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Ergodic Properties for Multirate Linear Systems
Damián Marelli and Minyue Fu, Fellow, IEEE

Abstract—Stochastic analysis of a multirate linear system typi-
cally requires the signals in the system to possess certain ergodic
properties. Among them, ergodicity in the mean and ergodicity in
the correlation are the most commonly used ones. We show that
multirate operations and time-variant linear filtering can destroy
these ergodic properties. Motivated by this fact, we introduce the
notions of strong ergodicity in the mean and strong ergodicity in
the correlation. We show that these properties are preserved under
a number of operations, namely, downsampling, upsampling, ad-
dition, and uniformly stable linear (time-variant) filtering. We also
show that white random processes with uniformly bounded second
moments are strongly ergodic in the mean and that mutually in-
dependent random processes with uniformly bounded fourth mo-
ments are jointly strongly ergodic in the correlation. The main im-
plication of these results is that if a multirate linear system is driven
by white (independent) random processes with uniformly bounded
second (fourth) moments, then every signal in the system is strongly
ergodic in the mean (correlation) and therefore ergodic in the mean
(correlation). An application of these results is also discussed.

Index Terms—Filter bank design and theory, multirate pro-
cessing and multiresolution methods, nonstationary statistical
signal processing.

I. INTRODUCTION

MULTIRATE signal processing techniques find a wide
range of applications (see, e.g., [1]–[3]). Downsampling

and upsampling are two basic multirate operations. Using these
operations and filterbanks, sophisticated signal processing can
be carried out in subbands. An example of such applications is
the so-called subband adaptive filtering [4], [5], where filtering
is done in individual subbands to gain a number of numerical
advantages. Another example is the so-called subband system
identification (see, e.g., [6] and [7]).

In order to understand the statistical behavior of multirate
systems, stochastic analysis is essential. To this end, the no-
tion of ergodicity plays a fundamental role. More specifically,
random signals in the system are required to be ergodic in the
mean and/or correlation (i.e., the time averages of the mean/
correlation converge with probability one to a given constant).
When dealing with subband decompositions, it is desirable that
various stochastic analysis results can be carried over to sub-
bands. This implies that random signals in each subband are
required to be ergodic, which is a property taken for granted
in most multirate stochastic analysis. This raises the following
fundamental question: What conditions are required on the full-
band signals so that the subband signals are ergodic? We will
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show that the ergodicity of a random signal may not be pre-
served under a number of operations, including downsampling
and time-variant (uniformly stable) linear filtering. Motivated
by this fact, we look for suitable notions of ergodicity for mul-
tirate linear systems.

Another fundamental aspect in stochastic analysis is the study
of stationarity properties, i.e., whether a random process is sta-
tionary, cyclo-stationary (also called block-stationary), asymp-
totically mean stationary (AMS), etc. In the case of multirate
linear systems, this is done in [8] and [9].

As pointed out in [10, Sec. 6.14], there is a conflict of termi-
nology regarding the notion of ergodicity. In engineering lan-
guage, ergodicity with respect to a measurement (e.g., mean or
correlation) means that the time average of the measurement,
calculated on a single realization of the random process, con-
verges with probability one to a given value [11]. On the other
hand, in the language of probability theory, a random process
is ergodic if the only sets that are invariant under the time shift
map (induced in the underlying probability space) have proba-
bility either zero or one [12], [13]. In this paper, we will use the
term ergodicity to refer to the engineering definition and use the
term metrically transitive to refer to the probability theory def-
inition, following [14].

To prove that a random process is ergodic is essentially to
verify that the Strong Law of Large Numbers (SLLN) [15] is
satisfied. The results providing conditions to guarantee this law
can be classified into two categories.

