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Abstract

We consider a multi-object detection problem over a senstwaork (SNET) with limited range multi-modal
sensors. Limited range sensing environment arises in anggfisld prone to signal attenuation and path losses.
The general problem complements the widely considereddiedized detection problem where all sensors observe
the same object. In this paper we develop a distributed tleteapproach based on recent development of the false
discovery rate (FDR) and the associated BH test procedineBH procedure is based on rank ordering of scalar test
statistics. We first develop scalar test statistics for mimttensional data to handle multi-modal sensor obsematio
and establish its optimality in terms of the BH procedure. tidm propose a distributed algorithm in the ideal case
of infinite attenuation for identification of sensors that ar the immediate vicinity of an object. We demonstrate
communication message scalability to large SNETSs by shpthiat the upper bound on the communication message
complexity scales linearly with the number of sensors thatrathe vicinity of objects and is independent of the total
number of sensors in the SNET. This brings forth an impomeainciple for evaluating the performance of an SNET,
namely, the need for scalability of communications andgrenfince with respect to the number of objects or events
in an SNET irrespective of the network size. We then accaurfitite attenuation by modeling sensor observations
as corrupted by uncertain interference arising from distéjects and developing robust extensions to our idealized
distributed scheme. The robustness properties ensurbdttathe error performance and communication message
complexity degrade gracefully with interference.

1 Introduction

The design and deployment of sensor networks (SNET) forilslised decision making pose fundamental challenges
due to energy constraints and environmental uncertainti#gile power and energy constraints limit collaboration
among sensors nodes, some form of collaboration is negassarercome uncertainty and meet reliability requireraent
of the decision making process.

In this paper we focus on the problem of distributed detectiblocalized events, sources or abnormalities (from
here on objects), observed simultaneously over differectians of a large sensor network. Such problems arise nat-
urally in many settings such as environmental monitoriqggcges distribution and taxonomy, and wide area surveil-
lance [17,20]. The common thread in all of these applicatisrthat the objects are not observed by all the sensors in
the SNET. Rather, each object is in the field-of-view of ongnazall subset of the sensors in the SNET. We consider all
such problems to be local information problems, and seekvesd a distributed detection strategy that satisfiesioerta
false alarm and communication cost constraints.

It is worth contrasting local information problem with itéoQal counterpart. In a global information problem a
single object is observed across the entire network (seerélil) for an illustration of local and global information
problems). This type of problem has been extensively stlidi¢he literature in the context of decentralized/distréad
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detection theory [6, 21, 24, 26, 28, 30]. In the centralizedsion of the problem one seeks asymptotically the optimal
exponent at which the error probability goes to zero as aifmof the observations [23,27]. The decentralized versio
involves a similar problem with quantized observations 828. Motivated by network topologies researchers have als
investigated several architectures ranging from fusiaririto ad-hoc consensus based approaches [3, 6, 18, 21, 22,
24,26, 28-30]. Local information problems and correspogdiecentralized algorithms have only recently begun to
be addressed in the SNET setting [12—-15]. A fundamentadriffce between local and global information problems
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Figure 1:In global information problems the sensors observe a sigigleal phenomenon, which leads to a binary hypotheses
testing problem with multiple observations. In local infation problems only a subset of the sensors observe a nusfiber
phenomena, which leads to each sensor having its own sepoftgses. This leads to a multiple hypotheses testing gmabl
appears even in the centralized scenario. In the localnmdton case, since each object is in the field-of-view of at
most a constant number of sensors the error probability atamm made to go to zero. Furthermore, since there are
a multiple locations each location has to be simultaneotest{ed for presence or absence of objects. In these cases
neither the total number of objects in the sensor field nodikedihood of finding an object in a specific location is
known a priori. It turns out that in these cases the error gty is dominated by the multiple tests (one for each
location) and this issue is referred to as multiple compasgesting in the statistical literature [4,19]. A fundaniad
difference is in what performances are typically charaotel. While, for global information problems, the asympuist

of the error probability for a single object with increasingmber of sensors (and quantized observations) is usually
derived, for local information problems, the scalabilifyeoror rates and communication costs with increasing numbe
of objects is characterized. An important aspect of our wetk show that both of these quantities, namely the error
rates and communication costs, scale with the number obeetisat are in the immediate vicinity of objects rather
than the size of the SNET.

We present a distributed detection scheme for local inftiongroblems based on the concept of false discovery
rate and the associated BH procedure [4]. The BH proceduies ren rank-ordering of test statistics. In several
SNET scenarios multi-modal sensors are employed, whicargemulti-dimensional sensor observations, where rank
ordering is unclear. We also consider a sensing field withadigttenuation and path losses, which essentially imposes
an effective sensing range for the sensors.

To the best of our knowledge multi-dimensional settingsh@ tontext of FDR have not been subjected to sig-
nificant attention since it is generally difficult to rankder the observations. Recent statistical work in [7] pregos
a coordinate-by-coordinate ordering but this generalfd$eto sub-optimal error performance. To account for multi-
dimensional observations we devise a transformation tlgtsrmultidimensional observations to scalar test stegisti
which turns out to have optimal error performance. Theskasstatistics then forms a basis for a distributed detactio
scheme. We show that the communication cost of the schenesdreearly with the number of sensors that observe
an object, and not the number of sensors that are in the SNEfhdfmore, the proposed scheme guarantees detection
performance of centralized procedures. Next, we accoursigoal attenuation and path losses by modeling sensor ob-
servations as corrupted by uncertain interference ragufitom unknown objects that are not in the immediate viginit
of the sensor. The interference can be modeled as a perturbbathe nominal observed distributions and we establish
robustness of our test statistic to such perturbations.

The organization of the paper is as follows: in Secfibn 2 veeubs the connection of distributed detection of local-
ized phenomena to the multiple hypotheses testing probtemsidered in the statistical literature. We discuss péssi
performance criteria in detail and present the reasonimgnbeour choice. We also discuss the main contributions of
this work in that section. In Sectidd 3 we discuss the setupuofproblem and describe ideal and non-ideal sensing



models. In Sectiofl4 we propose a test statistic formulaton discuss its important properties. In Secfibn 5 we
present the distributed detection algorithm, and exanigscaling properties. We also show here that the distigbute
algorithm is equivalent to its centralized counterpartwhiigh probability. We then show, in Sectibh 6, certain r@bus
ness properties of the test statistics to uncertaintiekardistribution of observations. We also show that our @hoic
of performance criterion scales gracefully with the pdraiion of the distribution of observations. These resultswva

us to address cases where we do not have the exact distnibutiio Sectiorh [7 we present simulations and show that
the chosen method is able to meet the Bayes Oracle errorpenfice. In this section we also present the scaling of
communication costs and discuss some interesting reSuédinally present our concluding remarks in Secfibn 8.

2 Discussion of Performance Metrics and Contributions

In this section we will propose different criteria and prsempirical evidence for adopting the Benjamini-Hochberg
(BH) procedure, which is associated with the false disgpwate(FDR) criterion, as a basis for local information
problems. Local information problems invariably turn oottte multi-comparison test problems. There is currently
no consensus around a universally applicable performaratgcnior these problems. In the literature, location-by-
location Neyman Pearson (NP) tests, Family-Wide-Error BRValso known as Bonferroni criteria) tests, average
error probability and false discovery rate have all beemppsed. Rather than discuss merits of the different criteria
we describe their performance in terms of average errorsdorcontext, wherein both the object density as well as
observed distributions may only be partially known. The H§t¢ and FWER criterion are non-adaptive decision rules
(i.e. threshold rules which do not depend on observed edadiz). Generally these methods result in poor performance
in terms of the number of false alarms and missed detectitrsirns out that the BH procedure, in contrast, is an
adaptive rule which adapts to the observed realization andmlly results in good error performance.

