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ABSTRACT 
This paper considers carrier phase recovery in 

transmission systems with an iteratively decodable 
error-control code (turbo codes, low density parity 
check (LDPC) codes), whose large coding gains 
enable reliable communication at very low signal-
to-noise ratio (SNR). We compare three types of 
feedback phase synchronizers which are all based 
upon the maximum likelihood (ML) estimation 
principle: a data-aided (DA) synchronizer, a non-
code-aided (NCA) synchronizer and an iterative 
code-aided (CA) synchronizer.  

We introduce a blockwise forward-backward 
recursive phase estimator and we show that the 
mean square phase error (MSPE) of the NCA 
synchronizer equals that of the DA synchronizer 
when the carrier phase is constant and the loop 
filter gain is the same for both synchronizers. 
When the signal is affected by phase noise, the 
NCA synchronizer (as compared to the DA 
synchronizer) yields a larger MSPE due to phase 
fluctuations. We also show that, at the normal 
operating SNR of the considered code, the 
performance of the CA synchronizer is very close 
to that of a DA synchronizer that knows all 
transmitted symbols in advance.  

1. INTRODUCTION 
The last decade has seen the development of 

powerful error correcting codes such as turbo codes 
and LDPC codes. The impressive bit error rate (BER) 
performance of the associated iterative decoding 
processes implicitly assumes coherent detection, 
meaning that the carrier phase must be recovered 
accurately before the data is decoded. However, since 
the decoder usually operates at extremely low SNR 
values, accurate carrier recovery is a challenging task. 
Numerous efforts to tackle this problem have resulted 
in a myriad of different receivers [1]-[10].  

In [1],[2] the phase estimator ignores error-control 
coding and assumes that the transmitted symbols are 
mutually independent (NCA operation), whereas in 
[3]-[10] the code properties are exploited in the phase 

estimation process (CA operation). In [11] it was 
shown that the second approach is potentially more 
accurate.  

The iterative scheme in [5], which is based on the 
expectation-maximization algorithm, is optimal in the 
sense that it converges to the true ML carrier phase 
estimate [12],[13]. The algorithm does not require 
modification of the decoder operation, and the 
resulting receiver is only marginally more complex 
than the conventional receiver that a priori knows the 
exact value of the phase. Unfortunately, its 
performance rapidly degrades in the presence of a 
time-varying carrier phase.  

In [2], [6], [7], [8] and [10], feedback phase 
estimation has been adopted to cope with carrier phase 
variations. The ML-based receiver proposed in [10] 
combines the low complexity from the approach in [5] 
with the ability to automatically track a slowly varying 
carrier phase. Simulation results in [10] show the 
interesting potential of this approach. As opposed to 
the algorithms in [2], [6] and [7], the derivation of the 
phase estimation algorithm stems directly from the 
ML criterion and can therefore be seen as the feedback 
counterpart of the receiver presented in [5]. Moreover, 
its computational complexity is lower than that of the 
algorithms in [8] and [9], which modify the decoder 
operation by either taking into account the phase 
statistics or using per-survivor phase estimates inside 
the decoder.  

This contribution zooms in on the approach that 
was adopted in [10]. By means of theoretical analysis 
and computer simulations we compare the tracking 
performances resulting from the iterative CA 
synchronizer from [10], the DA synchronizer which 
knows all transmitted symbols in advance, and the 
NCA synchronizer which neglects the underlying 
encoding rule. It is shown that CA feedback phase 
estimation outperforms NCA feedback estimation 
when the phase to be estimated varies with time; when 
the carrier phase is constant over the observation 
interval, both synchronizers yield essentially the same 
MSPE. We also show that, at the normal operating 
SNR of the considered code, the performance of the 
CA synchronizer is very close to that of a DA 
synchronizer that knows all transmitted symbols in 
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advance. This illustrates the optimality of the CA 
synchronizer. 

2. MAXIMUM LIKELIHOOD CRITERION 
We consider the transmission of an arbitrary 

sequence of complex-valued symbols 
),...,,( 110 −= Kaaaa  over an additive white Gaussian 

noise (AWGN) channel. The joint probability mass 
function of the symbols { ka }  is denoted as )(ap . 

