
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 3, MARCH 2007 1173

Efficient Bit and Digital Reversal Algorithm
Using Vector Calculation

Soo-Chang Pei and Kuo-Wei Chang

Abstract—This correspondence describes an efficient bit and digital
reversal algorithm using vector calculation. It is much more efficient and
simple than calculating the bit and digital reversal sequentially one by
one using for-loop. An auxiliary small-size seed table can also be used for
building up larger table in our algorithm to speed up the computation
time. It will be very useful for data shuffling in radix-2 and radix-4 fast
Fourier transforms.

Index Terms—Bit reversal, digital reversal, fast Fourier transform.

I. INTRODUCTION

The well-known radix2 fast Fourier transform (FFT) algorithm [1]
can be classified into two major classes, one is decimation-in-time
(DIT) FFT, the other is decimation-in-frequency (DIF) FFT. The bit
reversal data shuffling is in the first stage of DIT-FFT or the last
stage of DIF-FFT to speed up the transform. A number of bit-reversal
algorithm have been investigated and published in the open litera-
ture[1]–[11]. We can classify into two classes, the first class needs an
auxiliary small size table [3]–[5], the second class performs efficient
bit-reversal algorithm without tables.

The conventional algorithms calculate the bit reversal one by one
using for-loop. The new idea is to calculate the bit-reversal index in
vector form. Vector calculation is much more efficient and simple than
calculating the bit reversal sequentially one by one using for-loop, es-
pecially taking the advantage of MATLAB’s vector characteristics. It
can be implemented very effectively using not more than four lines
MATLAB procedures.

Meanwhile table look-up methods are generally much faster than
calculating directly, but need a lot of memory storage. An auxiliary
small size seed table [3]–[5] can be used to build a large table look-up
for efficient bit-reversal. This approach can speed up the computa-
tion time with a small size table for paying the price. The similar idea
can also be used in our method for table look-up using a small sized
seed table. This new method for bit-reversal can be easily generalized
to nonbinary digit reversal. For example, in radix-4 FFT, it will need
4-nary digital reversal process for data shuffling to speed up the trans-
form.

Calculating bit reversal in the vector way can also produce an
in-place algorithm. This algorithm is very similar to the Walker’s [5],
but it can take the advantage of premultiplying thus contains only
logical OR operations, which makes it faster than the Walker’s [5].

II. USING VECTOR CALCULATION

Conventional bit reversal algorithm uses for-loop. But we know that
in some languages, such as MATLAB, calculation in vectors is faster

Manuscript received November 24, 2005; revised April 24, 2006. This work
was supported by the National Science Council of Taiwan, R.O.C., under Con-
tracts 93-2219-E-002-004 and NSC 93-2752-E-002-006-PAE. The associate ed-
itor coordinating the review of this correspondence and approving it for publi-
cation was Dr. Yuan-Pei Lin.

The authors are with the Department of Electrical Engineering, National
Taiwan University Taipei, Taiwan, 10617, R.O.C. (e-mail: pei@cc.ee.ntu.edu.
tw).

Digital Object Identifier 10.1109/TSP.2006.887567

than using for-loop. The conventional method is calculating the bit re-
versal one by one, and can’t take the advantage of MATLAB’s charac-
teristics. So a new observation is made. Note that

f0;1;2;3g bitReverse�! f0;2;1;3g (1)

f0;1;2;3;4;5;6;7g bitReverse�! f0;4;2;6;1;5;3;7g: (2)

The first four numbers in (2) are exactly what we just find in (1) mul-
tiply 2. And the last four numbers, they are the first four numbers
multiply 2 plus one, respectively! Moreover

f0; 1; 2; 3; 4; 5; 6; 7g bitReverse�! f0; 4; 2; 6; 1; 5; 3; 7g (3)

f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15g
bitReverse�! f0; 8; 4; 12; 2; 10; 6; 14; 1; 9; 5; 13; 3; 11; 7; 15g: (4)

It is very similar to the first one, so we can conclude a MATLAB pro-
cedure as follows:

Step 1) x(1) = 0
Step 2) for 1: log

2
Nx = [2�x2�x + 1]; end

Step 3) Now x is the vector of bit reversal of [0 : N � 1], but in
MATLAB, index begins from 1, so if a is the input, we
should write a = a(x+ 1) to complete bit reversal.

