such thatδ0 > 0, and hence the result follows.

Proof of Theorem 5.2

Let Nk = #{j : yj ≤ lk} =
∑m

j=1 I{yj≤lk}. By the switching relation (see for example [1]) the following relationship

holds for anyk: {E(y(⌈ k
1−ǫ

⌉)) ≤ lk} ⇔ {E(Nk) ≥ ⌈ k
1−ǫ

⌉}. Therefore,E(y(⌈ k
1−ǫ

⌉)) ≤ lk ⇒ E(Nk) ≥ k
1−ǫ

and

k ≤ E(Nk)(1− ǫ).

Pr{Y(k) > lk} = Pr{Nk < k} ≤ Pr{Nk < E(Nk)(1− ǫ)}

≤ exp{−ǫ2E(Nk)

2
} (4)

≤ exp{− ǫ2k

2(1 − ǫ)
} (5)

Inequality 4 follows from the Chernoff bound, and inequality 5 follows from the application of switching relation along
with the assumption of the theorem.

Proof of Theorem 6.1

We know from Theorem 4.1 thatYs is uniformly distributed in[0, 1]. Similarly to the development of that theorem,

Pr{Ŷs ≤ ys} = Pr{µ0s{x : φs(x) > φs(X̂s)} ≤ µ0s{x : φs(x) > φs(xs)}}
= Pr{µ0s{x : φs(x) > φs(X̂s)} < µ0s{x : φs(x) > φs(xs)}}
= Pr{{x : φs(x) > φs(X̂s)} ⊂ {x : φs(x) > φs(xs)}}
= Pr{φs(X̂s) > φs(xs)} = Pr{x : φs(x) > φs(xs)}

Here the probability measure iŝµ0s, sinceX̂s is drawn with respect to that measure. Then,F̂0s(ys) = Pr{Ŷs ≤ ys} =
µ̂0s{x : φs(x) > φs(xs)}. However, by hypothesis of the theorem,supA | µ0s(A) − µ̂0s(A) |≤ ǫµ0s(A), and
hence| µ̂0s{x : φs(x) > φs(xs)} − µ0s{x : φs(x) > φs(xs)} |≤ ǫµ0s{x : φs(x) > φs(xs)}. Finally noting that
µ0s{x : φs(x) > φs(xs)} = ys, we have the result.
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Proof of Theorem 6.3

Defineγk = kγ/m. Let Y0s, s = 1, 2, . . . ,m0 be them0 test statistics under null hypothesis. Denote withCs(k) the
event that ifY0s mapped toHs = H1, exactlyk − 1 other test statistics are mapped toH1. Then;

E(V/R) =
∑

s=1:m0

∑

k=1:m

1

k
Pr{Y0s ≤ γk, Cs(k)} =

∑

s=1:m0

∑

k=1:m

1

k
Pr{Y0s ≤ γk}Pr{Cs(k)}

≤
∑

s=1:m0

∑

k=1:m

1

k

γk

m
(1 + ǫ)Pr{Cs(k)} = (1 + ǫ)

∑

s=1:m0

γ

m

∑

k=1:m

Pr{Cs(k)}

= (1 + ǫ)
∑

s=1:m0

γ

m
= (1 + ǫ)

γm0

m
≤ (1 + ǫ)γ

The second equality follows becauseY0s is independent of all other test statistics.
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