Assuming linear modulation using square-root Nyquist 
transmit pulses, and matched filtering at the correct 
decision instants, the discrete-time baseband 
observation is given by  

k
j

kk wear += θ , k = 0, ..., K-1 (1) 

where θ  denotes the unknown carrier phase1, and the 
sequence { kw }  consists of independent zero-mean 

complex-valued Gaussian noise terms; [ ]kwRe  and 

[ ]kwIm  are statistically independent, and have a 

variance equal to N0/2.  

Let us denote by θ~  a trial value of the true carrier 
phase θ  that has to be estimated by the synchronizer. 
Then, the ML estimate of the carrier phase is the value 

of θ~  that makes zero the derivative of the log-

likelihood function ( ) ( ))~
;(ln

~ θθ rpL =  with respect to 

θ~  [14]. The probability density )
~

;|( θarp  of r 

resulting from (1), given the data sequence a  and a 

trial value θ~  of the carrier phase, is (within a factor 

not depending on )
~

;( θa ) given by 
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The likelihood function )
~

;( θrp of the carrier phase is 

obtained by averaging )
~

;|( θarp  over the symbol 

vector a , i.e. �=
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aarr )()
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;( ppp θθ . From a 

similar reasoning as in [5] and [11], the derivative 

( )θ~'L  of the log-likelihood function with respect to θ~  

can be manipulated into the following form: 
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1 The carrier phase is initially assumed to be constant over the 
observation interval. Later the observation model will be extended 
to allow a time varying carrier phase. 

is the a posteriori expectation of the symbol ka  

conditioned on r  and θ~ , with ]
~

;|Pr[ θrmk sa =  

denoting the marginal a posteriori probability (APP) of 
the symbol ka , and },...,,{ 110 −Msss  the set of 

constellation points with symbol energy 
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When the data symbol vector a  consists of 
known pilot symbols ),...,,( 1,1,0, −Kppp aaa , we obtain 

]
~

;|Pr[ θrmk sa =  equal to 1 for kpm as ,=  and zero 

otherwise, yielding )
~

,( θrkA  = ap,k in (4). The log-

likelihood function that correspond to the transmission 

of pilot symbols is denoted )
~

(θpsL . 

In the case of uncoded transmission, the symbols 
{ ka }  are statistically independent, so the APPs of ka  

reduce to:   
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where  
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As (5) depends only on kr , we will denote the 

corresponding a posteriori average of the symbol ka  

as ).
~

;( θkk rA  The log-likelihood function that 

corresponds to the transmission of statistically 

independent symbols { ka }  is denoted )
~

(θindL . 

This paper considers systems with an iteratively 
decodable error-control code (turbo-, LDPC-codes). 
The data symbol vector ),...,,( 110 −= Kaaaa  is 

obtained from the encoding of a sequence of 
information bits and a proper mapping of the coded 
bits on the signal constellation. In this case, the APPs 
in (4) are a function of all components of the vector r . 
To avoid the computational complexity associated 
with their exact evaluation2, the marginal APPs are 
approximately computed by means of the iterative 
application of the sum-product (SP) algorithm on a 
factor graph with cycles [15]. If the cycles in the graph 
are large (which is reasonable for well-designed turbo 

                                                 
2 In principle, the exact marginal APPs ]

~
;|Pr[ θrka  can be 

obtained as a summation of joint APPs ]
~

;|Pr[ θra , which in turn 

can be computed from (2) and Bayes' rule. However, the 
computational complexity of this procedure increases exponentially 
with the sequence length K. 
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and LDPC codes), this iterative procedure (after 
convergence) yields marginal APPs that are very close 
to the correct marginal APPs. The corresponding log-

likelihood function is denoted ( )θ~codedL . 

3. ML-BASED PHASE TRACKING FOR CODED 
SIGNALS 

The general structure of a first order discrete-time 
feedback carrier synchronizer or phase-locked loop 
(PLL) is shown in Figure 1 [16]. The phase estimate is 
updated once per symbol interval, according to the 
following forward3 recursion 

kkk xλθθ +=+
ˆˆ

1   (7) 

In (7), λ  is the loop filter gain, and kx  denotes the 

phase error detector (PED) output. The recursion starts 

with an initial phase estimate 0θ̂ , that can be obtained 

from a feedforward synchronizer operating on a short 
pilot sequence [16]. 