To be concrete, consider a setmafsensorsS. Associated with each sensere S, there is a null or alternative
hypothesisH® € {H,, H,} corresponding to whether or not the sensor observes antatfjécterest. Sensos
generates an observation, € R independently (of other sensors) with probability dengityif H* = Hy; and gi5
if H* = H,. The general problem involves situations where the actuaiber of objects are unknown and due to
path losses and multi-path effects the distributigns ¢g1s are only partially known. To analyze different strategies
we denoteu(x1, z2, ...,z,,) to be any decision rule that selects a set of senSors: {s1, s2,...,sg} and assigns
to them the alternative hypothesis, i.& = Hy, s € S; and Hy otherwise. The outcome of a decision rule can be
summarized in the following table. Here is the total number of sensors identified with objedtsis the number of
sensors falsely placed int®), i.e., number of false alarms. Obviously, we desire BotAndT" to be small, and seek a
decision rule that makes this possible.

DeclaredH, | DeclaredH; Total
True Hy U \% mo
True Hy T Z m — my
Total m—R R m

2.1 Controlling False Alarm Probability: Non-Adaptive Str ategies

First consider the situation when the distributions, g1s are known butn, is unknown and arbitrary. In this case
we can consider several possibilities. (a) Neyman-PeaFestfor each location: Maximize local detection povﬁéj
subject to local false alarm probability constraiﬁﬁ-, < ~ for each location. The optimal decision rule for this siiniat

is the well-known likelihood ratio test [27]. Although thigle is locally optimal, it is not guaranteed to provide good
overall performance and is commonly referred to as unctadetesting. Indeed the false alarms scale with the total
number of sensors, i.eE(V) ~ O(m). (b) Bonferroni procedure [4] overcomes this issue by inmmps highly
restrictive false alarm probability constraint on eachssen’ = ~v/m. This strategy guarantees control of global false



alarm probability (i.e. RV > 1)@) at levely (follows from union bound), however this in turn leads to pdetection
performance, i.e, a large number of misses are incurred.

This leads to the fundamental question of whether there e#ier local or global decision rulesy-), that can
control both the false alarm and miss probabilityi/Pr> 1), Pr(T" > 1) (or a close relaxation such as the probability
of k false alarms and misses for some constainidependent ofn).

The optimal decision rule for maximizing the worst-casebgladetection powePp = 1 — P{T > 1} subject to a
global false alarm constraidtz = Pr{V > 1} is generally intractable. It turns out that the worst-casdsef alarm and
miss probability can be bounded from below by an entropim tehich is a function only of the local SNR.

Theorem 2.1 Let S be a set oh hypotheses testé]* € { Hy, H;} the hypothesis for teste S, and X the observa-
tion for the tests € S. Supposey(X1, Xo, ..., X,,) is any strategy that maps the observations to hypothesisides.
Then,

1
w = Mi Pr{V>1|{H’:s€S8 P{T >1|{H®’:5€S8}})>®(H’ | X;) — —
to=min, max PV 21| (s €S)) 4 PHT 2 1] {H' s € S)) 2 ®(H" | X)) —

where®(- | -) is the conditional entropy computed with a Bernoulli prioittwprobability 1/2 over Hys and Hy's
over them tests. It follows that there exists no decision strategyifbich both false alarm and miss probability can
simultaneously be smaller tham H* | X)/2.

Proof: See Appendix. [ |
Remark: H? is a binary random variable and so its entropy (or conditi@mropy) is always smaller than one.
Nevertheless, depending on measurement noise at each, Se(§6 | X;) could be arbitrarily close to one.
Remark: We can generalize this result to lower bound probability: ¢dise alarms and misses as well using gener-
alized Fano bounds we developed in [2]. Based on those sastdtlows that the probability does not improve unless
we let eitherl/ or T' grow with m.

The above discussion brings to light the fact that non-agpiecision rules lead to poor performance.

2.2 Adaptive Strategies

To establish performance of adaptive strategies, i.ategfies that adapt to the specific realization, we need lower
bounds on error performance. We do this by means of a BayedeOndnere the distributionggs, g1, as well as

the likelihood probability of finding an object in the vicipiof a sensor is known (alternatively, we can consider
situations where the total number of objects are known).ri@efthe average ratiap; /m as the object density and the
complement, namely, average f,/m as the sparsity level. Under this scenario it is easy to saesatithresholding
decision at each sensor is optimal, and the optimal thrdsisah function of the object density and the distributions
under each hypothesis. Furthermore, the error performafrtbe Bayes Oracle is a lower bound on the achievable error
probability.

The question therefore arises as to whether there existscggure that achieves Bayes Oracle bound for local
information problems, and does not depend on the knowlefidpe @bject density and precise knowledge of distribution
under presence of an object. This is particularly relevarmtespath losses and attenuation are not precisely known.
Motivated by these issues Benjamini & Hochberg [4] formeildie false discovery rate (FDR) criterion and provide
a distribution invariant algorithm, the Benjamini-HocinpdBH) procedure, that controls FDR. An interesting result
presented in [1] shows that controlling FDR can asympttifiaasult in asymptotic minimax optimality of the error
probability. The FDR [4] framework seeks to control the iaase expected ratio &f/ R, i.e.

FDR = max E{V/R | {H*},
{Hse{Ho,H1}}ses {V/R|{H"}ses}

LStrictly speaking, we should Writ@ax s c (o, 1,3 PHV > 1 | {H’}ses} to denote that we are looking at worst-case probability. ek
we avoid this cumbersome notation whenever clear from gonte
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Figure 2:BH procedure

wheresS is the set of sensors arfd® is the hypothesis at senser For simplicity of notation, from here on we will
write FDR = E{V/R} and P{- | {H®}scs} = Pr{-} whenever it is clear from the context. It is easy to show that,
FDR < PH{V > 1}, which implies that FDR is a relaxation of global false algsrabability.

FDR can be controlled using the so called BH procedure, wivetbriefly explain here. As depicted in Figuire 2
the test statistics are computed from the observationstétestatistic of an observation is obtained through aoyn{
uniqué transformation that generates a uniform distributigiff), 1], under null hypotheses. The test statistics are then
rank ordered and a desired FDR threshelds chosen. Ley; be thei’” smallest test statistic. The largest indgx,.,
such thaty(l-) < %7 is chosen as the decision point, and the test statisticsevtask indices are smaller thap .,
are labeled significant, i.e., mapped to alternative hygseh. The BH procedure ensures th&l R < ~ for a desired
thresholdy, regardless of how the observations unflgrare generated.

Thus the BH procedure [4, 5] is an adaptive thresholding gutace and the final stopping point is itself a random
variable [16] and depends on the specific realization. Nbetss, it can be shown that the BH procedure [4] is a
distribution invariant algorithm (i.e., regardlessggf) controls FDR belowy.

Theorem 2.2 For independent test statistics under null hypothesis,fandny configuration of alternative hypotheses,
the BH procedure controls the FDR at levetby/m, wherem is the number of true null hypothesis andis the
number of observations.

For our purposes error performance of the BH procedure igleffance. In [16] it is shown that the BH procedure
achieves the Bayes Oracle performance for reasonabld-$ggnaise ratio and low-levels of target density even tjiou
the distribution undeH; (they impose weak conditions g@n,) as well as actual number of objects maybe unknown. A
related result in [30] shows that adaptive procedures ssi¢theaBH procedure outperform fixed threshold procedures.
As seen in Figurgl3, when we control the FDR criterion, therawate closely tracks the error performance of the Bayes
Oracle risk policy. In conclusion, the above exercise shtvas adaptive procedures adapt their threshold to object
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Figure 3: Monte Carlo error rate comparison of Uncorrected Testinagye® Oracle, and the BH procedure for varying object
density. 150 samples with distribution§0, 1) underH, and N (0,4) underH; were used with varying target density.

density in contrast to non-adaptive procedures. In addifiey have inherent robustness properties that can bel usefu
in our SNET setting. With this justification we adopt the FDRniework for our problem.
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2.3 Contributions

First, although BH procedure ensures FDR control irrespecf the observed distribution under presence of objbet, t
detection performance can vary widely for different ditions. In particular, the reference distribution copasding

to the null hypotheses can be transformed in several waybttrotest statistics without changing the FDR control.
This leaves room for optimizing detection performance. pioblem is particularly acute in multi-dimensional sajtn
since it is difficult to rank-order the observations. BH mrdare works on scalar test statistics, where there is a clear
ordering. In [7] a coordinate-by-coordinate ordering isganted but this generally is sub-optimal. Our first contrdn

is to present a transformation that maps multi-dimensiohaérvations to scalar test statistics and enables ratgdiog

of the observations and application of BH procedure. We st our test statistics are optimal in the sense that it
leads to maximal detection power for a given level of FDR malnt

A second contribution of our work is to show that our transfations and procedures are robust to perturbations
of the distribution of observations. This is particulanggortant in the SNET setting due to path-loss effects. lddee
due to complex nature of attenuations and randomness imtl@ement, signals from objects far away can interfere
with signals from objects in the immediate vicinity. Howevthe interfering signal is unknown and this motivates
development of robust techniques.