C1) In the first category are those results requiring some sort
of stationarity condition on the random process consid-
ered. A first step in this direction is Kolmogorov’s SLLN
[15, Theorem 5.4.2, p. 133]. It requires the random
process to be a sequence of independent, identically
distributed, random variables with finite first absolute
moments. We will call such a sequence an independent,
strictly stationary random process. A generalization
of Kolmogorov’s SLLN is Birkhoff’s ergodic theorem
[16], which is the cornerstone of ergodic theory [12],
[13]. In this generalization, the independence of the
random process is relaxed to metric transitivity. This
theorem provides conditions for ergodicity with respect
to virtually any measurement (including the mean and
correlation). A further generalization of Birkhoff’s
ergodic theorem relaxes the strict stationarity condition
to AMS [17], [18]. We will refer to this generalization
as the AMS ergodic theorem. This theorem provides the
foundation to guarantee ergodicity of many commonly
used random processes, e.g., strictly stationary random
processes [19], Markov processes [14, Ch. V, Sec. 6]
and hidden Markov processes [20]. We point out that
there exist, in the probability theory literature, condi-
tions stronger than metric transitivity, namely, totally
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ergodic [18, p. 159] and weakly and strongly mixing
[18, p. 149].

C2) In the second category are those results without station-
arity requirements. A first attempt along this direction
is Rajchman’s SLLN [15, Theorem 5.1.2, p. 108]. It
just requires that the random process be a sequence of
pairwise uncorrelated random variables with uniformly
bounded second absolute moments. Several results gen-
eralize Rajchman’s SLLN by replacing the requirement
on the uncorrelation of random variables with a require-
ment on the decaying rate of the autocorrelation func-
tion [21]–[23]. An earlier result for the continuous time
case, which, with trivial modifications, is also valid for
the discrete time case, was given in [24, pp. 94–96].
These results provide sufficient conditions for ergodicity
in the mean. Another approach is taken in [25, Theorem
2.3], where it is shown that if an independent random
process is filtered by a uniformly stable time-invariant
linear filter, then the resulting random process is ergodic
in the correlation.

A random process is said to have ergodic properties with re-
spect to a measurement if the time average of the measurement,
converges with probability one to some random variable [18, p.
124]. If, in addition, it is desired that the random process is er-
godic with respect to that measurement (i.e., all the realizations
of the measurement converge to the same constant value with
probability one), then the random process is also required to be
metrically transitive [14, Ch. X, Theorem 2.1]. According to the
ergodic theory for AMS random processes, the AMS condition
is necessary and sufficient for a random process to have ergodic
properties with respect to all bounded measurements (i.e., not
including mean and correlation) [18, Corollary 7.2.2]. Also, it
states that the ergodicity of a random process is preserved if it
is modified via any transformation that preserves the metrically
transitive and AMS properties. Such transforms are known as
ergodic channels and AMS channels, respectively [26]. It turns
out that the kind of transformations that take place in a mul-
tirate, time-variant, linear system do not satisfy these require-
ments. More precisely, as we show in Section VIII, the AMS
condition can be destroyed by time-variant operations, and the
resulting non-AMS random process (which does not have er-
godic properties with respect to all bounded measurements) still
has the ergodic properties desired in a signal processing applica-
tion, namely, in the mean and correlation. This suggests that the
AMS property is a too strong requirement for a general multi-
rate, time-invariant, linear system in a signal processing context.
Therefore, we will align our analysis with results from category
C2), i.e., those not requiring stationarity.

More specifically, we introduce the notions of strong ergod-
icity in the mean and strong ergodicity in the correlation. We
show that these properties are preserved under a number of com-
monly used linear multirate operations, namely downsampling,
upsampling, addition, and filtering by uniformly stable linear
filters. We also show that white random processes with uni-
formly bounded second moments are strongly ergodic in the
mean and that mutually independent random processes with uni-
formly bounded fourth moments are jointly strongly ergodic in
the correlation. These results mean that most commonly used

random processes in multirate linear systems are strongly er-
godic (in the mean and in the correlation). Hence, every signal
in the system is strongly ergodic and therefore ergodic.

The results in the present paper can be considered as a step
further in the results from category C2). In contrast with [25,
Theorem 2.3], we consider both ergodicity in the mean and er-
godicity in the correlation, and we provide conditions to allow,
not only (uniformly stable) time-variant linear filtering, but also
multirate operations and addition of signals. To this end, we pro-
vide a condition on the decaying rate of the autocorrelation func-
tion which, in contrast with [21]–[24], is invariant under the four
transformations mentioned above.