 
Figure 1: General structure of a discrete-time feedback carrier 

synchronizer 
 

In the following, we consider three types of ML-

based PEDs. The DA PED (based on )
~

(θpsL′ ) 

assumes that all data symbols are known. The NCA 

PED (based on )
~

(θindL′ ) assumes that the data 

symbols are independent, whereas the CA PED (based 

on )
~

(θcodedL′ ) takes the code properties into account. 

We obtain from (3) that 
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Comparison of the PED outputs for NCA  and CA 
operation with that for DA operation indicates that the 
a posteriori mean kA  can be considered as a soft 

decision (SD) regarding ka , based upon the received 

sample kr  or the received sample sequence r  and the 

phase estimate kθ̂ . Note from (8) that the DA and the 

NCA PED output depend only on )ˆ,( kkr θ ; this is in 

contrast with the CA PED output whose computation 

                                                 
3 We speak of a forward recursion when the phase updating is 
performed from the first symbol interval to the last. 

depends on the entire vector r : all K samples 

),...,,( 110 −Krrr  have to be rotated over an angle kθ̂− , 

and fed to the SP algorithm for producing the SD 

)ˆ,( kkA θr . Hence, in the case of CA operation, the 

entire received block must be processed K times, 
whereas the received block is processed only once in 
the case of DA or NCA operation.  

In order to avoid the high computational 
complexity resulting from the CA PED, the following 
iterative CA PLL has been proposed in [10]. During 
the i-th iteration, the FB synchronizer generates 

estimates )ˆ,...,ˆ,ˆ( )(
1

)(
1

)(
0

i
K

ii
−θθθ  essentially according to 

(7), but with the PED output given by  
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E
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where )ˆ,...,ˆ,ˆ(ˆ )1(
1

)1(
1

)1(
0

)1( −
−

−−− = i
K

iii θθθθθθθ , and )ˆ,( )1( −i
kA θθθθr  

is the a posteriori expectation of the symbol ka  

conditioned on r  and )1(ˆ −iθθθθ . Hence, from the phase 

vector )1(ˆ −iθθθθ , the received vector r  is processed to 

compute )ˆ,( )1( −i
kA θθθθr  for 1...,,1,0 −= Kk , after which 

the PLL generates the phase vector )(ˆ iθθθθ . The iterative 

process is initialized by means of a phase vector )0(θ̂θθθ , 
that can be obtained from a PLL with NCA operation. 
When convergence is achieved after n  iterations, the 
vector ),...,,( 110 −= Krrrr  has been processed n  times. 

When Kn << , considerable savings in computation 
time have been obtained as compared to the non-
iterative PLL that uses the CA PED output from (8). 
Moreover, when applied to a turbo or LDPC receiver 
with iterative MAP detection/decoding, the proposed 
phase estimation/compensation scheme yields very 
low additional complexity when the synchronizer 
iterations are merged with the decoder iterations 
[4],[5],[10], i.e., after each synchronizer iteration only 
one decoder iteration is performed without resetting 
extrinsic probabilities. 

4. Tracking Performance Analysis 

4.1 Analytical Results 
Computing the exact tracking performance of the 

iterative CA feedback phase estimator is much more 
difficult than for the NCA and DA synchronizers, 
because of the iterations involved and the dependence 
of the soft decisions on the entire phase vector. Instead 
we will proceed assuming that, at the normal operating 
SNR of the considered error-correcting code, the 
MSPE resulting from the iterative CA phase estimator 
converges to the MSPE resulting from a fictitious DA 

PED λ 1/(z-1) 
}{ kr=r  }ˆ{ˆ

kθ=
�

 kx  
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phase estimator that knows all data symbols in 
advance. 