Our third contribution is in developing a distributed, conmitation efficient BH procedure for multi-object detec-
tion for SNETs. Our results indicate thedrresponding to an FDR threshold, the communication ngessamplexity
grows in proportion to the actual number of sensors obsgrahjects (significant sensors) while achieving the same
centralized performanceNamely, the communication costs scale with event deneityafpre-specified error perfor-
mance and is independent of the network size.

3 Setup

We consider a non-Bayesian setting where an unknown nunfilbbjexts are distributed on a sensor fieldiosensors.

We consider a scheme in which the objects generate a siglthbfier the sensor network and the sensors sample the
field at their locations. In this scheme the significant higpsts () for a sensor is the event that the sensor is within
a radiusdy of an object, and the null hypothesiH() is the event that the sensor is outside a radiufsom all objects.

We assume a sparse distribution of objects, i.e., at moag#esibject is allowed to be present in the immediate viginit
of any sensor (we will comment on how to generalize the aigtgshandle multiple objects in the immediate vicinity

in the following section). Note however that each objectlsatin the immediate vicinity of multiple sensors.

We call the radiugly as the effective sensing range of a sensor. This is the radtiois which signal energy does not
decay significantly. Note that this situation models botliva@and passive sensing scenarios. In active sensingyrsens
transmit a waveform and the return signal undergoes patie$osin passive sensing objects radiate signal patterns,
which undergo path losses as well. Therefore, the objecighei the vicinity of a sensor or the sensor being in the
vicinity of an object are mathematically equivalent. Theealvations at each sensor are multidimensional to account
for multi-modal sensors with different modalities such asgmetic, seismic, and acoustic.

In this work we separate the problemvalfiat to communicat&om the problem ohow to communicatly assuming
a broadcast model, wherein each sensor, once it decides antevbommunicate, broadcasts that information to the
entire SNET. The reason for separating these two problemgivien we know what we want network to compute,
there are a number of methods that offer an efficient soluiwsh only require communication connectivity [11, 31].
Consequently, communication complexity is the aggregateler of messages broadcast by the sensors. Our objective
is a distributed decision rule, which has low communicatomplexity and good error performance.

3.1 Mathematical Modeling of Multi-Modal Sensor Observations

We begin by considering an example of the following sensiogleft

1
s = 71& +vs (1)



where#, is the multidimensional signal (possibly random with knogistribution) of objectt, d(s,t) is the distance
between sensor and an object. The minimum distance,,.;,, is the distance below which the path loss model does
not hold and the signal saturates. The model above (witld theand one in the denominator) is a simplified model
to account for both near field and far-field effects and ersstirat the received signal power is not larger than radiated
power, whenever the object is in the close vicinity of a sen¥he parameteky, is the power decay exponent for the
path lossy; is the multidimensional noise variable of known distributi

Note that each sensor can consist of multiple modalitieh asElectromagnetic (EM), Acoustic(AC) and Seismic
(SE) etc. Thus, with denoting transpose, the parameter (possibly random witkvirdistribution)d, above can be
decomposed as

0 = (etEM’ezﬁlC’efE)l

Note thatd,,;,, can be also be different for different modalities, howeweisimplicity of notation we have assumed that
it is the same for all modalities. With this observation mpde have the hypotheses as follows. Note that observations
at each sensor are conditionally independent when conddi@n the underlying hypothesis.

H® = Hy: d(s,t) > dp forall objectst
H® = H;: d(s,t) <dy foran object

The distancel is typically chosen to be the distance where the signal poslative to noise power is sufficiently large.
Therefore, in generaly is close tad,,;, for large attenuation coefficientsl),

For simplicity of exposition we assume in this paper thatyamme object can be present within the distadge
This is usually satisfied when we have a sparse objectshiittd in the sensing field. However, we briefly discuss
how these techniques can be generalized to handle multypets withind,. We point out that multiple objects can
be incorporated by using an extended hypothesis space tletiges of [8]. There are two cases here to consider: (a)
Multiple objects lead to sufficiently different signal patis; (b) Multiple objects do not lead to sufficiently ditet
discrimination. In the first case the hypothesis space caxpanded to account for multiple objects. The main idea is
to have multiple null and significant hypotheses for eaclsaer. The kth null hypothesisi .o at sensok corresponds
to the hypothesis that there are less tthawbjects in the vicinity of the sensors, while the kth sigmifit hypothesis,
Hy1, corresponds to the hypothesis that there are exactipjects in the vicinity. For observations distributed as
exponential random variables, the generalized maximueiiliGod test statistics are independent conditioned on the
null hypothesis. This fact is sufficient to apply Theorlem @@ quantify performance of BH procedure. Thus this idea
can be integrated with the distributed sensors to form aredgxh hypothesis set, which meets the conditions required
of BH procedure. For the second case when multiple objectsotioesult in sufficiently different signal patterns the
robustness techniques developed in the paper apply.

In summary, hypotheses are associated with each sensoothégisH, at sensos corresponds to existence of an
object within a radiusly of a sensor, while hypothesi#&], corresponds to no object within radidg. An important
point to note here is that each object can be in vicinity oftipléd sensors and so the hypothekis at multiple sensors
can result from the same object.

Ideal Sensing Model(Case of Infinite Attenuation): Note that as the attenuation coefficiengets larger, the distri-
bution of observations takes a nominal form, where withiadiusd,,.;,, of an objectt, the received signal has a mean
0., (if 8; is non-random parameter) and outside this radius the medsignal has negligible mean. Thus sensors within
the minimum radiusd,.,i,, Of the object receive the full signal power, while sensorside this radius receive negligible
power. This leads to the following simplified model:

H° = Hy: Xs=vy4
H° = Hj:X;=0,+v;,

Throughout the paper we refer to the first model as the naail-isiensing model, and the limiting case as the Ideal
Sensing Model. Figurg 4 illustrates these models for a lhgimal mode.
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Figure 4:1deal and non-ideal sensing models: In ideal sensing mb@ebbjects have constant signal over a confined region,
whereas in the non-ideal sensing model the signal decayss awad confined.

These examples can be abstracted to a more general foromylafiere the noise is no longer modeled as additive
and@, can belong to an arbitrary distribution. The cumulativebatality distribution (resp. density) function of the
observation vectoK s at sensos under each hypothesi§® = H;, i = 0, 1 is denoted byG;(-) (resp.g;s(+)), where
H? denotes the hypothesis at sensoln the non-ideal case we have two composite family of camtirs distributions,
gis(*) € G;, i = 1, 2. Observations at each sensor is conditionally indepenafen conditioned on the underlying
hypothesis. The observations are denoted by a vétoe= (X!, X2 ..., X%), s € S, whered is the number of
dimensions,X? represents thé'” dimension of the measurement taken by senserS, andsS represents the set of
sensors that form the SNET. The realization of observatemtor X, is denoted by, = (z!,22,...,2%),s € S.

srtsy

H®* = Hy: X~ gos € Go
H®° = Hy: X,~g1s €01

We letSy = {s € S : H®* = Hp} with cardinalitymo andS; = {s € S : H®* = H;} with cardinalitym,. Here both

mg andm, are unknown and the object locations are assumed to beaaybite. not necessarily uniformly distributed.
Note that the class of distributiori; and G, are singletons in the ideal model, regardless of the dimeaity

of the observed signal, if we assume that no two objects atenithe radiusi,,;, of a single sensor. As we discussed

earlier, this is usually true for sparse set of objects inmsisg field. Our approach is to develop results first for theaid

sensing model, where the families of distributions undertttno hypothesis are characterized by singletons. We deal

with the more general case af < oo from a robustness perspective, i.e., as a perturbationeatial sensing model,

in the upcoming parts of the paper.