For readers who are more familiar with the ergodicity theory,
we point out a difference between the notions of strong ergod-
icity and the known notion of total ergodicity [18, p. 159]. A
random process is called totally ergodic if the random processes
obtained by downsampling it, using all possible downsampling
factors, are all metrically transitive. It is easy to see that the
total ergodicity property is invariant under nonlinear, cyclo-sta-
tionary mappings. It is also straightforward to verify that inde-
pendent identically distributed (i.i.d.) processes are totally er-
godic. Therefore, the conceptual structure formed by the triad
{total ergodicity, cyclo-stationary mappings, i.i.d. processes}
can be considered as a C1) counterpart of the C2)-based triad
{strong ergodicity in the mean (correlation), the four invariant
transformations, white (mutually independent) processes with
uniformly bounded second (fourth) moments}. In comparison
with total ergodicity, strong ergodicity requires fewer station-
arity constraints, and for that reason, it is a more suitable prop-
erty to consider when analyzing multirate, time-variant, linear
systems.

As mentioned above, an example of a multirate linear system
is the so-called subband system identification technique. In this
technique, the input and output signals of a system to be iden-
tified are split into subbands by using filterbanks. A parametric
model is then tuned in every subband. By doing so, better con-
vergence and faster computation can be achieved in many cases.
In order to illustrate our results, we introduce an application,
namely, the analysis of convergence properties of a subband
identification system. More precisely, we analyzed strong con-
vergence (i.e., whether or not the outcome of the identification,
as the number of samples goes to infinity, depends on the real-
izations of the involved random processes) and optimum con-
vergence (i.e., whether or not the outcome of the identification
converges to its “best possible”). It turns out that, in order to
guarantee the required convergence properties, the subband sig-
nals involved need to be ergodic and jointly ergodic in the cor-
relation. This result is developed in detail in [6], where some
preliminary results on strong ergodicity are used.

The rest of this paper is organized as follows. Section II in-
troduces some necessary background on random processes, in-
cluding the definitions of ergodicity in the mean and in the cor-
relation. Section III shows, through using examples, that er-
godicity in the correlation can be destroyed by downsampling,
time-variant, linear filtering, and addition. Section IV introduces
a technical concept needed to study strong ergodicity. Section V
studies strong ergodicity in the mean, and Section VI does the
same for strong ergodicity in the correlation. Section VII dis-
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cusses the application mentioned above. Section VIII shows that
the AMS condition can be destroyed by time-variant operations.
We conclude the paper in Section IX. For the ease of readability,
all proofs are contained in the Appendix .

II. PRELIMINARIES

In this section, we introduce the necessary notation and defi-
nitions for this paper.

A. Random Processes

Let be a probability space defined on a set with
-algebra and probability measure . A random variable is

an -measurable map , where denotes the set of
complex numbers. We denote the set of all random variables so
defined by

is measurable

The th (absolute) moment (or th norm in a functional analysis
context) of a random variable is defined by

where denotes the expected value. We denote

If , then their inner product is defined as

Two random variables are said to be un-
correlated if . A set of random variables

is said to be independent if, for any
, , where denotes the Borel algebra

of complex numbers

A (discrete-time) random process is a map
, where is the set of integers. In order to simplify

the notation, we write

A random process is said to have uniformly bounded th
(absolute) moments with bound , if

We denote

and

i.e., is a set of random processes in
with uniformly bounded th moments. Since a deterministic
signal can also be interpreted as a random process, the set

includes deterministic signals in .
A random process is said to be white if its samples form a

set of pairwise uncorrelated random variables, and it is said to
be independent if its samples form a set of independent random
variables. In addition, a set of random processes is said to be
mutually independent if their samples form a set of independent
random variables.

B. Multirate Operations and Filtering

Let be a random process and ,
where is the set of positive integer numbers. The downsam-
pled random process with downsampling rate is given by

Similarly, the upsampled random process with upsampling rate
is given by

A time-variant linear filter is characterized by a family of im-
pulse responses ( is the space of complex
sequences indexed by the integers), i.e., if is
the filter’s input signal and is its output, then

A time-variant linear filter with impulse response
is said to be uniformly stable if there exists

such that .