A motivation for this assumption reads as follows. 
Note that in (8) the CA PED output reduces to the DA 

PED output when the APP ]ˆ|Pr[ km ;s θr  is one for 

km as =  and zero otherwise. This indicates that the 

CA PLL essentially behaves like the DA PLL, 

provided that the ratios )ˆ;|,( kkm asR θr  = 

]ˆ;|Pr[/]ˆ;|Pr[ kkkm as θθ rr  are likely to be much 

smaller than 1 for all km as ≠  and all 1...,,1,0 −= Kk . 

Let us introduce the indicator function )(kI y , which 

equals one when )ˆ;|,( kkm asR θr  ≥ y  for at least one 

km as ≠ , and equals zero otherwise. Then we obtain  
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where ξ denotes the set of legitimate coded symbol 
sequences of length K . We assume that )(ap  = 

KM ρ−  for a ∈ ξ and )(ap  = 0 otherwise, where the 

quantities ρ  and M  denote the rate of the code and 

the number of constellation points, respectively. With 

y = 1 and θθ =k
ˆ  for all k , equation (10) is nothing 

but the (very small) symbol error rate resulting from 
an optimal maximum a posteriori probability symbol 
decoder [17]. Hence, for small phase errors, the 
fraction of symbol intervals for which 1)(1 =kI  is 

very small, so that we can safely assume that the CA 
PLL operation closely resembles the DA PLL 
operation, at the normal operating SNR of the code. 
 

We will now compute the performance of the 
DA and the NCA phase estimator. Assuming that at 
the low SNR supported by capacity-approaching codes 
it is not possible to compute reliable data decisions 
without taking into account the code structure, we 
expect the NCA PLL to perform significantly worse 
than a DA PLL with perfect knowledge on the data 
symbols.  

In order to allow a time varying carrier phase, 
the observation model (1) is modified into 

k
j

kk wear k += θ , k = 0, ..., K-1 (11) 

where kθ  is the phase during the k -th symbol 

interval. An often used phase noise (PN) model is 
based on a discrete Wiener process (random walk) 

kkk ∆+= −1θθ   (12) 

characterized by independent and identically 
distributed (i.i.d.) Gaussian increments k∆  with zero 

mean and standard deviation ∆σ , descriptive of the 

phase noise intensity. It is assumed that { kw }  and 

{ k∆ }  are statistically independent, and that 0θ  is 

uniformly distributed in [-π,π]. We define the phase 
estimation error during the k -the symbol period as 

kkk θθφ ˆ−= .4  
The DA and NCA PED outputs kx  from (8) that 

depend only on )ˆ,( kkr θ  can be decomposed as the 

sum of their average )( kg φ  and their zero-mean 

statistical fluctuation )( kkN φ :  

)()( kkkk Ngx φφ +=  (13) 

with  
][)(][)( kkkkkk xExNxEg −== φφ  (14) 

denoting the PED characteristic and the loop noise of 
the synchronizer, respectively. We show in the 
Appendix that 0)0( =g . Assuming small phase 

errors, the following linearization applies [16]: 
)0()0(' kkk Ngx += φ  (15) 

where )0(g ′  is the slope of the PED characteristic and 

)0(kN  is the loop noise at 0=kφ . Substituting (15) 

into (7) we obtain: 
( ) )0()0(1 11 kkkk Ng λφλφ −∆+′−= ++  (16) 

where E[∆k∆k’] = '
2

kk−∆δσ . We show in the Appendix 

that  
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and ( ) 1=∞NCAS . Solving (16) yields,  
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The phase error (19) at the output of the PLL consists 
of two contributions, that are caused by the noise 
(AWGN, PN) affecting the observation, and by the 
initial phase error 0φ , respectively. In all practical 

                                                 
4 This definition of the estimation error agrees with 
the framework in [16]. It should be noted, however, 
that the estimation error is usually defined as the 

inverse of kφ , i.e. according to kk θθ −ˆ . 