4 Proposed Test Statistics

In this section we describe the proposed statistic and ledtadome important properties. We show that these test
statistics can be used to perform detection through BH pireg and allow for control of FDR at desired levels.
With our definition, the CDF of test statistics under sigrifichypotheses becomes a concave function. Based on this
concavity property, we can devise a scalable distributedgaure that achieves the detection power of its centrhlize
counterpart. In the remainder of this section we proposefiaitien of test statistics. The test statistics transform
multi-dimensional observations to scalar statistics ardased on volumes of level sets of the likelihood ratio fimmc
(more precisely the Radon-Nikodym derivative). Thesegetstics result in:

(a) The test statistics under null hypotheses are unifodigtyibuted in[0, 1],

(b) The test statistics under significant hypotheses areifmally” clustered around zero. Consequently, thresholds
near zero lead to detections with relatively few false akarm

To this end, letups and 15 be the measures associated with the distributi@psand G respectively. We assume
throughout this work that; ; is absolutely continuous with respectgs, denotedu;s << pos. Let s = dpys/dpos

be the Radon-Nikodym derivative, i.e. the likelihood rdtiaction. Define the following transformation of the random
variableX from n dimensional space onto the one dimensional space:

Y, = XS(XS) = NOS{X : ¢s(x) > ¢S(Xs)} = ,UOS{X : (bs(x) > (bs(Xs)} (2)
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where we assume that is nowhere constafit The nowhere constant assumption holds for example whaentbked
distributions are Gaussians with different means or dffierariances. In this definition, the et : ¢s(x) > ¢5(Xs)}

is the most powerful decision region such that the prolsili false alarm is less than somg; i.e., it is the solution
to arg max 4 p115(A) subject tougs(A) < v for someyy € (0,1). Similarly, letps{x : ¢s(x) > ¢5(Xs)} = 71 for
some~;. Then the sef{x : ¢s(x) > ¢5(X;)} is also the solution targ miny pos(A) subject tous(A) > 71; i.e.,

it is the volume of the so called minimum volume sets at leyel All of these results follow from the fact that the
Radon-Nikodym derivative is precisely the likelihood odfinction.

We now give an example to depict graphically the impact ofgfarmation on a one dimensional distribution. Let
us assume that we are given two distributions, whose dessitiegys and g;; as depicted in Figurgl 5 (a). We first
calculate the Radon-Nikodym derivative, as depicted in Figure 5 (b). For a givéq, we can now obtaim, (Xs).
We can next identify the sdix : ¢4(x) > ¢5(X;)}, and obtainYy = xs(Xs) = pos{x : ¢s(x) > ¢5(X5)}, as
depicted in Figur€l5. The same intuition holds for multidimsienal observations as well. The problem of obtaining

0=/ duos= 91/ Gos 0 =diye / dtos- s/ Gos

fiplce t 8(%)

0 X 1 0 et
{x 0(x) > 6(X)} Y, = oef: 0(x) > 0(X,)}
(a) gos andgis (b) ¢s andgos (€) {x: ¢s(x) > ¢s(Xs)} andY, =
Xs(Xs)

Figure 5:Depiction of how to obtain the test statistic with a 1-dimienal example.
test statistics for multidimensional random variables fieagived attention from various researchers. It is wortingo
that the test statistics we propose through the transfasmate distributed’[0, 1] under null hypotheses (which we
establish in the following section). Note that transforioraé that map null distributions to uniform distributionrist
unique. For example, in [7], the authors propose to obtash gatistics in a dimension-by-dimension manner, and
in [25] a minimum volume set approach is taken. Some of thesesformations are compared in Sectign 7. Our
method is relatively simple to implement and guaranteesngpt-DR performance in comparison.

4.1 FDR Control Using x

We now establish that using test statistics obtained thrgugs input to BH procedure guarantees FDR control below
any desired level. We show this by establishing that undernthll hypothesis the test statistiés = x(X;) are
distributed uniformly.

LetYys = xs(Xs) ~ Fys be the random variable whé, ~ Gys andYis = xs(Xs) ~ Fis be the random variable
whenX, ~ G15. We begin by establishing th&bs ~ U|0, 1], which implies that we can control FDR at desired levels
through BH procedure if we use thg as test statistics.

Theorem 4.1 If the derivative¢s = duqs/dpos is nowhere constant, thery = x,(X;) of Equation[2 is uniformly
distributed in[0, 1]; i.e., Ys ~ U|0, 1].

Proof: See appendix. |

Corollary 4.2 BH procedure applied t&; = x(Xs) € [0, 1], s = 1,2, ..., m of Equatior[ 2 controls FDR.

2If ¢, is constant in some regions, then the transformation candubified toY; = xs(Xs) = pos{x : ¢s(x) > ¢s(Xs)} + ¥, where
i ~ U(0,B) is a random variable used as a dither with amplitgde= pos{x : ¢s(x) = ¢(Xs)}. This dither achieves is analogous to
randomized decision rules used in detection theory [27& fBisults developed in the paper are valid for this genesa bat the proofs are more
involved.



As we mentioned in Sectidd 2, the main insight behind the fpodd heorenm 2.2 lies in the simple fact that the test
statistics under null hypotheses are independent andromfalistributed under null hypothesis. Then, the corgllar
follows readily from Theoreri 411.

4.2 Optimality Results for Transformation y

Here we prove thay is the optimal transformation in the sense that it maximthesdetection power of BH procedure

subject to any FDR constraint We also establish that under the significant hypothesésdistribution ofY; = x(Xj)

is concave, which leads to the important result that themgdtdecision rule in the space Bf is a thresholding rule.

This result carries importance from the distributed dedegberspective, as will be clear in the upcoming sections.
The following theorem will be necessary to formalize the fhat our proposed transformation of Equafion 2 leads

to maximal detection power of BH procedure.

Theorem 4.3 Let Z, = xs(X;) be any test statistic obtained from the observati®ssuch thatZ, ~ U]0, 1] under
the null hypothesis. I¥; = ys(X;) of Equatior 2, then RY; < ~,} > Pr{Z, < ~,}, where the probability measure
IS s = mp1s + (1 — m) s for some mixture parameter.

Proof: See appendix. [ |
We next establish thaft,, the distribution ofYy,, is concave; i.e. the density functigi, is monotone decreasing
in [0, 1]. This result has strong implications in terms of the detectiower and scalability of the distributed algorithm.

Theorem 4.4 If the derivativeg, = du1s/duos is nowhere constant, thef , is concave.

Proof: See appendix. |
We next present an optimality result over a family of tesgimgcedures. Suppose, (-), v € [0, 1] is a family of
testing procedures such thaf(-) controls the false alarm at level Let, A, be the set of observationX, that are
accepted as significant, i.e.,
Ay ={X + uy(Xs) = Hi}

For each observationy ; define the mapping,
Y(Xy) = ilgf{y : X €Ay} e(o, 1] (3)

It is easy to check that under suitable technical conditibesmapping is a Borel measurable function and induces a
uniform measure of0, 1]. We then have the following theorem.

Corollary 4.5 Let R = [0,~] be a decision region such that¥, € R we decideH® = H;, otherwise we decide
H?® = H,. If Y are obtained through transformatioq(-), the decision regiorz maximizes probability of detection
subject to a probability of false alarm constraiptover any other family of decision rules,(-) defined above.

Corollary[4.5 follows immediately from Theorers ¥4.3 andl Recall thatFy, is a uniform distribution in0, 1], any
set (in[0, 1]) of Lebesgue measurghas probability of false alarm exactly Since, according to Theordm % &, is
concave, its density is monotone decreasing. Thereforengrtiee sets of length, R = [0,~] carries the most mass
under Fy,. Furthermore, as a consequence of Thedrein 4.3, amongradfdrenations that generate a unifoify,, x
maximizesF} () and the corollary follows.

We now state an important corollary regarding the maxim&aten power of BH procedure with the proposed
test statistics.