C. Ergodicity

In [11], a mean stationary random process is said to be ergodic
in the mean (or mean ergodic) if

for all (1)

As we mentioned in Section I, we need to deal with nonsta-
tionary random processes. To this end, a standard way to gener-
alize (1) is as follows:

(2)

However, the existence of the limit in the right-hand side of (2)
still requires some kind of stationarity. Hence, in order to make
the definition of ergodicity in the mean completely independent
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of any stationarity condition, we introduce the following defini-
tion.

Definition 1: A random process is said to be
ergodic in the mean if

(3)

If is such that the limit in the right-hand side of (2)
does not exist, intuitively, (3) says that, for any given realiza-
tion, the sequence approaches the sequence

, with probability one, as goes to in-
finity. Notice that, in this case, and according to the definitions
in [18], the random process is not AMS and does not have
ergodic properties with respect to the expectation.

Following a similar reasoning, we define ergodicity in the
correlation as follows.

Definition 2: two random processes are
said to be jointly ergodic in the correlation if, for every

(4)

Also, a random process is ergodic in the correlation if it is
jointly ergodic in the correlation with itself.

III. MOTIVATING EXAMPLES

In this section, we point out that ergodicity in the correlation
can be lost after some transformations involved in a multirate
linear system. We do this by introducing examples.

The following example shows that ergodicity in the correla-
tion can be lost after downsampling.

1) Example 1: Consider the probability space
, where denotes the Borel -algebra

on the set and denotes the Lebesgue measure.
Define the random process as
follows:

is even
is odd

where . Then

is even

is odd

Therefore, is ergodic in the correlation. Let be obtained by
downsampling with a factor of 2, i.e.,

Then

(5)

Hence, is not ergodic in the correlation.
The next example shows that ergodicity in the correlation can

be lost after uniformly stable linear filtering.
2) Example 2: Consider the random process in Example 1

and the uniformly stable time-variant linear system with impulse
response

is even
is odd

where

Let be obtained by filtering through , i.e.,

Then (5) holds, and therefore, is not ergodic in the correlation.
The following example shows that ergodicity in the correla-

tion is not closed under addition, i.e., it can be lost by adding
two random processes that are ergodic in the correlation.

3) Example 3: Consider the probability space
. Define the random processes

as follows:

It is easy to verify that, for all ,

Therefore, and are ergodic in the correlation. We define a
new random process by

Then, (5) holds, and therefore, is not ergodic in the correlation.

IV. RANDOM PROCESSES WITH WEAKLY BOUNDED

AUTOCORRELATION

In this section, we introduce a class of random processes
with autocorrelation obeying a certain decaying rate bound.
This property is instrumental in the analysis of strong ergod-
icity. As mentioned in Introduction, conditions of the decaying
rate of the autocorrelation function have been introduced in
[24, pp. 94–96], [21], [22]. The key difference between these
conditions and our condition (6) is that (6) is invariant under
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uniformly stable linear filtering, downsampling, upsampling,
and additions.

Definition 3: Let be a random process. We
define

(6)

We say has -norm bounded autocorrelation [or simply
bounded autocorrelation (BAC)] if there exists such
that

We say has weakly bounded autocorrelation (WBAC) if
. The space of random processes with WBAC will

be denoted by

Further, a set of random processes is said
to have uniformly WBAC (UWBAC) if there exists a constant

such that

(7)

In this case, is called a uniform weak bound of .
Note that the definition of WBAC implies that BAC is a

stronger condition than WBAC. Also, the notation for the map
implies that it is a norm operator. These two facts are

stated in the two propositions below.
Proposition 1: If a random process has

BAC, it has WBAC.
Proposition 2: The map defines

a norm on , i.e., for all and , the
following conditions hold:

1) ;
2) ;
3) .
Random processes with WBAC enjoy the following impor-

tant properties.
Proposition 3: If a random processes has

UWBAC, then

Proposition 4: Consider two sets of random processes
with UWBAC. Denoting the elements

and by and , respectively, with . Then the set of
random processes

also has UWBAC.

Proposition 5: Let be a set of random pro-
cesses with UWBAC and be the impulse
response for a uniformly stable (time-variant) linear filter. De-
fine a filtered set of random processes with elements given
by

(Note that a set of random processes may be used to
generate each .) Then, is a set of random processes with
UWBAC.

Proposition 6: If is a set of random pro-
cesses with UWBAC and , then the set of random pro-
cesses generated from by downsampling or upsampling
with rate also has UWBAC.