We now prove the method is correct. Let N = 2m, first we know
that the bit reversal of 0 is still 0. Assume the bit reversal of uk =
[0; 1; . . . ; 2k � 1] is vk; k = 1 � m � 1. Because we know that
um = [0�2m�1 + um�1; 1

�2m�1 + um�1], the bit reversal of um
is [Br(um�1) with left shift one bit and the added bit is 0, Br(um�1)
with left shift one bit and the added bit is 1] = [2�vm�1; 2

� vm�1+1].
Where “+” is the “+” in vector, i.e., [1; 2; 3]+1=[2; 3; 4]. So from the
mathematic induction, the method is correct for all m 2 N .

III. TABLE LOOK-UP METHOD

Generally speaking, table lookup methods are much faster than cal-
culating directly, but waste a lot of space. So a lot of compromise
method has been built, such as [5], [12]. They use smaller size table,
cooperate with the characteristic of some symmetry or the algebra and
obtain faster speed. In [5] and [12], the table size is

p
N Similarly, we

can use the same size of table and build a new table lookup method suit
for MATLAB. Observing that

f0; 1; 2; 3g bitReverse�! f0; 2; 1; 3g table of N = 4

f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15g
bitReverse�! f0; 8; 4; 12; 2; 10; 6; 14; 1; 9; 5; 13; 3; 11; 7; 15g
table of N = 16:

One can easily tell that

f0;8;4;12g is f0; 2; 1; 3g � 4 + 0;

f2;10;6;14g is f0; 2; 1; 3g � 4 + 2;

f1;9;5;13g is f0; 2; 1; 3g � 4 + 1;

and f3;11;7;15g is f0; 2; 1; 3g � 4 + 3

where + is the + in MATLAB, i.e., f1; 2; 3g + 1 = f2; 3; 4g. Note
that the “add term” f0; 2; 1; 3g is added separately. And f0; 2; 1; 3g is
also the bit reversal of N = 4 case. So a MATLAB procedure can be
written with this method. The details are as follows:

Step 1) get a lookup table of size
p
N , called x.

Step 2) y =
p
N
�

xT ones (1;
p
N) + ones (

p
N; 1)�x;

1053-587X/$25.00 © 2007 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

1174 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 3, MARCH 2007

TABLE I
COMPARISON FOR RUNNING TIME OF BIT-RIVERSAL BY DIFFERENT ALGORITHMS (BY MATLAB 6.0)

Step 3) y = y(:)T ; % rearrange y, then y is the bit reversal of
[0 : N�1]. Similar to the algorithm in Section II, we should
use a = a(x + 1) to complete bit reversal.

Step 2 seems difficult, so we explain this in figure: Use our previous
example, assume we have table of

p
N = 4, i.e., x = [0213]. And we

want to calculate N = 16.

y = 4�

0

2

1

3

� [1 1 1 1] +

1

1

1

1

� [0 2 1 3]

=

0 0 0 0

8 8 8 8

4 4 4 4

12 12 12 12

+

0 2 1 3

0 2 1 3

0 2 1 3

0 2 1 3

=

0 2 1 3

8 10 9 11

4 6 5 7

12 14 13 15

:

Step 3 is to convert the above matrix to [0, 8, 4, 12, 2, 10, 6, 14, 1, 9,
5, 13, 3, 11, 7, 15], which is exactly the bit reversal of N = 16.

The proof of this method is very similar to the method discussed
in Section II. But this time we do not need mathematical induction.
Let vm = [vm0; vm1; . . . ; vm(2 �1)] be the bit reversal of um =
[0; 1; . . . ; 2m � 1]. We want to prove that

v
m

= [v�
m
2m + vm0;v

�

m
2m + vm1;

. . . ;v�
m
2m + vm(2 �1)]:

To begin with, rewrite uuu
m

= [0; 1; . . . ; 2m � 1] = [um +
0�2m; um + 1�2m; . . . ; um + (2m � 1)�2m]. Then we know
that vm = [vm shift m bits and add vm0; vm shift m bits and
add vm1; . . . ; vm shift m bits and add vm(2 �1)] = [v�m2m +
vm0; v

�

m2m + vm1; . . . ; v
�

m2m + vm(2 �1)]. Thus, the proof is
completed.