 5 

cases the quantity )0('1 gλ−  is smaller than 1, so that 

the phase error (19) exhibits a decaying acquisition 
transient near the start of the observation interval. 
Assuming a uniformly distributed initial phase error, 
the mean acquisition time ( acqT ) in the absence of 

noise is well approximated by [16] 

)0('
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2
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T

L
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λ
≅=  (20) 

where TBL  is the one-side bandwidth (normalized to 

the symbol rate) of the closed-loop filter with impulse 

response ( )k
k ggh )0('1)0(' λλ −=  and z-transform 

( ))0('1/)0(')( gzgzH λλ +−= . We have  
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The approximation in (20) and (21) is valid for small 
λ . It follows from (20) that a larger λ  results in a 
faster acquisition. The same goes for a larger )0('g . 

At the end of the acquisition period the phase error 
enters the tracking mode, during which (19) can be 
safely approximated by  

( ) ( )�
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=
−−−−

− +∆=
0

11
1 )0()0('

m
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It is easily seen from (22) that the steady state phase 
error has zero mean and that the steady state MSPE is 
given by  

PNAWGN MSPEMSPEE +=][ 2φ  (23) 

with 
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The linearized steady state MSPE from (24) consist of 
two contributions: an additive noise contribution and a 
phase noise contribution. The PN contribution is 
inversely proportional to the slope of the PED 
characteristic, whereas the AWGN contribution does 
not depend on the slope of PED characteristic. This is 
because, for given values of λ  and Es/N0, the 
reduction of the PED slope )0('g  of the NCA PLL (as 

compared with the DA PLL) is precisely compensated 
by the reduction of the loop bandwidth TBL2  and of 

the phase noise variance ( )[ ]2)0(kNE . A larger value 

of λ  yields a larger AWGN contribution but a smaller 
PN contribution, and vice versa. When the carrier 
phase is time-invariant ( ∆σ  = 0), the MSPE can be 

made arbitrarily small by reducing the value of λ . A 

small λ , however, implies a large acquisition time. 
When the carrier phase is time-varying ( ∆σ  � 0), there 

exists an optimal value for λ  that minimizes the 
steady state MSPE. Solving this optimization problem 
yields 
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where optλ  and minMSPE  denote the optimal value for 

λ  and the corresponding minimum value for the 
linearized steady state MSPE, respectively.  

4.2 Numerical Results and Discussion 
By means of example we consider a BPSK signal 
constellation, an observation interval of K=999 
symbol periods and a rate 1/3 turbo code. The turbo 
encoder consists of the parallel concatenation of two 
identical non-recursive systematic convolutional 
encoders with generator polynomials (21)8 and (37)8 in 
octal notation, separated by a pseudo-random 
interleaver of size 333 bits. Figure 2 shows the BER 
after 1, 2 and 10 iterations of the coherent turbo 
decoder/detector.  

In Figure 3, the slope ��
�

�
��
�

�

0N

E
S s

NCA  of the NCA 

PED is plotted against the signal-to-noise ratio Es/N0. 
Monte Carlo simulation techniques were used to 
evaluate the statistical expectation involved in the 

expression of ��
�

�
��
�

�

0N

E
S s

NCA  (see equation (A10) of the 

Appendix). We observe that, at the normal operating 
SNR of the turbo code (say, BER<10-3), the slope of 
the NCA PED characteristic is strictly smaller than 1, 
i.e. than is the slope of the DA PED. 

The tradeoff on λ � in case 0≠∆σ  is illustrated in 

Figure 4 showing the numerical evaluation of (24) for 
Es/N0 = -2.77 dB, which is in the operating range of 
the turbo code from Figure 2, and ∆σ = 2 degrees. As 

the slope of the DA PED is larger than that of the 
NCA PED, the optimized DA PLL yields a smaller 
acquisition time and a smaller MSPE than the 
optimized NCA PLL. The optimal loop filter gain λ  
is around 4.75 x 10-2 with the NCA PED, and reduces 
to 3.6 x 10-2 with the DA PED. The minimum MSPE 
for the NCA PLL is a factor of 0.57 larger than the 
minimum MSPE for the DA PLL. This is consistent 

with (25) and with the behavior of ��
�

�
��
�

�

0N

E
S s

NCA  

depicted in Figure 3 
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Figure 2: BER of coherent turbo receiver for a rate 1/3 turbo 

coded BPSK signal in AWGN 
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Figure 3: slope of the NCA PED characteristic at 0=kφ , in the 