V. STRONG ERGODICITY IN THE MEAN

In this section, we introduce the notion of strong ergodicity
in the mean and characterize random processes that are strongly
ergodic in the mean.

Definition 4: A random process is said to be
strongly ergodic in the mean if and the random
process defined by

(8)

has WBAC.
A random process which is strongly ergodic in the mean en-

joys the following properties:
Proposition 7: Let be a random process that

is strongly ergodic in the mean. Then, the following holds.

SEM1) is ergodic in the mean;
SEM2) if the random process is also

strongly ergodic in the mean, then is strongly
ergodic in the mean;

SEM3) the filtering of by a uniformly stable linear filter
yields a random process that is strongly ergodic in
the mean;

SEM4) the downsampling of by any factor yields a
random process that is strongly ergodic in the mean;

SEM5) the upsampling of by any factor yields a
random process that is strongly ergodic in the mean.

The next result shows that white random processes are
strongly ergodic in the mean.

Proposition 8: If a random process is white
and has uniformly bounded second moments, then it is strongly
ergodic in the mean.

Propositions 7 and 8 together imply the following theorem.
Theorem 1: Given a finite set of random processes

, , suppose each of them is white
and has uniformly bounded second moments. Let be a random
process formed from by any finite combinations of addi-
tions, downsampling, upsampling, and filtering by a uniformly
stable linear filter. Then is ergodic in the mean.

Remark 1: Note that Theorem 1 includes the possibility that
some of the random processes are deterministic signals in

(see Section II-A).
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VI. STRONG ERGODICITY IN THE CORRELATION

The aim of this section is to give a presentation of strong
ergodicity in the correlation, in a way similar to that of
Section V. However, this cannot be done straightforwardly.
Property SEM1) says that strong ergodicity in the mean implies
ergodicity in the mean, and SEM2) says that the addition of
two signals that are strongly ergodic in the mean yields another
signal that is also strongly ergodic in the mean. In contrast,
we show via in Example 4 below that the addition of two
independent signals, which are not mutually independent, can
yield a signal which is nonergodic in the correlation. Since the
definition of strong ergodicity in the correlation is expected to
imply ergodicity in the correlation, it is not possible to have a
condition analogous to SEM2).

1) Example 4: Consider the probability space .
For every , consider its binary expansion

Define the random process by

Define a new random process by

By construction, and are independent signals [15, Example 4,
p. 60] taking values in , although they are not mutually
independent. Define a new random process by

Then, for all

It follows that

Therefore, is not ergodic in the correlation.
The inconvenience above can be dealt with by adding an extra

requirement that the signals to be added should possess certain
joint ergodicity conditions. Therefore, we define strong ergod-
icity in the correlation as a condition for two signals.

Definition 5: Let be random pro-
cesses. Define a countable set of random processes

by

(9)

where

(10)

If and has UWBAC, then and
are said to be jointly strongly ergodic in the correlation. Also, a
random process is called strongly ergodic in the correlation if it
is jointly strongly ergodic in the correlation with itself.

Two random processes that are strongly ergodic in the corre-
lation enjoy the following properties.

Proposition 9: Let , be two random
processes which are jointly strongly ergodic in the correlation.
Then, the following holds.

SEC1) and are jointly ergodic in the correlation;
SEC2) If the random process is jointly

strongly ergodic in the correlation with both and
, then is also jointly strongly ergodic in the cor-

relation with ;
SEC3) The filtering of by a uniformly stable linear filter

yields a random process that is jointly strongly er-
godic in the correlation with ;

SEC4) The downsampling of by any factor yields a
random process that is jointly strongly ergodic in
the correlation with ;

SEC5) The upsampling of by any factor yields a random
process that is jointly strongly ergodic in the corre-
lation with .

As in the previous section, we provide a result showing the
relationship between independence and strong ergodicity.

Proposition 10: Let be random processes
with uniformly bounded fourth moments. We have the following
results:

i) if is independent, then it is strongly ergodic in the cor-
relation;

ii) if and are mutually independent, then and are
jointly strongly ergodic in the correlation.