IV. GENERALIZATION TO DIGIT REVERSAL

In modern FFT, we want to calculate non-binary reversal, or digit
reversal. Unfortunately, the method in [12] uses operation like XOR,
which is hard to do in nonbinary case. However, the new views of bit
reversal discussed above can easily generalize to nonbinary case, like
radix-4. Take N = 42 as an example.

f0; 1; 2; 3g digit�Reverse�! f0; 1; 2; 3g(Radix� 4 case) (5)

f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15g
digit�Reverse�! f0;4;8;12; 1; 5; 9; 13; 2; 6; 10; 14; 3; 7; 11; 15g: (6)

One can easily observe that the first four numbers of (6) are 4�(5). We
can say that

(6) = f4�(5) + 0; 4�(5) + 1; 4�(5) + 2; 4�(5) + 3g

or in general:
If N = km; vm is the k-nary digit reversal of [0 : N � 1], then

vm = [k�vm�1 + 0; k�vm�1 + 1; k�vm�1 + 2;

. . . ; k�vm�1 + k � 1]: (7)

Not surprisingly, the new table lookup method can also be generalized.
If N = km;vm is the k-nary digit reversal of [0 : N � 1], and

vm = [v0; v1; . . . ; vN�1]. Then

v
m

= [N�

vm + v0; N
�

vm + v1; . . . ; N
�

vm + vN�1]: (8)

(It can be easily checked that the discussions here are special case of
k = 2.)

Notice that (7) and (8) are also powerful when using vector calcula-
tion, so the implementation in MATLAB is straightforward.

V. NEW IN-PLACE ALGORITHM

All of the methods aforementioned calculate the indices first, and
then do the data bit reversal. Such algorithms use O(N) memories,
and many of the memories are wasted because there are

p
N data after

bit reversal are themselves. In order to use less memories and develop
an in-place algorithm, let us consider the example of N = 16 again.
Suppose the input Ais a matrix.

A =

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

bitReverse�!
a0 a2 a1 a3

a8 a10 a9 a11

a4 a6 a5 a7

a12 a14 a13 a15

: (9)

This can be replaced by three vector-matrix operations.
Step 1)

A =

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

= [a[0] a[1] a[2] a[3]]
bitRofvectors�! [a[0] a[2] a[1] a[3]]

=

a0 a8 a4 a12

a1 a9 a5 a13

a2 a10 a6 a14

a3 a11 a7 a15

:

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 3, MARCH 2007 1175

Step 2) Transpose the above matrix.

a0 a8 a4 a12

a1 a9 a5 a13

a2 a10 a6 a14

a3 a11 a7 a15

Transpose�!
a0 a1 a2 a3

a8 a9 a10 a11

a4 a5 a6 a7

a12 a13 a14 a15

:

Step 3) Do the same thing as in Step 1. And the result is the right-
hand side of (9).

An in-place algorithm must use for-loop. While using for-loop, the
step 1 and 3 can be avoided technically. Note transposing a matrix
means that the

p
N diagonal elements are unchanged, as we discussed

above, so the step 2 only exchanges ((N �pN)=2) numbers. The
pseudo code is given below. LetB is the input array andxxx is the look-up
table.

For i = 0 to
p
N � 2

For j = i+ 1 to
p
N � 1:

a =
p
N

�

xxx(i)+ j; b =
p
N

�

xxx(j)+ i; exchange the elements BBB(a)
and BBB(b).

The proof of the correctness of this algorithm is similar to the
Walker’s [5], so it is omitted here. Looking at this algorithm closely,
one can easily find the multiplying is unnecessary if the xxx is pre-
multiplied by

p
N . Furthermore, since i and j are less than

p
N , and

xxx is larger than
p
N if we premultiply it, the plus addition can be

done by logical OR operation, if
p
N is a power of 2. In summary,

this algorithm can be implemented only by ‘read’, ‘write’ and ‘OR’
operations, which makes it faster than the Walker’s [5]. The revised
algorithm is given below. Again, Let BBB is the input array and xxx is the
look-up table.

xxx =
p
N

�

xxx

For i = 0 to
p
N � 2

For j = i+ 1 to
p
N � 1:

a = xxx(i)jj; b = xxx(j)ji; exchange the elements BBB(a) and BBB(b).