Corollary 4.6 The BH procedure when applied toof Equatiori 2 is larger that any other transformatignfor which
the null distribution is alsd/ |0, 1].

Note that in the BH procedure, the test statislic$s compared against a threshelg this result follows immediately
from Corollary[4.5.
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4.3 Convexity Properties of Ordered Test Statistics

We present another important implication of Theofem 4.4.n&ke show that the expected value of ordered test statistics
are samples of a convex function, an important property ésighing the scalable distributed detection algorithm. In
fact, it is due to this result that we can achieve the ceatdlperformance through a decentralized method.

Corollary 4.7 LetY(y), Yoy, ..., Y, be the rank ordered test statistics such thgj is thei® smallest ofY;, s =
L,2,...,m. BE(Y;)), i=1,2,...,mare samples of a convex function, i.B(Y;) < (E(Y;_1)) +E(Y(i4+1)))/2, i =
2,3,...,m — 1 asymptotically, asn — cc.

Asymptotically, theE(Y(;)) = F;*(i/(m + 1)) [9] whereF, = wFy, + (1 — m) Fy, for any mixing parameter. But,
according to Theorem 4.4;, is a concave distribution. Sindg), is uniform, F; is also a concave distribution, and
F;'is convex. Then the corollary follows.

5 Distributed Detection Algorithm

In this section we present the distributed detection aligori Our algorithm has the property that the communication
cost scales with the number of sensors that observe an phjetinot the total number of sensors in the SNET. We
also present the equivalence of the distributed detectgrithm to its centralized counterpart, the BH procedime,
resorting to the switching relation [1] and Chernoff bouRdst, we describe our distributed algorithm.

Observe that the BH procedure requires ordering of tessstat Since ordering is not cost efficient in terms of
communications, we use a sequential method to accompkslingarly increasing thresholding of BH procedure. For
reasons discussed earlier we consider communication eaitpto be the number of broadcast messages.

Distributed BH Algorithm:  First, each sensor obtains test statisticshrough the proposed transformation. Every
sensor carries an indicator varialglét), such thats(¢) = 1 if sensors has not transmitted a decision before iteration
t, and¢s(t) = 0 otherwise. Sensors also carry a decision variab(é) such thatps(t) = 1 if sensors decidesH,
andps(t) = 0 otherwise. At iteratiort each sensor has a threshold varialfie) = i,v/m and a bit countetount;.
Initialize ¢; = 1 andcounty = 0. Then:

Sensok decidesH?® = H; if ys < I(i;) and H® = H, otherwise. f,(t) takes its corresponding value)
s announces its decision to the network onlyft)ps(t) = 1

Assumer; sensors decidé/; and declare to the network. Set, = i; + 1 & count; = count; 1 + 14

If count; > i; set variable,,,. = ¢

If iy = m orr; = 0 label sensors that declaf¢® = H; until iterationt,,,, as observing an object and quit
algorithm, else go to step 1

akr wDnE

The distributed algorithm described above leads to the skTision rule as the centralized BH procedure. However
when there is a communication constrainCahessages, we only need to put a cap orcthe:t variable and perform
the distributed BH algorithm whileount; < C. Observe that due to the concavity Bf; (Theoreni 4.4), capping the
count variable does not increase th&) R. In addition we argue that since the expected test statiatie samples of a
convex function(Corollari/ 417), capping theunt variable amounts to performing distributed detection adgm with
a smaller threshold’ < ~, and hence thé'D R is generally smaller. Capping the count variable has anradweffect
in terms of fewer detections. Our main point here is to shat BDR and detection power gracefully degrades due to
the monotonicity properties of the transformation. In otlverds smaller count does result in smaller detectionsrbut i
a proportionate manner.

Figure[6(a) demonstrates this effect with a simple simaastudy based on Monte Carlo simulations. For this
demonstration we used; = 300, m = 1000, gos = N(0,1), g1 = N (3, 1), with the transformation of Equatidn 2.
We then varied’, the communication bit budget, between 20 and 920 with mergs of 100, and plotted the actual
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FDR as a function o€ for various values of FDR thresholdg, Figure[6(d) exhibits the FDR results of this empirical
study. We will extensively simulate error rates (false misiand misses) in Sectiéh 7. We note here that the detection
power decreases accordingly when we capcthent variable. It was shown in [4] that the BH procedure contrdld=F

FDR versus Bit Budget
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Figure 6:Left: We capped the communicatienunt, variable at{20, 120, 220, . .., 920} for various FDR levels. Observe that
the smaller the bit budgef}], the smaller the actual FDR. Notice that FDR tapers off al&(mq/m)y. Heremg = 700, m =
1000. Right: Threshold update through learning: The sequeattimate ofmny allows for sequential update of threshoeldor
better detection rates. The distribution under null andificant hypotheses we®¥ (0, 1) and N (0, 3) respectively.

atymg/m. Depending on the unknown variabte,, there may be an inherent conservatism in this strategy. a¥e h
analyzed an alternative strategy in [10], wherein at eactatgoof thecount; variable an estimate of actual number of
objects,mq, is sequentially estimated based on the number of sensairstihose/* = H; at staget. The threshold
l(i;) is then adjusted based on the estimated object density.i@uladion results indicated that this strategy leads to a
much better detection power, as seen in Figure 6(b).

5.1 Distributed BH Algorithm: Optimal Communication Cost w ith Centralized Performance

We next establish an important scaling property of the BH:eduore. It is due to this property that we can limit the
communication budget with an upper bound that depends onuhwber of sensors that have an object within their
sensing range, and not the total number of sensors in the SNET

Theorem 5.1 Letm; = m — mg be the number of sensors with significant hypothesis. Thectegbratio ofm; to the
number of sensors that are declared to be signific@)ti¢ lower bounded by — ~; i.e. E{m;/R} > 1 — .

Proof: We know that the BH procedure guarantédd’/R} = E{V/(V + Z)} < ~. Evidently Z < m;, meaning the
number of correct detections cannot exceed the number sbsewith significant hypotheses. Then:

E{V/(V+2)}=1-FE{Z/(V+2)}=E{Z/(V+Z)}>1—7v

1=y <E{Z/(V + 2)} < E{m1/(V + Z2)} = E{m:1/R}

which concludes the proof of this theorem. [ |
We caution the reader that the above bound does not guaidettsstion performance. It only points to the fact that
the number of eventual detections are generally smallertti@total number of actual objects.

Equivalence to Centralized Algorithm: The communication efficiency of our distributed BH procetlig that it is
a first-crossing procedure, in contrast to the optimal edimed BH procedure, which is a last crossing proceduret Las
crossing procedures are inherently inefficient. Althouggnnumber of eventual detections is typically smaller timen t
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number of objects according to Theorem|5.1, we need to agtgreata from all the sensors in general to determine last
crossing. On the other hand, by definition, the first crosgirigedures must stop before last crossing. Moreover, the
FDR guarantee on the first crossing is bounded from aboveebash crossing. Consequently, the number of detections
(and hence the communication efficiency) in first crossirggedure must be smaller than the actual number of objects.
Nevertheless, there may be loss in performance. Below weaitat with our proposed transformation first and last
crossing procedures lead to same performance. This ettebloptimality of the distributed BH procedure in terms of
both communication efficiency and performance.

In the asymptotic case the first-crossing and the lastdorgpgmocedures are the same, and they terminate at the
same decision point. This is because according to Cordflafythe ordered test statistics are asymptotically samples
of a convex function. However, this is not true in finite saenphses and therefore the first-crossing and the last-
crossing procedures can have different termination poBétow we show that the distributed BH procedure achieves
the last-crossing performance with high probability.

Theorem 5.2 LetY(;, be thekt" smallest test statistic. IE(Y([ k 1)) < g, then P{Y{;) > I;,} decays exponentially
1—e
fast withk.

Proof: See appendix. [ |
The implication of this theorem is that after a certain nuntfdest statistics, sak, are tested against their corre-
sponding thresholds, one can decide whether or not to aentime distributed algorithm with an exponentially small
probability of error.
This result further suggests presettintests at the beginning of the algorithm, which must be peréat regardless
of the outcome. Note, however, thatan be fixed a priori and does not depend on the size of the SNEText show
that such a modification does not affect important propexifeour distributed algorithm.