Propositions 9 and 10 lead to the following result.
Theorem 2: Given a finite set of random processes

, , suppose each of them has uni-
formly bounded fourth moments and the set is mutually
independent. Let be a random process formed from
by any finite combinations of additions, downsampling, upsam-
pling, and filtering by a uniformly stable linear filter. Then is
ergodic in the correlation.

Remark 2: Remark 1 also applies to strong ergodicity in the
correlation.

Remark 3: Note that if a random process is Gaussian, then
the uniform boundedness of the fourth moments is equivalent
to that of the second moments.

Recall in Example 1 where we show that ergodicity in the cor-
relation can be destroyed by downsampling and linear filtering.
By Definition 5, this random process cannot be strongly er-
godic in the correlation, which in turn implies that as
defined in (9) does not have UWBAC. This is verified below.

2) Example 5: Consider the random process from Example
1. Let be defined as in (10). Then

It follows that
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Fig. 1. Subband identification scheme.

Consequently, for any and

This means that is not bounded. Therefore,
does not have UWBAC.

VII. APPLICATION OF THEOREM 2

An applications of Theorem 2 is discussed in this section,
namely, the analysis of strong and optimal convergence in a sub-
band identification system.

As mentioned in Introduction, subband identification is a
system identification method that uses multirate signal pro-
cessing techniques. The scheme is depicted in Fig. 1. The idea
is to identify the possibly time-variant linear system , by
splitting both signals and (called fullband signals) into
subbands, using two identical analysis filter banks

Then, these subband signals are downsampled, by a factor of .
The results are denoted by two vector signals

respectively. The subband parametric model is given by

where are finite-impulse-response (FIR) models of
tap size , parameterized by a vector . Its output is denoted
by

and the subband prediction error is defined by

Each subband model is tuned to minimize the power
of . An upsampler and a synthesis filter bank

are used to reconstruct the fullband prediction error .
The subband identification scheme above has been investi-

gated in details in [6], where technical conditions for strong and
optimal convergence of in each subband are provided. By
strong and optimal convergence, it means that

(11)

In the above, denotes the optimal parameter vector
up to time in the th subband, calculated based on a given
optimization criterion. The term denotes the power
of the signal , defined by

One of the technical conditions required to satisfy (11) is that
the signals and are individually ergodic and jointly
ergodic in the correlation. It is very easy to guarantee that the
time-variant system model is uniformly stable. There-
fore, in view of Theorem 2, the required condition is guaranteed
if the input signals and are assumed to be generated
from a set of mutually independent random processes (which
includes the possibility of deterministic signals) by any combi-
nations of uniformly stable linear filtering, downsampling, up-
sampling, and addition.

VIII. NOTE ON ASYMPTOTICALLY MEAN STATIONARY

RANDOM PROCESSES

In the Introduction, we pointed out that Birkhoff’s Ergodic
Theorem was generalized to the so-called AMS random pro-
cesses [18]. However, we claimed that the AMS condition can
be destroyed by time-variant operations. We justify this claim
in this section.

We start by introducing some notation and the definition
of AMS. Let denote the Borel -algebra on . Given a
random process , we call any an event
and denote its probability (or measure) by , i.e.,

Let denote the forward shift operator, i.e., .
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Definition 6 [18]: We say that a random process
is asymptotically mean stationary if

exists for every event (12)

The following example shows that the AMS condition may
not be preserved after uniformly stable (time-variant) linear fil-
tering. Moreover, the produced non-AMS random process can
still be ergodic in the mean and correlation.

1) Example 6: Consider an independent, stationary (and
therefore AMS), Gaussian random process ,
such that, for all , the probability distribution of
is given by

Also, consider the uniformly stable linear filter

or

Now, we form a new random process by filtering through
. Then, for all , the probability distribution of

is given by

Consider the event
, and let

Then, we get

where denotes the indicator function of the set , i.e.,

It is straightforward to verify that the limit above does not exist.
This implies that the AMS property of is lost after uniformly
stable linear filtering. However, according to Propositions 8 and
10, is strongly ergodic in the mean and correlation (since it
is independent and has uniformly bounded second and fourth
moments). Also, is clearly uniformly bounded, so, according
to Propositions 7 and 9, is strongly ergodic in the mean and