VI. COMPARISON

The methods in Section II and III need N shifts, N additions, and
an index adjusting. Both of them use O(N) memories. The major dif-
ference of these two methods is that the table lookup method can be
applied for parallel computing. For example, for N = 16 and table
size = 4, if we just want to calculate the output y[12] � y[15], we
need not wait until the calculation of y[0] � y[11] is completed. We
can directly compute f0; 2; 1; 3g � 4 + 3 = f3; 11; 7; 15g and output
these four values x[3]; x[11]; x[7],and x[15]. Table I shows the com-
parison of the running time between three different algorithms using
MATLAB 6.0. Each of the time is averaged on 1000 runs. One can no-
tice that the new method of Section III is significantly faster than the
others, because of MATLAB’s characteristics.

Table II is, the running time using C-program as mex-function
and running in MATLAB 6.0. Because C usually runs faster than
MATLAB, the time is averaged on 10 000 runs. As we know, C

TABLE II
COMPARISON FOR RUNNING TIME OF BIT-RIVERSAL BY DIFFERENT

ALGORITHMS (USING C-PROGRAM AS MEX-FUNCTION,
RUNNING IN MATLAB 6.0)

doesn’t have vector calculation. So we compare the proposed method
discussed in Section V with the others.

From Tables I and II, one can easily find that C version runs much
faster than the MATLAB one. This is due to the fact that the C version
can make much better use of the CPU data cache than the MATLAB
version, when the table is very large. Also, the C version in Section V
needs fewer operations than the MATLAB version, as discussed in Sec-
tion V. Besides, although it has been proven in [12] that the proposed
algorithm could run twice faster than the algorithm in [5], the running
times do not reflect this fact because the mex-function implementation.

VII. CONCLUSION

In this correspondence, we showed that bit reversal algorithm can
be presented in vector way, which is suit for some languages like
MATLAB. We also provide the method of table lookup method, with
similar math structure and proof. Besides, the new points of view
make it possible to generalize bit reversal, which can be used in FFT
transforms. Finally, a new fast in-place algorithm is derived by the
vector view.

REFERENCES

[1] A. Karp, “Bit reversal on uniprocessors,” SIAM Rev., vol. 38, no. 1, pp.
1–26, Mar. 1996.

[2] A. Elster, “Fast bit-reversal algorithms,” in Proc, IEEE Int. Conf.
Acoustics, Speech, Signal Processing (ICASSP), 1989, pp. 1099–1102.

[3] D. Evans, “An improved digital-reversal permutation algorithm for the
fast Fourier transforms,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-35, pp. 1120–1125, Aug. 1987.

[4] D. Evans, “A second improved digital-reversal permutation algorithm
for the fast fourier transforms,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, pp. 1288–1291, Aug. 1989.

[5] J. Walker, “A new bit-reversal algorithm,” IEEE Trans. Signal Process.,
vol. 38, no. 8, pp. 1472–1473, Aug. 1989.

[6] P. Duhamel and J. Prado, “A connection between bit-reverse and ma-
trix transpose, hardware and software consequences,” in Proc, IEEE
Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), 1988, pp.
1403–1406.

[7] B. Gold and B. Rader, Digital Processing of Signal. New York: Mc-
Graw-Hill, 1969.

[8] A. Yong, “A better FFT bit-revesal algorithm without tables,” IEEE
Trans. Signal Process., vol. 39, no. 10, pp. 2365–2367, Oct. 1991.

[9] M. Orchard, “Fast bit-reversal algorithms based on index represen-
tations in GF(2b),” IEEE Trans. Signal Process., vol. 40, no. 4, pp.
1004–1008, Apr. 1992.

[10] J. Rius and R. D. Porrata-Dorin, “New FFT bit-reversal algorithm,”
IEEE Trans. Signal Process., vol. 49, no. 1, pp. 251–254, Jan. 2001.

[11] K. Drouiche, “A new efficient computational algorithm for bit reversal
mapping,” IEEE Trans. Signal Process., vol. 49, no. 1, pp. 251–254,
Jan. 2001.

[12] J. Prado, “A new fast bit-reversal permutation algorithm based on a
symmetry,” IEEE Signal Process. Lett., vol. 11, pp. 933–936, Dec.
2004.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