Theorem 5.3 Consider the distributed detection algorithm witlpreset tests for suitably large Then:
(@) FDR < «, and (b) With the expected number of messages equahtd k, E(%)} the distributed algorithm
achieves detection power of the centralized BH procedutie lnigh probability.

Proof: a) We show this part by showing that the distributed algoritsrmifact equivalent to the centralized algorithm,
and that presetting tests affects only the communication cost. If there exigts<@ iv/m, i > k, thenk is immaterial.
The upper bound then follows from Theorém|5.1. This is bezdhe centralized algorithm would also map all test
statistics less thag; to the significant hypothesis. TherefafeD R < + in this case. If there is no sugh, i > k, then

the algorithm chooses the largest test statigfie< jv/m, j < k, and maps all smaller test statistics to the significant
hypothesis. But here from Theorém15.2 it follows that theraa other; > k such thaty; < iy/m, i > k with high
probability. Hence in both cases detection power of theraénéd algorithm is achieved with high probability. N

6 Robustness Properties and Non-Ideal Sensing Model

Our development so far offers a solution to the distributetkéction problem in the ideal model. Observe that since the
families Gys and G, are singletons, we can us&, and G, to define the transformation; = ys(X;), and use the
distributed BH procedure to perform detection. We have shihat this leads to optimal detection rate under the FDR
criterion using BH procedure, and it has important scalirgpprties. In the non-ideal sensing model the sensors that
are outside the radius,,;,, receive a small residual signal from the objects. Sincedheived signal is not known, the
exact distribution of observations are not available, g, andG,; are no longer singletons. This leads to a deviation
of Fys from U0, 1], and F; becomes a member of a family of distributiafs,. Similarly, F}; becomes a member of
family of distributions,F.

In this section, we establish certain robustness progesfithe proposed test statistics. These properties shaw tha
if we know Gy, andg; to within e in terms of a certain distance measure, then we can idehg&ffamiliesF,, and
to within € as well. We also establish that FDR scales gracefully wheristribution ofY;, deviates fronT/[0, 1] by
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e under a suitable metric. Combining these results leaddfitnesit distributed detection for non-ideal sensing model
with guarantees on performance. We begin by the robustmepenies of the proposed test statistics.

Theorem 6.1 Let 1, f10s, @and uq s be three measures such that, << ps. Let X, ~ pgs, Vs = xs(Xs) = pos({x :

¢(X) >A ¢(Xs)})- andxs ~ I&OSVA}A/S = XS(XS) = MOS({% : (Z5(X) ? ¢(X)}) If sSupy ’ ,UOS(A) - ﬂOs(A) ‘ﬁ ENOS(A).
then| F(ys) — ys | < eys whereFy is the distribution ofYy = y4(Xy).

Proof: See appendix. [ |
Note that we can obtain the robustness properties undefisagm hypothesis as well. To formalize that result we
state the theorem here and omit its proof as it is a repetitidhat of Theorerh 6]1 with minor modifications.

Theorem 6.2 Let ugs, /}18, andm§ be threg measures such that; << fos- LetX, ~ u1s, Ys = xs(Xs) = pos({x :
(%) > $(X,)}), andX, ~ firs, ¥y = xo(Xs) = pos({x 1 6(x) > ¢(X)}). I supy | p1s(A) = fins(A) [< eps(A),
then| Fi(ys) — Fs(ys) |< €Fs(ys) whereFy is the distribution ofYy = ys(Xs) and Fy is the distribution ofY; =
Xs(Xs).

Proof: Follows similarly to proof of Theorem 6.1. [ |
With these robustness properties of the test statisticgoiatinuous familiesFy, such thatFo, = {Fos : |Fos(y) —

y| < ey}, we have an immediate non-asymptotic robustness resuithveitates that the FDR scales gracefully as a

function ofe.

Theorem 6.3 Let Yy, have continuous distributiofios(y). If |Fos(y) — y| < ey, the BH procedure bounds the false
discovery rate byy(1 + €), i.e. FDR < v(1 + ¢).

Proof: See appendix. |

The robustness result stated in Theofen 6.3 presents usawitmmediate modification to the distributed BH
algorithm in order to control FDR. It suggests that if we witshcontrol FDR at levely, we only need to input the
thresholdy’ = v/(1 + ¢€). The distributed BH algorithm with this modification can auot for the non-ideal sensing
model. Next using Theoreim 6.2 we can establish a theorenigddcaTheoreni 5.3. We omit the proof since it follows
along the same lines as Theorem 5.3. The only modificatidmaissach of the probability expressions are perturbed by
a small amount on account of the perturbation of the undugldistributions.

Theorem 6.4 Consider the distributed detection algorithm witlpreset tests for suitably large Let the distributions
satisfy the hypothesis of Theorem]6.1] 6.2. Then:F{(B)R < +/, and (b) with expected number of messages equal
to max{k‘,E({f—}y,)} the distributed algorithm achieves detection power of tbet@lized BH procedure with high
probability.

7 Simulations

In this section we present some empirical studies based ameMBarlo simulations on the proposed method. To
obtain each data point in our simulation study we performezt 6000 monte-carlo iterations and found that this was
sufficient to ensure confidence in our estimates. In this@eute first show that the test statistics we propose performs
better than other multi-dimensional transformations tete been proposed: namely, the radial transformation, the
multidimensional counterpart gfvalues, as well as the method proposed in [7]. Based on thidty@e choose to use
the proposed test statistics, and show that the BH procedhivieves a near Bayes Oracle error rate whereas Bonferroni
procedure and Uncorrected testing cannot. We then pres&NBRT simulation, where we vary several parameters and
examine the error rate and communication cost. For bothestude discuss the relevant parameters and setup in the
corresponding sections.
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7.1 Synthetic Data with Known Distributions

In our first study, we use the BH procedure to perform detactmd compare the error rate with that of Bayes Oracle.
The setup is as follows: There are = 1000 hypotheses tests, the number of objeets is varied from10% to
90%. Under H® = Hy, X5 ~ N(0,I3) and underH® = H;, X; ~ N(1.5,13). Here I3 denotes the3 x 3
identity matrix, 0 denotes the3 x 1 zero vector, and..5 denotes they x 1 vector (1.5 1.5 1.5)’, where’ denotes
transpose operator. The test statistics are computedda thays: first, we use the method proposed in this work, i.e.,
Ys = pos{x : ¢s(x) > ¢5(Xs)}, next we use the radial transformation, iX,,= uos{x : gos(x) < gos(Xs)}, and
finally we use dimension-by-dimension transformation psaal in [7]. In the dimension-by-dimension approach, the
test statistics are calculated for each dimension sepatateising the marginal distribution.

We next input these test statistics to the BH procedure tatifyethe tests wheréf/®* = H;. The FDR constraint is
chosen to bey = .1. Figurg7(d) presents the error rates associated with dabbse methods versus; /m. Observe
that the BH procedure with proposed test statistics conmose b the Bayes Oracle performance for high sparsity levels
(smallm, /m). Furthermore, even at low sparsity levels it achieves thallest error rate.
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Figure 7:Monte Carlo simulations for comparing Error rate vs objestsity for different multi-dimensional transformationsla
different decision criteria. BH procedure on the proposstl $tatistics dominates other transformations and testmategies.

With the same setup, we now use the proposed test statisiicassess the error rate of the following detection
schemes: BH procedure, Bonferroni procedure, and Undedetesting. The Bonferroni procedure takes the test
statistics as input and tests¥f < ~/m in order to decide which ones ha¥&®* = H,. Similarly, uncorrected testing
checks ifY; < ~. We compare the error rate of these three methods with titaedBayes Oracle fat; varying from
10% to 90%. The results clearly indicate that the performance of thepBdtedure is close to that of the Bayes oracle.
Figure[ 7(b) demonstrates these results. Note that therpeaf@e of BH procedure is strikingly similar to that of Bayes
Oracle at high sparsity levels (low; /m).

7.2 SNET Simulation with Nonideal Model

In our next study we setup a SNET simulation to study the &ffe€ SNET size, object density, and attenuation on
the performance of the proposed method. We present therpenice of the Bayes Oracle as a reference point when
appropriate.