correlation, and therefore, ergodic in the mean and correlation.
In particular

IX. CONCLUSION

In this paper, we have introduced two new notions of ergod-
icity, namely strong ergodicity in the mean and strong ergodicity
in the correlation. These notions are used to provide an ade-
quate theoretical framework for the stochastic analysis of multi-
rate linear systems, and are motivated by the fact that ergodicity
in the mean (or correlation) can be destroyed by a number of
transformations involved in this kind of system. The key prop-
erties of strong ergodicity in the mean (or correlation) are that it
implies ergodicity in the mean (or correlation), and that it is in-
variant under the transformations involved in a multirate linear
system, i.e., uniformly stable linear filtering, downsampling, up-
sampling, and addition (in the case of strong ergodicity in the
correlation, the signals to be added need also be jointly strongly
ergodic in the correlation). We have shown that independent
random processes, including deterministic bounded signals, are
strongly ergodic in the mean (or correlation) and that mutually
independent random processes are jointly strongly ergodic in
the correlation. Therefore, all the signals generated from these
signals by the transformations mentioned above are strongly
ergodic in the mean (or correlation). As a consequence, most
commonly used signals in multirate applications are strongly er-
godic in the mean (or correlation) and thus ergodic in the mean
(or correlation). It follows that a lot of stochastic analysis results
for single-rate systems, requiring the ergodicity of signals in the
system, can be readily applied to multirate systems.

APPENDIX I
PROOFS OF SECTION IV

Proof of Proposition 1: Suppose has BAC. Then

Hence, has WBAC.
To prove Proposition 2, we need Lemmas 1 and 2 below.

Lemma 1: If , then
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Proof: For every , the random variables and
belong to . Since is a Hilbert space, it
has an orthonormal basis . Then

(13)

where the first equality follows from Parseval’s identity [27,
Theorem 4.13(e), p. 17] and the last inequality follows from
Hölder’s inequality [28, p. 26]. It follows that

A similar inequality above applies to the last term in (13). Sub-
stituting these inequalities into (13), we obtain the required re-
sult.

Lemma 2: Suppose . Then,
for all . In particular, has uniformly bounded

second moments.

Proof: We have that

Proof of Proposition 2:
N1) It follows immediately from (6).
N2) For fixed and , we use the notation

Let . Then

where the first inequality follows from the triangular in-
equality for the 2-norm, and the second inequality fol-
lows from Lemma 1. Then, since , it
follows that

N3) From Lemma 2, we have that implies that
, for all , and therefore .

In order to prove Proposition 3, we need Lemmas 3 and 4,
which are proved by following the proof of Rajchman’s SLLN
[15, Theorem 5.1.2, p. 108].

Lemma 3: Let be a random process with

(14)

then

(15)

Proof: From the Chebyshev inequality [15], we have

Then, (14) implies that

(16)

Now, by the Borel–Cantelli Lemma [15], (16) implies that

and (15) follows from Theorem 4.2.2 in [15].
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Lemma 4: Suppose a random process has uniformly
bounded second moments, and there exists such that

(17)

where

(18)

Then

(19)

Proof: Let and define

We split the proof into three steps.
Step 1: We have

Then

Applying Lemma 3 on , we get

(20)

Step 2: Let be the bound of the second moments of .
We have

It follows that

Applying Lemma 3 on , we have

(21)

Step 3: Given any , let be such that
. Then

Hence, (19) follows from (20) and (21).
Proof of Proposition 3: Let .

Then

where the second inequality follows from [28, p. 26, eq. (2.9.1)].
Also, from Lemma 2, has uniformly bounded second mo-
ments. Then, the result follows from Lemma 4.

Proof of Proposition 4: From Proposition 2, we have, for
every

where and are the uniform weak bounds of and ,
respectively. Hence, has UWBAC.

Proof of Proposition 5: Since is uniformly stable,
there exists such that for all .
Then,

Using the triangular inequality, it is straightforward to verify
that (see the equation at the bottom of the next page). By Lemma
1, we get
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Therefore

where is the uniform weak bound of .
Proof of Proposition 6: Let with uniform weak

bound . We analyze downsampling and upsampling sepa-
rately.