case of BPSK 
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Figure 4: linearized steady state MSPE as a function of the loop 

parameterλλλλ    

 
In Figure 5 we have plot the simulated MSPE at 

the output of the DA, the NCA and the iterative CA 
PLL as a function of the symbol index k. We have 
taken Es/N0 = -2.77 dB and λ  = 0.04. The carrier 
phase is assumed to be either constant over the 
observation interval (CCP), or to perform a random 
walk with ∆σ  = 2 degrees (WPN). The iteration i=0 of 

the CA PLL is an NCA recursion. In both cases, we 
find that the MSPE of the iterative CA PLL becomes 
essentially equal to the MSPE of the DA PLL after 
only 2 iterations (i.e. for iterations i>1). This confirms 
the validity of the assumption made at the beginning 
of Section 4.1. As the slope of the NCA PED is 
smaller than that of the DA PED, the acquisition time 
and the PN contribution to the tracking MSPE are 
larger for NCA operation than for DA operation (CA 
operation, i>1). Conversely, the AWGN contribution 
to the tracking MSPE, is the same for NCA operation 
and for DA operation (CA operation, i>1). This 
implies that, when the carrier phase is time-invariant 
(CCP), the tracking MSPE can not be reduced by 
performing, after the initial NCA recursion, iterations 
in the CA mode. 
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Figure 5: MSPE of a first order PLL with λλλλ = 0.04, tracking a 

constant carrier phase (CCP) or Wiener phase noise with σσσσ∆∆∆∆ = 2 
degrees (WPN) 

5. FORWARD-BACKWARD PHASE UPDATING 
During the acquisition period at the beginning of the 
observation interval (see Figure 5) the MSPE may 
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assume large values. Assuming that the acquisition 
transient is no longer present at the end of the 
observation interval, accurate phase estimates at the 
beginning of the observation interval can be obtained 
by carrying out an additional recursion, using as initial 
phase estimate the estimate obtained at the end of the 
first recursion and updating the phase estimates from 
the last symbol to the first according to the following 
backward recursion 

kkk xλθθ +=−
ˆˆ

1          (backward recursion) (26) 

The result of this procedure is shown in Figure 6 for a 
first order DA PLL with λ = 0.04, and for Es/N0 = -
2.77 dB and ∆σ  = 0. For a DA PLL or a NCA PLL, 

the edge effect that arises near the end of the 
observation interval can be explained as follows. 
Substituting (15) into (26) we obtain: 

( ) )0()0('11 kkkk Ng λφλφ −∆−−=−  (27) 

with [ ] '' )0(')0()0( kkkk gNNE −= δ ,  

[ ] '
2

' kkkkE −∆=∆∆ δσ  and )0('g  given by (18). Taking 

into account that 1−Kφ  is given by (22) with Kk = , 

solving (27) yields 

( ) ( )

( )

( ) ( )�
�

�
�
�

� +∆−

−+

��
�

�
��
�

�
+∆−−=

�

�

∞

=
−−−−

−

=
+++

∆

∆

0
11

1

0
1

)0()0('1

)0('1

)0()0('1

m
mKsmK

m

k

k

m
mkmk

m
k

NEg

g

Ng

λλ

λ

λλφ

(28) 

where kKk −−=∆ )1( . Approximating ( )ng )0('1 λ−  

by 0 for 1−≥ Kn  and taking into account that the 
noise samples are mutually independent, it can be 
verified that 

( )
( )( )

∆

∆

−−+

+=

kPN

kAWGNk

fgMSPE

fMSPEE

)0('11

1])[(
2

2

λλ

φ
(29) 

where 

( ) 12)0('1)0('2 −−= n
n gngf λλβ  (30) 

and AWGNMSPE  and PNMSPE  are given by (24). The 

terms proportional to 
∆kf  do not occur in (23) and are 

a result of the reusing of the samples. The function nf  

is plot in Figure 7, for 1)0(' <<gλ . For 0=n , it 

equals zero. As the product of a linearly increasing 
function and an exponentially decreasing function, nf  

first increases and then decreases with increasing n . 
For infinite n , nf  converges to zero. This explains 

the shape of the edge effect in the MSPE near the end 
of the observation interval (where ∆k  is small). Near 

the start of the observation interval (where ∆k  is 

large), 
∆kf  is negligibly small and (29) reduces to 

(23). Assuming that ( ) 12)0('1 −− ngn λ  is essentially 

zero for 2/Kn ≥ , the edge effect can be 
circumvented by taking as final phase estimates the 

estimates at instants 1
2

,...,1,0 −= K
k  from the 

forward recursion and those with indices 

1,...,1
2

,
2

−+= K
KK

k  from the backward recursion.  