First we set up & x n grid of sensors, where the distance between each sensonits4Then we place a number
of objects at randomly chosen locations over the SNET, wiiergoossible locations are at the center of grid squares.
Figurel8 depicts this setup with3ax 3 grid and one object.
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Figure 8:A 3 x 3 sensor grid and an object.

The observation model is given by
0

Xe= ) e d i

t

+ Vs

whered(s, ) is the distance between sensoand an object, dy = 2+/2 is the distance between an object and the
nearest sensot is the attenuation coefficient, amd ~ N (0, I3) is the noise. Here we have

H® = Hy: d(s,t) > dp forall objectst
H® = H;: d(s,t) <dy foran object

We choosed,,;, = dy for the attenuation model. This choice fixes the nominal aigo-noise (SNR) ratio at the
sensors. In other words in the presence of a single objebeientire sensor field, the sensor in the immediate vicinity
of the object receives a signal with the same SNR irrespediiattenuation coefficienty. On the other hand objects
not in the immediate vicinity suffer from path losses allog/us to study the impact of perturbations. Other choices for
dmin are possible, however, they lead to scaling of both interfee as well as nominal signal.

In our setup note that the second smallest distance betwsensar and an object ig62 + 22 = /40 units.
This implies that we have two candidates for nominal nultriigtions: (a) Nominal null distributiongg, is a normal
distribution with zero mean and noise variance; (b) Nommal distribution go, is a normal distribution with mean
equal to signal received from a hypothetical object locate¢/40 units. For the significant hypothesis, we always
assume the nominal distributiog;s = N(6¢,I3). In our experiments we notice that error rates for two oéfer
nominal null distributions to be similar. The differencesgpaared to be in the composition of false alarms and misses.
This is because the second assumption is conservativyea destant object is assumed even if there does not exist any
object. Our simulations allowed more than one object int@édiate vicinity of a sensor. However, we did not notice
any degradation in performance.

Effect of Object Density: In our first study we have = 25, which leads ton = 625 sensors. We choose= 0.1,

0; = (2 22),anda = 2. We then vary the number of objects such that/m € {.03,.06,...,.15}, and observe
the error rate and communication cost of distributed BH edoce, Bonferroni procedure, Uncorrected testing, and
Bayes Oracle. Figurds 9(a) and 9(b) demonstrate the resfuthss study. Notice that the error rate of the distributed
BH procedure again closely tracks that of the Bayes Oractmveder, while the Bayes Oracle uses the knowledge of
mq/m, and the actual distribution of observations at each settsodistributed BH procedure only uses the assumed
distributions.

The expected proportion of communication costitp remains near 1 for the distributed BH procedure, whereas
it significantly deviates from 1 for Bonferroni proceduredadncorrected testing. This is because, the Bonferroni
procedure, due to its stringent threshele= 0.1/625, misses most of the sensors that are withjp, of an object. On
the other extreme, the Uncorrected testing suffers fromgelaumber of false alarms, which is a constant proportion
of m, and therefore the communication cost is significantlydatganm; .

Effect of Attenuation Coefficient: We next study how the attenuation coefficienaffects the error rates and com-
munication costs of the competing schemes. For this setupgag haven = 25, which leads ton = 625 sen-
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Figure 9: Monte Carlo simulations for comparing error rate vs objemisity for the proposed statistics in the SNET setup: the
distributed BH procedure using the proposed test statistitiieves the minimal error rate and closely tracks theopmdnce of
Bayes Oracle. Herev = 625,60, = (22 2), vy ~ N(0,I3), o = 2.

sors, and we choose = 0.1 and@; = (1.5 1.5 1.5)". The object density is fixed, where,/m = 0.1. We vary

a € {2,2.2,2.4,...,4} and observe the error rate and communication cost versustuitively, as we increase the
attenuation coefficient, the distributiopg, = N(ét,fg) andg;s = N(8,, I3) become more separable. This in turn is
expected to decrease the error rate, and increase theioletede. Increasing the detection rate increases the cemmu
nication costs. These are precisely the effects we observigureg 10(a) arid 10(b).
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Figure 10:Monte Carlo comparison of error rate & communication cost &snction of attenuation coefficient) for different
strategies. Monte-Carlo simulations with 625 multi-mos@hsors, with 62 sensors in immediate vicinity of a targeevsm-
ulated. The parameters governing the sensing model @ere (1.5 1.5 1.5)', with v, ~ N(0, I5).The proposed distributed
BH procedure achieves the minimal error rate and closebkfréhe performance of Bayes Oracle when we use the propesed t
statistics. Asw increases, the distributions become more separable anetriierate decreases. Note thatcascreases, the
distributions become more separable, which in turn in@e#se detection rate and associated communication cost.

Effect of SNET size:In our final study we examine the size of the SNET on the comoatioin costs. What we wish to
do is to fix the number of objects and increase the size of tHeTSiNid. The effect we wish to show is that for the BH
procedure, no matter the size of the SNET, the communicabsehscales with, the number of sensors that are in the
vicinity of an object, and nat:, the size of the SNET. For this study we fix= 2,y = 0.1, m; = 60, and8; = (2 2 2)".

We then varyn € {25, 35,45,55}, which leads tan € {625,1225,2025,3025}. Figure[11 demonstrates the results
of this study. Observe that for the uncorrected testing tireraunication cost linearly increases as a function of the
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SNET size, whereas the distributed BH procedure is ablet&nra near constant fraction of communication cost to
m1. Notice that Bonferroni procedure has the lowest commuigicaost, however this is due to the fact that detection
rate of Bonferroni procedure is very small.

E(Comm. Cost / mw)

! n\‘\h\_‘
05| i SN

i i i i i i
500 1000 1500 2000 2500 3000 3500

m (SNET size)

Figure 11:Monte Carlo simulation of communication cost/ with SNET size {n) using the proposed statistics for the SNET
setup: asn increases, the communication cost of the Uncorrectedtgsicreases whereas the distributed BH procedure retains
a near constant fraction of communication costsito Bonferroni procedure has the lowest communication castielver this is

due to the detection rate being very small. Here 2,y = 0.1, m; = 60, andf; = (2 2 2)’.

8 Conclusion

In this paper we developed tools for detection of localizeenés, sources, or abnormalities within SNETs. Unlike
decentralized detection where the information is globalkgilable, the focus here was on problems, where only a
small number of sensors in the vicinity of the phenomena ardhé field of observation. We call these problems
local information problems. For such problems the maindliffy arises from the coupling ofa) uncertainty in the
number of events, sources or abnormalities and uncertairitye possible locationdy) multiplicity of false alarms.
Although not evident at first sight, these fundamental diffies call for collaboration in the SNET in order to meet
global constraints.

We proposed FDR as a performance criterion for local infélanaproblems in SNETs. The reasoning behind
FDR was the fact that FDR adapts to the unknown object denditich is of great importance for distributed detection
problems. Namely, we do not know not only how many events péé&ee at any time, but also where these events occur.
The adaptive nature of FDR made it a very valuable tool toeskdthese issues.

We next introduced a transformation that maps multidineredi observations to single dimensional test statistics,
which has important properties for distributed algorithidamely, asymptotically the ordered test statistics angxas
of a convex function. This allowed us to devise a distribuBétiprocedure, which is a first crossing procedure that also
has desirable scaling properties in terms of the commuaitabsts. Namely, the communication cost of the distrithute
algorithm scales with the number of significant sensorss@enin the close vicinity of an object), and not the whole
SNET. We also showed that the distributed BH procedure aekithe performance of its centralized counterpart.