Downsampling: Let . We have

Upsampling: Let . Since most of the of are zero
valued, we have that the sum

can be written as , where and

are given by

where and denotes the largest integer
smaller than or equal to . Now, considering that , it
follows that

APPENDIX II
PROOFS OF SECTION V

Proof of Proposition 7: If is such that
has WBAC, then, Proposition 3 implies that (3) is satisfied, i.e.,

is ergodic in the mean. Therefore, it suffices to show that the
WBAC property is preserved under addition, uniformly stable
linear filtering, downsampling and upsampling.

If is also such that has WBAC, then,
since , it follows from Proposition 4
that also has WBAC.

Let be the impulse response of a
uniformly stable linear filter and let be given by

Then

where the exchange of the expectation with the infinite sum in
the second equality is justified by continuity of the functional

(note that
since and has uniformly bounded

second moments). It follows from Proposition 5 that has
WBAC.

The downsampling and upsampling properties follow from
Proposition 6.

Proof of Proposition 8: Let be the uniform bound of
the second moments of , and let be defined as in (8). We
have that

(22)

Also, since is white, if ,

(23)

Equations (22) and (23) imply that the conditions for Propo-
sition 1 hold for . Hence, has WBAC and therefore is
strongly ergodic in the mean.
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APPENDIX III
PROOFS OF SECTION VI

Proof of Proposition 9: Consider the set of random pro-
cesses defined by

It is obvious that this set has UWBAC. It follows from Proposi-
tion 3 that and are jointly ergodic. Thus, it suffices to show
that the UWBAC property for in (9) is preserved under
addition, uniformly bounded filtering, downsampling and up-
sampling.

The addition property follows from the fact

and Proposition 4.
To see the filtering property, we let

be the impulse response of a uniformly stable linear filter. The
filtered is given by

It follows that

The exchanging of the expectation with the infinite sum in the
second equality above is justified by continuity of the functional

(note that
since and has uniformly bounded

second moments). Using Proposition 5, we know that the set of
random processes has UWBAC.

The downsampling property holds because for any
, we have

for all admissible , , and , which implies that has
UWBAC.

Similarly, the upsampling property is confirmed as follows.
Let and , and . Let

and be two sets
of integers that satisfy

(24)

We consider two cases. In the first case, there is no integer so-
lution of (24), i.e., . It follows that

for all

Therefore, has WBAC. In the second case, (24)
admits an integer solution. In this case, . Therefore, we
can write

and

for some and . It can be verified that

if

if

or, equivalently,

where is the forward shift operator. Now, the set of random
processes has
UWBAC. Moreover, from Proposition 6, the operator
preserves the UWBAC property. Finally, the operator is a
special uniformly stable linear filter. By Proposition 5,
has UWBAC.

Proof of Proposition 10: We only prove Part i). Part ii) can
be shown using a similar but simpler argument. To show i), let

be a bound of the fourth moments of . Then, for every
, it can be verified that

(25)

(The proof of (25) requires the use of Hölder’s inequality [15,
p. 50, eq. (18)] and Lyapunov’s inequality [15, p. 50, eq. (21)].)
Also, it is straightforward to verify that, for every and

, there exists such that, if , then

Using [15, p. 54, Theorem 3.3.2], the random variables
and are independent

when . It follows that

(26)

Since has uniformly bounded fourth moments,
. Therefore, (25) and (26) imply

that the conditions for Proposition 1 hold. Subsequently,
has UWBAC, and therefore is strongly ergodic in the corre-
lation.

Proof of Theorem 2: It follows from Proposition 10 that
every member in is strongly ergodic in
the correlation and every pair in jointly
strongly ergodic in the correlation. We now claim that all the



MARELLI AND FU: ERGODIC PROPERTIES FOR MULTIRATE LINEAR SYSTEMS 473

operations on the signals , , as mentioned in
the theorem, can be decomposed into those in SEC2)–SEC5).
For example, if is downsampled from some with

, then this operation can be decomposed into two applications
of SEC4). In the first application, we take with any

and . It follows that is jointly strongly
ergodic in the correlation with every . In the
second application of SEC4), we take and , which
yields that is strongly ergodic in the correlation. Thus, the new
set has the same ergodicity properties
as has. This procedure can continue until
the required random process is generated. By induction, is
also strongly ergodic in the correlation.
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