In the above we have considered only two 
successive recursions, one in the forward and one in 
the backward direction, but the forward-backward 
phase updating principle is easily extended to a higher 
number of recursions. In order to reduce the effect of 
acquisition transients, the iterative CA PLL is 
modified as follows. Instead of performing only 
forward recursions, an alternation of forward (for 
iterations i = 0, 2, 4, ...) and backward (for iterations i 
= 1, 3, 5, ...) recursions is carried out, with each 
recursion using as initial phase estimate the estimate 
obtained at the end of the previous iteration. 

Let us reconsider the turbo-coded BPSK signal 
from Section 4. Figure 8 shows the MSPE 
performance of the NCA and CA feedback phase 
estimators with forward-backward phase updating and 
λ = 0.04, for several values of the phase noise variance 

2
∆σ  as a function of Es/N0. The simulated MSPE 

(continuous lines) is compared with the linearized 
analytical result from Section 4 (dashed lines). The 
discrepancy (which is quite small for Es/N0 larger than 
about -4 dB) between the simulations and the 
computations is the result of the random occurrence of 
non-linear phenomena such as cycle slips and hang-
ups [16]. In the absence of phase noise, the CA 
algorithm yields essentially the same MSPE as the 
conventional NCA algorithm since the latter is given 
‘more time’  by the forward-backward recursion to let 
its transient fade out. In the presence of phase noise, 
the MSPE of the CA synchronizer is lower than that of 
the conventional NCA algorithm. The relative 
advantage of the CA synchronizer over the NCA 
synchronizer increases with the value of the phase 
noise variance. It speaks for itself that the estimation 
accuracy increases with Es/N0.  
 



 8 

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0 200 400 600 800 1000

symbol index k

m
ea

n
 s

q
u

ar
e 

p
h

as
e 

er
ro

r 
(M

S
P

E
)

forward recursion

backward recursion

 
Figure 6: MSPE of a first order DA PLL with λ  = 0.04, tracking 

a constant carrier phase and using forward-backward phase 
updating 
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Figure 8: MSPE of a first order ML-based PLL with λλλλ = 0.04.  CA 

operation versus NCA operation, Simulation versus analytical 
computation. 

6. CONCLUSIONS 
This contribution has studied the effectiveness of CA 
and NCA ML-based feedback phase synchronizers at 
the low SNRs supported by powerful iteratively 
decodable codes such as turbo codes or LDPC codes. 
Under normal operating conditions, the MSPE 
resulting from the iterative CA synchronizer converges 
to the MSPE resulting from a DA synchronizer that 
knows all data symbols in advance. This illustrates the 
optimality of the CA ML-based feedback phase 
synchronizer. By virtue of a forward-backward 
multiple-recursion estimator, the linearized MSPE of 
the NCA feedback synchronizer equals that of the CA 
feedback synchronizer, when the carrier phase is 
essentially constant over the observation interval and 
the loop filter gain is the same for both synchronizers. 
Conversely, the presence of Wiener phase noise results 
in a NCA feedback synchronizer MSPE that is larger 
than the CA feedback synchronizer MSPE. The NCA 
synchronizer also yields a larger acquisition time than 
the CA synchronizer. However, assuming that the 
acquisition transient is shorter than the observation 
interval, the effect of the acquisition transient on the 
phase error can be circumvented by carrying out an 
alternation of forward and backward phase updating 
recursions, with each recursion using as initial phase 
estimate the estimate obtained at the end of the 
previous recursion. 