We quantified robustness of the distributed algorithm aedotiloposed transformation to unknown perturbations in
the nominal distribution. This issue is particularly relavin a sensing field where the path losses and attenuatein co
ficients are not known. The simulation studies confirmedabgertion by demonstrating that distributed BH procedure
tracks the performance of the Bayes Oracle in terms of tlug este, even in the non-ideal model, with communication
costs scaling with the number of significant sensors.
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Appendix
Proof of Theorem [2.1

First note that from Lagrangian duality it follows that,

Yo =minmax (PH{V > 1| {H®:se€ S}}+PH{T >1|{H?:5€S}})>_ max minPrV >1)+Pr(T > 1)
v H® Pr{(mas):ses} v

where, we can substitute any prior distribution fof @°) : s € S}. Consequently, we are left to establish a bound
for the Bayesian problem. Now we observe that the error event

E={u(X1,X9,...,. Xn) #{H®’ : s € S}} ={V >1}U{T > 1}
Therefore, from Fano’s inequality it follows that for anyagegyu(-):

1 1

PV = 1) +PI(T 2 1) 2 PHE) = —@{H" 15 € S} X1, Koo, Xn) = — = ®(H | X,) = —

3=

where®{H?® : s € S} is the conditional entropy. The last equality follows by stinting a independent Bernoulli
prior for presence or absence of objects. |

Proof of Theorem [4.1

Note that for any sequeneg > ¢2 > ... the setsd; = {x : ¢s(x) > ¢;} form a nested sequence of sets such that
A; C Ay C.... Then

PrYs <wys} = Pr{uod{x: ¢s(x) > ¢5(Xs)} < pros{x : ds(x) > ¢s(x4)}}
= Pr{uos{x : ¢s(x) > ¢s(Xs)} < pos{x : ds(x) > ¢s(xs)}}
= P{{x: ¢s(x) > ds(Xs)} C {x: ¢s(x) > ¢s(x)}}
= Pr{¢s(Xs) > ¢s(xs)} = PF{X : ¢s(x) > ¢s(xs)} = /LOS{X : ¢s(x) > ¢s(xs)} =Ys
where the probability measure jg;, the second inequality follows from the continuity ¥f, and the third equality

follows from the fact that the sets are nested. The indepe®ef the test statistics under null hypothesis followstro
our conditional independence assumptions of Setiion 3. [ |

Proof of Theorem

We can write forY, and Z:

P{Y; <~} = aPl{Ys <~ | H°=Hi} + (1 - m)PH{Y; <, | H* = Ho}
= 7PH{Y, <5 | H* = Hi} + (1 —m)ys

P{Zs <75} = aPH{Zy < | H® = Hi} + (1 - m)Pr{Z; <, | H® = Ho}
= 7PH{Zs <5 [ H® = Hi} + (1 —7)7s

Then, to prove our result, it suffices to show thafRr < ~, | H® = H1} > P{Z, < ~, | H® = H;}. To show
this, letAXs = {x : ¢s(x) > ¢1} be the set such thai; AX* = ~,. Notice that forZ,, the uniform distribution under
the null hypothesis assumption implies{Pr: z < ~, | H®* = Hp} = pos{x : Xs(x) < 7 | H® = Ho} = 7.
Write A% = {x : Y4(x) < v, | H® = Hp}. Then,ui AXs = py(AXs — AXs) 4 1y, (AXs N AXs), and similarly
p1s AXs = py(AXs — AXs) + g (AXs N AXs), whereA — B denotes the removal of sétfrom setA.

Observe that showing PY; < ~, | H® = H1} > P{Z, < v, | H® = H;} is equivalent to showing,,AXs —
p1sAXs = puy(AXs — AXs) — 1y (AXs — AXs) > 0. To show this, observe thah, (AXs — AXs) = pgg(AXs — AXs) = o/
for somey’ = v — pugs(AXs N AX<). But, overAxs — AXs duy,/dugs = ¢s > ¢1, and hencgu (AXs — AX) > ¢17/.
Similarly, over AXs — AXs duy,/dugs = ¢s < ¢1, and hencguy,(AXs — AXs) < ¢4/, which impliesy,(AXs) —
p1s(AXs) > 0 and concludes the proof. [
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Proof of Theorem

Again noting that for any sequenge > ¢2 > ... the setsd; = {x : ¢s(x) > ¢;} form a nested sequence of sets such
thatA; C Ay C ..., we can write:

Fls(ys) = PI’{Y; < ys}
= Pr{NOS{X : ¢S(X) > ¢S(Xs)} < ,UOS{X : ¢s(x) > ¢s(xs)}}
= Pr{NOS{X : ¢S(X) > ¢S(Xs)} < ,UOS{X : ¢s(x) > ¢s(xs)}}
= Pr{{x: ¢s(x) > ¢s(Xs)} C{x: ds(x) > ds(xs)}}
= PH{gs(Xs) > ¢s(xs)} = PH{x: ¢s(x) > ds(x5)} = p1s{x 1 ds(x) > d5(x5)}
Observe that here the probability measurgiig becausé&X is sampled with respect G.
Now, let o1 > ¢ > ¢3 be such that ford; = {x : ¢s(x) > ¢}, i = 1,2,3, uos(A1) = yl, pos(42) =
y2 = yl + 8o, and pgs(A3) = y3 = y? + o for some appropriatg! anddy. Also, Fis(yl) = ps(Ar) = 21,
Fis(y2) = p1s(A) = 22 = 21 4+ 61, and Fi,(y3) = pas(A3) = 23 = 22 + 6, for some appropriate!, 6, andés.
Notice thaty; = ,uls(AQ — Al) andd, = ,uls(Ag — Ag) Noting that,uos(Ag — Al) = ,LLOS(Ag — Ag) = Jp and
noting thatA; are constructed using the Radon-Nikodym derivative, ibfes thaté; > d,. Thus we can write

Fis(y2) — Fis(ys) _ 01 _ 02 _ Fao(d) — Fia(u3)
vi — s do ~ do vs —vi

But this holds true for alty; > ¢2 > ¢3 such thati, > 0, and hence the result follows. |

Proof of Theorem

Let Ny =#{j 1 y; < lx} = Z;.”Zl Iy, <13+ By the switching relation (see for example [1]) the follogirelationship

holds for anyk: {E(y «q) < I} < {E(N) > [{%]}. Therefore,E(y; x 1)) < Ik = E(Ny) > % and
1—e 1—e

kE < E(Ng)(1—e).

Pr{Y(k) >t =PH{Ny <k} < PH{Np < E(Ng)(1—¢)}
EE(Ny) @)

2
2
() ©

1—¢€)

IN

exp{—

Inequality [4 follows from the Chernoff bound, and inequéBitfollows from the application of switching relation along
with the assumption of the theorem. |

Proof of Theorem [6.1
We know from Theorer 411 thaf; is uniformly distributed in0, 1]. Similarly to the development of that theorem,

PrYs <ws} = Pr{uosfx: ¢s(x) > ¢s(>:<s)} < pos{x : ds(x) > @s(xs)}}
= Pr{/‘Os{X : ¢s(x) > ?S(XS)} < /LOS{X : ¢s(x) > ¢s(xs)}}
= Pri{x: ¢s(x) > ¢s(Xs)} C {x: ds(x) > ¢s(xs)}}
= Pr{¢s(Xs) > ¢S(Xs)} = PI’{X : ¢s(x) > ¢s(xs)}
Here the probability measure jg;, sinceX is drawn with respect to that measure. Thé@j’g,(ys) = Pr{?s <yst =

fos{x : ¢s(x) > ¢s(xs)}. However, by hypothesis of the theoremup, | pos(A) — f0s(A) |< €nops(A), and

hence| fips{x : ¢s(x) > ¢ds(xs)} — pos{x : Ps(x) > Ps(x5)} |< epos{x : Pps(x) > Ps(x5)}. Finally noting that
tos{x : ps(x) > ¢s(xs)} = ys, we have the result. |
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Proof of Theorem [6.3

Definey, = kvy/m. LetYys, s = 1,2,...,mg be them, test statistics under null hypothesis. Denote witl{k) the
event that ifY; mapped taH® = H, exactlyk — 1 other test statistics are mappedHg. Then;

E(V/R) = > >, %Pr{Y08§wk,cs<k>}= S S PG < wIPHC(R)

s=1:mo k=1:m s=1:mg k=1:m
_ e
< %OREm 1+e )PH{Cy(k)} = (1+e)s§m)mk:zl;mPr{Cs(k)}
_ o 7mo
= (1+6)5:%:mm =(1+e-——<(1+ep
The second equality follows becausg, is independent of all other test statistics. [ |
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