APPENDIX 
We first consider NCA feedback phase 
synchronization. Taking in equation (3) r = rk and 

kθθ ˆ~ = , we find that the NCA PED output from (8) 

can be rewritten as follows  

( )
k

kk

s

j
kkkk

s
k

d

rpd

E

N
errA

E
x k

θ
θθ θ

ˆ
)ˆ;(ln

2
])ˆ,(Im[

1 0ˆ* == − (A1) 

where the probability density )ˆ;( kkrp θ  is (within an 

irrelevant factor) given by �
−

=

1

0

ˆ
),(

1 M

i
k

j
i resF

M
kθ  with 

),(
ˆ

k
j

i resF kθ  as in (6).  

The decomposition (13)-(14) of (A1) as the sum of the 
PED characteristic )( kg φ  and the loop noise )( kkN φ  

yields  

( )
�
�



�

�
�
�

�
=

k

kk

s
k

d

rpd
E

E

N
g

θ
θφ

ˆ
)ˆ;(ln

2
)( 0  (A2) 

( )
)(

ˆ
)ˆ;(ln

2
)( 0

k

k

kk

s
kk g

d

rpd

E

N
N φ

θ
θφ −=  (A3) 

Taking the first and the second derivative (with respect 
to the true carrier phase kθ ) of both sides of the 
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normalization constraint � = 1);( kkk drrp θ , and using 

( ){ }dxxfdxfdxxdf )(ln)()( =  it can be verified that  

( )
0

);(ln
=�




�
�
�

�

k

kk

d

rpd
E

θ
θ

 (A4) 

and 

( ) ( )
�
�



�

�
�
�

�
−=

�
�




�

�
�

�

�

��
�

�
��
�

�
2

22
);(ln);(ln

k

kk

k

kk

d

rpd
E

d

rpd
E

θ
θ

θ
θ

(A5) 

It follows directly from kkk θθφ ˆ−=  and (A4) that 

0)0( =g . Taking into account that kkk θθφ ˆ−=  and 

(11), the PED slope )0(g ′  and the loop noise )0(kN  

at 0=kφ  are given by 

( )
�
�



�

�
�
�

�
−=′

2

2
0 );(ln

2
)0(

k

kk

s d

rpd
E

E

N
g

θ
θ

 (A6) 

( )
k

kk

s
k d

rpd

E

N
N

θ
θ );(ln

2
)0( 0=  (A7) 

Because of the statistical properties of { kr } , the loop 

noise at 0=kφ  is white5 and its power spectral 

density is given by 

( ) ( )
�
�
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��
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��
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�
��
�

�
=

22

02 );(ln
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Taking into account (A5) and (3), we obtain  

( )

( )[ ] ��
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�
��
�

�
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��
�

�
��
�

�
=′
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02
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2
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NE
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Sg

s
NCA

s
k

s
NCA

 (A9) 

with 

( )[ ][ ]kj
kkkk

s

s
NCA errAE

NEN

E
S θθ −=��

�

�
��
�

�
;Im

2 *2

00

(A10) 

It can be verified that NCAS  from (A10) equals the 

ratio of the modified Cramer-Rao bound (MCRB) to 
the true Cramer-Rao bound (CRB) related to the 
estimation of an unknown but deterministic carrier 
phase from the noisy observation of K  uncoded data 
symbols [14]. As CRB � MCRB, and CRB converges 
to MCRB for large SNR, it is found that 

10
0

≤��
�

�
��
�

�
≤

N

E
S s

NCA , and ( ) 1=∞NCAS . 

                                                 
5 In the case of uncoded transmission this follows directly from the 

fact that kr  and kr ′  are independent for kk ′≠ , but it can be 

shown analytically (outside the scope of this paper) that this 
property holds independently of the code properties. 

 The above analysis remains valid for DA 

operation provided that we replace )ˆ;( kkk rA θ  with 

ka , and ( )kkrp θ̂;  with ( )kkk arp θ̂,; , which is (within 

an irrelevant factor) given by ),(
ˆ

k
j

k reaF kθ . In this 

case, we obtain 
( )
( )[ ]

s
k E

N
NE

g

2
)0(

10

02 =

=′
  (A11) 
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